Wstęp do astrofizyki I
|
|
- Teodor Szulc
- 7 lat temu
- Przeglądów:
Transkrypt
1 Wstęp do astrofizyki I Wykład 2 Tomasz Kwiatkowski Uniwersytet im. Adama Mickiewicza w Poznaniu Wydział Fizyki Instytut Obserwatorium Astronomiczne Tomasz Kwiatkowski, shortinst Wstęp do astrofizyki I, Wykład 2 1/20 Plan wykładu Promieniowanie ciała doskonale czarnego Związek temperatury ciała z barwą Prawo przesunięć Wiena Prawo Stefana-Boltzmanna Słońce jako ciało doskonale czarne Równanie Plancka Kąt bryłowy Monochromatyczna moc promieniowania Monochromatyczny strumień promieniowania Jasności widome gwiazd Jasność bolometryczna Wykres kolor-kolor Tomasz Kwiatkowski, shortinst Wstęp do astrofizyki I, Wykład 2 2/20
2 Parę słów o pomieszaniu pojęć Ze względów historycznych w różnych naukach badających światło (fizyka, astronomia, meteorologia) pod nazwą strumień promieniowania rozumie się co innego Dla fizyka to moc promieniowania, przechodzącego przez daną powierzchnię, wyrażana w [W] Dla astronoma to moc promieniowania przechodzącego przez powierzchnię, podzielona przez pole tej powierzchni [W/m 2 ] Dla zatwardziałego astrofizyka-teoretyka to moc promieniowania przechodzącego przez powierzchnię, podzielona przez pole tej powierzchni i dodatkowo podzielona przez π [W/m 2 ] My będziemy stosować wersję drugą Tomasz Kwiatkowski, shortinst Wstęp do astrofizyki I, Wykład 2 3/20 Związek temperatury ciała z barwą Betelgeza (T e = 3400 K), Rigel (T e = K) Tomasz Kwiatkowski, shortinst Wstęp do astrofizyki I, Wykład 2 4/20
3 Ciało doskonale czarne Ciało doskonale czarne (CDC) pochłania całą energię świetlną, która na nie pada i wypromieniowuje ją w widmie ciągłym Planety i gwiazdy w pierwszym przybliżeniu są CDC Rozkład energii w widmie CDC Rozkład ciągły (bez przerw) Występuje maksimum na λ max Im wyższa temperatura T, tym mniejsza λ max Im wyższa T, tym więcej energii emitowane na wszystkich λ (pole pod krzywą) Tomasz Kwiatkowski, shortinst Wstęp do astrofizyki I, Wykład 2 5/20 Prawo przesunięć Wiena Prawo przesunięć Wiena (obowiązuje dla CDC): λ max T = m K Betelgeza: temp. powierzchni T = 3400 K, maksimum energii emituje na fali λ max = m K 3400 K = m = 8530 Å Rigel: temp. powierzchni T = K, maksimum energii emituje na fali λ max = m K K = m = 2870 Å Tomasz Kwiatkowski, shortinst Wstęp do astrofizyki I, Wykład 2 6/20
4 Prawo Stefana-Boltzmanna (Stefan to nazwisko!) Josef Stefan i Ludwig Boltzmann stwierdzili, że CDC o powierzchni A i temperaturze T wypromieniowuje moc L równą: L = AσT 4, gdzie: σ = W m 2 K 4 Pole powierzchni sferycznej gwiazdy o promieniu R, A = 4πR 2 i prawo Stefana-Boltzmanna przyjmuje postać: L = 4πR 2 σt 4. (1) Temperatura występująca w równaniu (1) nazywa się temperatura efektywna T e powierzchni gwiazdy Strumień promieniowania na powierzchni gwiazdy F = L/4πR 2, stąd: F = σt 4 e (2) Tomasz Kwiatkowski, shortinst Wstęp do astrofizyki I, Wykład 2 7/20 Słońce jako ciało doskonale czarne Moc promieniowania Słońca L = W Promień Słońca R = m Temperatura efektywna fotosfery: ( ) 1/4 L T e = 4πR 2 = 5770 K σ Z prawa Wiena, maks. energii Słońce wypromieniowuje na fali: λ max = m K 5770 K = m = 5030 Å Zaokrąglając: , mamy: λ max T = (5000 Å)(5800 K) Tomasz Kwiatkowski, shortinst Wstęp do astrofizyki I, Wykład 2 8/20
5 Porównanie widma Słońca i ciała doskonale czarnego Tomasz Kwiatkowski, shortinst Wstęp do astrofizyki I, Wykład 2 9/20 Promieniowanie termiczne Zero bezwzględne to temp. T = 0 K = 273 C Wszystkie ciała o temp. powyżej zera bezwzględnego świecą Człowiek o temp. 36 C świeci w dalekiej podczerwieni (λ max 10 µm); w zakresie widzialnym jest widoczny, gdyż odbija światło; podobnie planety Chłodny gaz w kosmosie świeci w zakresie mikrofalowym i radiowym Bardzo gorący gaz świeci w zakresie UV, X i γ Tomasz Kwiatkowski, shortinst Wstęp do astrofizyki I, Wykład 2 10/20
6 Równanie Plancka Max Planck podał empiryczny wzór, opisujący widmo CDC: B λ (T) = a/λ5 e b/λt 1, (3) gdzie B λ to moc wypromieniowywana w temp. T z jednostki powierzchni na fali λ, a a, b to stałe By wyznaczyć stałe, Planck założył, że światło składa się ze skończonej ilości fotonów o energii hν lub hc/λ, gdzie c jest prędkością światła w próżni Przy tym założeniu równanie (3) przybiera postać: B λ (T) = 2hc2 /λ 5 e hc/λkt 1, (4) gdzie k = J K 1 to stałą Boltzmanna, a h = J s to stała Plancka Tomasz Kwiatkowski, shortinst Wstęp do astrofizyki I, Wykład 2 11/20 Kąt bryłowy Kąt bryłowy: Ω = A/r 2, jednostką jest steradian [sr] dω = da/r 2 Tomasz Kwiatkowski, shortinst Wstęp do astrofizyki I, Wykład 2 12/20
