Fizykaatmosfergwiazdowych
|
|
- Teresa Rosińska
- 8 lat temu
- Przeglądów:
Transkrypt
1 Krzysztof Gęsicki Fizykaatmosfergwiazdowych Wykład kursowy dla studentów astronomii 2 stopnia wykład 6 atom trójpoziomowy itp.
2 pamiętamy z poprzedniego wykładu: Bliżej powierzchni gwiazdy fotony mogą przez jej powierzchnię uciekać wzrostilościfotonów,któreuciekły,powodujespadekn U zmniejszenien U pociągazasobąwzrostn L alen LiN Upozostająniezmienione,bowLTEfotonynieuciekają.Zatem gdzieγ<1,możnadalejpokazać,że N U N L =γ N U N L = γb ν(t) 1+ 1 γ hν 0 ekt 1 <B ν (T)
3 sytuację ilustruje rysunek: Bν = Bν 0 Λ -z
4 później rozwiązaliśmy w sposób bardzo przybliżony równanie przepływu promieniowania w warstwie płasko-równoległej: Z ω z=0 Θ z=z w µ I z = κ(i ), gdzie µ=cosθ µ I τ =φ( ν)(i )
5 definiowaliśmy dτ= κ 0 N L dz otrzymywaliśmy rozwiązanie formalne: dη(τ, ν) = φ( ν)dτ I(τ, ν,µ)= τ τ w (τ )e φ( ν)τ τ µ φ( ν) dτ µ I(0, ν,µ)= 0 dla µ=1 I(0, ν,1)= η e dη η µ φ( ν) µ 0 η e η dη φ( ν)
6 e η η η I(0, ν,1) φ( ν) Wielkościη odpowiadagłębokośćoptycznaτ ifizycznaz ; τ = η φ( ν), η z = κ 0 N L φ( ν) obserwowanenatężeniepromieniowaniarównejestfunkcjinagłębokościη 1 odpowiadającajejfizycznagłębokośćz zależyodczęstości: z η 1 κ 0 N L φ( ν)
7 w przypadku warstwy płasko-równoległej otrzymaliśmy profil absorpcyjny: I(0, ν 1,1) (z 1) < (z 2) I(0, ν 2,1) φ I 2 1 ν1 ν2 ν1 ν2 w dalszym ciągu zajmiemy się innymi, niemniej ciekawymi przypadkami
8 Chromosfera gwiazdowa T chromosfera fotosfera z(tmin) - z
9 B ν I 2 1 Λ Λ 2 1 z z z z z z ν1 ν 2 ν 3 ν 4
10 Warstwa płasko-równoległa optycznie cienka To taka warstwa, w której fotony, nawet te wyemitowane w centrum linii, doznają nie więcej, niż 1 2 rozproszenia bez rozpraszania będzie ǫb ν (T) gdy założymy, że mamy tylko jedno rozproszenie, to: coprzyτ w 0daje: I(0, ν,µ)= 2ǫB ν (T) 1 e φ( ν)τ w µ I(0, ν,µ)= φ( ν)τ w µ otrzymaliśmy profil emisyjny
11 Warstwa płasko równoległa optycznie gruba parametry takiej warstwy symetryczne I z = z z = zw 3 ν
12 Niech tak, że Ponieważ ν 1 < ν 2 < ν 3 z 1 < z 2 < z 3 I(0, ν i,1) otrzymamy bardziej złożony profil η i = i φ( ν i ) gdyby jednak środek linii(punkt 1) formował się głębiej, niż połowa warstwy, otrzymalibyśmy prosty profil emisyjny z kolei gdyby odległe skrzydła(punkt 3) formowały się płycej niż połowa warstwy otrzymamy profil absorpcyjny
13 Prosty przykład (τ)=a+bτ kiedya,b>0, a φ( ν)niezależyodgłębokości w tablicach znajdziemy wzór całki oznaczonej + 0 x n e ax dx=a n 1 n! przy pomocy którego z rozwiązania formalnego dla warstwy półnieskończonej otrzymamy I(0, ν,µ)= 0 (t)e t dt µ I(0, ν,µ)=a+b φ( ν)
14 astąddalej µ I(0, ν,µ)=a+b φ( ν) ν 1 < ν 2 I( ν 1 )<I( ν 2 ) µ 1 >µ 2 I(µ 1 )>I(µ 2 ) φ I 2 1 ν1 ν2 ν1 ν2
15 Atom trójpoziomowy h ν h ν h ν 31
16 ( ω )I I 21 c t =κ 21 ( 21 I 21 ) κ 21 = hν 21 4π (N 1B 12 φ 12 N 2 B 21 ψ 12 ) N 2 A 21 j = N 1 B 12 φ 12 N 2 B 21 ψ 12
17 zakładamy całkowitą redystrybucję: φ = ψ = j weźmiemy pod uwagę stan statystycznie stały R ij całkowitetempo,zjakimatomzestanuiprzechodziwj gdzie J 12 = 1 4π R 12 =B 12 J12 +C 12 + d( ν) dωφ 12 I ν Zcałkowitejredystrybucjiwynika,że J 12 = J 21 Analogicznie określamy orazr 13,R 31,R 23,R 32 R 21 =A 21 +B 21 J21 +C 21
