Mamy schemat sterowania (regulacji) w ukªadzie zamkni tym (rys. 1). Zakªada si,»e wzmocnienie czªonu statycznego

Wielkość: px
Rozpocząć pokaz od strony:

Download "Mamy schemat sterowania (regulacji) w ukªadzie zamkni tym (rys. 1). Zakªada si,»e wzmocnienie czªonu statycznego"

Transkrypt

1 LINIE PIERWIASTKOWE JAKO PODSTAWA ANALIZY UKŠADÓW STEROWANIA 1 Mamy schemat sterowania (regulacji) w ukªadzie zamkni tym (rys. 1). Rysunek 1: Podstawowy schemat strukturalny ukªadu sterowania. Zakªada si,»e wzmocnienie czªonu statycznego k [0, ). Cz ± dynamiczna G 0 (s) ukªadu sterowania obejmuje: sterowany obiekt oraz dynamiczne 'fragmenty' regulatora (sterownika).

2 2 Transmitancja ukªadu otwartego G 0 (s) = k G 0 (s). Transmitancja ukªadu zamkni tego G(s) C(s) R(s) = G 0(s) 1 + G 0 (s) = k G 0 (s) 1 + k G 0 (s). Ukªad zamkni ty jest stabilny w sensie BIBO, gdy wszystkie bieguny transmitancji G(s) le» w lewej otwartej póªpªaszczy¹nie zespolonej. da si zatem, aby czyli zera mianownika funkcji G(s) zera wyra»enia 1 + k G 0 (s) posiadaªy ujemne cz ±ci rzeczywiste.

3 Reguªy wykre±lania linii pierwiastkowych Zapiszmy G 0 (s) w postaci czynnikowej G 0 (s) = N(s) D(s) = m j=1 (s z j) n j=1 (s p j) z wyró»nionymi zerami {z j } m j=1 oraz biegunami {p j } n j=1. Zakªada si,»e G 0 (s) jako wªa±ciwa funkcja wymierna o sko«czonych stopniach licznika i mianownika, odpowiednio m = deg(n(s)) n = deg(d(s)), m n jest modelem minimalnym (bez uproszcze«w parach 'zero-biegun'). Denicja. Linie pierwiastkowe to miejsce geometryczne zer wyra»enia 1 + k G 0 (s) dla k [0, ). 3

4 4 Z formalnego punktu widzenia linie pierwiastkowe mo»na zatem traktowa jako zbiór funkcji {[0, ) k s j C} n j=1 gdzie s j = s j (k), j = 1,..., n, jest j- tym pierwiastkiem równania D(s) + k N(s) = 0. Mo»na te» patrze na linie pierwiastkowe jako na pewien odpowiednio 'uporz dkowany' ('skierowany' przez k [0, )) podzbiór LP(N, D) C pªaszczyzny zespolonej: s = s(k) LP(N, D) k [0, ) D(s) + k N(s) = 0.

5 Podane ni»ej praktyczne wskazania (reguªy) wykre±lana linii pierwiastkowych wynikaj bezpo±rednio z równania charakterystycznego 1 + k G 0 (s) = 0 które dla danego k [0, ) musi speªnia liczba zespolona s C, aby by pierwiastkiem (miejscem zerowym) mianownika transmitancji G(s). Równanie to zapisa mo»na w postaci dwóch warunków: warunku amplitudowego k G 0 (s) = 1, warunku fazowego arg G 0 (s) = r 180, r = ±1, 3,.... Jak si rychªo oka»e, podstawowe znaczenie posiada tu warunek fazowy. 5

6 6 Reguªy kre±lenia linii pierwiastkowych (1) Linie pierwiastkowe s symetryczne wzgl dem osi rzeczywistej pªaszczyzny zespolonej. (2) Linie pierwiastkowe zaczynaj si (dla k = 0) w biegunach transmitancji G 0 (s), za± ko«cz si (dla k ) w zerach tej transmitancji G 0 (s), wª czaj c zera w niesko«czono±ci. (3) Linie pierwiastkowe posiadaj asymptoty o nast puj cych wªasno±ciach: asymptoty, w liczbie α, s póªprostymi wychodz cymi z punktu (centroid) na osi rzeczywistej, α = n m, centroid dany jest wzorem σ α = n j=1 p j m j=1 z j, α σ α

7 k ty mi dzy asymptotami a osi rzeczywist ϕ r = r 180, r = ±1, 3,.... α (4) Linie pierwiastkowe na osi rzeczywistej mog le»e tylko na lewo od nieparzystej liczby punktów kontrolnych (rzeczywistych biegunów i zer transmitancji G0 (s)), licz c od punktu o najwi kszej warto±ci. (5) Punkty wspólne gaª zi linii pierwiastkowych (punkty spotkania oraz punkty rozej±cia linii pierwiastkowych) co odpowiada wielokrotnym pierwiastkom równania charakterystycznego ukªadu zamkni tego o transmitancji G(s) nale» do zbioru rozwi za«równania N(s)D (s) N (s)d(s) = 0 7

8 8 gdzie D (s) oraz N (s) oznaczaj pochodne odpowiednich wielomianów. (6) K t odej±cia ϑ di linii pierwiastkowej od danego bieguna p i transmitancji G 0 (s) okre±lony jest wzorem ϑ di = j ϑ z j j,j i ϑ p j + r 180, r = ±1, ±3,... gdzie ϑ pj (ϑ zj ) reprezentuje argument wektora poprowadzonego od bieguna p j (zera z j ) do bieguna p i tej transmitancji, i 1,..., n. (7) K t doj±cia ϑ ai linii pierwiastkowej do danego zera z i transmitancji G 0 (s) okre±lony jest wzorem ϑ ai = j ϑ p j j,j i ϑ z j + r 180, r = ±1, ±3,... gdzie ϑ pj (ϑ zj ) reprezentuje argument wektora poprowadzonego od bieguna

9 p j (zera z j ) do zera z i tej transmitancji, i 1,..., m. Komentarz (a) Warunek podany w regule (5), to znaczy równanie N(s)D (s) N (s) D(s) = 0, jest warunkiem koniecznym na to, aby dana liczba zespolona s C byªa pierwiastkiem wielokrotnym wielomianu charakterystycznego rozwa»anego ukªadu zamkni tego. Nie jest to jednak warunek wystarczaj cy, co oznacza, i» w±ród rozwi za«podanego równania mog wyst powa liczby, które nie s pierwiastkami wielokrotnymi wielomianu charakterystycznego badanego ukªadu. (b) W przypadku, w którym zachodzi m j=1 G 0 (s) = ( 1) (s z j) n j=1 (s p j) 9

10 10 nale»y odpowiednio zmodykowa stosowne reguªy kre±lenia linii pierwiastkowych, uwzgl dniaj c wyst puj ce tu 'dodatkowe' przesuni cie fazy: (3 ) Linie pierwiastkowe posiadaj a- symptoty o nast puj cych wªasno±ciach:. k ty mi dzy asymptotami a osi rzeczywist ϕ r = r 180, r = ±0, 2,.... α (4 ) Linie pierwiastkowe na osi rzeczywistej mog le»e tylko na prawo od nieparzystej liczby punktów kontrolnych (rzeczywistych biegunów i zer transmitancji G0 (s)), licz c od punktu o najwi kszej warto±ci).

11 (6 ) K t odej±cia ϑ di linii pierwiastkowej od danego bieguna p i transmitancji G 0 (s) wyznaczony jest wzorem ϑ di = j ϑ z j j,j i ϑ p j + r 180, r = ±0, ±2,... gdzie ϑ pj (ϑ zj ) reprezentuje argument wektora poprowadzonego od bieguna p j (zera z j ) do bieguna p i tej transmitancji, i 1,..., n. (7 ) K t doj±cia ϑ ai linii pierwiastkowej do danego zera z i transmitancji G 0 (s) wyznaczony jest wzorem ϑ ai = j ϑ p j j,j i ϑ z j + r 180, r = ±0, ±2, gdzie ϑ pj (ϑ zj ) reprezentuje argument wektora poprowadzonego od bieguna p j (zera z j ) do zera z i tej transmitancji, i 1,..., m.

