Języki, automaty i obliczenia
|
|
- Damian Komorowski
- 7 lat temu
- Przeglądów:
Transkrypt
1 Języki, utomty i oliczeni Wykłd 5: Wricje n temt utomtów skończonych Słwomir Lsot Uniwersytet Wrszwski 25 mrc 2015
2 Pln
3 Automty dwukierunkowe (Niedeterministyczny) utomt dwukierunkowy A = (A,,, Q, I, F, δ) δ Q (A {, }) Q { 1, 0, 1} (q,, q, k) δ: czytj, zmień stn z q n q, zmień pozycję o k Ustlmy słowo wejściowe w A, niech n = w. Konfigurcj utomtu A n słowie w to pr (q, i) Q {0... n + 1} konfigurcje początkowe I {1} q i n n+1 konfigurcje kceptujące F {n + 1} Zrnimy przejść postci (q,, q, 1) (q,, q, 1), czyli: δ (Q { } Q { 1} Q { } Q {1}) =
4 Przykłd Pytnie Jki język rozpoznje ten utomt dwukierunkowy? A = {, } Q = {q 0, q 1, q 2, p 1, p 2,, r} I = {q 0 } F = {} q 0 (q 0, +1) (q 1, +1) (q 0, +1) (p 0, 1) q 1 (q 2, +1) (q 1, +1) (r, 1) q 2 (q 0, +1) (q 2, +1) (r, 1) p 0 (, +1) (p 0, 1) (p 1, 1) p 1 (r, +1) (p 1, 1) (p 0, 1) (, +1) (, +1) (, +1) r (r, +1) (r, +1) (r, +1)
5 Biegi utomtu dwukierunkowego Ustlmy utomt dwukierunkowy A = (A,,, Q, I, F, δ) i słowo w = 1... n A. Definiujemy relcję przejści pomiędzy konfigurcjmi utomtu A n słowie w. (q, i) (q, i + k) wtw. gdy 1 i n orz δ zwier przejście (q, i, q, k), lu i = 0 orz δ zwier przejście (q,, q, k), lu i = n + 1 orz δ zwier przejście (q,, q, k). Bieg n słowie w to ciąg konfigurcji (q 0, i 0 ),..., (q m, i m), gdzie q 0 I, i 0 = 0, orz (q j, i j ) (q j+1, i j+1 ), dl j = 0,..., m 1. Bieg jest kceptujący jeśli q m F orz i m = n + 1. Pytnie Jk długi może yć ieg utomtu dwukierunkowego n słowie w?
6 Język utomtu dwukierunkowego Język rozpoznwny przez A: L(A) = {w A : A m ieg kceptujący n w}. Pytnie Jki język rozpoznje ten utomt dwukierunkowy?, 1, 1, 1 strt, 1, 1, 1 (, nieużywne) Pytnie Czy utomty dwukierunkowe rozpoznją więcej języków niż utomty jednokierunkowe?
7 Automty dwukierunkowe jko mszyny Turing q i n n+1 Automty dwukierunkowe = mszyny Turing ze stłą pmięcią = mszyny Turing z tśmą wejściową tylko do odczytu, ez tśmy rooczej
8 Deterministyczne utomty dwukierunkowe Automt dwukierunkowy A = (A,,, Q, I, F, δ) jest deterministyczny, jeśli relcj przejści jest funkcją: δ : Q A Q { 1, 0, 1} q 0 (q 0, +1) (q 1, +1) (q 0, +1) (p 0, 1) q 1 (q 2, +1) (q 1, +1) (r, 1) q 2 (q 0, +1) (q 2, +1) (r, 1) p 0 (, +1) (p 0, 1) (p 1, 1) p 1 (r, +1) (p 1, 1) (p 0, 1) (, +1) (, +1) (, +1) r (r, +1) (r, +1) (r, +1) Pytnie Ile stnów musi mieć deterministyczny utomt dwukierunkowy dl język L n = A A n 1?