18 Równania równowagi statystycznej dla poziomów 1 i 2 N 1 (R 12 +R 13 )=N 2 R 21 +N 3 R 31 N 2 (R 21 +R 23 )=N 1 R 12 +N 3 R 32 N 2 = R 12+R 132 N 1 R 21 +R 231 gdzie wprowadziliśmy oznaczenia: R 132 = R 13R 32 R 31 +R 32, R 231 = R 23R 31 R 31 +R = 1+ C 21 A 21 J 21 + g 1 ( 1 g 1 g 2 C 12 C 21 C 12 +R 132 g 2 B ) 21 + R 231 A 21 ( ) 1 g 1 R 132 g 2 R 231
19 Możemy dalej zdefiniować: C 12 =C 12 +R 132, C 21 =C 21 +R 231 otrzymamy postać równania taką samą, jak dla atomu dwupoziomowego: 21 = 1+ C 21 A 21 J 21 + g 1 C 12 g 2 B 21 ( 1 g 1 g 2 C 12 C 21 )
20 zakładamy LTE i równowagę szczegółową dla przejść zderzeniowych N 1C 12 =N 2C 21 Definiujemy: otrzymamy: ǫ 21= C 21 A 21 1 g 1 N 1C 13 =N 3C 31 C 12 = g 2 C 21 ǫ 231= R 231 A 21 C 21 A 21 +B 21 B ν21 (T) 1 g 1R 132 g 2 R 231 [ǫb ν (T)] 231 = g 1 g 2 R 132 B = J 21 +ǫ 21B ν21 (T)+[ǫB ν (T)] ǫ 21+ǫ 231
21 Jakościowa dyskusja atomu trójpoziomowego niech dozwolone są tylko przejścia 1 2 i 1 3 nieprzezroczystości: 21 N 2 N 1, 31 N 3 N 1 κ 21 ν 21 N 1 B 12 φ 12 κ 31 ν 31 N 1 B 13 φ 13 κ 21 κ 31 ν 21 ν 31 φ 12 φ 13 g 2 g 3 A 21 A 31 ν 3 31 ν 3 21 Zazwyczaj A 21 >A 31 ioile ν 31 >ν 21, to κ 21 >κ 31
22 Głęboko w atmosferze obowiązuje LTE, zatem: J B ν21 (T) J B ν31 (T) Ze względu na stosunek nieprzezroczystości pierwsze zaczną uciekać fotony 3 1 Θ 31 >Θ fotony (31) uciekaja powierzchnia Θ 31 A Θ 21
23 konsekwencje ucieczki fotonów N 3 N 1 N 3 N + 1 zderzenia uzupełniają braki na poziomie 3 < N 3 N 1 B ν31 (T) fotony 1 2 nie widzą powierzchni, ale N 2 N 2 <N 2 21 N 2 N 1 N 2 N + 1 < N 2 N 1 B ν21 (T) obie funkcje źródłowe maleją poniżej funkcji Plancka, choć w atomie dwupoziomowymmalećpowinnatylko 31
24 Inny przypadek: dozwolone są tylko przejścia promieniste 1 2 i 2 3 niechκ 32 <κ 21 orazθ 32 >Θ 21 3 B B z 32 -z -z z z N 3 N 3 <N 3, N 2 N + 2 >N 2 32 <B ν32 (T), 21 >B ν21 (T) namniejszejgłębokościz 21 21<B ν21 (T)
25 Kanalizowanie Przekonaliśmy się, że dla atomu trójpoziomowego fotony 3 1 mogą uciekać z atmosferyzgłębokościθ 31,podczasgdyfotony2 1niemogą. Następnie, w rezultacie przejść zderzeniowych 2 3, poniżej wartości odpowiedniej funkcjiplanckamalejenietylko 31 aletakże 21. w atomie dwupoziomowym takie obniżenie funkcji źródłowej może być interpretowane tylko przez ucieczkę fotonów 2 1, wdodatkuzgłębokościθ 31,zktórejfotonyteniemogąuciekać.
26 Interpretujemy to zjawisko jako kanalizowanie (znajdowanie dodatkowych kanałów, ujść, przekierowywanie) fotonów 2 1 w przejście 3 1, skąd już mogą uciekać. Konwersja fotonów 2 1 na 3 1 odbywa się przez przejścia zderzeniowe 2 3. Obliczona ucieczka energii dla takiego atomu trójpoziomowego jest większa, niż gdybyśmy obliczali utratę energii dla dwóch niezależnych atomów dwupoziomowych. Zjawisko to zwiększa efekty non-lte.
27 Atom dwupoziomowy z kontinuum równanie równowagi statystycznej: N 1 (B 12 J21 +C 12 +R 1K +C 1K )=N 2 (A 21 +B 21 J21 +C 21 )+N K (R K1 +C K1 ) ZakładamyLTEdlaprzejśćjonizacyjnych:N K =NK N K (R K1 +C K1 )=N1(R K1 +C 1K ) Analogicznie wyprowadzamy dla poziomu 2: N 2 (A 21 +B 21 J21 +C 21 +R 2K +C 2K )=N 1 (B 12 J21 +C 12 )+N 2(R K2 +C 2K ) 21 = J 21 +ǫb ν21 (T)+ηB 1+ǫ+η
28 21 = J 21 +ǫb ν21 (T)+ηB 1+ǫ+η Interpretacja poszczególnych wyrazów: J-częśćrozproszeniowa ǫb ν (T)-fotonywytworzoneprzezzderzeniaC 12 ηb -elektronyzjonizowanezestanu1,którerekombinująnapoziom2i emitują foton ǫ-fotonyzniszczoneprzezzderzeniac 21 η-jonizacjazpoziomu2irekombinacjanapoziom1 Jeśliǫ>η i ǫb ν (T)>ηB, tomówimyoliniizdominowanejzderzeniowo Jeśliǫ<η i ǫb ν (T)<ηB, toliniajestzdominowanafotojonizacyjnie.
