A21, B21, B12 współczynniki wprowadzone przez Einsteina w 1917 r.
|
|
- Grzegorz Komorowski
- 6 lat temu
- Przeglądów:
Transkrypt
1 Absorpcja i emisja fotonu przez atom, który ma dwa poziomy energii hν=e2-e1 h=6, J s Emisja spontaniczna A21 prawdopodobieństwo emisji fotonu przez atom w stanie E2 w ciągu sekundy Absorpcja (wymuszona) B12u(ν) prawdopodobieństwo absorpcji fotonu z promieniowania padającego o gęstości energii u(ν) przez atom w stanie E1 w ciągu sekundy Emisja wymuszona B21u(ν) prawdopodobieństwo emisji fotonu przez atom w stanie E2 w ciągu sekundy pod wpływem promieniowania padającego o gęstości energii u(ν) A21, B21, B12 współczynniki wprowadzone przez Einsteina w 1917 r. 1
2 Równowaga miedzy promieniowaniem o częstotliwości ν a układem atomów, które mają dwa poziomy energii hν=e 2 -E 1 Bilans obsadzenia poziomów energii E 1 i E 2 w obecności promieniowania o gęstości energii u(ν) : N 1 B 12 u(ν)=n 2 A 21 +N 2 B 21 u(ν) N 2 i N 1 liczby atomów w stanie o energii odpowiednio E 2 i E 1 Stosunek liczb atomów w stanach o energii E 1 i E 2 w równowadze termodynamicznej w temperaturze T rozkład kanoniczny Boltzmanna: N k B =1, J/K 1 E2 E1 hν = exp = exp N2 kbt kbt Gęstość energii promieniowania w równowadze z układem atomów: N2 A21 A21 B21 A21 B21 u( ν ) = = = N1B12 N2B N1B B 12 hν exp 1 N2B21 B 21 kbt powinna być zgodna z prawem Plancka promieniowania ciała doskonale 3 czarnego w temperaturze T: 8πh ν dv u( ν, T ) dν = Zatem współczynniki Einsteina 3 hν c exp spełniają związki: 1 3 kbt A21 8πhν B12 = B21 = 3 B c 21 W stanie równowagi: absorpcja N 1 B 12 u(ν)>>n 2 B 21 u(ν) emisja wymuszona, bo N 1 >> N 2 konieczne jest wytworzenie inwersji obsadzeń N 1 <N 2. Pierwszy laser zbudował w 1960 Th. Maiman ośrodek czynny kryształ rubinu Al 2 O 3 domieszkowany Cr (jony Cr 3+ ) Laser trójpoziomowy Błysk lampy (pompowanie optyczne) wytwarza chwilowo inwersję obsadzeń Laser rubinowy wytwarza błysk światła, który składa się z kilku krótkich impulsów pojawiających się po przekroczeniu progowej inwersji obsadzeń. 2
3 3
4 Bilans strat energii i wzmocnienia światła podczas akcji laserowej W rezonatorze optycznym natężenie promieniowania maleje z czasem zaniku τ w t () di I I t = I0 exp strata natężenia na jednostkę czasu τ = w dt strata τ w Wzrost natężenia promieniowania w ośrodku czynnym lasera wynika z przewagi emisji wymuszonej nad absorpcją po osiągnięciu inwersji obsadzeń di hνc 2 ( N 2 N 1 ) u( ν ) B 21 dt = gdzie ν szerokość linii widmowej przejścia E zysk V π ν 2 E 1 hνc natężenie promieniowania jednego fotonu w objętości V V Biorąc pod uwagę związek gęstości energii z natężeniem promieniowania I(ν)=u(ν)c 3 i związek między współczynnikami Einsteina A21 8πhν = 3 oraz oznaczając n 1 =N 1 /V, n 2 =N 2 /V, A 21 =1/τ s B21 c di di otrzymujemy warunek wystąpienia akcji laserowej w postaci dt 3 zysk dt straty 2 2 c I I ( n 4π ν ντ s 2 n1 ) co daje progową wartość inwersji obsadzeń 2 n 4π ν 2 p = 3 ντ τ c τ s w Wartość progową inwersji obsadzeń można obniżyć zwiększając czas zaniku τ w, czyli zmniejszając straty promieniowania w rezonatorze optycznym, np. stosując zwierciadła o większym współczynniku odbicia. Korzystne jest też zmniejszenie szerokości linii widmowej ν przez rezonator optyczny o bardzo wąskiej linii rezonansu. w Interferencja fal doświadczenie z dwoma szczelinami Różnica dróg fal biegnących pod kątem θ ze źródeł S 1 i S 2 jest r 1 -r 2 = L=dsin(θ), różnica faz φ =2π(r 1 -r 2 )/λ = kdsin(θ) Złożenie fal w punkcie P dodawanie chwilowych wartości pola elektrycznego E P (t)=e 1 exp[i(kr 1 -ωt)]+e 1 exp[i(kr 2 -ωt)]= =E 1 {exp[ik(r 1 -r 2 )/2]+exp[-ik(r 1 -r 2 )/2]} exp[ik(r 1 +r 2 )/2-iωt)]= = E 1 2cos[k(r 1 -r 2 )/2] exp[ik(r 1 +r 2 )/2-iωt)] =E 2 exp[ik(r 1 +r 2 )/2-iωt)] Drganie wypadkowe o amplitudzie pola elektrycznego E 2 =2E 1 cos[kdsin(θ)/2] Natężenie światła jest proporcjonalne do kwadratu amplitudy pola elektrycznego I 2 =I 1 4cos 2 [kdsin(θ)/2]=2i 1 {1+cos[kdsin(θ)]}=4I 1 cos 2 (φ/2) 4