7 W układzie współrzędnych sferycznych φ, θ mamy: dω = sin θdθdφ Tomasz Kwiatkowski, shortinst Wstęp do astrofizyki I, Wykład 2 13/20 Ilość energii na jednostkę czasu dl, wypromieniowywana przez CDC prostopadle z powierzchni da na falach od λ do dλ w kąt bryłowy dω wynosi: B λ dλdadω (5) Jeśli kierunek świecenia jest nachylony o θ do normalnej do powierzchni da, wówczas: B λ dλda cos θdω, (6) jednak więc dω = sin θdθdφ, (7) B λ dλda cos θ sin θdθdφ, (8) Tomasz Kwiatkowski, shortinst Wstęp do astrofizyki I, Wykład 2 14/20
8 Monochromatyczna moc promieniowania L λ Monochromatyczna moc promieniowania to ilość energii, wypromieniowywana w ciągu sekundy na fali od λ do λ + dλ Sferyczna gwiazda o promieniu R i temp. powierzchni T wysyła w jednostce czasu na fali λ energię: L λ dλ = 2π φ=0 π/2 θ=0 A B λ dλda cos θ sin θdθdφ. (9) Całka po sferze daje w wyniku π, całka po powierzchni daje powierzchnie kuli A = 4πR 2, zatem: L λ dλ = 4π 2 R 2 B λ dλ (10) Tomasz Kwiatkowski, shortinst Wstęp do astrofizyki I, Wykład 2 15/20 Monochromatyczny strumień promieniowania F λ Monochromatyczny strumień promieniowania gwiazdy F λ, mierzony w odległości r od gwiazdy, wynosi: F λ = L ( ) λ R 2 4π r 2 = π B λ, r a po podstawieniu wzoru Plancka za B λ : F λ = 2π h c2 /λ 5 e hc/λkt 1 ( R r ) 2 (11) F λ dλ to ilość energii na falach od λ do λ + dλ, która pada w ciągu sekundy na metr kwadratowy powierzchni, znajdującej się w odległości r od gwiazdy Na drodze od gwiazdy do obserwatora część światła ulega pochłonięciu lub rozproszeniu w materii międzygwiazdowej (ekstynkcja międzygwiazdowa) oraz w atmosferze ziemskiej (ekstynkcja atmosferyczna). Tomasz Kwiatkowski, shortinst Wstęp do astrofizyki I, Wykład 2 16/20
9 Jasność bolometryczna Jasność bolometryczna to jasność w magnitudo, mierzona w całym zakresie długości fali (od λ = 0 do λ = ) Można stosować bolometryczną jasność widomą, m bol i bolometryczną jasność absolutną M bol W praktyce pomiarów dokonuje się w filtrach, np U, B, V (wykres pokazuje funkcje czułości f (λ) dla filtrów) Różnica między jasnością bolometryczna gwiazdy m bol i jej jasnością widomą w filtrze V to poprawka bolometryczna BC: BC = m bol V (12) Tomasz Kwiatkowski, shortinst Wstęp do astrofizyki I, Wykład 2 17/20 Jasność widoma a strumień Związek między jasnością widomą i strumieniem: ( ) V = 2.5 log F λ S V (λ) dλ + C V, (13) 0 gdzie S V(λ) to funkcja czułości filtra V, a C V to pewna stała Podobne równania można napisać dla jasności widomych B i U Stałe C U, C B, C V dobiera się tak, by gwiazda Vega miała jasność widomą w filtrach U, B, V równą zeru Dzięki temu mierzone jasności widome odpowiadają w przybliżeniu jasnościom historycznym z katalogu Hipparcha Tomasz Kwiatkowski, shortinst Wstęp do astrofizyki I, Wykład 2 18/20
10 Wskaźnik barwy Jeśli U, B, V to jasności widome gwiazd w filtrach U,B,V, to jej wskaźniki barwy są równe: U B i B V Wskaźnik barwy B V można wyliczyć z wzoru: ( ) Fλ S B dλ B V = 2.5 log + C B V (14) Fλ S V dλ gdzie: C B V = C B C V W podobny sposób można otrzymać U B Wskaźnik barwy nie zależy od promienia gwiazdy, ani od jej odległości od obserwatora, a tylko od temperatury gwiazdy Tomasz Kwiatkowski, shortinst Wstęp do astrofizyki I, Wykład 2 19/20 Wykres kolor-kolor Wykres kolor-kolor pokazuje związek między wskaźnikami barwy U B i B V dla gwiazd Gdyby gwiazdy zachowywały się dokładnie jak CDC, wykres byłby linią prostą Dla gwiazd ciągu głównego (ok. 90% wszystkich gwiazd), wykres jest nierówną krzywą Tomasz Kwiatkowski, shortinst Wstęp do astrofizyki I, Wykład 2 20/20
Wstęp do astrofizyki I
Wstęp do astrofizyki I Wykład 2 Tomasz Kwiatkowski 12 październik 2009 r. Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 2 1/21 Plan wykładu Promieniowanie ciała doskonale czarnego Związek temperatury
Bardziej szczegółowoAnaliza spektralna widma gwiezdnego
Analiza spektralna widma gwiezdnego JG &WJ 13 kwietnia 2007 Wprowadzenie Wprowadzenie- światło- podstawowe źródło informacji Wprowadzenie- światło- podstawowe źródło informacji Wprowadzenie- światło- podstawowe
Bardziej szczegółowoOptyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017
Optyka Wykład V Krzysztof Golec-Biernat Fale elektromagnetyczne Uniwersytet Rzeszowski, 8 listopada 2017 Wykład V Krzysztof Golec-Biernat Optyka 1 / 17 Plan Swobodne równania Maxwella Fale elektromagnetyczne
Bardziej szczegółowoFotometria 1. Systemy fotometryczne.