29 zagadnienia wymagane na egzaminie atom trójpoziomowy: ogólna postać funkcji źródłowej, równania równowagi statystycznej efekty non-lte w atomie trójpoziomowym[*] atom dwupoziomowy z kontinuum: ogólna postać funkcji źródłowej, równania równowagi statystycznej [*] oznacza zagadnienia trudniejsze, wyżej punktowane
Wykład 4 - równanie transferu promieniowania i transport energii przez promieniowanie we wnętrzach gwiazd
Wykład 4 - równanie transferu promieniowania i transport energii przez promieniowanie we wnętrzach gwiazd 26.10.2017 Transport energii w gwiazdach - zarys Reakcje termojądrowe w centralnych częściach gwiazd:
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 006 Instytut Fizyki Uniwersytetu Szczecińskiego Równania (3.7), pomimo swojej prostoty, nie posiadają poza nielicznymi przypadkami ścisłych rozwiązań,
7 Przepływ promieniowania przez atmosfery gwiazdowe
7 Przepływ promieniowania przez atmosfery gwiazdowe W atmosferach gwiazdowych pole promieniowania jest silnie anizotropowe. W szczególności, warunek jaki możemy nałożyć na strumień na zewnȩtrznym brzegu
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Równania optyki półklasycznej Posłużymy się teraz równaniem (2.4), i Ψ t = ĤΨ ażeby wyprowadzić
Równanie przewodnictwa cieplnego (II)
Wykład 5 Równanie przewodnictwa cieplnego (II) 5.1 Metoda Fouriera dla pręta ograniczonego 5.1.1 Pierwsze zagadnienie brzegowe dla pręta ograniczonego Poszukujemy rozwiązania równania przewodnictwa spełniającego
Technika laserowa. dr inż. Sebastian Bielski. Wydział Fizyki Technicznej i Matematyki Stosowanej PG
Technika laserowa dr inż. Sebastian Bielski Wydział Fizyki Technicznej i Matematyki Stosowanej PG Technika laserowa Zakres materiału (wstępnie przewidywany) 1. Bezpieczeństwo pracy z laserem 2. Własności
Ważną rolę odgrywają tzw. funkcje harmoniczne. Przyjmujemy następującą definicję. u = 0, (6.1) jest operatorem Laplace a. (x,y)
Wykład 6 Funkcje harmoniczne Ważną rolę odgrywają tzw. funkcje harmoniczne. Przyjmujemy następującą definicję. e f i n i c j a Funkcję u (x 1, x 2,..., x n ) nazywamy harmoniczną w obszarze R n wtedy i
Wykład 14. Termodynamika gazu fotnonowego
Wykład 14 Termodynamika gazu fotnonowego dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 16 stycznia 217 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki statystycznej
Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach
Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach Efekt Comptona. p f Θ foton elektron p f p e 0 p e Zderzenia fotonów
Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017
Optyka Wykład V Krzysztof Golec-Biernat Fale elektromagnetyczne Uniwersytet Rzeszowski, 8 listopada 2017 Wykład V Krzysztof Golec-Biernat Optyka 1 / 17 Plan Swobodne równania Maxwella Fale elektromagnetyczne
I.4 Promieniowanie rentgenowskie. Efekt Comptona. Otrzymywanie promieniowania X Pochłanianie X przez materię Efekt Comptona
r. akad. 004/005 I.4 Promieniowanie rentgenowskie. Efekt Comptona Otrzymywanie promieniowania X Pochłanianie X przez materię Efekt Comptona Jan Królikowski Fizyka IVBC 1 r. akad. 004/005 0.01 nm=0.1 A
Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej
Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus listopada 07r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej
Zad Sprawdzić, czy dana funkcja jest funkcją własną danego operatora. Jeśli tak, znaleźć wartość własną funkcji.
Zad. 1.1. Sprawdzić, czy dana funkcja jest funkcją własną danego operatora. Jeśli tak, znaleźć wartość własną funkcji. Zad. 1.1.a. Funkcja: ϕ = sin2x Zad. 1.1.b. Funkcja: ϕ = e x 2 2 Operator: f = d2 dx
Metody Lagrange a i Hamiltona w Mechanice
Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 8 M. Przybycień (WFiIS AGH) Metody Lagrange a i Hamiltona... Wykład
Wstęp do astrofizyki I
Wstęp do astrofizyki I Wykład 2 Tomasz Kwiatkowski 12 październik 2009 r. Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 2 1/21 Plan wykładu Promieniowanie ciała doskonale czarnego Związek temperatury
Wstęp do astrofizyki I
Wstęp do astrofizyki I Wykład 2 Tomasz Kwiatkowski Uniwersytet im. Adama Mickiewicza w Poznaniu Wydział Fizyki Instytut Obserwatorium Astronomiczne Tomasz Kwiatkowski, shortinst Wstęp do astrofizyki I,
Fotonika. Plan: Wykład 9: Interferencja w układach warstwowych
Fotonika Wykład 9: Interferencja w układach warstwowych Plan: metody macierzowe - macierze przejścia i rozpraszania Proste układy warstwowe powłoki antyrefleksyjne interferometr Fabry-Pérot tunelowanie
Fizyka kwantowa. promieniowanie termiczne zjawisko fotoelektryczne. efekt Comptona dualizm korpuskularno-falowy. kwantyzacja światła
W- (Jaroszewicz) 19 slajdów Na podstawie prezentacji prof. J. Rutkowskiego Fizyka kwantowa promieniowanie termiczne zjawisko fotoelektryczne kwantyzacja światła efekt Comptona dualizm korpuskularno-falowy
Fizyka dla Informatyków Wykład 8 Mechanika cieczy i gazów
Fizyka dla Informatyków Wykład 8 Katedra Informatyki Stosowanej PJWSTK 2008 Spis treści Spis treści 1 Podstawowe równania hydrodynamiki 2 3 Równanie Bernoulliego 4 Spis treści Spis treści 1 Podstawowe
Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki?