12 12 (c) Na rys. 2 dano geometryczn interpretacj 'fazowego przyczynku' ϑ = arg(s s 0 ), s, s 0 C. Rysunek 2: Konwencja obowi zuj ca przy wyznaczaniu k ta ϑ = arg(s s 0 ).

13 PRZYKŠAD 1 Transmitancja otwartego ukªadu sterowania z jednostkowym ujemnym sprz -»eniem zwrotnym dana jest wzorem G 0 (s) = k G 0 (s) 1 = k s(2 + s)(5 + s), k 0. Podaj obraz linii pierwiastkowych stosownego ukªadu zamkni tego. Okre±l krytyczne wzmocnienie k, przy którym ukªad ten znajduje si 'na granicy stabilno±ci' oraz podaj odpowiadaj c temu pulsacj drga«nietªumionych. Rozwi zanie uzyskujemy w rutynowym post powaniu. Niech m b dzie liczb sko«czonych zer transmitancji ukªadu otwartego G 0 (s), za± n oznacza liczb jej biegunów. Mamy zatem: m = 0 oraz n = 3. 13

14 14 Biegunami G 0 (s) s liczby: p 1 = 5, p 2 = 2 oraz p 3 = 0. Liczba asymptot, do których d» linie pierwiastkowe α = n m = 3. K ty mi dzy asymptotami maj warto± /α = 120. K ty mi dzy asymptotami a osi rzeczywist s równe: ±60 oraz 180. Odci ta σ a punktu na osi rzeczywistej, z którego wychodz asymptoty (centroid) σ a = n i=1 p i n =

15 Wspóln cz ± linii pierwiastkowych o- raz osi rzeczywistej stanowi prawostronnie domkni ta póªprosta le» ca na lewo od bieguna p 1 oraz domkni ty odcinek pomi dzy biegunami p 2 i p 3 (, 5]) [ 2, 0]. Wynika st d, i» punkt 'odej±cia' linii pierwiastkowych od osi rzeczywistej powinien nale»e do odcinka [p 2, p 3 ] = [ 2, 0]. Wspóªrz dn tego punktu wyznaczymy w oparciu o równanie charakterystyczne ukªadu zamkni tego, obliczaj c maksymaln warto± parametru k (wzmocnienia), dla której bieguny ukªadu zamkni tego s rzeczywiste. Wielomian charakterystyczny W (s) u- kªadu zamkni tego ma posta W (s) = k + 10s + 7s 2 + s 3. Zaªó»my, i» s C jest pierwiastkiem tego wielomianu. Odpowiednie rów- 15

16 16 nanie charakterystyczne W (s) = 0 interpretowa mo»na jako zapis uwikªanego odwzorowania s k(s) C przyporz dkowuj cego danemu pierwiastkowi s tak warto± k(s), dla której zachodzi W (s, k(s)) = 0. Ró»niczkuj c to odwzorowanie, mamy dk(s) ds W (s,k(s)) s = W (s,k(s)) k(s) = 10 14s 3s 2. Przyrównuj c powy»sz pochodn do zera (warunek konieczny!), otrzymujemy równanie kwadratowe s + 3s 2 = 0 o nast puj cych pierwiastkach: s 1 = oraz s 2 =

17 Jak widzimy, tylko pierwszy z nich wyznacza szukany punkt odej±cia s d = s 1. Zachodzi bowiem s 1 [p 2, p 3 ]. Identyczny wynik uzyskamy, rozwi zuj c równanie (warunek konieczny!) N(s)D (s) N (s)d(s) = 0 w którym: N(s) = 1 D(s) = s(2 + s)(5 + s). Podstawiaj c s = s d w równaniu W (s, k(s)) = 0, otrzymujemy odpowiadaj c temu punktowi warto± k d wzmocnienia k k d =

18 18 Krytyczn warto± k wzmocnienia k, przy której ukªad zamkni ty osi - ga 'granic stabilno±ci', obliczymy na podstawie równania charakterystycznego W (s) = 0, kªad c s = jω. W ten sposób uzyskujemy równanie k 7ω 2 n + jω n (10 ω 2 n) = 0 (1) w którym ω n oznacza odpowiedni pulsacj drga«nietªumionych. Przyrównuj c do zera urojon cz ± wyra»enia po lewej stronie tego równania, mamy ω n = 10 rad s 1. Nast pnie, po podstawieniu pulsacji ω n we wzorze (1), otrzymujemy równanie, z którego wyznaczamy krytyczn warto± wzmocnienia k = 70.

19 19 Rysunek 3: Przykªad 1: linie pierwiastkowe. Dyskusja: rady dla projektanta Jak zmiana (wzrost) wzmocnienia k wpªywa na podstawowe cechy ukªadu zamkni tego? Stabilno± : gro¹ba destabilizacji. Dokªadno± : ustalone uchyby malej. po pocz tkowym wzro±cie szybko±ci (dominuj cy biegun ukªadu oddala si od zera) czas ustalania procesów przej±ciowych wydªu»a si (oscylacje!) Szybko± :

20 20 PRZYKŠAD 2 Operatorowa transmitancja otwartego u- kªadu sterowania z jednostkowym ujemnym sprz»eniem zwrotnym i k 0 G 0 (s) = k G 0 (s) = k N(s) D(s) 1 = k (1 + s)(2 + s)(10 + s). Wyznacz przebieg linii pierwiastkowych stosownego ukªadu zamkni tego, okre±l krytyczne wzmocnienie k = k ukªadu na 'granicy stabilno±ci' oraz podaj odpowiadaj c temu wzmocnieniu pulsacj drga«nietªumionych. W rozwa»anym przypadku mamy: m = 0 oraz n = 3 p 1 = 10, p 2 = 2 oraz p 3 = 1 (bieguny ukªadu otwartego).

21 Mo»na si zatem spodziewa analogicznego obrazu linii pierwiastkowych jak w Przykªadzie Post puj c tedy wedªug przyj tego tam schematu, stwierdzamy,»e: Linie pierwiastkowe d» ku trzem a- symptotom (α = n m = 3) o k - tach: ±60 oraz 180. Punktem wspólnym owych asymptot jest centroid σ a = = Wspólna cz ± linii pierwiastkowych o- raz rzeczywistej osi pªaszczyzny zespolonej obejmuje zatem póªprost na lewo od punktu p 1 oraz domkni ty odcinek pomi dzy punktami p 2 i p 3.

22 22 Punkt odej±cia linii pierwiastkowych od osi rzeczywistej wyznaczymy z równania N(s)D (s) N (s)d(s) = 0 które w tym przypadku ma posta s + 3s 2 = 0. Spo±ród dwóch rozwi za«tego równania: s 1 = oraz s 2 = jako punkt odej±cia wybieramy punkt zachodzi bowiem s d = s 1 s 1 [p 2, p 3 ].

23 Krytyczn warto± k parametru k obliczamy, posªuguj c si kryterium Routha. Na podstawie równania charakterystycznego ukªadu zamkni tego 20 + k + 32s + 13s 2 + s 3 = 0, otrzymujemy tablic Routha: s s k s k 13 s k. Ukªad zamkni ty jest stabilny przy 20 < k < 396. Krytyczna warto± wzmocnienia (k 0), dla której ukªad zamkni ty znajduje si na 'granicy stabilno±ci' wynosi zatem k =

24 24 Pulsacj draga«nietªumionych (jest to pulsacja odci cia charakterystyki fazowej transmitancji otwartego ukªadu sterowania) ω n = 4 2 = rad s 1 wyznaczamy w oparciu o pomocniczy wielomian 20 + k + 13s 2 (wspóªczynniki tego wielomianu odczytujemy z drugiego wiersza tablicy Routha). Sprawd¹my jeszcze warunek amplitudowy dla punktu s = jω n 1 G 0 (jω n ) = 396 = k.

25 MATLABowe polecenia. 25 >> licz=1; % licznik transmitancji; >> mian=conv(conv([1 1],[1 2]),[1 10]); % mianownik transmitancji, utworzony poprzez mno»enie odpowiednich dwumianów; >> mian mian = >> rlocus(licz,mian); % kre±lanie linii pierwiastkowych odpowiadaj cych ukªadowi sterowania obiektem o zadanej transmitancji (licznik/mianownik) przy zastosowaniu jednostkowego sprz»enia zwrotnego; >> axis([ ]); % skalowanie wykresu; Rysunek 4: Przykªad 2: linie pierwiastkowe.