Fotometria 1. Systemy fotometryczne. Andrzej Pigulski Instytut Astronomiczny Uniwersytetu Wrocławskiego Produkty HELAS-a, 2010 Fotometria Fotometria to jedna z podstawowych technik obserwacyjnych. Pozwala
Bardziej szczegółowoZJAWISKA KWANTOWO-OPTYCZNE
ZJAWISKA KWANTOWO-OPTYCZNE Źródła światła Prawo promieniowania Kirchhoffa Ciało doskonale czarne Promieniowanie ciała doskonale czarnego Prawo promieniowania Plancka Prawo Stefana-Boltzmanna Prawo przesunięć
Bardziej szczegółowoKwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne.
Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne. DUALIZM ŚWIATŁA fala interferencja, dyfrakcja, polaryzacja,... kwant, foton promieniowanie ciała doskonale
Bardziej szczegółowoTechniczne podstawy promienników
Techniczne podstawy promienników podczerwieni Technical Information,, 17.02.2009, Seite/Page 1 Podstawy techniczne Rozdz. 1 1 Rozdział 1 Zasady promieniowania podczerwonego - Podstawy fizyczne - Widmo,
Bardziej szczegółowoWstęp do astrofizyki I
Wstęp do astrofizyki I Wykład 3 Tomasz Kwiatkowski 2010-10-20 Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 3 1/22 Plan wykładu Linie widmowe Linie Fraunhofera Prawa Kirchhoffa Analiza widmowa Zjawisko
Bardziej szczegółowoI. PROMIENIOWANIE CIEPLNE
I. PROMIENIOWANIE CIEPLNE - lata '90 XIX wieku WSTĘP Widmo promieniowania elektromagnetycznego zakres "pokrycia" różnymi rodzajami fal elektromagnetycznych promieniowania zawartego w danej wiązce. rys.i.1.
Bardziej szczegółowow literaturze i na WWW panuje zamieszanie (przykład: strumień promieniowania dla fizyka to coś innego, niż dla astronoma)
Przydatne źródła informacji w literaturze i na WWW panuje zamieszanie (przykład: strumień promieniowania dla fizyka to coś innego, niż dla astronoma) wiarygodne źródło informacji to np. Radiometry and
Bardziej szczegółowoWydajność konwersji energii słonecznej:
Wykład II E we Wydajność konwersji energii słonecznej: η = E wy E we η całkowite = η absorpcja η kreacja η dryft/dyf η separ η zbierania E wy Jednostki fotometryczne i energetyczne promieniowania elektromagnetycznego
Bardziej szczegółowoPoczątek XX wieku. Dualizm korpuskularno - falowy
Początek XX wieku Światło: fala czy cząstka? Kwantowanie energii promieniowania termicznego postulat Plancka efekt fotoelektryczny efekt Comptona Fale materii de Broglie a Dualizm korpuskularno - falowy
Bardziej szczegółowoKlimat na planetach. Szkoła Podstawowa Klasy VII-VIII Gimnazjum Klasa III Doświadczenie konkursowe 2
Szkoła Podstawowa Klasy VII-VIII Gimnazjum Klasa III Doświadczenie konkursowe Rok 019 1. Wstęp teoretyczny Podstawowym źródłem ciepła na powierzchni planet Układu Słonecznego, w tym Ziemi, jest dochodzące
Bardziej szczegółowoWstęp do astrofizyki I
Wstęp do astrofizyki I Wykład 12 Tomasz Kwiatkowski Uniwersytet im. Adama Mickiewicza w Poznaniu Wydział Fizyki Instytut Obserwatorium Astronomiczne Tomasz Kwiatkowski, OA UAM Wstęp do astrofizyki I, Wykład
Bardziej szczegółowoWstęp do astrofizyki I
Wstęp do astrofizyki I Wykład 1 Tomasz Kwiatkowski Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 1 1/30 Plan wykładu Uwagi wstępne Odległości do gwiazd Paralaksa trygonometryczna Hipparcos i Gaia
Bardziej szczegółowoWielkości gwiazdowe. Systematyka N.R. Pogsona, który wprowadza zasadę, że różniaca 5 wielkości gwiazdowych to stosunek natężeń równy 100
Wielkości gwiazdowe Ptolemeusz w Almageście 6 wielkości gwiazdowych od 1 do 6 mag. 1830 r, John Herschel wiąże skalę wielkości gwiazdowych z natężeniem globlanym światła gwiazd, mówiąc, że różnicom w wielkościach
Bardziej szczegółowoWstęp do astrofizyki I
Wstęp do astrofizyki I Wykład 12 Tomasz Kwiatkowski 5 styczeń 2010 r. Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 12 1/1 Plan wykładu Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 12 2/1 Jak
Bardziej szczegółowoLIV Olimpiada Astronomiczna 2010 / 2011 Zawody III stopnia
LIV Olimpiada Astronomiczna 2010 / 2011 Zawody III stopnia 1. Wskutek efektów relatywistycznych mierzony całkowity strumień promieniowania od gwiazdy, która porusza się w kierunku obserwatora z prędkością
Bardziej szczegółowoWstęp do astrofizyki I
Wstęp do astrofizyki I Wykład 6 Tomasz Kwiatkowski Uniwersytet im. Adama Mickiewicza w Poznaniu Wydział Fizyki Instytut Obserwatorium Astronomiczne Tomasz Kwiatkowski, OA UAM Wstęp do astrofizyki I, Wykład