Mechanika kwantowa Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Elektron fala stojąca wokół jądra Mechanika kwantowa Równanie Schrödingera Ĥ E ψ H ˆψ = Eψ operator różniczkowy
Matematyka A kolokwium: godz. 18:05 20:00, 24 maja 2017 r. rozwiązania. ) zachodzi równość: x (t) ( 1 + x(t) 2)
Matematyka A kolokwium: godz. 18:05 0:00, 4 maja 017 r. rozwiązania 1. 7 p. Znaleźć wszystkie takie funkcje t xt, że dla każdego t π, π zachodzi równość: x t 1 + xt 1+4t 0. p. Wśród znalezionych w poprzedniej
Równanie przewodnictwa cieplnego (I)
Wykład 4 Równanie przewodnictwa cieplnego (I) 4.1 Zagadnienie Cauchy ego dla pręta nieograniczonego Rozkład temperatury w jednowymiarowym nieograniczonym pręcie opisuje funkcja u = u(x, t), spełniająca
Wykład 9 - Ewolucja przed ciągiem głównym. Ciąg główny wieku zerowego (ZAMS)
Wykład 9 - Ewolucja przed ciągiem głównym. Ciąg główny wieku zerowego (ZAMS) 30.11.2017 Masa Jeansa Załóżmy, że mamy jednorodny, kulisty obłok gazu o masie M, średniej masie cząsteczkowej µ, promieniu
Temat: Promieniowanie atomu wodoru (teoria)
Temat: Promieniowanie atomu wodoru (teoria) Zgodnie z drugim postulatem Bohra elektron poruszając się po dozwolonej orbicie nie wypromieniowuje energii. Promieniowanie zostaje wyemitowane, gdy elektron
A21, B21, B12 współczynniki wprowadzone przez Einsteina w 1917 r.
Absorpcja i emisja fotonu przez atom, który ma dwa poziomy energii hν=e2-e1 h=6,63 10-34 J s Emisja spontaniczna A21 prawdopodobieństwo emisji fotonu przez atom w stanie E2 w ciągu sekundy Absorpcja (wymuszona)
Wstęp do astrofizyki I
Wstęp do astrofizyki I Wykład 3 Tomasz Kwiatkowski 2010-10-20 Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 3 1/22 Plan wykładu Linie widmowe Linie Fraunhofera Prawa Kirchhoffa Analiza widmowa Zjawisko
Model przepływów międzygałęziowych (model Leontiewa)
Model przepływów międzygałęziowych (model Leontiewa) Maciej Grzesiak Przedstawimy tzw. analizę wejścia-wyjścia jako narzędzie do badań ekonomicznych. Stworzymy matematyczny model gospodarki, w którym można
Atom wodoru. Model klasyczny: nieruchome jądro +p i poruszający się wokół niego elektron e w odległości r; energia potencjalna elektronu:
ATOM WODORU Atom wodoru Model klasyczny: nieruchome jądro +p i poruszający się wokół niego elektron e w odległości r; energia potencjalna elektronu: U = 4πε Opis kwantowy: wykorzystując zasadę odpowiedniości
Optyka. Wykład XII Krzysztof Golec-Biernat. Dyfrakcja. Laser. Uniwersytet Rzeszowski, 17 stycznia 2018
Optyka Wykład XII Krzysztof Golec-Biernat Dyfrakcja. Laser Uniwersytet Rzeszowski, 17 stycznia 2018 Wykład XII Krzysztof Golec-Biernat Optyka 1 / 23 Plan Dyfrakcja na jednej i dwóch szczelinach Dyfrakcja
Skale czasu. 1.1 Dokładność czasu T IE - Time Interval Error
Skale czasu 1 Dokładność i stabilność zegarów Zegar wytwarza sygnał okresowy (częstotliwościowy), który opisać można prostą funkcją harmoniczną: s(t) = A sin(2πν nom + φ 0 ) (1) ν nom = 9192631770Hz jest
Lasery półprzewodnikowe na złączu p-n. Laser półprzewodnikowy a dioda świecąca
Laser półprzewodnikowy a dioda świecąca Emisja laserowa pojawia się po przekroczeniu progowej wartości natężenia prądu płynącego w kierunku przewodzenia przez heterozłącze p-n w strukturze lasera. Przy
AKADEMIA GÓRNICZO-HUTNICZA Wydział Matematyki Stosowanej ROZKŁAD NORMALNY ROZKŁAD GAUSSA
AKADEMIA GÓRNICZO-HUTNICZA Wydział Matematyki Stosowanej KATEDRA MATEMATYKI TEMAT PRACY: ROZKŁAD NORMALNY ROZKŁAD GAUSSA AUTOR: BARBARA MARDOSZ Kraków, styczeń 2008 Spis treści 1 Wprowadzenie 2 2 Definicja
VI. Równania różniczkowe liniowe wyższych rzędów
VI. 1. Równanie różniczkowe liniowe n-tego rzędu o zmiennych współczynnikach Niech podobnie jak w poprzednim paragrafie K = C lub K = R. Podobnie jak w dziedzinie rzeczywistej wprowadzamy pochodne wyższych
Aerodynamika I. wykład 3: Ściśliwy opływ profilu. POLITECHNIKA WARSZAWSKA - wydz. Mechaniczny Energetyki i Lotnictwa A E R O D Y N A M I K A I
Aerodynamika I Ściśliwy opływ profilu transoniczny przepływ wokół RAE-8 M = 0.73, Re = 6.5 10 6, α = 3.19 Ściśliwe przepływy potencjalne Teoria pełnego potencjału Wprowadźmy potencjał prędkości (zakładamy
Aerodynamika I Efekty lepkie w przepływach ściśliwych.