5 Natężenie światła w obrazie interferencyjnym z dwu szczelin 4I 1 2I 1 I 1 różnica faz: φ = kdsin(θ)=2π L/λ natężenie światła: I 2 =4I 1 cos 2 (φ/2)=2i 1 [1+cos(φ)] widoczne są prążki interferencyjne Obraz interferencyjny jest wyraźny jeśli różnica dróg L rozdzielonych promieni jest mniejsza od drogi spójności L C L<L C =c t koh t koh czas spójności Typowe drogi spójności: światło białe L C 0,001 mm dioda świecąca LED L C 0,03 mm laser półprzewodnikowy L C 3 mm laser He-Ne L C 300 m Stopień spójności (koherencji) światła γ widzialność prążków interferencyjnych γ = I I max max I + I min min Spójność przestrzenna między falami emitowanymi z różnych punktów źródła γ=1 idealnie spójne γ=0 niespójne - prążki niewidoczne 0<γ<1 częściowo spójne 5
6 Interferometr Fabry ego-pérota Drogi optyczne w interferometrze Prążki interferencyjne światło monochromatyczne rozproszone Różnica faz między kolejnymi odbiciami Współczynnik transmisji Współczynnik precyzji Finesse Współczynnik transmisji w zależności od długości fali dla dwu wartości finesse Laser helowo-neonowy Długości fali 543,5 nm 604,5 nm 632,8 nm typowa 1153 nm 1523 nm 2396 nm 3391 nm Praca ciągła Moc rzędu 1 mw 6
7 Laser helowo-neonowy - elektrony zderzają się z atomami He - przeniesienie energii na atomy Ne - inwersja obsadzeń między E 2 i E 1 - emisja promieniowania (632.8 nm) -przejście Ne do stanu podstawowego wskutek zderzeń ze ściankami Laser molekularny na dwutlenku węgla CO 2 Długość fali 10,6 µm - podczerwień Praca ciągła lub impulsowa, duża moc dziesiątki kw 7
8 Rodzaje laserów 8
9 Właściwości światła laserowego Właściwości światła laserowego 9
10 Zastosowanie laserów w przemyśle wzbogacanie warstwy przypowierzchniowej w składniki stopowe nakładanie warstwy przypowierzchniowej (natapianie) stapianie warstwy powierzchniowej obróbka powierzchniowa drążenie otworów cięcie spawanie znakowanie hartowanie Przykłady obróbki metali za pomocą lasera neodymowego 10
11 Zastosowanie laserów w medycynie 21 Pomiar przesunięcia i odległości Interferometria Triangulacja laserowa Urządzenie geodezyjne LIDAR pomiar czasu przelotu 11
12 Zapis i odczyt danych DVD Blu-ray Zastosowania: holografia 1947 Dennis Gabor (nagroda Nobla 1971) 12
13 13
14 Zastosowania: technika wojskowa Działo laserowe na okręcie Tactical High-Energy Laser THEL Pomiar odległości do celu Samolot bezzałogowy wyposażony w rakietę naprowadzaną laserowo Predator US Airforce Naprowadzanie rakiet na cel Kontrolowana mikrosynteza termojądrowa utrzymywanie inercyjne plazmy Inertial Confinement Fusion (ICF) Lawrence Livermore National Laboratory USA Lasery impulsowe dużej mocy kapsułka z paliwem deuterowo-trytowym otrzymuje energię 200 kj w czasie krótszym od 1 nanosekundy 14
Lasery półprzewodnikowe na złączu p-n. Laser półprzewodnikowy a dioda świecąca
Laser półprzewodnikowy a dioda świecąca Emisja laserowa pojawia się po przekroczeniu progowej wartości natężenia prądu płynącego w kierunku przewodzenia przez heterozłącze p-n w strukturze lasera. Przy
Lasery. Własności światła laserowego Zasada działania Rodzaje laserów
Lasery Własności światła laserowego Zasada działania Rodzaje laserów Lasery Laser - nazwa utworzona jako akronim od Light Amplification by Stimulated Emission of Radiation - wzmocnienie światła poprzez