9 Deterministyczne utomty dwukierunkowe (c.d.) Pytnie Ile stnów musi mieć deterministyczny utomt dwukierunkowy dl język L n = A A n 1 A?,, strt,,,
10 Deterministyczne utomty dwukierunkowe (c.d.) Pytnie Ile stnów musi mieć deterministyczny utomt dwukierunkowy dl język L n = A A n 1 A?,, strt,,, Odpowiedź idź w prwo do pierwszej idź n kroków w prwo jeśli to kceptuj w.p.p. idź n 1 kroków w lewo kontynuuj od pierwszej instrukcji wyjątek: jeśli to odrzuć
11 Automty dwukierunkowe jednokierunkowe Pytnie Czy utomty dwukierunkowe rozpoznją więcej języków niż utomty jednokierunkowe?
12 Automty dwukierunkowe jednokierunkowe Pytnie Czy utomty dwukierunkowe rozpoznją więcej języków niż utomty jednokierunkowe? Twierdzenie (Rin, Scott 1959, Sheprdson 1959) Automty dwukierunkowe rozpoznją języki regulrne. Dowód (Vrdi 1989): Niech A = (A,,, Q, I, F, δ) utomt dwukierunkowy. Fkt w = 1... n L(A) wtw. gdy P 0, P 1,..., P n+1 t.że I P 1 F P n+1 = i {0... n + 1}. (q, i, q, k) δ q P i = q P i+k(0 =, n+1 = )
13 Dowód (2N 1N) P 0 P 1 P 2 P 3 P 4 P 5 P 6 P 7 P 8 Dowód (c.d.): Definiujemy niedeterministyczny utomt jednokierunkowy A : Q = P(Q) P(Q) I = {(P, P ) : F = {(P, P ) : I P q P, p Q. (q,, p, 0) δ = p P q P, p Q. (q,, p, 1) δ = p P } P F = q P, p Q. (q,, p, 0) δ = p P q P, p Q. (q,, p, 1) δ = p P} δ = {((P, P ),, (P, P )) : q P, p Q. (q,, p, 1) δ = p P q P, p Q. (q,, p, 0) δ = p P q P, p Q. (q,, p, 1) δ = p P } Z fktu z poprzedniego sljdu wynik: w L(A ) w L(A)
14 Determinizcj? 2D utomty dwukierunkowe deterministyczne? 1N utomty jednokierunkowe niedeterministyczne 2 n O(n n ) 1D utomty jednokierunkowe deterministyczne 2N utomty dwukierunkowe niedeterministyczne O(2 n2 )
15 Pln
16 Niedeterminizm = A = {, } L n = A A A w = strt 0, 0 1 1, 2 2 3, 3
17 ? = A = {, } A L n w = strt 0, , 2 3, 3
18 Alterncj Notcj Stny egzystencjlne i uniwerslne: strt 0, 0 1 1, 2 2 3, 3
19 Automty lternujące Automt lternujący A = (A, Q, Q, q 0, F, δ), Q Q =, Q = Q Q Zkłdmy, że dl kżdego q Q i A, istnieje p Q t.że (q,, p) δ. Ustlmy słowo wejściowe w = 1... n A. Gr o kceptcję G A,w : grcze: Automt, Przeciwnik pozycje Automtu: Q {0... n} pozycje Przeciwnik: Q {0... n} pozycj początkow: (q 0, 0) ruch (q, i 1) (q, i) jeśli (q, i, q ) δ Automt wygryw, gdy gr osiągnie pozycję (q, n), gdzie q F Język rozpoznwny przez utomt A: L(A) = {w A : Automt m strtegię wygrywjącą w grze G A,w }
20 Strtegi wygrywjąc Automtu Język rozpoznwny przez utomt A: L(A) = {w A : Automt m strtegię wygrywjącą w grze G A,w z (q 0, 0) } Automt m strtegię wygrywjącą w G A,w z (q, n) wtw. gdy q F W n A,w = F Automt m strtegię wygrywjącą w G A,w z (q, i 1) wtw. gdy q Q i istnieje p Q t.że (q, i, p) δ i Automt m strtegię wygrywjącą w G A,w z (p, i), lo q Q i dl kżdego p Q t.że (q, i, p) δ, Automt m strtegię wygrywjącą w G A,w z (p, i) W i 1 A,w = {q Q : p Q. (q, i, p) δ p W i A,w } {q Q : p Q. (q, i, p) δ = p W i A,w } L(A) = {w A : q 0 W 0 A,w }