Aerodynamika I Efekty lepkie w przepływach ściśliwych. przepłw wokół profilu RAE-2822 (M = 0.85, Re = 6.5 10 6, α = 2 ) Efekty lepkie w przepływach ściśliwych Równania ruchu lepkiego płynu ściśliwego Całkowe
n=0 (n + r)a n x n+r 1 (n + r)(n + r 1)a n x n+r 2. Wykorzystując te obliczenia otrzymujemy, że lewa strona równania (1) jest równa
Równanie Bessela Będziemy rozważać następujące równanie Bessela x y xy x ν )y 0 ) gdzie ν 0 jest pewnym parametrem Rozwiązania równania ) nazywamy funkcjami Bessela rzędu ν Sprawdzamy, że x 0 jest regularnym
Równania różniczkowe cząstkowe drugiego rzędu
Równania różniczkowe cząstkowe drugiego rzędu Marcin Orchel Spis treści 1 Wstęp 1 1.1 Metoda faktoryzacji (rozdzielania zmiennych)................ 5 1.2 Metoda funkcji Greena.............................
Wstęp do astrofizyki I
Wstęp do astrofizyki I Wykład 13 Tomasz Kwiatkowski Uniwersytet im. Adama Mickiewicza w Poznaniu Wydział Fizyki Instytut Obserwatorium Astronomiczne Tomasz Kwiatkowski, OA UAM Wstęp do astrofizyki I, Wykład
Mechanika kwantowa. Erwin Schrödinger ( ) Werner Heisenberg
Mechanika kwantowa Erwin Schrödinger (1887-1961) Werner Heisenberg 1901-1976 Falowe równanie ruchu (uproszczenie: przypadek jednowymiarowy) Dla fotonów Dla cząstek Równanie Schrödingera y x = 1 c y t y(
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Rezonansowe oddziaływanie układu atomowego z promieniowaniem "! "!! # $%&'()*+,-./-(01+'2'34'*5%.25%&+)*-(6
Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki?
Mechanika kwantowa Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Równanie Schrödingera Ĥ E ψ H ˆψ = Eψ operator różniczkow Hamiltona energia funkcja falowa h d d d + + m d d dz
gazów lub cieczy, wywołanym bądź różnicą gęstości (różnicą temperatur), bądź przez wymuszenie czynnikami zewnętrznymi.
WYMIANA (TRANSPORT) CIEPŁA Trzy podstawowe mechanizmy transportu ciepła (wymiany ciepła): 1. PRZEWODZENIIE - przekazywanie energii od jednej cząstki do drugiej, za pośrednictwem ruchu drgającego tych cząstek.
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 2, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 2, 17.02.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Równania Maxwella r-nie falowe
Rozdział 2. Krzywe stożkowe. 2.1 Elipsa. Krzywe stożkowe są zadane ogólnym równaniem kwadratowym na płaszczyźnie
Rozdział Krzywe stożkowe Krzywe stożkowe są zadane ogólnym równaniem kwadratowym na płaszczyźnie x + By + Cxy + Dx + Ey + F = 0. (.) W zależności od relacji pomiędzy współczynnikami otrzymujemy elipsę,
Zagadnienia brzegowe dla równań eliptycznych
Temat 7 Zagadnienia brzegowe dla równań eliptycznych Rozważmy płaski obszar R 2 ograniczony krzywą. la równania Laplace a (Poissona) stawia się trzy podstawowe zagadnienia brzegowe. Zagadnienie irichleta
Diagnostyka plazmy - spektroskopia molekularna. Ewa Pawelec wykład dla pracowni specjalistycznej
Diagnostyka plazmy - spektroskopia molekularna Ewa Pawelec wykład dla pracowni specjalistycznej Plazma Różne rodzaje plazmy: http://www.ipp.cas.cz/mi/index.html http://www.pro-fusiononline.com/welding/plasma.htm
Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 3, Mateusz Winkowski, Łukasz Zinkiewicz
Podstawy Fizyki III Optyka z elementami fizyki współczesnej wykład 3, 12.10.2017 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład 2 - przypomnienie
Pole magnetyczne magnesu w kształcie kuli
napisał Michał Wierzbicki Pole magnetyczne magnesu w kształcie kuli Rozważmy kulę o promieniu R, wykonaną z materiału ferromagnetycznego o stałej magnetyzacji M = const, skierowanej wzdłuż osi z. Gęstość
Szczególna teoria względności
Szczególna teoria względności Wykład VI: energia progowa foton rozpraszanie Comptona efekt Doplera prof. dr hab. Aleksander Filip Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej
Janusz Adamowski METODY OBLICZENIOWE FIZYKI Kwantowa wariacyjna metoda Monte Carlo. Problem własny dla stanu podstawowego układu N cząstek
Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 20 KWANTOWE METODY MONTE CARLO 20.1 Kwantowa wariacyjna metoda Monte Carlo Problem własny dla stanu podstawowego układu N cząstek (H E 0 )ψ 0 (r)
Atom wodoru i jony wodoropodobne
Atom wodoru i jony wodoropodobne dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2012/13 Spis treści Spis treści 1. Model Bohra atomu wodoru 2 1.1. Porządek