n n 1 2 = exp( ε ε ) 1 / kt = exp( hν / kt) (23) 2 to wzór (22) przejdzie w następującą równość: ρ (ν) = B B A / B 2 1 hν exp( ) 1 kt (24)
n n 1 2 = exp( ε ε ) 1 / kt = exp( hν / kt) (23) 2 to wzór (22) przejdzie w następującą równość: ρ (ν) = B B A 1 2 / B hν exp( ) 1 kt (24) Powyższe równanie określające gęstość widmową energii promieniowania
Lasery. Własności światła laserowego Zasada działania Rodzaje laserów
Lasery Własności światła laserowego Zasada działania Rodzaje laserów Lasery Laser - nazwa utworzona jako akronim od Light Amplification by Stimulated Emission of Radiation - wzmocnienie światła poprzez
Lasery. Własności światła laserowego Zasada działania Rodzaje laserów
Lasery Własności światła laserowego Zasada działania Rodzaje laserów Lasery Laser - nazwa utworzona jako akronim od Light Amplification by Stimulated Emission of Radiation - wzmocnienie światła poprzez
Trzy rodzaje przejść elektronowych między poziomami energetycznymi
Trzy rodzaje przejść elektronowych między poziomami energetycznymi absorpcja elektron przechodzi na wyższy poziom energetyczny dzięki pochłonięciu kwantu o energii równej różnicy energetycznej poziomów
Technika laserowa. dr inż. Sebastian Bielski. Wydział Fizyki Technicznej i Matematyki Stosowanej PG
Technika laserowa dr inż. Sebastian Bielski Wydział Fizyki Technicznej i Matematyki Stosowanej PG Technika laserowa Zakres materiału (wstępnie przewidywany) 1. Bezpieczeństwo pracy z laserem 2. Własności
!!!DEL są źródłami światła niespójnego.
Dioda elektroluminescencyjna DEL Element czynny DEL to złącze p-n. Gdy zostanie ono spolaryzowane w kierunku przewodzenia, to w obszarze typu p, w warstwie o grubości rzędu 1µm, wytwarza się stan inwersji
Technika laserowa, otrzymywanie krótkich impulsów Praca impulsowa
Praca impulsowa Impuls trwa określony czas i jest powtarzany z pewną częstotliwością; moc w pracy impulsowej znacznie wyższa niż w pracy ciągłej (pomiędzy impulsami może magazynować się energia) Ablacja
Metody Optyczne w Technice. Wykład 5 Interferometria laserowa
Metody Optyczne w Technice Wykład 5 nterferometria laserowa Promieniowanie laserowe Wiązka monochromatyczna Duża koherencja przestrzenna i czasowa Niewielka rozbieżność wiązki Duża moc Największa możliwa
Własności światła laserowego
Własności światła laserowego Cechy światła laserowego: rozbieżność (równoległość) wiązki, pasmo spektralne, gęstość mocy oraz spójność (koherencja). Równoległość wiązki Dyfrakcyjną rozbieżność kątową awkącie
Właściwości światła laserowego
Właściwości światła laserowego Cechy charakterystyczne światła laserowego: rozbieżność (równoległość) wiązki, pasmo spektralne, gęstość mocy spójność (koherencja). Równoległość wiązki Dyfrakcyjną rozbieżność
GŁÓWNE CECHY ŚWIATŁA LASEROWEGO
GŁÓWNE CECHY ŚWIATŁA LASEROWEGO Światło może być rozumiane jako: Strumień fotonów o energii E Fala elektromagnetyczna. = hν i pędzie p h = = hν c Najprostszym przypadkiem fali elektromagnetycznej jest
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 8 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Paweł Kowalczyk, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2015/16
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 7 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15
PODSTAWY FIZYKI LASERÓW Wstęp
PODSTAWY FIZYKI LASERÓW Wstęp LASER Light Amplification by Stimulation Emission of Radiation Składa się z: 1. ośrodka czynnego. układu pompującego 3.Rezonator optyczny - wnęka rezonansowa Generatory: liniowe
Problemy optyki falowej. Teoretyczne podstawy zjawisk dyfrakcji, interferencji i polaryzacji światła.