21 Przykłd,, c c c, c strt c, c c, c c Pytnie Czy c L(A)? Jki język rozpoznje ten utomt?
22 Przykłd,, c c c, c strt c, c c, c c Pytnie Czy c L(A)? Jki język rozpoznje ten utomt? Odpowiedź ( (LL LcL) ) L, gdzie L = ( + c)
23 Pytni Pytnie Jk przeroić utomt lternujący A n utomt rozpoznjący język A L(A)?
24 Pytni Pytnie Jk przeroić utomt lternujący A n utomt rozpoznjący język A L(A)? Pytnie Czy utomty lternujące rozpoznją więcej języków niż utomty niedeterministyczne?
25 Automty lternujące języki regulrne Twierdzenie Automty lternujące rozpoznją języki regulrne. Dowód: Niech A = (A, Q, Q, q 0, F, δ) utomt lternujący. Konstruujemy utomt niedeterministyczny A = (A, Q, I, F, δ ): Q = P(Q) I = {X Q : q 0 X } F = P(F ) (X,, Y ) δ wtw. gdy X = {q Q : p Q. (q,, p) δ p Y } {q Q : p Q. (q,, p) δ = p Y } w L(A) q 0 W 0 A,w (W 0 A,w, w, W n A,w ) δ X I, Y F. (X, w, Y ) δ w L(A )
26 Automty lternujące języki regulrne ( ) utomty niedeterministyczne (egzystencjlne) ( ) utomty lternujące R utomty deterministyczne ( ) utomty ko-niedeterministyczne (uniwerslne) Fkt Automt (A ) R jest deterministyczny.
27 W nstępnym odcinku: minimlizcj utomtów niedeterministycznych utomty n drzewch czyli... prim prilis!
Matematyczne Podstawy Informatyki
Mtemtyczne Podstwy Informtyki dr inż. Andrzej Grosser Instytut Informtyki Teoretycznej i Stosownej Politechnik Częstochowsk Rok kdemicki 2013/2014 Podstwowe pojęci teorii utomtów I Alfetem jest nzywny
Przekształcenia automatów skończonych
Przeksztłceni utomtów skończonych Teori utomtów i języków formlnych Dr inŝ. Jnusz Mjewski Ktedr Informtyki Konstrukcj utomtu skończonego n podstwie wyrŝeni regulrnego (lgorytm Thompson) Wejście: wyrŝenie
4.3. Przekształcenia automatów skończonych
4.3. Przeksztłceni utomtów skończonych Konstrukcj utomtu skończonego (niedeterministycznego) n podstwie wyrżeni regulrnego (lgorytm Thompson). Wejście: wyrżenie regulrne r nd lfetem T Wyjście : utomt skończony
ZADANIA AUTOMATY I JĘZYKI FORMALNE AUTOMATY SKOŃCZONE
ZADANIA AUTOMATY I JĘZYKI FORMALNE AUTOMATY SKOŃCZONE DAS Deterministyczny Automt Skończony Zdnie Niech M ędzie DAS tkim że funkcj przejści: Q F ) podj digrm stnów dl M ) które ze słów nleżą do język kceptownego
4.2. Automat skończony
4.2. Automt skończony Przykłd: Rozwżmy język nd lfetem inrnym T = {0, } skłdjący się z łńcuchów zero-jedynkowych o tej włsności, że licz zer w kżdym łńcuchu jest przyst i licz jedynek w kżdym łńcuchu też
4.5 Deterministyczne i zupełne automaty Moore a i Mealy ego
4.5 Deterministyczne i zupełne utomty Moore i Mely ego Automty Moore i Mely ego ędziemy rozwżć tylko w rsji deterministycznej i zupełnej. W definicjch tych utomtów nie pojwi się pojęcie ów końcowych, z
JĘZYKI FORMALNE I AUTOMATY SKOŃCZONE
ZBIÓR ZADAŃ do WYKŁADU prof. Tdeusz Krsińskiego JĘZYKI FORMALNE I AUTOMATY SKOŃCZONE rozdził 2. Automty skończone i języki regulrne Wyrżeni i języki regulrne Zdnie 2.1. Wypisz wszystkie słow nleżące do