V.6.6 Pęd i energia przy prędkościach bliskich c. Zastosowania
V.6.6 Pęd i energia przy prędkościach bliskich c. Zastosowania 1. Ogólne wyrażenia na aberrację światła. Rozpad cząstki o masie M na dwie cząstki o masach m 1 i m 3. Rozpraszanie fotonów z lasera GaAs
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 2, Mateusz Winkowski, Jan Szczepanek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 2, 06.10.2017 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Jan Szczepanek Radosław Łapkiewicz Równania Maxwella r-nie
4 Równania różniczkowe w postaci Leibniza, równania różniczkowe zupełne
Równania w postaci Leibniza 4 1 4 Równania różniczkowe w postaci Leibniza, równania różniczkowe zupełne 4.1 Równania różniczkowe w postaci Leibniza Załóżmy, że P : D R i Q: D R są funkcjami ciągłymi określonymi
Fizyka dla Informatyków Wykład 7 Mechanika Ośrodków Ciągłych
Fizyka dla Informatyków Wykład 7 Mechanika Ośrodków Ciągłych Katedra Informatyki Stosowanej PJWSTK 2009 Spis treści Spis treści 1 Wstęp 2 3 4 5 Ciało sprężyste Spis treści Spis treści 1 Wstęp 2 3 4 5 Ciało
FIZYKA-egzamin opracowanie pozostałych pytań
FIZYKA-egzamin opracowanie pozostałych pytań Andrzej Przybyszewski Michał Witczak Marcin Talarek. Definicja pracy na odcinku A-B 2. Zdefiniować różnicę energii potencjalnych gdy ciało przenosimy z do B
Mechanika analityczna. Małe drgania układów zachowawczych
Mechanika analityczna. Małe drgania układów zachowawczych. Drgania swobodne układów o jednym stopniu swobody.. Wprowadzenie teoretyczne Załóżmy, że układ materialny o jednym stopniu swobody i więzach idealnych,
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 6 wykład: Piotr Fita pokazy: Jacek Szczytko ćwiczenia: Aneta Drabińska, Paweł Kowalczyk, Barbara Piętka, Michał Karpiński Wydział
WEKTORY I WARTOŚCI WŁASNE MACIERZY. = λ c (*) problem przybliżonego rozwiązania zagadnienia własnego dla operatorów w mechanice kwantowej
WEKTORY I WARTOŚCI WŁASNE MACIERZY Ac λ c (*) ( A λi) c nietrywialne rozwiązanie gdy det A λi problem przybliżonego rozwiązania zagadnienia własnego dla operatorów w mechanice kwantowej A - macierzowa
Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywistej
Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus 3 listopada 06r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej
- prędkość masy wynikająca z innych procesów, np. adwekcji, naprężeń itd.
4. Równania dyfuzji 4.1. Prawo zachowania masy cd. Równanie dyfuzji jest prostą konsekwencją prawa zachowania masy, a właściwie to jest to prawo zachowania masy zapisane dla procesu dyfuzji i uwzględniające
INTERFERENCJA WIELOPROMIENIOWA
INTERFERENCJA WIELOPROMIENIOWA prof. dr hab. inż. Krzysztof Patorski W tej części wykładu rozważymy przypadek koherentnej superpozycji większej liczby wiązek niż dwie. Najważniejszym interferometrem wielowiązkowym
Metody numeryczne. Sformułowanie zagadnienia interpolacji
Ćwiczenia nr 4. Sformułowanie zagadnienia interpolacji Niech będą dane punkty x 0,..., x n i wartości y 0,..., y n, takie że i=0,...,n y i = f (x i )). Szukamy funkcji F (funkcji interpolującej), takiej
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 6 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15
Bryła sztywna. Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka
Bryła sztywna Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka Moment bezwładności Prawa ruchu Energia ruchu obrotowego Porównanie ruchu obrotowego z ruchem postępowym Przypomnienie Równowaga bryły
Teorie wiązania chemicznego i podstawowe zasady mechaniki kwantowej Zjawiska, które zapowiadały nadejście nowej ery w fizyce i przybliżały
WYKŁAD 1 Teorie wiązania chemicznego i podstawowe zasady mechaniki kwantowej Zjawiska, które zapowiadały nadejście nowej ery w fizyce i przybliżały sformułowanie praw fizyki kwantowej: promieniowanie katodowe
Moc wyjściowa laserów
Moc wyjściowa laserów Wstęp Optymalizacja polega na dobraniu takich warunków, by moc wyjściowa lasera była jak największa. Spróbujemy zoptymalizować straty promieniste. W tym celu zapiszmy wyrażenie na
28 maja, Problem Dirichleta, proces Wienera. Procesy Stochastyczne, wykład 14, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1126