Bardziej szczegółowoSkala jasności w astronomii. Krzysztof Kamiński
Skala jasności w astronomii Krzysztof Kamiński Obserwowana wielkość gwiazdowa (magnitudo) Skala wymyślona prawdopodobnie przez Hipparcha, który podzielił gwiazdy pod względem jasności na 6 grup (najjaśniejsze:
Bardziej szczegółowoBADANIE PROMIENIOWANIA CIAŁA DOSKONALE CZARNEGO
ZADANIE 9 BADANIE PROMIENIOWANIA CIAŁA DOSKONALE CZARNEGO Wstęp KaŜde ciało o temperaturze wyŝszej niŝ K promieniuje energię w postaci fal elektromagnetycznych. Widmowa zdolność emisyjną ciała o temperaturze
Bardziej szczegółowoWstęp do astrofizyki I
Wstęp do astrofizyki I Wykład 14 Tomasz Kwiatkowski Uniwersytet im. Adama Mickiewicza w Poznaniu Wydział Fizyki Instytut Obserwatorium Astronomiczne Tomasz Kwiatkowski, OA UAM Wstęp do astrofizyki I, Wykład
Bardziej szczegółowoWYZNACZENIE STAŁEJ STEFANA - BOLTZMANNA
ĆWICZENIE 32 WYZNACZENIE STAŁEJ STEFANA - BOLTZMANNA Cel ćwiczenia: Wyznaczenie stałej Stefana-Boltzmanna metodami jednakowej temperatury i jednakowej mocy. Zagadnienia: ciało doskonale czarne, zdolność
Bardziej szczegółowoFizyka kwantowa. promieniowanie termiczne zjawisko fotoelektryczne. efekt Comptona dualizm korpuskularno-falowy. kwantyzacja światła
W- (Jaroszewicz) 19 slajdów Na podstawie prezentacji prof. J. Rutkowskiego Fizyka kwantowa promieniowanie termiczne zjawisko fotoelektryczne kwantyzacja światła efekt Comptona dualizm korpuskularno-falowy
Bardziej szczegółowoautor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 39 ATOM WODORU. PROMIENIOWANIE. WIDMA TEST JEDNOKROTNEGO WYBORU
autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 39 ATOM WODORU. PROMIENIOWANIE. WIDMA Zadanie 1 1 punkt TEST JEDNOKROTNEGO WYBORU Moment pędu elektronu znajdującego się na drugiej orbicie w atomie
Bardziej szczegółowoWidmo promieniowania
Widmo promieniowania Spektroskopia Każde ciało wysyła promieniowanie. Promieniowanie to jest składa się z wiązek o różnych długościach fal. Jeśli wiązka światła pada na pryzmat, ulega ono rozszczepieniu,
Bardziej szczegółowoKwantowa natura promieniowania
Kwantowa natura promieniowania Promieniowanie ciała doskonale czarnego Ciało doskonale czarne ciało, które absorbuje całe padające na nie promieniowanie bez względu na częstotliwość. Promieniowanie ciała
Bardziej szczegółowoWYZNACZANIE STAŁEJ PLANCKA NA PODSTAWIE PRAWA PLANCKA PROMIENIOWANIA CIAŁA DOSKONALE CZARNEGO
ĆWICZENIE 107 WYZNACZANIE STAŁEJ PLANCKA NA PODSTAWIE PRAWA PLANCKA PROMIENIOWANIA CIAŁA DOSKONALE CZARNEGO Cel ćwiczenia: pomiary zdolności emisyjnej ciała jako funkcji jego temperatury, wyznaczenie stałej
Bardziej szczegółowoWykład 18: Elementy fizyki współczesnej -1
Wykład 18: Elementy fizyki współczesnej -1 Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Promieniowanie ciała doskonale czarnego
Bardziej szczegółowoWy1. 2 Wy7 Detektory fotonowe i termiczne. 2 Wy8 Test zaliczeniowy 1 Suma godzin 15
Wykład I Wy1 Podział widma promieniowania e.m., prawa promieniowania ciała doskonale czarnego i ciał rzeczywistych. 2 Wy2 Termiczne źródła promieniowania. 2 Wy3 Lasery i diody elektroluminescencyjne. 2
Bardziej szczegółowoPromieniowanie cieplne ciał.
Wypromieniowanie fal elektromagnetycznych przez ciała Promieniowanie cieplne (termiczne) Luminescencja Chemiluminescencja Elektroluminescencja Katodoluminescencja Fotoluminescencja Emitowanie fal elektromagnetycznych
Bardziej szczegółowoWykład 14. Termodynamika gazu fotnonowego
Wykład 14 Termodynamika gazu fotnonowego dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 16 stycznia 217 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki statystycznej
Bardziej szczegółowoWstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 1 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Paweł Kowalczyk, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2015/16
Bardziej szczegółowoPodstawy fizyki kwantowej
Podstawy fizyki kwantowej Fizyka kwantowa - co to jest? Światło to fala czy cząstka? promieniowanie termiczne efekt fotoelektryczny efekt Comptona fale materii de Broglie a równanie Schrodingera podstawa
Bardziej szczegółowoFotometria 2. Ekstynkcja atmosferyczna i międzygwiazdowa.