26 26 >> [Gm,Pm,Wcg,Wcp]=margin(licz,mian); % wyznaczanie zapasów (marginesów) stabilno±ci ukªadu o zadanej transmitancji otwartej p tli sterowania (licznik/mianownik); >> Gm Gm = % zapas wzmocnienia (warto± bezwzgl dna); >> Wcg Wcg = % pulsacja odci cia charakterystyki fazowej transmitancji otwartego ukªadu sterowania (rad/sek); >> routh(mian) % wyznaczanie tablicy Routha; s 3 Row: 1 32 s 2 Row: s 1 Row: e s 0 Row: 20 First column is: s 3 1 s 2 13 s s 0 20 Number of sign changes in the rst column is 0 % test stabilno±ci wypadª pomy±lnie; The computed roots of D(s) are: e+001, e+000, e+000.

27 Metoda linii pierwiastkowych: ograniczenia statycznej korekcji Zbadamy obraz linii pierwiastkowych dla pewnych prostych transmitancji G0 (s). Rozwa»ymy mo»liwo± stabilizacji zamkni tego ukªadu sterowania poprzez dobór parametru k Rysunek 5: G0 (s) = 1 s+1 : ukªad stabilny dla k 0. Rysunek 6: G0 (s) = 1 s 1 : ukªad stabilny dla k > 1.

28 28 Rysunek 7: G0 (s) = 1 s+1 : ukªad stabilny dla k < 1. Rysunek 8: G0 (s) = 1 s 1 : ukªad niestabilny dla k 0. Rysunek 9: G0 (s) = 1 s : ukªad stabilny dla k 0. Rysunek 10: G0 (s) = 1 s : ukªad niestabilny dla k 0.

29 29 Rysunek 11: G0 (s) = 1 s 2 : ukªad niestabilny dla k 0. Rysunek 12: G0 (s) = 1 s 2 : ukªad niestabilny dla k 0. Rysunek 13: G0 (s) = 1 s 3 : ukªad niestabilny dla k 0. Rysunek 14: G0 (s) = 1 s 3 : ukªad niestabilny dla k 0.

30 30 Rysunek 15: G0 (s) = s+1 s+2 : ukªad stabilny dla k 0. Rysunek 16: G0 (s) = s+1 s+2 : ukªad stabilny dla k < 1 lub k > 2. Rysunek 17: G0 (s) = s+2 s+1 : ukªad stabilny dla k 0. Rysunek 18: G0 (s) = s+1 s+2 : ukªad stabilny dla k < 1 2 lub k > 1.

31 31 Rysunek 19: G0 (s) = 1 : ukªad niestabilny dla k 0. s 2 1 Rysunek 20: G0 (s) = 1 : ukªad niestabilny dla k 0. s 2 1 Co powiesz o dobrej okre±lono±ci ukªadów z rys. 16 i 18? Jak widzimy, w niektórych przypadkach, stosuj c statyczny czªon korekcyjny o wzmocnieniu k 0, nie mo»na ustabilizowa ukªadu zamkni tego. W jaki sposób mo»na wtedy uzyska stabilizacj tego ukªadu, si gaj c po odpowiedni korektor dynamiczny? piotrjsuchomski

Materiaªy do Repetytorium z matematyki

Materiaªy do Repetytorium z matematyki Materiaªy do Repetytorium z matematyki 0/0 Dziaªania na liczbach wymiernych i niewymiernych wiczenie Obliczy + 4 + 4 5. ( + ) ( 4 + 4 5). ( : ) ( : 4) 4 5 6. 7. { [ 7 4 ( 0 7) ] ( } : 5) : 0 75 ( 8) (

Bardziej szczegółowo

Zagadnienia na wej±ciówki z matematyki Technologia Chemiczna

Zagadnienia na wej±ciówki z matematyki Technologia Chemiczna Zagadnienia na wej±ciówki z matematyki Technologia Chemiczna 1. Podaj denicj liczby zespolonej. 2. Jak obliczy sum /iloczyn dwóch liczb zespolonych w postaci algebraicznej? 3. Co to jest liczba urojona?

Bardziej szczegółowo

Stabilno± ukªadów liniowych

Stabilno± ukªadów liniowych Rozdziaª 1 Stabilno± ukªadów liniowych Autorzy: Bartªomiej Fajdek 1.1 Poj cia podstawowe Jednym z podstawowych wymogów stawianych ukªadom automatyki jest stabilno±. Istnieje wiele denicji stabilno±ci ukªadów

Bardziej szczegółowo

Zastosowanie przeksztaªcenia Laplace'a. Przykªad 1 Rozwi» jednorodne równanie ró»niczkowe liniowe. ÿ(t) + 5ẏ(t) + 6y(t) = 0 z warunkami pocz tkowymi

Zastosowanie przeksztaªcenia Laplace'a. Przykªad 1 Rozwi» jednorodne równanie ró»niczkowe liniowe. ÿ(t) + 5ẏ(t) + 6y(t) = 0 z warunkami pocz tkowymi Zastosowanie przeksztaªcenia Laplace'a Przykªad Rozwi» jednorodne równanie ró»niczkowe liniowe ÿ(t) + 5ẏ(t) + 6y(t) = 0 z warunkami pocz tkowymi y(0 + ) = a, ẏ(0 + ) = b. Rozwi zanie Dokonuj c transformacji

Bardziej szczegółowo

Informacje pomocnicze

Informacje pomocnicze Funkcje wymierne. Równania i nierówno±ci wymierne Denicja. (uªamki proste) Wyra»enia postaci Informacje pomocnicze A gdzie A d e R n N (dx e) n nazywamy uªamkami prostymi pierwszego rodzaju. Wyra»enia

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Podsta Automatyki Transmitancja operatorowa i widmowa systemu, znajdowanie odpowiedzi w dziedzinie s i w

Bardziej szczegółowo

Badanie stabilności liniowych układów sterowania

Badanie stabilności liniowych układów sterowania Badanie stabilności liniowych układów sterowania ver. 26.2-6 (26-2-7 4:6). Badanie stabilności liniowych układów sterowania poprzez analizę równania charakterystycznego. Układ zamknięty liniowy i stacjonarny

Bardziej szczegółowo

Układ regulacji automatycznej (URA) kryteria stabilności

Układ regulacji automatycznej (URA) kryteria stabilności Układ regulacji automatycznej (URA) kryteria stabilności y o e G c (s) z z 2 u G o (s) y () = () ()() () H(s) oraz jego wartością w stanie ustalonym. Transmitancja układu otwartego regulacji: - () = ()

Bardziej szczegółowo

Funkcje, wielomiany. Informacje pomocnicze

Funkcje, wielomiany. Informacje pomocnicze Funkcje, wielomiany Informacje pomocnicze Przydatne wzory: (a + b) 2 = a 2 + 2ab + b 2 (a b) 2 = a 2 2ab + b 2 (a + b) 3 = a 3 + 3a 2 b + 3ab 2 + b 3 (a b) 3 = a 3 3a 2 b + 3ab 2 b 3 a 2 b 2 = (a + b)(a

Bardziej szczegółowo

Elementy geometrii w przestrzeni R 3

Elementy geometrii w przestrzeni R 3 Elementy geometrii w przestrzeni R 3 Z.Šagodowski Politechnika Lubelska 29 maja 2016 Podstawowe denicje Wektorem nazywamy uporz dkowan par punktów (A,B) z których pierwszy nazywa si pocz tkiem a drugi

Bardziej szczegółowo

Podstawowe czªony dynamiczne. Odpowied¹ impulsowa. odpowied¹ na pobudzenie delt Diraca δ(t) przy zerowych warunkach pocz tkowych, { dla t = 0

Podstawowe czªony dynamiczne. Odpowied¹ impulsowa. odpowied¹ na pobudzenie delt Diraca δ(t) przy zerowych warunkach pocz tkowych, { dla t = 0 CHARAKTERYSTYKI W DZIEDZINIE CZASU I CZ STOTLIWO CI Podstawowe czªony dynamiczne Opis w dziedzinie czasu: Odpowied¹ impulsowa g(t) = L 1 [G(s)] odpowied¹ na pobudzenie delt Diraca δ(t) przy zerowych warunkach