1 Wprowadzenie do automatów
Dr inż. D.W. Brzeziński - Automty skończone, mszyn Turing. Lingwistyk mtemtyczn - ćwiczeni. Mteriły pomocnicze. Prowdzący: dr inż. Driusz W Brzeziński 1 Wprowdzenie do utomtów Automty skończone to urządzeni
bezkontekstowa generujac X 010 0X0.
1. Npisz grmtyke ezkontekstow generujc jezyk : L 1 = { 0 i 10 j 10 p : i, j, p > 0, i + j = p } Odpowiedź. Grmtyk wygląd tk: Nieterminlem strtowym jest S. S 01X0 0S0 X 010 0X0. Nieterminl X generuje słow
4.6. Gramatyki regularne
4.6. Grmtyki regulrne G = < N,T,P,Z > jest grmtyką prwostronnie liniową, jeśli jej produkcje mją postć: ( i) U xv x T * U,V N ( ii) U x G = < N,T,P,Z > jest grmtyką prwostronnie regulrną, jeśli jej produkcje
Gramatyki regularne. Teoria automatów i języków formalnych. Dr inż. Janusz Majewski Katedra Informatyki
Grmtyki regulrne Teori utomtów i języków formlnych Dr inż. Jnusz Mjewski Ktedr Informtyki Grmtyki regulrne G = < V,Σ,P, > jest grmtyką prwostronnie liniową, jeśli jej produkcje mją postć: ( i ) U xw (
Lista 4 Deterministyczne i niedeterministyczne automaty
Uniwersytet Zielonogórski Instytut Sterowni i Systemów Informtycznych Teoretyczne Podstwy Informtyki List 4 Deterministyczne i niedeterministyczne utomty Wprowdzenie Automt skończony jest modelem mtemtycznym
1 Automaty niedeterministyczne
Szymon Toruńczyk 1 Automaty niedeterministyczne Automat niedeterministyczny A jest wyznaczony przez następujące składniki: Alfabet skończony A Zbiór stanów Q Zbiór stanów początkowych Q I Zbiór stanów
PODSTAWY BAZ DANYCH Wykład 3 2. Pojęcie Relacyjnej Bazy Danych
PODSTAWY BAZ DANYCH Wykłd 3 2. Pojęcie Relcyjnej Bzy Dnych 2005/2006 Wykłd "Podstwy z dnych" 1 Rozkłdlno dlność schemtów w relcyjnych Przykłd. Relcj EGZ(U), U := { I, N, P, O }, gdzie I 10 10 11 N f f
Języki, automaty i obliczenia
Języki, automaty i obliczenia Wykład 10: Maszyny Turinga Sławomir Lasota Uniwersytet Warszawski 29 kwietnia 2015 Plan Maszyny Turinga (Niedeterministyczna) maszyna Turinga M = (A, Q, q 0, F, T, B, δ) A
Języki, automaty i obliczenia
Języki, automaty i obliczenia Wykład 9: Własności języków bezkontekstowych Sławomir Lasota Uniwersytet Warszawski 27 kwietnia 2016 Plan 1 Pompowanie języków bezkontekstowych 2 Własności domknięcia 3 Obrazy
JAO - Języki, Automaty i Obliczenia - Wykład 2. JAO - Języki, Automaty i Obliczenia - Wykład 2
Dowodzenie nieregularności języka [lemat o pompowaniu] Jeśli L regularny to istnieje stała c spełniająca : jeżeli z L, z c to istnieje dekompozycja w = u v x tak, że uv i x L dla każdego i 0 [lemat o skończonej
Komisja Egzaminacyjna dla Aktuariuszy LII Egzamin dla Aktuariuszy z 15 marca 2010 r. Część I Matematyka finansowa
Mtemtyk finnsow 15.0.010 r. Komisj Egzmincyjn dl Akturiuszy LII Egzmin dl Akturiuszy z 15 mrc 010 r. Część I Mtemtyk finnsow WERSJA TESTU A Imię i nzwisko osoy egzminownej:... Czs egzminu: 100 minut 1