Problem Dirichleta, proces Wienera Procesy Stochastyczne, wykład 14, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1126 28 maja, 2012 Funkcje harmoniczne Niech będzie operatorem Laplace a w
Początek XX wieku. Dualizm korpuskularno - falowy
Początek XX wieku Światło: fala czy cząstka? Kwantowanie energii promieniowania termicznego postulat Plancka efekt fotoelektryczny efekt Comptona Fale materii de Broglie a Dualizm korpuskularno - falowy
Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa. P. F. Góra
Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Uwarunkowanie zadania numerycznego Niech ϕ : R n R m będzie pewna funkcja odpowiednio wiele
11 Przybliżenie semiklasyczne
11 Przybliżenie semiklasyczne W tym rozdziale rozważymy rachunek przybliżony, który opiera się na rozwinięciu funkcji falowej w szereg potęg stałej Plancka. Zakłada się przy tym jawnie, że h jest małym
Rachunek Prawdopodobieństwa i Statystyka
Rachunek Prawdopodobieństwa i Statystyka W 2. Probabilistyczne modele danych Zmienne losowe. Rozkład prawdopodobieństwa i dystrybuanta. Wartość oczekiwana i wariancja zmiennej losowej Dr Anna ADRIAN Zmienne
SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE
SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE Promieniowanie o długości fali 2-50 μm nazywamy promieniowaniem podczerwonym. Absorpcja lub emisja promieniowania z tego zakresu jest
1. Liczby wymierne. x dla x 0 (wartością bezwzględną liczby nieujemnej jest ta sama liczba)
1. Liczby wymierne. - wartość bezwzględna liczby. dla 0 (wartością bezwzględną liczby nieujemnej jest ta sama liczba) - dla < 0 ( wartością bezwzględną liczby ujemnej jest liczba do niej przeciwna) W interpretacji
Równanie Schrödingera
Równanie Schrödingera Maciej J. Mrowiński 29 lutego 2012 Zadanie RS1 Funkcja falowa opisująca stan pewnej cząstki w chwili t = 0 ma następującą postać: A(a Ψ(x,0) = 2 x 2 ) gdy x [ a,a] 0 gdy x / [ a,a]
Równania różnicowe. Dodatkowo umawiamy się, że powyższy iloczyn po pustym zbiorze indeksów, czyli na przykład 0
Równania różnicowe 1 Wiadomości wstępne Umówmy się, że na czas tego wykładu zrezygnujemy z oznaczania n-tego wyrazu ciągu symbolem typu x n, y n itp Zamiast tego pisać będziemy x (n), y (n) itp Ponadto
Wykład I Krzysztof Golec-Biernat Optyka 1 / 16
Optyka Wykład I Krzysztof Golec-Biernat Fale 1 Uniwersytet Rzeszowski, 4 października 2017 Wykład I Krzysztof Golec-Biernat Optyka 1 / 16 Uwagi wstępne 30 h wykładu wykład przy pomocy transparencji lub
WŁASNOŚCI CIAŁ STAŁYCH I CIECZY
WŁASNOŚCI CIAŁ STAŁYCH I CIECZY Polimery Sieć krystaliczna Napięcie powierzchniowe Dyfuzja 2 BUDOWA CIAŁ STAŁYCH Ciała krystaliczne (kryształy): monokryształy, polikryształy Ciała amorficzne (bezpostaciowe)
J. Szantyr Wykład nr 27 Przepływy w kanałach otwartych I
J. Szantyr Wykład nr 7 Przepływy w kanałach otwartych Przepływy w kanałach otwartych najczęściej wymuszane są działaniem siły grawitacji. Jako wstępny uproszczony przypadek przeanalizujemy spływ warstwy
Wydajność konwersji energii słonecznej:
Wykład II E we Wydajność konwersji energii słonecznej: η = E wy E we η całkowite = η absorpcja η kreacja η dryft/dyf η separ η zbierania E wy Jednostki fotometryczne i energetyczne promieniowania elektromagnetycznego
WYKŁAD NR 3 OPIS DRGAŃ NORMALNYCH UJĘCIE KLASYCZNE I KWANTOWE.
1 WYKŁAD NR 3 OPIS DRGAŃ NORMALNYCH UJĘCIE KLASYCZNE I KWANTOWE. Współrzędne wewnętrzne 2 F=-fq q ξ i F i =-f ij x j U = 1 2 fq2 U = 1 2 ij f ij ξ i ξ j 3 Najczęściej stosowaną metodą obliczania drgań
Atom dwupoziomowy w niezerowej temperaturze
Seminarium CFT p. 1/24 Atom dwupoziomowy w niezerowej temperaturze Tomasz Sowiński 1 paździenika 2008 Seminarium CFT p. 2/24 Atom dwupoziomowy Hamiltonian Ĥ = Ĥ0 + ĤI Ĥ 0 = mσ z + 0 dk k a (k)a(k), Ĥ I
FUNKCJE ZESPOLONE Lista zadań 2005/2006
FUNKJE ZESPOLONE Lista zadań 25/26 Opracowanie: dr Jolanta Długosz Liczby zespolone. Obliczyć wartości podanych wyrażeń: (2 + ) ( ) 2 4 i (5 + i); b) (3 i)( 4 + 2i); c) 4 + i ; d) ( + i) 4 ; e) ( 2 + 3i)
Dystrybucje, wiadomości wstępne (I)
Temat 8 Dystrybucje, wiadomości wstępne (I) Wielkości fizyczne opisujemy najczęściej przyporządkowując im funkcje (np. zależne od czasu). Inną drogą opisu tych wielkości jest przyporządkowanie im funkcjonałów