Bardziej szczegółowo

Ukªady równa«liniowych

Ukªady równa«liniowych dr Krzysztof yjewski Mechatronika; S-I 0 in» 7 listopada 206 Ukªady równa«liniowych Informacje pomocnicze Denicja Ogólna posta ukªadu m równa«liniowych z n niewiadomymi x, x, x n, gdzie m, n N jest nast

Bardziej szczegółowo

Techniki regulacji automatycznej

Techniki regulacji automatycznej Techniki regulacji automatycznej Metoda linii pierwiastkowych Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 25 Plan wykładu Podstawy metody linii pierwiastkowych

Bardziej szczegółowo

Wektory w przestrzeni

Wektory w przestrzeni Wektory w przestrzeni Informacje pomocnicze Denicja 1. Wektorem nazywamy uporz dkowan par punktów. Pierwszy z tych punktów nazywamy pocz tkiem wektora albo punktem zaczepienia wektora, a drugi - ko«cem

Bardziej szczegółowo

2 Liczby rzeczywiste - cz. 2

2 Liczby rzeczywiste - cz. 2 2 Liczby rzeczywiste - cz. 2 W tej lekcji omówimy pozostaªe tematy zwi zane z liczbami rzeczywistymi. 2. Przedziaªy liczbowe Wyró»niamy nast puj ce rodzaje przedziaªów liczbowych: (a) przedziaªy ograniczone:

Bardziej szczegółowo

Liniowe równania ró»niczkowe n tego rz du o staªych wspóªczynnikach

Liniowe równania ró»niczkowe n tego rz du o staªych wspóªczynnikach Liniowe równania ró»niczkowe n tego rz du o staªych wspóªczynnikach Teoria obowi zuje z wykªadu, dlatego te» zostan tutaj przedstawione tylko podstawowe denicje, twierdzenia i wzory. Denicja 1. Równanie

Bardziej szczegółowo

Oba zbiory s uporz dkowane liniowo. Badamy funkcj w pobli»u kresów dziedziny. Pewne punkty szczególne (np. zmiana denicji funkcji).

Oba zbiory s uporz dkowane liniowo. Badamy funkcj w pobli»u kresów dziedziny. Pewne punkty szczególne (np. zmiana denicji funkcji). Plan Spis tre±ci 1 Granica 1 1.1 Po co?................................. 1 1.2 Denicje i twierdzenia........................ 4 1.3 Asymptotyka, granice niewªa±ciwe................. 7 2 Asymptoty 8 2.1

Bardziej szczegółowo

Kompensacja wyprzedzająca i opóźniająca fazę. dr hab. inż. Krzysztof Patan, prof. PWSZ

Kompensacja wyprzedzająca i opóźniająca fazę. dr hab. inż. Krzysztof Patan, prof. PWSZ Kompensacja wyprzedzająca i opóźniająca fazę dr hab. inż. Krzysztof Patan, prof. PWSZ Kształtowanie charakterystyki częstotliwościowej Kształtujemy charakterystykę układu otwartego aby uzyskać: pożądane

Bardziej szczegółowo

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Stabilność O układzie możemy mówić, że jest stabilny gdy układ ten wytrącony ze stanu równowagi

Bardziej szczegółowo

r = x x2 2 + x2 3.

r = x x2 2 + x2 3. Przestrze«aniczna Def. 1. Przestrzeni aniczn zwi zan z przestrzeni liniow V nazywamy dowolny niepusty zbiór P z dziaªaniem ω : P P V (które dowolnej parze elementów zbioru P przyporz dkowuje wektor z przestrzeni

Bardziej szczegółowo

1 Metody iteracyjne rozwi zywania równania f(x)=0

1 Metody iteracyjne rozwi zywania równania f(x)=0 1 Metody iteracyjne rozwi zywania równania f()=0 1.1 Metoda bisekcji Zaªó»my,»e funkcja f jest ci gªa w [a 0, b 0 ]. Pierwiastek jest w przedziale [a 0, b 0 ] gdy f(a 0 )f(b 0 ) < 0. (1) Ustalmy f(a 0

Bardziej szczegółowo

Wykªad 4. Funkcje wielu zmiennych.

Wykªad 4. Funkcje wielu zmiennych. Wykªad jest prowadzony w oparciu o podr cznik Analiza matematyczna 2. Denicje, twierdzenia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 4. Funkcje wielu zmiennych. Zbiory na pªaszczy¹nie i w przestrzeni.

Bardziej szczegółowo

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2018 Wstęp Stabilność O układzie możemy mówić, że jest stabilny jeżeli jego odpowiedź na wymuszenie (zakłócenie)

Bardziej szczegółowo

1 Przypomnienie wiadomo±ci ze szkoªy ±redniej. Rozwi zywanie prostych równa«i nierówno±ci

1 Przypomnienie wiadomo±ci ze szkoªy ±redniej. Rozwi zywanie prostych równa«i nierówno±ci Zebraª do celów edukacyjnych od wykªadowców PK, z ró»nych podr czników Maciej Zakarczemny 1 Przypomnienie wiadomo±ci ze szkoªy ±redniej Rozwi zywanie prostych równa«i nierówno±ci dotycz cych funkcji elementarnych,

Bardziej szczegółowo

Automatyka i robotyka

Automatyka i robotyka Automatyka i robotyka Wykład 5 - Stabilność układów dynamicznych Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 43 Plan wykładu Wprowadzenie Stabilność modeli

Bardziej szczegółowo

Schemat sterowania (regulacji) w ukªadzie zamkni tym (rys. 1).

Schemat sterowania (regulacji) w ukªadzie zamkni tym (rys. 1). LINIE PIERWIASTKOWE JAKO PODSTAWA SYNTEZY UKŠADÓW REGULACJI 1 Schemat sterowania (regulacji) w ukªadzie zamkni tym (rys. 1). Rysunek 1: Strukturalny schemat ukªadu sterowania. Korekcja statyczna: regulator

Bardziej szczegółowo

WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA

WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA PRZEDMIOT : : LABORATORIUM PODSTAW AUTOMATYKI 7. Metoda projektowania

Bardziej szczegółowo

AM II /2019 (gr. 2 i 3) zadania przygotowawcze do I kolokwium

AM II /2019 (gr. 2 i 3) zadania przygotowawcze do I kolokwium AM II.1 2018/2019 (gr. 2 i 3) zadania przygotowawcze do I kolokwium Normy w R n, iloczyn skalarny sprawd¹ czy dana funkcja jest norm sprawd¹, czy dany zbiór jest kul w jakiej± normie i oblicz norm wybranego

Bardziej szczegółowo

Rozwi zanie równania ró»niczkowego metod operatorow (zastosowanie transformaty Laplace'a).

Rozwi zanie równania ró»niczkowego metod operatorow (zastosowanie transformaty Laplace'a). Rozwi zania zada«z egzaminu podstawowego z Analizy matematycznej 2.3A (24/5). Rozwi zanie równania ró»niczkowego metod operatorow (zastosowanie transformaty Laplace'a). Zadanie P/4. Metod operatorow rozwi

Bardziej szczegółowo

K p. K o G o (s) METODY DOBORU NASTAW Metoda linii pierwiastkowych Metody analityczne Metoda linii pierwiastkowych

K p. K o G o (s) METODY DOBORU NASTAW Metoda linii pierwiastkowych Metody analityczne Metoda linii pierwiastkowych METODY DOBORU NASTAW 7.3.. Metody analityczne 7.3.. Metoda linii pierwiastkowych 7.3.2 Metody doświadczalne 7.3.2.. Metoda Zieglera- Nicholsa 7.3.2.2. Wzmocnienie krytyczne 7.3.. Metoda linii pierwiastkowych

Bardziej szczegółowo

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Stabilność - definicja 1 O układzie możemy mówić, że jest stabilny gdy wytrącony ze stanu równowagi

Bardziej szczegółowo

układu otwartego na płaszczyźnie zmiennej zespolonej. Sformułowane przez Nyquista kryterium stabilności przedstawia się następująco:

układu otwartego na płaszczyźnie zmiennej zespolonej. Sformułowane przez Nyquista kryterium stabilności przedstawia się następująco: Kryterium Nyquista Kryterium Nyquista pozwala na badanie stabilności jednowymiarowego układu zamkniętego na podstawie przebiegu wykresu funkcji G o ( jω) układu otwartego na płaszczyźnie zmiennej zespolonej.