Fotometria 2. Ekstynkcja atmosferyczna i międzygwiazdowa. Andrzej Pigulski Instytut Astronomiczny Uniwersytetu Wrocławskiego Produkty HELAS-a, 2010 Ekstynkcja atmosferyczna Podczas przejścia przez atmosferę
Bardziej szczegółowoSprawdzanie prawa Ohma i wyznaczanie wykładnika w prawie Stefana-Boltzmanna
Sprawdzanie prawa Ohma i wyznaczanie wykładnika w prawie Stefana-Boltzmanna Wprowadzenie. Prawo Stefana Boltzmanna Φ λ nm Rys.1. Prawo Plancka. Pole pod każdą krzywą to całkowity strumień: Φ c = σs T 4
Bardziej szczegółowoĆwiczenie 375. Badanie zależności mocy promieniowania cieplnego od temperatury. U [V] I [ma] R [ ] R/R 0 T [K] P [W] ln(t) ln(p)
1 Nazwisko... Data... Wydział... Imię... Dzień tyg.... Godzina... Ćwiczenie 375 Badanie zależności mocy promieniowania cieplnego od temperatury = U [V] I [ma] [] / T [K] P [W] ln(t) ln(p) 1.. 3. 4. 5.
Bardziej szczegółowoĆwiczenie Nr 11 Fotometria
Instytut Fizyki, Uniwersytet Śląski Chorzów 2018 r. Ćwiczenie Nr 11 Fotometria Zagadnienia: fale elektromagnetyczne, fotometria, wielkości i jednostki fotometryczne, oko. Wstęp Radiometria (fotometria
Bardziej szczegółowoSłońce jako gwiazda. załóżmy, że Słońce jest kulą o promieniu R. niech Słońce promieniuje izotropowo we wszystkich kierunkach z mocą L
Słońce jako gwiazda załóżmy, że Słońce jest kulą o promieniu R niech Słońce promieniuje izotropowo we wszystkich kierunkach z mocą L strumień promieniowania F z jednostki powierzchni Słońca wynosi wtedy:
Bardziej szczegółowoFizyka elektryczność i magnetyzm
Fizyka elektryczność i magnetyzm W5 5. Wybrane zagadnienia z optyki 5.1. Światło jako część widma fal elektromagnetycznych. Fale elektromagnetyczne, które współczesny człowiek potrafi wytwarzać, i wykorzystywać
Bardziej szczegółowoLVII Olimpiada Astronomiczna 2013/2014 Zadania zawodów III stopnia
Zadanie 1. LVII Olimpiada Astronomiczna 2013/2014 Zadania zawodów III stopnia Z północnego bieguna księżycowego wystrzelono pocisk, nadając mu prędkość początkową równą lokalnej pierwszej prędkości kosmicznej.
Bardziej szczegółowoFALOWY I KWANTOWY OPIS ŚWIATŁA. Światło wykazuje dualizm korpuskularno-falowy. W niektórych zjawiskach takich jak
FALOWY KWANTOWY OPS ŚWATŁA Dualizm korpuskularno - falowy Światło wykazuje dualizm korpuskularno-falowy. W niektórych zjawiskach takich jak interferencja, dyfrakcja i polaryzacja ma naturę falową, a w
Bardziej szczegółowoLXII Olimpiada Astronomiczna 2018/2019 Zadania z zawodów III stopnia. ρ + Λ c2. H 2 = 8 π G 3. = 8 π G ρ 0. 2,, Ω m = 0,308.
LXII Olimpiada Astronomiczna 2018/2019 Zadania z zawodów III stopnia 1. Współczesne obserwacje są zgodne z modelem Wszechświata, w którym obowiązuje geometria euklidesowa. W tym modelu tempo ekspansji,
Bardziej szczegółowoPodstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 2, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 2, 17.02.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Równania Maxwella r-nie falowe
Bardziej szczegółowoWy1. 2 Wy7 Detektory fotonowe i termiczne. 2 Wy8 Test zaliczeniowy 1 Suma godzin 15
Wykład I Wy1 Podział widma promieniowania e.m., prawa promieniowania ciała doskonale czarnego i ciał rzeczywistych. 2 Wy2 Termiczne źródła promieniowania. 2 Wy3 Lasery i diody LED. 2 Wy4 Oddziaływanie
Bardziej szczegółowoWstęp do astrofizyki I
Wstęp do astrofizyki I Wykład 13 Tomasz Kwiatkowski Uniwersytet im. Adama Mickiewicza w Poznaniu Wydział Fizyki Instytut Obserwatorium Astronomiczne Tomasz Kwiatkowski, OA UAM Wstęp do astrofizyki I, Wykład
Bardziej szczegółowoWykład 7 Kwantowe własności promieniowania
Wykład 7 Kwantowe własności promieniowania zdolność absorpcyjna, zdolność emisyjna, prawo Kirchhoffa, prawo Stefana-Boltzmana, prawo Wiena, postulaty Plancka, zjawisko fotoelektryczne, efekt Comptona W7.