Matematyka finansowa 10.03.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVI Egzamin dla Aktuariuszy z 10 marca 2014 r. Część I
Mtemtyk finnsow.03.2014 r. Komisj Egzmincyjn dl Akturiuszy LXVI Egzmin dl Akturiuszy z mrc 2014 r. Część I Mtemtyk finnsow WERSJA TESTU A Imię i nzwisko osoby egzminownej:... Czs egzminu: 0 minut 1 Mtemtyk
Automat ze stosem. Języki formalne i automaty. Dr inż. Janusz Majewski Katedra Informatyki
Automat ze stosem Języki formalne i automaty Dr inż. Janusz Majewski Katedra Informatyki Automat ze stosem (1) dno stosu Stos wierzchołek stosu Wejście # B B A B A B A B a b b a b a b $ q i Automat ze
Matematyczne Podstawy Informatyki
Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Automat ze stosem Automat ze stosem to szóstka
Języki formalne i automaty Ćwiczenia 9
Języki formalne i automaty Ćwiczenia 9 Autor: Marcin Orchel Spis treści Spis treści... 1 Wstęp teoretyczny... 2 Maszyna Mealy'ego... 2 Maszyna Moore'a... 2 Automat ze stosem... 3 Konwersja gramatyki bezkontekstowej
Klasyczne i kwantowe podejście do teorii automatów i języków formalnych p.1/33
Klasyczne i kwantowe podejście do teorii automatów i języków formalnych mgr inż. Olga Siedlecka olga.siedlecka@icis.pcz.pl Zakład Informatyki Stosowanej i Inżynierii Oprogramowania Instytut Informatyki
Języki, automaty i obliczenia
Języki, automaty i obliczenia Wykład 12: Gramatyki i inne modele równoważne maszynom Turinga. Wstęp do złożoności obliczeniowej Sławomir Lasota Uniwersytet Warszawski 20 maja 2015 Plan 1 Gramatyki 2 Języki
Języki, automaty i obliczenia
Języki, automaty i obliczenia Wykład 11: Obliczalność i nieobliczalność Sławomir Lasota Uniwersytet Warszawski 6 maja 2015 Plan 1 Problemy częściowo rozstrzygalne 2 Problemy rozstrzygalne 3 Funkcje (częściowo)
PODSTAWY BAZ DANYCH Wykład 2 2. Pojęcie Relacyjnej Bazy Danych
PODSTAWY BAZ DANYCH Wykłd 2 2. Pojęcie Relcyjnej Bzy Dnych 2005/2006 Wykłd "Podstwy bz dnych" 1 Pojęcie krotki - definicj Definicj. Niech dny będzie skończony zbiór U := { A 1, A 2,..., A n }, którego
ZŁOŻONOŚĆ OBLICZENIOWA ALGORYTMÓW
ZŁOŻONOŚĆ OBLICZENIOWA ALGORYTMÓW NIEDETERMINISTYCZNE MASZYNY TURINGA Bartosz Zieliński Katedra Fizyki Teoretycznej i Informatyki Zima 2011-2012 NIEDETERMINISTYCZNE MASZYNY TURINGA DEFINICJA: NIEDETERMINISTYCZNA
Programy współbieżne
Specyfikownie i weryfikownie Progrmy współieżne Mrek A. Bednrczyk, www.ipipn.gd.pl Litertur wiele prc dostępnych w Sieci np.: http://www.wikipedi.org/ Specyfikownie i weryfikcj progrmy współieżne PJP Prosty
Weryfikacja modelowa jest analizą statyczną logiki modalnej
Weryfikcj modelow jest nlizą sttyczną logiki modlnej Mrcin Sulikowski MIMUW 15 grudni 010 1 Wstęp Weryfikcj systemów etykietownych 3 Flow Logic 4 Weryfikcj modelow nliz sttyczn Co jest czym czego? Weryfikcj
Gramatyki regularne i bezkontekstowe. Spis treści. Plan wykładu spotkania tydzień po tygodniu. Plan wykładu spotkania tydzień po tygodniu.