Bardziej szczegółowo

analogowego regulatora PID doboru jego nastaw i przetransformowanie go na cyfrowy regulator PID, postępując według następujących podpunktów:

analogowego regulatora PID doboru jego nastaw i przetransformowanie go na cyfrowy regulator PID, postępując według następujących podpunktów: Cel projektu. Projekt składa się z dwóch podstawowych zadań, mających na celu zaprojektowanie dla danej transmitancji: G( s) = m 2 s 2 e + m s + sτ gdzie wartości m 2 = 27, m = 2, a τ = 4. G( s) = 27s

Bardziej szczegółowo

4. UKŁADY II RZĘDU. STABILNOŚĆ. Podstawowe wzory. Układ II rzędu ze sprzężeniem zwrotnym Standardowy schemat. Transmitancja układu zamkniętego

4. UKŁADY II RZĘDU. STABILNOŚĆ. Podstawowe wzory. Układ II rzędu ze sprzężeniem zwrotnym Standardowy schemat. Transmitancja układu zamkniętego 4. UKŁADY II RZĘDU. STABILNOŚĆ Podstawowe wzory Układ II rzędu ze sprzężeniem zwrotnym Standardowy schemat (4.1) Transmitancja układu zamkniętego częstotliwość naturalna współczynnik tłumienia Odpowiedź

Bardziej szczegółowo

Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych.

Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Wykªad jest prowadzony w oparciu o podr cznik Analiza matematyczna 2. Denicje, twierdzenia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Denicja Mówimy,»e funkcja

Bardziej szczegółowo

Liczby zespolone. dr Krzysztof yjewski Mechatronika; S-I 0.in». 6 pa¹dziernika Oznaczenia. B dziemy u»ywali nast puj cych oznacze«:

Liczby zespolone. dr Krzysztof yjewski Mechatronika; S-I 0.in». 6 pa¹dziernika Oznaczenia. B dziemy u»ywali nast puj cych oznacze«: Liczby zespolone Oznaczenia B dziemy u»ywali nast puj cych oznacze«: N = {1, 2, 3,...}- zbiór liczb naturalnych, Z = {..., 3, 2, 1, 0, 1, 2, 3,...}- zbiór liczb caªkowitych, Q = { a b : a, b Z, b 0}- zbiór

Bardziej szczegółowo

Równania ró»niczkowe I rz du (RRIR) Twierdzenie Picarda. Anna D browska. WFTiMS. 23 marca 2010

Równania ró»niczkowe I rz du (RRIR) Twierdzenie Picarda. Anna D browska. WFTiMS. 23 marca 2010 WFTiMS 23 marca 2010 Spis tre±ci 1 Denicja 1 (równanie ró»niczkowe pierwszego rz du) Równanie y = f (t, y) (1) nazywamy równaniem ró»niczkowym zwyczajnym pierwszego rz du w postaci normalnej. Uwaga 1 Ogólna

Bardziej szczegółowo

2. L(a u) = al( u) dla dowolnych u U i a R. Uwaga 1. Warunki 1., 2. mo»na zast pi jednym warunkiem: L(a u + b v) = al( u) + bl( v)

2. L(a u) = al( u) dla dowolnych u U i a R. Uwaga 1. Warunki 1., 2. mo»na zast pi jednym warunkiem: L(a u + b v) = al( u) + bl( v) Przeksztaªcenia liniowe Def 1 Przeksztaªceniem liniowym (homomorzmem liniowym) rzeczywistych przestrzeni liniowych U i V nazywamy dowoln funkcj L : U V speªniaj c warunki: 1 L( u + v) = L( u) + L( v) dla

Bardziej szczegółowo

Arkusz maturalny. Šukasz Dawidowski. 25 kwietnia 2016r. Powtórki maturalne

Arkusz maturalny. Šukasz Dawidowski. 25 kwietnia 2016r. Powtórki maturalne Arkusz maturalny Šukasz Dawidowski Powtórki maturalne 25 kwietnia 2016r. Odwrotno±ci liczby rzeczywistej 1. 9 8 2. 0, (1) 3. 8 9 4. 0, (8) 3 4 4 4 1 jest liczba Odwrotno±ci liczby rzeczywistej 3 4 4 4

Bardziej szczegółowo

Elementy geometrii analitycznej w przestrzeni

Elementy geometrii analitycznej w przestrzeni Wykªad 3 Elementy geometrii analitycznej w przestrzeni W wykªadzie tym wi kszy nacisk zostaª poªo»ony raczej na intuicyjne rozumienie deniowanych poj, ni» ±cisªe ich zdeniowanie. Dlatego niniejszy wykªad

Bardziej szczegółowo

MATEMATYKA 4 INSTYTUT MEDICUS FUNKCJA KWADRATOWA. Kurs przygotowawczy na studia medyczne. Rok szkolny 2010/2011. tel. 0501 38 39 55 www.medicus.edu.

MATEMATYKA 4 INSTYTUT MEDICUS FUNKCJA KWADRATOWA. Kurs przygotowawczy na studia medyczne. Rok szkolny 2010/2011. tel. 0501 38 39 55 www.medicus.edu. INSTYTUT MEDICUS Kurs przygotowawczy na studia medyczne Rok szkolny 00/0 tel. 050 38 39 55 www.medicus.edu.pl MATEMATYKA 4 FUNKCJA KWADRATOWA Funkcją kwadratową lub trójmianem kwadratowym nazywamy funkcję

Bardziej szczegółowo

Przekroje Dedekinda 1

Przekroje Dedekinda 1 Przekroje Dedekinda 1 O liczbach wymiernych (tj. zbiorze Q) wiemy,»e: 1. zbiór Q jest uporz dkowany relacj mniejszo±ci < ; 2. zbiór liczb wymiernych jest g sty, tzn.: p, q Q : p < q w : p < w < q 3. 2

Bardziej szczegółowo

PRZYPOMNIENIE Ka»d przestrze«wektorow V, o wymiarze dim V = n < nad ciaªem F mo»na jednoznacznie odwzorowa na przestrze«f n n-ek uporz dkowanych:

PRZYPOMNIENIE Ka»d przestrze«wektorow V, o wymiarze dim V = n < nad ciaªem F mo»na jednoznacznie odwzorowa na przestrze«f n n-ek uporz dkowanych: Plan Spis tre±ci 1 Homomorzm 1 1.1 Macierz homomorzmu....................... 2 1.2 Dziaªania............................... 3 2 Ukªady równa«6 3 Zadania 8 1 Homomorzm PRZYPOMNIENIE Ka»d przestrze«wektorow

Bardziej szczegółowo

Macierze. 1 Podstawowe denicje. 2 Rodzaje macierzy. Denicja

Macierze. 1 Podstawowe denicje. 2 Rodzaje macierzy. Denicja Macierze 1 Podstawowe denicje Macierz wymiaru m n, gdzie m, n N nazywamy tablic liczb rzeczywistych (lub zespolonych) postaci a 11 a 1j a 1n A = A m n = [a ij ] m n = a i1 a ij a in a m1 a mj a mn W macierzy

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Inżynieria Systemów Dynamicznych (5)

Inżynieria Systemów Dynamicznych (5) Inżynieria Systemów Dynamicznych (5) Dokładność Piotr Jacek Suchomski Katedra Systemów Automatyki WETI, Politechnika Gdańska 2 grudnia 2010 O czym będziemy mówili? 1 DOKŁAD 2 Uchyb Podstawowy strukturalny

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych dr Krzysztof yjewski Informatyka I rok I 0 in» 12 stycznia 2016 Funkcje wielu zmiennych Informacje pomocnicze Denicja 1 Niech funkcja f(x y) b dzie okre±lona przynajmniej na otoczeniu punktu (x 0 y 0 )

Bardziej szczegółowo

. 0 0... 1 0. 0 0 0 0 1 gdzie wektory α i tworz baz ortonormaln przestrzeni E n

. 0 0... 1 0. 0 0 0 0 1 gdzie wektory α i tworz baz ortonormaln przestrzeni E n GAL II 2013-2014 A. Strojnowski str.45 Wykªad 20 Denicja 20.1 Przeksztaªcenie aniczne f : H H anicznej przestrzeni euklidesowej nazywamy izometri gdy przeksztaªcenie pochodne f : T (H) T (H) jest izometri