Bardziej szczegółowoFizyka. dr Bohdan Bieg p. 36A. wykład ćwiczenia laboratoryjne ćwiczenia rachunkowe
Fizyka dr Bohdan Bieg p. 36A wykład ćwiczenia laboratoryjne ćwiczenia rachunkowe Literatura Raymond A. Serway, John W. Jewett, Jr. Physics for Scientists and Engineers, Cengage Learning D. Halliday, D.
Bardziej szczegółowoWstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 1 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15
Bardziej szczegółowoKolorowy Wszechświat część I
Kolorowy Wszechświat część I Bartłomiej Zakrzewski Spoglądając w pogodną noc na niebo, łatwo możemy dostrzec, że gwiazdy (przynajmniej te najjaśniejsze) różnią się między sobą kolorami. Wśród nich znajdziemy
Bardziej szczegółowoWyznaczanie zależności współczynnika załamania światła od długości fali światła
Ćwiczenie O3 Wyznaczanie zależności współczynnika załamania światła od długości fali światła O3.1. Cel ćwiczenia Celem ćwiczenia jest zbadanie zależności współczynnika załamania światła od długości fali
Bardziej szczegółowoPodstawy fizyki kwantowej i budowy materii
Podstawy fizyki kwantowej i budowy materii prof. dr hab. Aleksander Filip Żarnecki Zakład Cząstek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Wykład 3 17 października 2016 A.F.Żarnecki
Bardziej szczegółowoLXI Olimpiada Astronomiczna 2017/2018 Zadania z zawodów III stopnia
LXI Olimpiada Astronomiczna 2017/2018 Zadania z zawodów III stopnia 1. Okres obrotu Księżyca wokół osi jest równy jego okresowi orbitalnemu. Dzięki temu Księżyc jest stale zwrócony ku Ziemi jedną stroną.
Bardziej szczegółowoPromieniowanie cia la doskonale czarnego
Rozdzia l 2 Promieniowanie cia la doskonale czarnego 2.1 Wste ι p 1. Stosunek zdolności emisyjnej dowolnego cia la do jego zdolności absorpcyjnej jest sta ly i równy zdolności emisyjnej cia la doskonale
Bardziej szczegółowoWykład 17: Optyka falowa cz.1.
Wykład 17: Optyka falowa cz.1. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Zasada Huyghensa Christian Huygens 1678 r. pierwsza
Bardziej szczegółowoOptyka stanowi dział fizyki, który zajmuje się światłem (także promieniowaniem niewidzialnym dla ludzkiego oka).
Optyka geometryczna Optyka stanowi dział fizyki, który zajmuje się światłem (także promieniowaniem niewidzialnym dla ludzkiego oka). Założeniem optyki geometrycznej jest, że światło rozchodzi się jako
Bardziej szczegółowoIII. EFEKT COMPTONA (1923)
III. EFEKT COMPTONA (1923) Zjawisko zmiany długości fali promieniowania roentgenowskiego rozpraszanego na swobodnych elektronach. Zjawisko to stoi u podstaw mechaniki kwantowej. III.1. EFEKT COMPTONA Rys.III.1.
Bardziej szczegółowoEfekt cieplarniany i warstwa ozonowa
Efekt cieplarniany i warstwa ozonowa Promieniowanie ciała doskonale czarnego Ciało doskonale czarne ciało pochłaniające całkowicie każde promieniowanie, które padnie na jego powierzchnię, niezależnie od
Bardziej szczegółowoWstęp do astrofizyki I
Wstęp do astrofizyki I Wykład 15 Tomasz Kwiatkowski Uniwersytet im. Adama Mickiewicza w Poznaniu Wydział Fizyki Instytut Obserwatorium Astronomiczne Tomasz Kwiatkowski, OA UAM Wstęp do astrofizyki I, Wykład
Bardziej szczegółowowymiana energii ciepła
wymiana energii ciepła Karolina Kurtz-Orecka dr inż., arch. Wydział Budownictwa i Architektury Katedra Dróg, Mostów i Materiałów Budowlanych 1 rodzaje energii magnetyczna kinetyczna cieplna światło dźwięk
Bardziej szczegółowoWyznaczanie stałej słonecznej i mocy promieniowania Słońca
Wyznaczanie stałej słonecznej i mocy promieniowania Słońca Jak poznać Wszechświat, jeśli nie mamy bezpośredniego dostępu do każdej jego części? Ta trudność jest codziennością dla astronomii. Obiekty astronomiczne
Bardziej szczegółowoCiało doskonale czarne ćwiczenie w Excelu
Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego (POKL) Ciało doskonale czarne ćwiczenie w Excelu Wstęp Każde ciało o temperaturze wyższej od 0 K, czyli od tzw.
Bardziej szczegółowoElektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne....................
Bardziej szczegółowoElektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne......................