1 Płaska fala elektromagnetyczna
1 Płaska fala elektromagnetyczna 1.1 Fala w wolnej przestrzeni Rozwiązanie równań Maxwella dla zespolonych amplitud pól przemiennych sinusoidalnie, reprezentujące płaską falę elektromagnetyczną w wolnej
Zespół Szkół Technicznych. Badanie wyświetlaczy LCD
Zespół Szkół Technicznych Badanie wyświetlaczy LCD WYŚWIETLACZE LCD CZĘSC TEORETYCZNA ZALETY: ) mały pobór mocy, 2) ekonomiczność pod względem zużycia energii (pobór prądu przy 5V mniejszy niż 2mA), 3)
Analiza spektralna widma gwiezdnego
Analiza spektralna widma gwiezdnego JG &WJ 13 kwietnia 2007 Wprowadzenie Wprowadzenie- światło- podstawowe źródło informacji Wprowadzenie- światło- podstawowe źródło informacji Wprowadzenie- światło- podstawowe
Optyczna spektroskopia oscylacyjna. w badaniach powierzchni
Optyczna spektroskopia oscylacyjna w badaniach powierzchni Zalety oscylacyjnej spektroskopii optycznej uŝycie fotonów jako cząsteczek wzbudzających i rejestrowanych nie wymaga uŝycia próŝni (moŝliwość
Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 12, Mateusz Winkowski, Łukasz Zinkiewicz
Podstawy Fizyki III Optyka z elementami fizyki współczesnej wykład, 0..07 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład - przypomnienie superpozycja
r. akad. 2012/2013 Atom wodoru wykład V-VI Podstawy Procesów i Konstrukcji Inżynierskich Atom wodoru Zakład Biofizyki 1
r. akad. 01/013 wykład V-VI Podstawy Procesów i Konstrukcji Inżynierskic Atom wodoru Zakład Biofizyki 1 Model atomu Tompsona Model atomu typu ciastka z rodzynkami w 1903 J.J. Tompson zaproponował model
p.n.e. Demokryt z Abdery. Wszystko jest zbudowane z niewidzialnych cząstek - atomów (atomos ->niepodzielny)
O atomie 460-370 p.n.e. Demokryt z Abdery Wszystko jest zbudowane z niewidzialnych cząstek - atomów (atomos ->niepodzielny) 1808 John Dalton teoria atomistyczna 1. Pierwiastki składają się z małych, niepodzielnych
Politechnika Wrocławska Instytut Maszyn, Napędów i Pomiarów Elektrycznych. Materiał ilustracyjny do przedmiotu. (Cz. 4)
Politechnika Wrocławska nstytut Maszyn, Napędów i Pomiarów lektrycznych Materiał ilustracyjny do przedmiotu LKTROTCHNKA Prowadzący: (Cz. 4) Dr inż. Piotr Zieliński (-9, A0 p.408, tel. 30-3 9) Wrocław 003/4
Szczególna i ogólna teoria względności (wybrane zagadnienia)
Szczególna i ogólna teoria względności (wybrane zagadnienia) Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 4 M. Przybycień (WFiIS AGH) Szczególna Teoria Względności
Zasada najmniejszego działania
Zasada najmniejszego działania S = T dtl(x, ẋ) gdzie L(x, ẋ) jest lagrangianem. Dokonajmy przesuniecia x = x + y, ẋ = ẋ + ẏ, gdzie y(0) = y(t ) = 0. Wtedy T T S = dt L(x, ẋ ) = dt L(x + y, ẋ = ẋ + ẏ) 0
ODWZOROWANIE W OŚWIETLENIU KOHERENTNYM
ODWZOROWANIE W OŚWIETLENIU KOHERENTNYM prof. dr hab. inż. Krzysztof Patorski Przedmiotem tej części wykładu jest model matematyczny procesu formowania obrazu przez pojedynczy układ optyczny w oświetleniu
III. EFEKT COMPTONA (1923)
III. EFEKT COMPTONA (1923) Zjawisko zmiany długości fali promieniowania roentgenowskiego rozpraszanego na swobodnych elektronach. Zjawisko to stoi u podstaw mechaniki kwantowej. III.1. EFEKT COMPTONA Rys.III.1.
Atom wodoropodobny. Biegunowy układ współrzędnych. współrzędne w układzie. kartezjańskim. współrzędne w układzie. (x,y,z) biegunowym.
Atom wodoropodobny z współrzędne w układzie kartezjańskim r sinθ cosφ x r cosθ φ θ r r sinθ (x,y,z) r sinθ sinφ Biegunowy układ współrzędnych y funkcja faowa współrzędne w układzie biegunowym ( ) r,θ,φ
Wykład 2. Przykład zastosowania teorii prawdopodobieństwa: procesy stochastyczne (Markova)
Wykład 2 Przykład zastosowania teorii prawdopodobieństwa: procesy stochastyczne (Markova) 1. Procesy Markova: definicja 2. Równanie Chapmana-Kołmogorowa-Smoluchowskiego 3. Przykład dyfuzji w kapilarze
Fizyka 3. Konsultacje: p. 329, Mechatronika
Fizyka 3 Konsultacje: p. 39, Mechatronika marzan@mech.pw.edu.pl Zaliczenie: 1 sprawdzian 30 pkt 15.1 18 3.0 18.1 1 3.5 1.1 4 4.0 4.1 7 4.5 7.1 30 5.0 http:\\adam.mech.pw.edu.pl\~marzan Program: - elementy
OGÓLNE PODSTAWY SPEKTROSKOPII
WYKŁAD 8 OGÓLNE PODSTAWY SPEKTROSKOPII E E0 sn( ωt kx) ; k π ; ω πν ; λ T ν E (m c 4 p c ) / E +, dla fotonu m 0 p c p hk Rozkład energ w stane równowag: ROZKŁAD BOLTZMANA!!!!! P(E) e E / kt N E N E/