. Teoretyczne podstawy zjawisk dyfrakcji, interferencji i polaryzacji światła. Rozwiązywanie zadań wykorzystujących poznane prawa I LO im. Stefana Żeromskiego w Lęborku 27 luty 2012 Dyfrakcja światła laserowego
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 7 wykład: Piotr Fita pokazy: Jacek Szczytko ćwiczenia: Aneta Drabińska, Paweł Kowalczyk, Barbara Piętka Wydział Fizyki Uniwersytet
Początek XX wieku. Dualizm korpuskularno - falowy
Początek XX wieku Światło: fala czy cząstka? Kwantowanie energii promieniowania termicznego postulat Plancka efekt fotoelektryczny efekt Comptona Fale materii de Broglie a Dualizm korpuskularno - falowy
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 1 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15
Fizyka kwantowa. promieniowanie termiczne zjawisko fotoelektryczne. efekt Comptona dualizm korpuskularno-falowy. kwantyzacja światła
W- (Jaroszewicz) 19 slajdów Na podstawie prezentacji prof. J. Rutkowskiego Fizyka kwantowa promieniowanie termiczne zjawisko fotoelektryczne kwantyzacja światła efekt Comptona dualizm korpuskularno-falowy
LASERY NA CIELE STAŁYM BERNARD ZIĘTEK
LASERY NA CIELE STAŁYM BERNARD ZIĘTEK TEK Lasery na ciele stałym lasery, których ośrodek czynny jest: -kryształem i ciałem amorficznym (również proszkiem), - dielektrykiem i półprzewodnikiem. 2 Podział
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 006 Instytut Fizyki Uniwersytetu Szczecińskiego Równania (3.7), pomimo swojej prostoty, nie posiadają poza nielicznymi przypadkami ścisłych rozwiązań,
Wzbudzony stan energetyczny atomu
LASERY Wzbudzony stan energetyczny atomu Z III postulatu Bohra kj E k E h j Emisja spontaniczna Atom absorbuje tylko określone kwanty energii przechodząc ze stanu podstawowego do wzbudzonego. Zaabsorbowana
Pomiar drogi koherencji wybranych źródeł światła
Politechnika Gdańska WYDZIAŁ ELEKTRONIKI TELEKOMUNIKACJI I INFORMATYKI Katedra Optoelektroniki i Systemów Elektronicznych Pomiar drogi koherencji wybranych źródeł światła Instrukcja do ćwiczenia laboratoryjnego
2. Całkowita liczba modów podłużnych. Dobroć rezonatora. Związek między szerokością linii emisji wymuszonej a dobrocią rezonatora
. Całkowita liczba modów podłużnych. Dobroć rezonatora. Związek między szerokością linii emisji wymuszonej a dobrocią rezonatora Gdy na ośrodek czynny, który nie znajduje się w rezonatorze optycznym, pada
Zjawisko interferencji fal
Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natężenia fal) w którym zachodzi stabilne w czasie ich
Wykład 38 Rozpraszanie światła Ramana i luminescencja
Wykład 38 Rozpraszanie światła Ramana i luminescencja Zjawisko rozpraszania Ramana jest związane z niesprężystym rozpraszaniem padającego fotonu o częstości ν na cząsteczce, wskutek czego foton zmienia
Wykład 17: Optyka falowa cz.1.
Wykład 17: Optyka falowa cz.1. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Zasada Huyghensa Christian Huygens 1678 r. pierwsza
Przemysłowe urządzenia elektrotermiczne działające w oparciu o pozostałe metody nagrzewania elektrycznego Prof. dr hab. inż.
Studia Podyplomowe EFEKTYWNE UŻYTKOWANIE ENERGII ELEKTRYCZNEJ w ramach projektu Śląsko-Małopolskie Centrum Kompetencji Zarządzania Energią Przemysłowe urządzenia elektrotermiczne działające w oparciu o
Niezwykłe światło. ultrakrótkie impulsy laserowe. Piotr Fita
Niezwykłe światło ultrakrótkie impulsy laserowe Laboratorium Procesów Ultraszybkich Zakład Optyki Wydział Fizyki Uniwersytetu Warszawskiego Światło Fala elektromagnetyczna Dla światła widzialnego długość
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Absorpcja promieniowania w ośrodku Promieniowanie elektromagnetyczne przy przejściu przez ośrodek
Zjawisko interferencji fal
Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natęŝenia fal) w którym zachodzi stabilne w czasie ich
falowego widoczne w zmianach amplitudy i natęŝenia fal) w którym zachodzi
Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natęŝenia fal) w którym zachodzi stabilne w czasie ich
Źródła światła: Lampy (termiczne) na ogół wymagają filtrów. Wojciech Gawlik, Metody Optyczne w Medycynie 2010/11 - wykł. 3 1/18
Źródła światła: Lampy (termiczne) na ogół wymagają filtrów Wojciech Gawlik, Metody Optyczne w Medycynie 2010/11 - wykł. 3 1/18 Lampy: a) szerokopasmowe, rozkład Plancka 2hc I( λ) = 5 λ 2 e 1 hc λk T B
Ogólne cechy ośrodków laserowych
Ogólne cechy ośrodków laserowych Gazowe Cieczowe Na ciele stałym Naturalna jednorodność Duże długości rezonatora Małe wzmocnienia na jednostkę długości ośrodka czynnego Pompowanie prądem (wzdłużne i poprzeczne)
Ponadto, jeśli fala charakteryzuje się sferycznym czołem falowym, powyższy wzór można zapisać w następujący sposób:
Zastosowanie laserów w Obrazowaniu Medycznym Spis treści 1 Powtórka z fizyki Zjawisko Interferencji 1.1 Koherencja czasowa i przestrzenna 1.2 Droga i czas koherencji 2 Lasery 2.1 Emisja Spontaniczna 2.2
Zjawisko interferencji fal
Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natężenia fal) w którym zachodzi stabilne w czasie ich
Kwantowa natura promieniowania
Kwantowa natura promieniowania Promieniowanie ciała doskonale czarnego Ciało doskonale czarne ciało, które absorbuje całe padające na nie promieniowanie bez względu na częstotliwość. Promieniowanie ciała
Lasery budowa, rodzaje, zastosowanie. Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego.