Bardziej szczegółowoEfekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach
Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach Efekt Comptona. p f Θ foton elektron p f p e 0 p e Zderzenia fotonów
Bardziej szczegółowoMetody badania kosmosu
Metody badania kosmosu Zakres widzialny Fale radiowe i mikrofale Promieniowanie wysokoenergetyczne Detektory cząstek Pomiar sił grawitacyjnych Obserwacje prehistoryczne Obserwatorium słoneczne w Goseck
Bardziej szczegółowoZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL
ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL X L Rys. 1 Schemat układu doświadczalnego. Fala elektromagnetyczna (światło, mikrofale) po przejściu przez dwie blisko położone (odległe o d) szczeliny
Bardziej szczegółowoRodzaje fal. 1. Fale mechaniczne. 2. Fale elektromagnetyczne. 3. Fale materii. dyfrakcja elektronów
Wykład VI Fale t t + Dt Rodzaje fal 1. Fale mechaniczne 2. Fale elektromagnetyczne 3. Fale materii dyfrakcja elektronów Fala podłużna v Przemieszczenia elementów spirali ( w prawo i w lewo) są równoległe
Bardziej szczegółowoFale elektromagnetyczne w dielektrykach
Fale elektromagnetyczne w dielektrykach Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Krótka historia odkrycia
Bardziej szczegółowoWyznaczanie stałej Stefana-Boltzmanna [27B]
yznaczanie stałej Stefana-Boltzmanna [27B] Marcin Polkowski marcin@polkowski.eu 25 lutego 2008 Streszczenie Celem wykonanego doświadczenia było wyznaczenie stałej Stefana-Boltzmanna. 1 stęp teoretyczny
Bardziej szczegółowoPodstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 2, Mateusz Winkowski, Jan Szczepanek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 2, 06.10.2017 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Jan Szczepanek Radosław Łapkiewicz Równania Maxwella r-nie
Bardziej szczegółowoPODSTAWY BARWY, PIGMENTY CERAMICZNE
PODSTAWY BARWY, PIGMENTY CERAMICZNE Barwa Barwą nazywamy rodzaj określonego ilościowo i jakościowo (długość fali, energia) promieniowania świetlnego. Głównym i podstawowym źródłem doznań barwnych jest
Bardziej szczegółowoWstęp do astrofizyki I
Wstęp do astrofizyki I Wykład 5 Tomasz Kwiatkowski Uniwersytet im. Adama Mickiewicza w Poznaniu Wydział Fizyki Instytut Obserwatorium Astronomiczne Tomasz Kwiatkowski, shortinst Wstęp do astrofizyki I,
Bardziej szczegółowoWykład 32. ciało doskonale czarne T = 2000 K. wolfram T = 2000 K
Wykład 32 32. Światło a fizyka kwantowa 32.1 Źródła światła Najbardziej znanymi źródłami światła są rozgrzane ciała stałe i gazy, w których zachodzi wyładowanie elektryczne; np. wolframowe włókna żarówek
Bardziej szczegółowoFizyka i wielkości fizyczne
Fizyka i wielkości fizyczne Fizyka: - Stosuje opis matematyczny zjawisk - Formułuje prawa fizyczne na podstawie doświadczeń - Opiera się na prawach podstawowych (aksjomatach) Wielkością fizyczną jest każda
Bardziej szczegółowoDzień dobry. Miejsce: IFE - Centrum Kształcenia Międzynarodowego PŁ, ul. Żwirki 36, sala nr 7
Dzień dobry BARWA ŚWIATŁA Przemysław Tabaka e-mail: przemyslaw.tabaka@.tabaka@wp.plpl POLITECHNIKA ŁÓDZKA Instytut Elektroenergetyki Co to jest światło? Światło to promieniowanie elektromagnetyczne w zakresie
Bardziej szczegółowoElementy optyki kwantowej. Ciało doskonale czarne. Teoria Wiena. Notatki. Notatki. Notatki. Notatki. dr inż. Ireneusz Owczarek
Elementy optyki kwantowej dr inż. Ireneusz Owczarek CNMiF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 1 dr inż. Ireneusz Owczarek Elementy optyki kwantowej Ciało doskonale czarne Rozkład
Bardziej szczegółowoMetody Optyczne w Technice. Wykład 5 Interferometria laserowa
Metody Optyczne w Technice Wykład 5 nterferometria laserowa Promieniowanie laserowe Wiązka monochromatyczna Duża koherencja przestrzenna i czasowa Niewielka rozbieżność wiązki Duża moc Największa możliwa
Bardziej szczegółowoWykład FIZYKA II. 11. Optyka kwantowa. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA II 11. Optyka kwantowa Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ FIZYKA KLASYCZNA A FIZYKA WSPÓŁCZESNA Fizyka klasyczna
Bardziej szczegółowoPODSTAWY MECHANIKI KWANTOWEJ
PODSTAWY MECHANIKI KWANTOWEJ Za dzień narodzenia mechaniki kwantowej jest uważany 14 grudnia roku 1900. Tego dnia, na posiedzeniu Niemieckiego Towarzystwa Fizycznego w Instytucie Fizyki Uniwersytetu Berlińskiego
Bardziej szczegółowoWyprowadzenie prawa Gaussa z prawa Coulomba
Wyprowadzenie prawa Gaussa z prawa Coulomba Natężenie pola elektrycznego ładunku punktowego q, umieszczonego w początku układu współrzędnych (czyli prawo Coulomba): E = Otoczmy ten ładunek dowolną powierzchnią
Bardziej szczegółowoĆwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej
Ćwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej Wprowadzenie Światło widzialne jest to promieniowanie elektromagnetyczne (zaburzenie poła elektromagnetycznego rozchodzące