Osob prowdząc wykłd i ćwiczeni: dr inż. Mrek werwin Instytut terowni i ystemów Informtycznych Uniwersytet Zielonogórski e-mil : M.werwin@issi.uz.zgor.pl tel. (prc) : 68 328 2321, pok. 328 A-2, ul. prof.
Przykład: Σ = {0, 1} Σ - zbiór wszystkich skończonych ciagów binarnych. L 1 = {0, 00, 000,...,1, 11, 111,... } L 2 = {01, 1010, 001, 11}
Języki Ustalmy pewien skończony zbiór symboli Σ zwany alfabetem. Zbiór Σ zawiera wszystkie skończone ciagi symboli z Σ. Podzbiór L Σ nazywamy językiem a x L nazywamy słowem. Specjalne słowo puste oznaczamy
Imię, nazwisko, nr indeksu
Imię, nazwisko, nr indeksu (kod) (9 punktów) Wybierz 9 z poniższych pytań i wybierz odpowiedź tak/nie (bez uzasadnienia). Za prawidłowe odpowiedzi dajemy +1 punkt, za złe -1 punkt. Punkty policzymy za
Obliczenia inspirowane Naturą
Obliczenia inspirowane Naturą Wykład 01 Modele obliczeń Jarosław Miszczak IITiS PAN Gliwice 05/10/2016 1 / 33 1 2 3 4 5 6 2 / 33 Co to znaczy obliczać? Co to znaczy obliczać? Deterministyczna maszyna Turinga
ezyki Automaty i Obliczenia (nieformalne notatki)
J ezyki Automty i Oliczeni (nieformlne nottki) W. Rytter J ezyki formlne i podsttwowe opercje, wyrżeni regulrne stndrdowe i rozeszerzone (z opercjmi dope lnieni i przeci eci), przyk ldy. N ćwiczenich stndrdowe
Ekoenergetyka Matematyka 1. Wykład 15. CAŁKI OZNACZONE. Egzaminy I termin poniedziałek :00 Aula B sala 12B Wydział Informatyki
Ekoenergetyk Mtemtyk 1. Wykłd 15. CAŁKI OZNACZONE Egzminy I termin poniedziłek 31.01 14:00 Aul B sl 12B Wydził Informtyki Definicj (podził odcink) II termin poprwkowy czwrtek 9.02 14:00 WE-030 Podziłem
Języki formalne i automaty Ćwiczenia 7
Języki formalne i automaty Ćwiczenia 7 Autor: Marcin Orchel Spis treści Spis treści... 1 Wstęp teoretyczny... 2 Automaty... 2 Cechy automatów... 4 Łączenie automatów... 4 Konwersja automatu do wyrażenia
ę Ł Ó ę ę ć ę ę ż ę ę Ź Ć ć ę ę ż ę ę Ł ć ż ż ć ć ź ć ę Ń ć ę ż ę ć ęż Ń ć ż ć ź ę ę ź ę ć ż ć Ź ż ę Ł Ż ż ć Ź ę Ń ż ć ę ę ż ę ę ć ę ż ż ż Ł ę żę ż ć ź ę Ó ć ć ż ć ę ę ę ę ę ć ę Źć ę ę ę ę ę ę ż ż ż ć
Minimalizacja automatów niedeterministycznych na słowach skończonych i nieskończonych
Szczepan Hummel Minimalizacja automatów niedeterministycznych na słowach skończonych i nieskończonych 24.11.2005 1. Minimalizacja automatów deterministycznych na słowach skończonych (DFA) [HU] relacja
Jaki język zrozumie automat?