Bardziej szczegółowo

Metody dowodzenia twierdze«

Metody dowodzenia twierdze« Metody dowodzenia twierdze«1 Metoda indukcji matematycznej Je±li T (n) jest form zdaniow okre±lon w zbiorze liczb naturalnych, to prawdziwe jest zdanie (T (0) n N (T (n) T (n + 1))) n N T (n). 2 W przypadku

Bardziej szczegółowo

REGULATORY W UKŁADACH REGULACJI AUTOMATYCZNEJ. T I - czas zdwojenia (całkowania) T D - czas wyprzedzenia (różniczkowania) K p współczynnik wzmocnienia

REGULATORY W UKŁADACH REGULACJI AUTOMATYCZNEJ. T I - czas zdwojenia (całkowania) T D - czas wyprzedzenia (różniczkowania) K p współczynnik wzmocnienia REGULATORY W UKŁADACH REGULACJI AUTOMATYCZNEJ Y o (s) - E(s) B(s) /T I s K p U(s) Z(s) G o (s) Y(s) T I - czas zdwojenia (całkowania) T D - czas wyprzedzenia (różniczkowania) K p współczynnik wzmocnienia

Bardziej szczegółowo

Bifurkacje. Ewa Gudowska-Nowak Nowak. Plus ratio quam vis

Bifurkacje. Ewa Gudowska-Nowak Nowak. Plus ratio quam vis Bifurkacje Nowak Plus ratio quam vis M. Kac Complex Systems Research Center, M. Smoluchowski Institute of Physics, Jagellonian University, Kraków, Poland 2008 Gªówna idea.. Pozornie "dynamika" ukªadów

Bardziej szczegółowo

PRZYKŠAD 1 KRYTERIUM ROUTHA-HURWITZA. Na podstawie kryterium Routha-Hurwitza, okre±l liczb pierwiastków równania

PRZYKŠAD 1 KRYTERIUM ROUTHA-HURWITZA. Na podstawie kryterium Routha-Hurwitza, okre±l liczb pierwiastków równania PRZYKŠAD 1 KRYTERIUM ROUTHA-HURWITZA 1 Na podstawie kryterium Routha-Hurwitza, okre±l liczb pierwiastków równania W (s) = 3 + 8s + s 2 + 2s 3 = 0 le» cych w prawej póªpªaszczy¹nie zespolonej. Tablica Routha

Bardziej szczegółowo

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE Do opisu członów i układów automatyki stosuje się, oprócz transmitancji operatorowej (), tzw. transmitancję widmową. Transmitancję widmową () wyznaczyć można na podstawie

Bardziej szczegółowo

Bash i algorytmy. Elwira Wachowicz. 20 lutego

Bash i algorytmy. Elwira Wachowicz. 20 lutego Bash i algorytmy Elwira Wachowicz elwira@ifd.uni.wroc.pl 20 lutego 2012 Elwira Wachowicz (elwira@ifd.uni.wroc.pl) Bash i algorytmy 20 lutego 2012 1 / 16 Inne przydatne polecenia Polecenie Dziaªanie Przykªad

Bardziej szczegółowo

Matematyka licea ogólnokształcące, technika

Matematyka licea ogólnokształcące, technika Matematyka licea ogólnokształcące, technika Opracowano m.in. na podstawie podręcznika MATEMATYKA w otaczającym nas świecie zakres podstawowy i rozszerzony Funkcja liniowa Funkcję f: R R określoną wzorem

Bardziej szczegółowo

Ćwiczenie nr 6 Charakterystyki częstotliwościowe

Ćwiczenie nr 6 Charakterystyki częstotliwościowe Wstęp teoretyczny Ćwiczenie nr 6 Charakterystyki częstotliwościowe 1 Cel ćwiczenia Celem ćwiczenia jest wyznaczenie charakterystyk częstotliwościowych układu regulacji oraz korekta nastaw regulatora na

Bardziej szczegółowo

Stabilność. Krzysztof Patan

Stabilność. Krzysztof Patan Stabilność Krzysztof Patan Pojęcie stabilności systemu Rozważmy obiekt znajdujący się w punkcie równowagi Po przyłożeniu do obiektu siły F zostanie on wypchnięty ze stanu równowagi Jeżeli po upłynięciu

Bardziej szczegółowo

Podstawy matematyki dla informatyków

Podstawy matematyki dla informatyków Podstawy matematyki dla informatyków Wykªad 6 10 listopada 2011 W poprzednim odcinku... Zbiory A i B s równoliczne (tej samej mocy ), gdy istnieje bijekcja f : A 1 1 B. Piszemy A B lub A = B. na Moc zbioru

Bardziej szczegółowo

Twierdzenie Wainera. Marek Czarnecki. Warszawa, 3 lipca Wydziaª Filozoi i Socjologii Uniwersytet Warszawski

Twierdzenie Wainera. Marek Czarnecki. Warszawa, 3 lipca Wydziaª Filozoi i Socjologii Uniwersytet Warszawski Twierdzenie Wainera Marek Czarnecki Wydziaª Filozoi i Socjologii Uniwersytet Warszawski Wydziaª Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski Warszawa, 3 lipca 2009 Motywacje Dla dowolnej

Bardziej szczegółowo

Macierze i Wyznaczniki

Macierze i Wyznaczniki Macierze i Wyznaczniki Kilka wzorów i informacji pomocniczych: Denicja 1. Tablic nast puj cej postaci a 11 a 12... a 1n a 21 a 22... a 2n A =... a m1 a m2... a mn nazywamy macierz o m wierszach i n kolumnach,

Bardziej szczegółowo

Wielomiany. El»bieta Sadowska-Owczorz. 19 listopada 2018

Wielomiany. El»bieta Sadowska-Owczorz. 19 listopada 2018 Wielomiany El»bieta Sadowska-Owczorz 19 listopada 2018 Wielomianem nazywamy wyra»enie postaci a n x n + a n 1 x n 1 +... + a 2 x 2 + a 1 x + a 0 = n a k x k. k=0 Funkcj wielomianow nazywamy funkcj W :

Bardziej szczegółowo

det A := a 11, ( 1) 1+j a 1j det A 1j, a 11 a 12 a 21 a 22 Wn. 1 (Wyznacznik macierzy stopnia 2:). = a 11a 22 a 33 +a 12 a 23 a 31 +a 13 a 21 a 32

det A := a 11, ( 1) 1+j a 1j det A 1j, a 11 a 12 a 21 a 22 Wn. 1 (Wyznacznik macierzy stopnia 2:). = a 11a 22 a 33 +a 12 a 23 a 31 +a 13 a 21 a 32 Wyznacznik Def Wyznacznikiem macierzy kwadratowej nazywamy funkcj, która ka»dej macierzy A = (a ij ) przyporz dkowuje liczb det A zgodnie z nast puj cym schematem indukcyjnym: Dla macierzy A = (a ) stopnia

Bardziej szczegółowo

MATERIA DIAGNOSTYCZNY Z MATEMATYKI

MATERIA DIAGNOSTYCZNY Z MATEMATYKI dysleksja MATERIA DIAGNOSTYCZNY Z MATEMATYKI Arkusz II POZIOM ROZSZERZONY Czas pracy 150 minut Instrukcja dla ucznia 1. Sprawd, czy arkusz zawiera 12 ponumerowanych stron. Ewentualny brak zg o przewodnicz

Bardziej szczegółowo

Projektowanie układów metodą sprzężenia od stanu - metoda przemieszczania biegunów

Projektowanie układów metodą sprzężenia od stanu - metoda przemieszczania biegunów Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Laboratorium Sterowania Procesami Ciągłych Projektowanie układów metodą sprzężenia od stanu - metoda przemieszczania biegunów. Obliczanie

Bardziej szczegółowo

1 Bª dy i arytmetyka zmiennopozycyjna

1 Bª dy i arytmetyka zmiennopozycyjna 1 Bª dy i arytmetyka zmiennopozycyjna Liczby w pami ci komputera przedstawiamy w ukªadzie dwójkowym w postaci zmiennopozycyjnej Oznacza to,»e s one postaci ±m c, 01 m < 1, c min c c max, (1) gdzie m nazywamy