Bardziej szczegółowoTeorie wiązania chemicznego i podstawowe zasady mechaniki kwantowej Zjawiska, które zapowiadały nadejście nowej ery w fizyce i przybliżały
WYKŁAD 1 Teorie wiązania chemicznego i podstawowe zasady mechaniki kwantowej Zjawiska, które zapowiadały nadejście nowej ery w fizyce i przybliżały sformułowanie praw fizyki kwantowej: promieniowanie katodowe
Bardziej szczegółowoOptyka. Wykład IX Krzysztof Golec-Biernat. Optyka geometryczna. Uniwersytet Rzeszowski, 13 grudnia 2017
Optyka Wykład IX Krzysztof Golec-Biernat Optyka geometryczna Uniwersytet Rzeszowski, 13 grudnia 2017 Wykład IX Krzysztof Golec-Biernat Optyka 1 / 16 Plan Dyspersja chromatyczna Przybliżenie optyki geometrycznej
Bardziej szczegółowoWażną rolę odgrywają tzw. funkcje harmoniczne. Przyjmujemy następującą definicję. u = 0, (6.1) jest operatorem Laplace a. (x,y)
Wykład 6 Funkcje harmoniczne Ważną rolę odgrywają tzw. funkcje harmoniczne. Przyjmujemy następującą definicję. e f i n i c j a Funkcję u (x 1, x 2,..., x n ) nazywamy harmoniczną w obszarze R n wtedy i
Bardziej szczegółowoELEMENTY GEOFIZYKI. Atmosfera W. D. ebski
ELEMENTY GEOFIZYKI Atmosfera W. D ebski debski@igf.edu.pl Plan wykładu z geofizyki - (Atmosfera) 1. Fizyka atmosfery: struktura atmosfery skład chemiczny atmosfery meteorologia - chmury atmosfera a kosmos
Bardziej szczegółowoI.4 Promieniowanie rentgenowskie. Efekt Comptona. Otrzymywanie promieniowania X Pochłanianie X przez materię Efekt Comptona
r. akad. 004/005 I.4 Promieniowanie rentgenowskie. Efekt Comptona Otrzymywanie promieniowania X Pochłanianie X przez materię Efekt Comptona Jan Królikowski Fizyka IVBC 1 r. akad. 004/005 0.01 nm=0.1 A
Bardziej szczegółowoMetody Lagrange a i Hamiltona w Mechanice
Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 6 M. Przybycień (WFiIS AGH) Metody Lagrange a i Hamiltona... Wykład
Bardziej szczegółowoDr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska
Podstawy fizyki Wykład 11 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska D. Halliday, R. Resnick, J.Walker: Podstawy Fizyki, tom 3, Wydawnictwa Naukowe PWN, Warszawa 2003. K.Sierański, K.Jezierski,
Bardziej szczegółowoWykład 16: Optyka falowa
Wykład 16: Optyka falowa Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Zasada Huyghensa Christian Huygens 1678 r. pierwsza falowa
Bardziej szczegółowoPodstawy fizyki wykład 8
Podstawy fizyki wykład 8 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Optyka geometryczna Polaryzacja Odbicie zwierciadła Załamanie soczewki Optyka falowa Interferencja Dyfrakcja światła D.
Bardziej szczegółowoMechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki?
Mechanika kwantowa Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Elektron fala stojąca wokół jądra Mechanika kwantowa Równanie Schrödingera Ĥ E ψ H ˆψ = Eψ operator różniczkowy
Bardziej szczegółowoPodstawy fizyki kwantowej
Podstawy fizyki kwantowej Fizyka kwantowa - co to jest? Światło to fala czy cząstka? promieniowanie termiczne efekt fotoelektryczny efekt Comptona fale materii de Broglie a równanie Schrodingera podstawa
Bardziej szczegółowoMechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki?
Mechanika kwantowa Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Równanie Schrödingera Ĥ E ψ H ˆψ = Eψ operator różniczkow Hamiltona energia funkcja falowa h d d d + + m d d dz
Bardziej szczegółowoFizyka środowiska Moduł 1. Promieniowanie słoneczne i atmosfera Ziemi Instytut Fizyki PŁ 2018 Fotografia z:
Fizyka środowiska Moduł 1. Promieniowanie słoneczne i atmosfera Ziemi Instytut Fizyki PŁ 018 Fotografia z: http://oze.gep.com.pl/energia-sloneczna/ 1.1. Opis ilości promieniowania Strumień promieniowania
Bardziej szczegółowoLXVIII OLIMPIADA FIZYCZNA ZAWODY III STOPNIA
ZAWODY III STOPNIA CZĘŚĆ TEORETYCZNA Za każde zadanie można otrzymać maksymalnie 0 punktów. Zadanie. Dane są jednakowe oporniki i o stałym cieple właściwym oraz oporze zależnym od temperatury T według
Bardziej szczegółowoFalowa natura światła
Falowa natura światła Christiaan Huygens Thomas Young James Clerk Maxwell Światło jest falą elektromagnetyczną Barwa światło zależy od jej długości (częstości). Optyka geometryczna Optyka geometryczna
Bardziej szczegółowoOPTYKA. Leszek Błaszkieiwcz
OPTYKA Leszek Błaszkieiwcz Ojcem optyki jest Witelon (1230-1314) Zjawisko odbicia fal promień odbity normalna promień padający Leszek Błaszkieiwcz Rys. Zjawisko załamania fal normalna promień padający
Bardziej szczegółowoFizyka 2. Janusz Andrzejewski
Fizyka 2 wykład 14 Janusz Andrzejewski Atom wodoru Wczesne modele atomu -W czasach Newtona atom uważany była za małą twardą kulkę co dość dobrze sprawdzało się w rozważaniach dotyczących kinetycznej teorii
Bardziej szczegółowoWirtualny Hogwart im. Syriusza Croucha
Wirtualny Hogwart im. Syriusza Croucha Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. EGZAMIN STANDARDOWYCH UMIEJĘTNOŚCI MAGICZNYCH ASTRONOMIA LISTOPAD 2013 Instrukcja dla
Bardziej szczegółowo