Jaki język zrozumie automat? Wojciech Dzik Instytut Matematyki Uniwersytet Śląski Katowice wojciech.dzik@us.edu.pl 7. Forum Matematyków Polskich, 12-17 września 2016, Olsztyn Prosty Automat do kawy Przemawiamy
Dopełnienie to można wyrazić w następujący sposób:
1. (6 punktów) Czy dla każdego regularnego L, język f(l) = {w : każdy prefiks w długości nieparzystej należy do L} też jest regularny? Odpowiedź. Tak, jęsli L jest regularny to też f(l). Niech A będzie
Wykład 2. Pojęcie całki niewłaściwej do rachunku prawdopodobieństwa
Wykłd 2. Pojęcie cłki niewłściwej do rchunku prwdopodobieństw dr Mriusz Grządziel 4 mrc 24 Pole trpezu krzywoliniowego Przypomnienie: figurę ogrniczoną przez: wykres funkcji y = f(x), gdzie f jest funkcją
Rozwiązania maj 2017r. Zadania zamknięte
Rozwiązni mj 2017r. Zdni zmknięte Zd 1. 5 16 5 2 5 2 Zd 2. 5 2 27 2 23 2 2 2 2 Zd 3. 2log 3 2log 5log 3 log 5 log 9 log 25log Zd. 120% 8910 1,2 8910 2,2 8910 $%, 050 Zd 5. Njłtwiej jest zuwżyć że dl 1
ZŁOŻONOŚĆ OBLICZENIOWA ALGORYTMÓW
ZŁOŻONOŚĆ OBLICZENIOWA ALGORYTMÓW RELACJE MIEDZY KLASAMI ZŁOŻONOŚCI Bartosz Zieliński Katedra Fizyki Teoretycznej i Informatyki Zima 2011-2012 KLASY ZŁOŻONOŚCI KLASE ZŁOŻONOŚCI OPISUJE SIE PODAJAC: Model
Metody generowania skończonych modeli zachowań systemów z czasem
Metody generowni skońzonyh modeli zhowń systemów z zsem Rozprw doktorsk npisn pod kierunkiem do. dr hb. Wojieh Penzk IPI PAN, 5.02.05 p./24 Cel pry Oprownie nowyh, efektywnyh metod generowni modeli bstrkyjnyh
Przeguby precyzyjne KTR z łożyskowaniem ślizgowym lub igiełkowym
Przeguy precyzyjne KTR z łożyskowniem ślizgowym lu igiełkowym Przeguy KTR, to pod względem technicznym, wysokojkościowe elementy do łączeni dwóch włów, o dopuszczlnej wielkości kąt prcy dl pojedynczego
Modele abstrakcyjne w weryfikacji
Modele strkyjne w weryfikji Krzysztof Nozderko kn201076@students.mimuw.edu.pl 16 mj 2006 Modele strkyjne w weryfikji Bisymulj jko gr Weżmy dw modele. Żey rozstrzygnć, zy s one z punktu widzeni oserwtor
ezyki Automaty i Obliczenia (nieformalne notatki)
J ezyki Automty i Oliczeni (nieformlne nottki) W. Rytter J ezyki formlne - ziory s lów nd lfetem skończonym.podsttwowe opercje to, orz konktencj. Wyrżeni regulrne stndrdowe - tylko te opercje, st le to
Automaty Büchi ego i równoważne modele obliczeń