Bardziej szczegółowo

Kurs wyrównawczy dla kandydatów i studentów UTP

Kurs wyrównawczy dla kandydatów i studentów UTP Kurs wyrównawczy dla kandydatów i studentów UTP Część III Funkcja wymierna, potęgowa, logarytmiczna i wykładnicza Magdalena Alama-Bućko Ewa Fabińska Alfred Witkowski Grażyna Zachwieja Uniwersytet Technologiczno

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Teoria Sterowania. Warunki zaliczenia

Teoria Sterowania. Warunki zaliczenia Teoria Sterowania Warunki zaliczenia. Pytania. Tematy µ-projektów. 3.5 poprawne zaliczenie testu; Warunki zaliczenia 4 poprawne zaliczenie testu + poprawne rozwi zanie kilku zada«(pliki Alin, TS-skrypt1,

Bardziej szczegółowo

Interpolacja funkcjami sklejanymi

Interpolacja funkcjami sklejanymi Interpolacja funkcjami sklejanymi Funkcje sklejane: Zaªó»my,»e mamy n + 1 w zªów t 0, t 1,, t n takich,»e t 0 < t 1 < < t n Dla danej liczby caªkowitej, nieujemnej k funkcj sklejan stopnia k nazywamy tak

Bardziej szczegółowo

1 0 Je»eli wybierzemy baz A = ((1, 1), (2, 1)) to M(f) A A =. 0 2 Daje to znacznie lepszy opis endomorzmu f.

1 0 Je»eli wybierzemy baz A = ((1, 1), (2, 1)) to M(f) A A =. 0 2 Daje to znacznie lepszy opis endomorzmu f. GAL II 2012-2013 A Strojnowski str1 Wykªad 1 Ten semestr rozpoczniemy badaniem endomorzmów sko«czenie wymiarowych przestrzeni liniowych Denicja 11 Niech V b dzie przestrzeni liniow nad ciaªem K 1) Przeksztaªceniem

Bardziej szczegółowo

Zbiory i odwzorowania

Zbiory i odwzorowania Zbiory i odwzorowania 1 Sposoby okre±lania zbiorów 1) Zbiór wszystkich elementów postaci f(t), gdzie t przebiega zbiór T : {f(t); t T }. 2) Zbiór wszystkich elementów x zbioru X speªniaj cych warunek ϕ(x):

Bardziej szczegółowo

Opis matematyczny ukªadów liniowych

Opis matematyczny ukªadów liniowych Rozdziaª 1 Opis matematyczny ukªadów liniowych Autorzy: Alicja Golnik 1.1 Formy opisu ukªadów dynamicznych 1.1.1 Liniowe równanie ró»niczkowe Podstawow metod przedstawienia procesu dynamicznego jest zbiór

Bardziej szczegółowo

A = n. 2. Ka»dy podzbiór zbioru sko«czonego jest zbiorem sko«czonym. Dowody tych twierdze«(elementarne, lecz nieco nu» ce) pominiemy.

A = n. 2. Ka»dy podzbiór zbioru sko«czonego jest zbiorem sko«czonym. Dowody tych twierdze«(elementarne, lecz nieco nu» ce) pominiemy. Logika i teoria mnogo±ci, konspekt wykªad 12 Teoria mocy, cz ± II Def. 12.1 Ka»demu zbiorowi X przyporz dkowujemy oznaczany symbolem X obiekt zwany liczb kardynaln (lub moc zbioru X) w taki sposób,»e ta

Bardziej szczegółowo

Jan Olek. Uniwersytet Stefana Kardynała Wyszyńskiego. Procesy z Opóźnieniem. J. Olek. Równanie logistyczne. Założenia

Jan Olek. Uniwersytet Stefana Kardynała Wyszyńskiego. Procesy z Opóźnieniem. J. Olek. Równanie logistyczne. Założenia Procesy z Procesy z Jan Olek Uniwersytet Stefana ardynała Wyszyńskiego 2013 Wzór równania logistycznego: Ṅ(t)=rN(t)(1- N ), gdzie Ṅ(t) - przyrost populacji w czasie t r - rozrodczość netto, (r > 0) N -

Bardziej szczegółowo

Ÿ1 Oznaczenia, poj cia wst pne

Ÿ1 Oznaczenia, poj cia wst pne Ÿ1 Oznaczenia, poj cia wst pne Symbol sumy, j, k Z, j k: k x i = x j + x j+1 + + x k. i=j Przykªad 1.1. Oblicz 5 i=1 2i. Odpowied¹ 1.1. 5 i=1 2i = 2 1 + 2 2 + 2 3 + 2 4 + 2 5 = 2 + 4 + 8 + 16 + 32 = 62.

Bardziej szczegółowo

Janusz Adamowski METODY OBLICZENIOWE FIZYKI Zastosowanie eliptycznych równa«ró»niczkowych

Janusz Adamowski METODY OBLICZENIOWE FIZYKI Zastosowanie eliptycznych równa«ró»niczkowych Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdziaª 9 RÓWNANIA ELIPTYCZNE 9.1 Zastosowanie eliptycznych równa«ró»niczkowych cz stkowych 9.1.1 Problemy z warunkami brzegowymi W przestrzeni dwuwymiarowej

Bardziej szczegółowo

Zadania z z matematyki dla studentów gospodarki przestrzennej UŠ. Marek Majewski Aktualizacja: 31 pa¹dziernika 2006

Zadania z z matematyki dla studentów gospodarki przestrzennej UŠ. Marek Majewski Aktualizacja: 31 pa¹dziernika 2006 Zadania z z matematyki dla studentów gospodarki przestrzennej UŠ Marek Majewski Aktualizacja: 1 pa¹dziernika 006 Spis tre±ci 1 Macierze dziaªania na macierzach. Wyznaczniki 1 Macierz odwrotna. Rz d macierzy

Bardziej szczegółowo

Ekstremalnie fajne równania

Ekstremalnie fajne równania Ekstremalnie fajne równania ELEMENTY RACHUNKU WARIACYJNEGO Zaczniemy od ogólnych uwag nt. rachunku wariacyjnego, który jest bardzo przydatnym narz dziem mog cym posªu»y do rozwi zywania wielu problemów

Bardziej szczegółowo

Technika regulacji automatycznej

Technika regulacji automatycznej Technika regulacji automatycznej Wykład 5 Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 38 Plan wykładu Kompensator wyprzedzający Kompensator opóźniający

Bardziej szczegółowo

Podstawowe człony dynamiczne

Podstawowe człony dynamiczne . Człon proporcjonalny 2. Człony całkujący idealny 3. Człon inercyjny Podstawowe człony dynamiczne charakterystyki czasowe = = = + 4. Człony całkujący rzeczywisty () = + 5. Człon różniczkujący rzeczywisty

Bardziej szczegółowo

punkcie. Jej granica lewostronna i prawostronna w punkcie x = 2 wynosz odpowiednio:

punkcie. Jej granica lewostronna i prawostronna w punkcie x = 2 wynosz odpowiednio: 5.9. lim x x +4 f(x) = x +4 Funkcja f(x) jest funkcj wymiern, która jest ci gªa dla wszystkich x, dla których mianownik jest ró»ny od zera, czyli dla: x + 0 x Zatem w punkcie x = funkcja ta jest okre±lona

Bardziej szczegółowo

1. Przedstaw w postaci algebraicznej liczby zespolone: 2. Narysuj zbiory punktów na pªaszczy¹nie:

1. Przedstaw w postaci algebraicznej liczby zespolone: 2. Narysuj zbiory punktów na pªaszczy¹nie: ZADANIA Z MATEMATYKI Zestaw. Przedstaw w postaci algebraicznej liczby zespolone: (3 + j)(5 j) 3 j +j (5 + j) (3 + j) 3. Narysuj zbiory punktów na pªaszczy¹nie: +j +j 3 Re z = Im z = 5 z ( j) = z j z +