Lasery budowa, rodzaje, zastosowanie Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego. Budowa i zasada działania lasera Laser (Light Amplification by Stimulated
Podstawy fizyki kwantowej
Podstawy fizyki kwantowej Fizyka kwantowa - co to jest? Światło to fala czy cząstka? promieniowanie termiczne efekt fotoelektryczny efekt Comptona fale materii de Broglie a równanie Schrodingera podstawa
ZASADY ZALICZENIA PRZEDMIOTU MBS
ZASADY ZALICZENIA PRZEDMIOTU MBS LABORATORIUM - MBS 1. ROZWIĄZYWANIE WIDM kolokwium NMR 25 kwietnia 2016 IR 30 maja 2016 złożone 13 czerwca 2016 wtorek 6.04 13.04 20.04 11.05 18.05 1.06 8.06 coll coll
Rys. 1 Interferencja dwóch fal sferycznych w punkcie P.
Ćwiczenie 4 Doświadczenie interferencyjne Younga Wprowadzenie teoretyczne Charakterystyczną cechą fal jest ich zdolność do interferencji. Światło jako fala elektromagnetyczna również może interferować.
Źródła promieniowania optycznego problemy bezpieczeństwa pracy. Lab. Fiz. II
Źródła promieniowania optycznego problemy bezpieczeństwa pracy Lab. Fiz. II Reakcje w tkankach wywołane przez promioniowanie optyczne (podczerwień, widzialne, ultrafiolet): Reakcje termiczne ze wzrostem
r. akad. 2012/2013 Atom wodoru wykład 5-6 Podstawy Procesów i Konstrukcji Inżynierskich Atom wodoru Zakład Biofizyki 1
r. akad. 01/013 wykład 5-6 Podstawy Procesów i Konstrukcji Inżynierskich Atom wodoru Zakład Biofizyki 1 Model atomu Thompsona Model atomu typu ciastka z rodzynkami w 1903 J.J. Thompson zaproponował model
Optyczne elementy aktywne
Optyczne elementy aktywne Źródła optyczne Diody elektroluminescencyjne Diody laserowe Odbiorniki optyczne Fotodioda PIN Fotodioda APD Generowanie światła kontakt metalowy typ n GaAs podłoże typ n typ n
Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 28, Mateusz Winkowski, Łukasz Zinkiewicz
Podstawy Fizyki III Optyka z elementami fizyki współczesnej wykład 8, 5.01.018 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład 6 - przypomnienie
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 1 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Paweł Kowalczyk, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2015/16
Fizyka elektryczność i magnetyzm
Fizyka elektryczność i magnetyzm W5 5. Wybrane zagadnienia z optyki 5.1. Światło jako część widma fal elektromagnetycznych. Fale elektromagnetyczne, które współczesny człowiek potrafi wytwarzać, i wykorzystywać
Laser z podwojeniem częstotliwości
Ćwiczenie 87 Laser z podwojeniem częstotliwości Cel ćwiczenia Badanie właściwości zielonego lasera wykorzystującego metodę pompowania optycznego i podwojenie częstotliwości przy użyciu kryształu optycznie
Wyznaczanie rozmiarów szczelin i przeszkód za pomocą światła laserowego
Ćwiczenie O5 Wyznaczanie rozmiarów szczelin i przeszkód za pomocą światła laserowego O5.1. Cel ćwiczenia Celem ćwiczenia jest wykorzystanie zjawiska dyfrakcji i interferencji światła do wyznaczenia rozmiarów
Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne.
Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne. DUALIZM ŚWIATŁA fala interferencja, dyfrakcja, polaryzacja,... kwant, foton promieniowanie ciała doskonale
Laser półprzewodnikowy
Ćwiczenie 86 Laser półprzewodnikowy Cel ćwiczenia Badanie własności czerwonego lasera półprzewodnikowego. Obejmuje pomiar: długości fali, polaryzację wiązki, pomiar mocy wiązki, badanie charakterystyki
Wykład 15 Rozpraszanie światła Ramana i luminescencja
Wykład 5 Rozpraszanie światła Ramana i luminescencja Zjawisko rozpraszania Ramana jest związane z niesprężystym rozpraszaniem padającego fotonu o częstości ν na cząsteczce, wskutek czego foton zmienia
WŁASNOŚCI CIAŁ STAŁYCH I CIECZY
WŁASNOŚCI CIAŁ STAŁYCH I CIECZY Polimery Sieć krystaliczna Napięcie powierzchniowe Dyfuzja 2 BUDOWA CIAŁ STAŁYCH Ciała krystaliczne (kryształy): monokryształy, polikryształy Ciała amorficzne (bezpostaciowe)
Laboratorium techniki laserowej. Ćwiczenie 3. Pomiar drgao przy pomocy interferometru Michelsona
Laboratorium techniki laserowej Ćwiczenie 3. Pomiar drgao przy pomocy interferometru Michelsona Katedra Optoelektroniki i Systemów Elektronicznych, WET, Politechnika Gdaoska Gdańsk 006 1. Wstęp Celem ćwiczenia
Własności optyczne półprzewodników
Własności optyczne półprzewodników Andrzej Wysmołek Wykład przygotowany w oparciu o wykłady prowadzone na Wydziale Fizyki UW przez prof. Mariana Grynberga oraz prof. Romana Stępniewskiego Klasyfikacja
III.3 Emisja wymuszona. Lasery
III.3 Emisja wymuszona. Lasery 1. Wyprowadzenie wzoru Plancka metodą Einsteina. Emisja wymuszona 2. Koherencja ciągów falowych. Laser jako źródło koherentnego promieniowania e-m 3. Zasada działania lasera.
Technika laserowa, wybrane zastosowania Zastosowania laserów
Zastosowania laserów Medycyna Obróbka materiałów Ekologia Nauka Metrologia Zapis i odczyt danych Telekomunikacja Technika wojskowa... Lasery w medycynie Tkanka a promieniowanie (ciepło) Poniżej 40 ºC:
Lasery półprzewodnikowe. przewodnikowe. Bernard Ziętek
Lasery półprzewodnikowe przewodnikowe Bernard Ziętek Plan 1. Rodzaje półprzewodników 2. Parametry półprzewodników 3. Złącze p-n 4. Rekombinacja dziura-elektron 5. Wzmocnienie 6. Rezonatory 7. Lasery niskowymiarowe
LASERY SĄ WSZĘDZIE...
LASERY wprowadzenie LASERY SĄ WSZĘDZIE... TROCHĘ HISTORII 1917 Einstein postuluje obecność procesów emisji wymuszonej (i kilka innych rzeczy ) 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 TROCHĘ
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 27, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 7, 04.06.01 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 6 - przypomnienie doświadczenie
Zagrożenia powodowane przez promieniowanie laserowe
Zagrożenia powodowane przez promieniowanie laserowe Zagrożenia powodowane przez promieniowanie laserowe Laser, Light Amplification by Stimulated Emission of Radiation, wzmacniacz kwantowy dla światła,
II. WYBRANE LASERY. BERNARD ZIĘTEK IF UMK www.fizyka.umk.pl/~ /~bezet
II. WYBRANE LASERY BERNARD ZIĘTEK IF UMK www.fizyka.umk.pl/~ /~bezet Laser gazowy Laser He-Ne, Mechanizm wzbudzenia Bernard Ziętek IF UMK Toruń 2 Model Bernard Ziętek IF UMK Toruń 3 Rozwiązania stacjonarne
ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL
ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL X L Rys. 1 Schemat układu doświadczalnego. Fala elektromagnetyczna (światło, mikrofale) po przejściu przez dwie blisko położone (odległe o d) szczeliny
WSTĘP DO OPTYKI FOURIEROWSKIEJ
1100-4BW1, rok akademicki 018/19 WSTĘP DO OPTYKI FOURIEROWSKIEJ dr hab. Rafał Kasztelanic Wykład 4 Przestrzeń swobodna jako filtr częstości przestrzennych Załóżmy, że znamy rozkład pola na fale monochromatyczne
Laser półprzewodnikowy
Ćwiczenie 86A Laser półprzewodnikowy Cel ćwiczenia Badanie własności czerwonego lasera półprzewodnikowego. Obejmuje pomiar: długości fali, polaryzację wiązki, pomiar mocy wiązki, badanie charakterystyki