Bardziej szczegółowo

3. (8 punktów) EGZAMIN MAGISTERSKI, Biomatematyka

3. (8 punktów) EGZAMIN MAGISTERSKI, Biomatematyka EGZAMIN MAGISTERSKI, 26.06.2017 Biomatematyka 1. (8 punktów) Rozwój wielko±ci pewnej populacji jest opisany równaniem: dn dt = rn(t) (1 + an(t), b gdzie N(t) jest wielko±ci populacji w chwili t, natomiast

Bardziej szczegółowo

JAO - J zyki, Automaty i Obliczenia - Wykªad 1. JAO - J zyki, Automaty i Obliczenia - Wykªad 1

JAO - J zyki, Automaty i Obliczenia - Wykªad 1. JAO - J zyki, Automaty i Obliczenia - Wykªad 1 J zyki formalne i operacje na j zykach J zyki formalne s abstrakcyjnie zbiorami sªów nad alfabetem sko«czonym Σ. J zyk formalny L to opis pewnego problemu decyzyjnego: sªowa to kody instancji (wej±cia)

Bardziej szczegółowo

istnienie elementu neutralnego dodawania (zera): 0 K a K a + 0 = a, istnienie elementu neutralnego mno»enia (jedynki): 1 K a K a 1 = a,

istnienie elementu neutralnego dodawania (zera): 0 K a K a + 0 = a, istnienie elementu neutralnego mno»enia (jedynki): 1 K a K a 1 = a, Ciaªo Denicja. Zbiór K z dziaªaniami dodawania + oraz mno»enia (których argumentami s dwa elementy z tego zbioru, a warto±ciami elementy z tego zbioru) nazywamy ciaªem, je±li zawiera co najmniej dwa elementy

Bardziej szczegółowo

Lab. 02: Algorytm Schrage

Lab. 02: Algorytm Schrage Lab. 02: Algorytm Schrage Andrzej Gnatowski 5 kwietnia 2015 1 Opis zadania Celem zadania laboratoryjnego jest zapoznanie si z jednym z przybli»onych algorytmów sªu» cych do szukania rozwi za«znanego z

Bardziej szczegółowo

WBiA Architektura i Urbanistyka. 1. Wykonaj dziaªania na macierzach: Które z iloczynów: A 2 B, AB 2, BA 2, B 2 3, B = 1 2 0

WBiA Architektura i Urbanistyka. 1. Wykonaj dziaªania na macierzach: Które z iloczynów: A 2 B, AB 2, BA 2, B 2 3, B = 1 2 0 WBiA Architektura i Urbanistyka Matematyka wiczenia 1. Wykonaj dziaªania na macierzach: 1) 2A + C 2) A C T ) B A 4) B C T 5) A 2 B T 1 0 2 dla A = 1 2 1 1 0 B = ( 1 2 1 0 1 ) C = 1 2 1 0 2 1 0 1 2. Które

Bardziej szczegółowo

Laboratorium z podstaw automatyki

Laboratorium z podstaw automatyki Wydział Inżynierii Mechanicznej i Mechatroniki Laboratorium z podstaw automatyki Analiza stabilności obiektów automatyzacji, Wpływ sprzężenia zwrotnego na stabilność obiektów Kierunek studiów: Transport,

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax, a R \ {0}.

Bardziej szczegółowo

WIELOMIANY I FUNKCJE WYMIERNE

WIELOMIANY I FUNKCJE WYMIERNE WIELOMIANY I FUNKCJE WYMIERNE. RozwiąŜ nierówność.. Dla jakiej wartości parametru a R wielomian W() = ++ a dzieli się bez reszty przez +?. Rozwiązać nierówność: a) 5 b) + 4. Wyznaczyć wartości parametru

Bardziej szczegółowo

ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 2 POZIOM ROZSZERZONY. S x 3x y. 1.5 Podanie odpowiedzi: Poszukiwane liczby to : 2, 6, 5.

ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 2 POZIOM ROZSZERZONY. S x 3x y. 1.5 Podanie odpowiedzi: Poszukiwane liczby to : 2, 6, 5. Nr zadania Nr czynno ci... ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR POZIOM ROZSZERZONY Etapy rozwi zania zadania Wprowadzenie oznacze : x, x, y poszukiwane liczby i zapisanie równania: x y lub: zapisanie

Bardziej szczegółowo

Opis matematyczny. Równanie modulatora. Charakterystyka statyczna. Po wprowadzeniu niewielkich odchyłek od ustalonego punktu pracy. dla 0 v c.

Opis matematyczny. Równanie modulatora. Charakterystyka statyczna. Po wprowadzeniu niewielkich odchyłek od ustalonego punktu pracy. dla 0 v c. Opis matematyczny Równanie modulatora Charakterystyka statyczna d t = v c t V M dla 0 v c t V M D 1 V M V c Po wprowadzeniu niewielkich odchyłek od ustalonego punktu pracy v c (t )=V c + v c (t ) d (t

Bardziej szczegółowo

Macierze i Wyznaczniki

Macierze i Wyznaczniki dr Krzysztof yjewski Mechatronika; S-I.in». 5 pa¹dziernika 6 Macierze i Wyznaczniki Kilka wzorów i informacji pomocniczych: Denicja. Tablic nast puj cej postaci a a... a n a a... a n A =... a m a m...

Bardziej szczegółowo

Analiza Matematyczna MAT1317

Analiza Matematyczna MAT1317 Analiza Matematyczna MAT37 Wydziaª Informatyki i Zarz dzania Listy zada«nr -0 cz ±ciowo na podstawie skryptów: M.Gewert, Z Skoczylas, Analiza Matematyczna. Przykªady i zadania, GiS, Wrocªaw 008 M.Gewert,

Bardziej szczegółowo

Technika regulacji automatycznej

Technika regulacji automatycznej Technika regulacji automatycznej Wykład 3 Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 32 Plan wykładu Wprowadzenie Układ pierwszego rzędu Układ drugiego

Bardziej szczegółowo

Rachunek caªkowy funkcji wielu zmiennych

Rachunek caªkowy funkcji wielu zmiennych Rachunek caªkowy funkcji wielu zmiennych I. Malinowska, Z. Šagodowski Politechnika Lubelska 8 czerwca 2015 Caªka iterowana podwójna Denicja Je»eli funkcja f jest ci gªa na prostok cie P = {(x, y) : a x

Bardziej szczegółowo

Zadania z analizy matematycznej - sem. II Rachunek ró»niczkowy funkcji wielu zmiennych

Zadania z analizy matematycznej - sem. II Rachunek ró»niczkowy funkcji wielu zmiennych Zadania z analizy matematycznej - sem II Rachunek ró»niczkowy funkcji wielu zmiennych Denicja (Pochodne cz stkowe dla funkcji trzech zmiennych) Niech D R 3 b dzie obszarem oraz f : D R f = f y z) P 0 =

Bardziej szczegółowo

Modele wielorównaniowe. Problem identykacji

Modele wielorównaniowe. Problem identykacji Modele wielorównaniowe. Problem identykacji Ekonometria Szeregów Czasowych SGH Identykacja 1 / 43 Plan wykªadu 1 Wprowadzenie 2 Trzy przykªady 3 Przykªady: interpretacja 4 Warunki identykowalno±ci 5 Restrykcje

Bardziej szczegółowo

Matematyka wykªad 1. Macierze (1) Andrzej Torój. 17 wrze±nia 2011. Wy»sza Szkoªa Zarz dzania i Prawa im. H. Chodkowskiej

Matematyka wykªad 1. Macierze (1) Andrzej Torój. 17 wrze±nia 2011. Wy»sza Szkoªa Zarz dzania i Prawa im. H. Chodkowskiej Matematyka wykªad 1 Macierze (1) Andrzej Torój Wy»sza Szkoªa Zarz dzania i Prawa im. H. Chodkowskiej 17 wrze±nia 2011 Plan wykªadu 1 2 3 4 5 Plan prezentacji 1 2 3 4 5 Kontakt moja strona internetowa:

Bardziej szczegółowo

Krzywe i powierzchnie stopnia drugiego

Krzywe i powierzchnie stopnia drugiego Krzywe i powierzchnie stopnia drugiego Iwona Malinowska, Zbigniew Šagodowski 25 maja 2015 I. Malinowska, Z. Lagodowski Geometria 25 maja 2015 1 / 30 Rozwa»my dwie proste przecinaj ce si pod k tem α, 0

Bardziej szczegółowo