Podstawy fizyki kwantowej
Podstawy fizyki kwantowej Fizyka kwantowa - co to jest? Światło to fala czy cząstka? promieniowanie termiczne efekt fotoelektryczny efekt Comptona fale materii de Broglie a równanie Schrodingera podstawa
Interferencja promieniowania
nterferencja promieniowania Zastosowania Metrologia Nanotechnologie Czujniki szczególnie światłowodowe Elementy fotoniczne Wyjaśnianie: generacji modów w laserze propagacji modów w światłowodach Generacja
UNIWERSYTET SZCZECIŃSKI INSTYTUT FIZYKI ZAKŁAD FIZYKI CIAŁA STAŁEGO. Ćwiczenie laboratoryjne Nr.2. Elektroluminescencja
UNIWERSYTET SZCZECIŃSKI INSTYTUT FIZYKI ZAKŁAD FIZYKI CIAŁA STAŁEGO Ćwiczenie laboratoryjne Nr.2 Elektroluminescencja SZCZECIN 2002 WSTĘP Mianem elektroluminescencji określamy zjawisko emisji spontanicznej
Rezonatory ze zwierciadłem Bragga
Rezonatory ze zwierciadłem Bragga Siatki dyfrakcyjne stanowiące zwierciadła laserowe (zwierciadła Bragga) są powszechnie stosowane w laserach VCSEL, ale i w laserach z rezonatorem prostopadłym do płaszczyzny
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 6 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15
OPTYKA. Leszek Błaszkieiwcz
OPTYKA Leszek Błaszkieiwcz Ojcem optyki jest Witelon (1230-1314) Zjawisko odbicia fal promień odbity normalna promień padający Leszek Błaszkieiwcz Rys. Zjawisko załamania fal normalna promień padający
Analiza spektralna widma gwiezdnego
Analiza spektralna widma gwiezdnego JG &WJ 13 kwietnia 2007 Wprowadzenie Wprowadzenie- światło- podstawowe źródło informacji Wprowadzenie- światło- podstawowe źródło informacji Wprowadzenie- światło- podstawowe
1. FALE ELEKTROMAGNETYCZNE: WŁASNOŚCI I PARAMETRY.
1. FALE ELEKTROMAGNETYCZNE: WŁASNOŚCI I PARAMETRY. 1. Napisz układ równań Maxwella w postaci: a) różniczkowej b) całkowej 2. Podaj trzy podstawowe równania materiałowe wiążące E z D, B z H, E z j 3. Zapisz
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 2, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 2, 17.02.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Równania Maxwella r-nie falowe
Transmisja i absorpcja fotonów przez ośrodek
Transmisja i absorpcja fotonów przez ośrodek hν 01 1 E hν 01 1 identyczne fotony Absorpcja i emisja spontaniczna Emisja wymuszona E Obsadzenie poziomów energetycznych zbioru atomów w stanie termodynamicznie
Właściwości optyczne. Oddziaływanie światła z materiałem. Widmo światła widzialnego MATERIAŁ
Właściwości optyczne Oddziaływanie światła z materiałem hν MATERIAŁ Transmisja Odbicie Adsorpcja Załamanie Efekt fotoelektryczny Tradycyjnie właściwości optyczne wiążą się z zachowaniem się materiałów
6. Emisja światła, diody LED i lasery polprzewodnikowe
6. Emisja światła, diody LED i lasery polprzewodnikowe Typy rekombinacji Rekombinacja promienista Diody LED Lasery półprzewodnikowe Struktury niskowymiarowe OLEDy 1 Promieniowanie termiczne Rozkład Plancka
Źródła światła w technice światłowodowej - podstawy
Źródła światła w technice światłowodowej - podstawy Prezentacja zawiera kopie folii omawianych na wykładzie. Niniejsze opracowanie chronione jest prawem autorskim. Wykorzystanie niekomercyjne dozwolone
Różnorodne zjawiska w rezonatorze Fala stojąca modu TEM m,n
Różnorodne zjawiska w rezonatorze Fala stojąca modu TEM m,n -z z w płaszczyzna przewężenia Propaguję się jednocześnie dwie fale w przeciwbieżnych kierunkach Dla kierunku 2 kr 2R ( r,z) exp i kz s Φ exp(
Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 3, Mateusz Winkowski, Łukasz Zinkiewicz
Podstawy Fizyki III Optyka z elementami fizyki współczesnej wykład 3, 12.10.2017 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład 2 - przypomnienie
I. PROMIENIOWANIE CIEPLNE
I. PROMIENIOWANIE CIEPLNE - lata '90 XIX wieku WSTĘP Widmo promieniowania elektromagnetycznego zakres "pokrycia" różnymi rodzajami fal elektromagnetycznych promieniowania zawartego w danej wiązce. rys.i.1.
Laser półprzewodnikowy
Ćwiczenie 86 Laser półprzewodnikowy Cel ćwiczenia Badanie właściwości lasera półprzewodnikowego. W ćwiczeniu wyznacza się: długość fali światła lasera, moc i sprawność lasera, próg akcji laserowej, polaryzację
Ćwiczenie 4. Doświadczenie interferencyjne Younga. Rys. 1
Ćwiczenie 4 Doświadczenie interferencyjne Younga Wprowadzenie teoretyczne Charakterystyczną cechą fal jest ich zdolność do interferencji. Światło jako fala elektromagnetyczna również może interferować.
VI. Elementy techniki, lasery
Światłowody VI. Elementy techniki, lasery BERNARD ZIĘTEK http://www.fizyka.umk.pl www.fizyka.umk.pl/~ /~bezet a) Sprzęgacze czołowe 1. Sprzęgacze światłowodowe (czołowe, boczne, stałe, rozłączalne) Złącza,
Dyfrakcja. Dyfrakcja to uginanie światła (albo innych fal) przez drobne obiekty (rozmiar porównywalny z długością fali) do obszaru cienia
Dyfrakcja 1 Dyfrakcja Dyfrakcja to uginanie światła (albo innych fal) przez drobne obiekty (rozmiar porównywalny z długością fali) do obszaru cienia uginanie na szczelinie uginanie na krawędziach przedmiotów
BADANIE INTERFEROMETRU YOUNGA
Celem ćwiczenia jest: BADANIE INTERFEROMETRU YOUNGA 1. poznanie podstawowych właściwości interferometru z podziałem czoła fali w oświetleniu monochromatycznym i świetle białym, 2. demonstracja możliwości
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 2, Mateusz Winkowski, Jan Szczepanek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 2, 06.10.2017 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Jan Szczepanek Radosław Łapkiewicz Równania Maxwella r-nie
Rekapitulacja. Detekcja światła. Rekapitulacja. Rekapitulacja
Rekapitulacja Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje: czwartek
Podstawy fizyki kwantowej. Nikt nie rozumie fizyki kwantowej R. Feynman, laureat Nobla z fizyki
Podstawy fizyki kwantowej Nikt nie rozumie fizyki kwantowej R. Feynman, laureat Nobla z fizyki Podstawy fizyki kwantowej Fizyka kwantowa - co to jest? Światło to fala czy cząstka? promieniowanie termiczne
Wykład FIZYKA II. 11. Optyka kwantowa. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA II 11. Optyka kwantowa Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ FIZYKA KLASYCZNA A FIZYKA WSPÓŁCZESNA Fizyka klasyczna
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 6 wykład: Piotr Fita pokazy: Jacek Szczytko ćwiczenia: Aneta Drabińska, Paweł Kowalczyk, Barbara Piętka, Michał Karpiński Wydział
Ćwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej
Ćwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej Wprowadzenie Światło widzialne jest to promieniowanie elektromagnetyczne (zaburzenie poła elektromagnetycznego rozchodzące
Wykład 14. Termodynamika gazu fotnonowego
Wykład 14 Termodynamika gazu fotnonowego dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 16 stycznia 217 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki statystycznej
Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem. S 0 amplituda odkształcenia. f [Hz] - częstotliwość.
Akusto-optyka Fala akustyczna jest falą mechaniczną Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem ( x, t) S cos( Ωt qx) s Częstotliwość kołowa Ω πf Długość fali
ZJAWISKA KWANTOWO-OPTYCZNE
ZJAWISKA KWANTOWO-OPTYCZNE Źródła światła Prawo promieniowania Kirchhoffa Ciało doskonale czarne Promieniowanie ciała doskonale czarnego Prawo promieniowania Plancka Prawo Stefana-Boltzmanna Prawo przesunięć
Wykład XIV. wiatła. Younga. Younga. Doświadczenie. Younga
Wykład XIV Poglądy na naturęświat wiatła Dyfrakcja i interferencja światła rozwój poglądów na naturę światła doświadczenie spójność światła interferencja w cienkich warstwach interferometr Michelsona dyfrakcja
Wykład IV. Dioda elektroluminescencyjna Laser półprzewodnikowy
Wykład IV Dioda elektroluminescencyjna Laser półprzewodnikowy Półprzewodniki - diagram pasmowy Kryształ Si, Ge, GaAs Struktura krystaliczna prowadzi do relacji dyspersji E(k). Krzywizna pasm decyduje o