Politechnika Krakowska im. Tadeusza Kościuszki Wydział Fizyki, Matematyki i Informatyki Kierunek Matematyka Paulina Barbara Rozwód Automaty Büchi ego i równoważne modele obliczeń praca magisterska studia
WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA
Mteriły do wykłdu MATEMATYKA DYSKRETNA dl studiów zocznych cz. Progrm wykłdu: KOMBINATORYKA:. Notcj i podstwowe pojęci. Zlicznie funkcji. Permutcje. Podziory zioru. Podziory k-elementowe. Ziory z powtórzenimi
Częściowo przemienne grafy bezkontekstowe
Częściowo przemienne grfy ezkontekstowe Wojciech Czerwiński utorefert rozprwy doktorskiej Temtem rozprwy jest kls częściowo przemiennych grfów ezkontekstowych. Jest to model oliczeń odzwierciedljący zrówno
Karta oceny merytorycznej wniosku o dofinansowanie projektu konkursowego PO KL 1
Złącznik 3 Krt oceny merytorycznej wniosku o dofinnsownie konkursowego PO KL 1 NR WNIOSKU KSI: WND-POKL. INSTYTUCJA PRZYJMUJĄCA WNIOSEK:. NUMER KONKURSU 2/POKL/8.1.1/2010 TYTUŁ PROJEKTU:... SUMA KONTROLNA
Programowanie z więzami (CLP) CLP CLP CLP. ECL i PS e CLP
Progrmowie z więzmi (CLP) mjąc w PROLOGu: p(x) :- X < 0. p(x) :- X > 0. i pytjąc :- p(x). dostiemy Abort chcelibyśmy..9 CLP rozrzeszeie progrmowi w logice o kocepcję spełii ogriczeń rozwiązie = logik +
Hipoteza Černego, czyli jak zaciekawić ucznia teorią grafów
Młodzieżowe Uniwersytety Mtemtyczne Projekt współfinnsowny przez Unię Europejską w rmch Europejskiego Funduszu Społecznego Hipotez Černego, czyli jk zciekwić uczni teorią grfów Adm Romn, Instytut Informtyki
Obliczenia inspirowane Naturą
Obliczenia inspirowane Naturą Wykład 01 Od maszyn Turinga do automatów komórkowych Jarosław Miszczak IITiS PAN Gliwice 03/03/2016 1 / 16 1 2 3 Krótka historia Znaczenie 2 / 16 Czego dowiedzieliśmy się
Komisja Egzaminacyjna dla Aktuariuszy LIX Egzamin dla Aktuariuszy z 12 marca 2012 r. Część I Matematyka finansowa
Mtemtyk finnsow 12.03.2012 r. Komisj Egzmincyjn dl Akturiuszy LIX Egzmin dl Akturiuszy z 12 mrc 2012 r. Część I Mtemtyk finnsow WERSJA TESTU A Imię i nzwisko osoby egzminownej:... Czs egzminu: 100 minut
ż ż Ę Ę Ę Ó ś ó ę Ć ęż ś ę ę ó ś ę ó ę ę Ę ę ó ść Ę ęć Ż Ś ę ę ę ó ż ż ź ę ż ż ś ę Ó ę ę Ł ęż ś ę ę ó ś ę ż ó Ę ę ę ę ść Ę ę ę ę ęć ę ż ś ę ę ę ę ó ż ę Ł Ę ę ż Ę ęż ś ę ó ę ś ę ż ó ę ę ż ść ę ę ę ę ę ęć
ż ę ć ę ę ę ę ę ę ę ć Ż ę ę ę ż ę ę ę ę ę Ż ć ż ż ę ż Ę ć ę ż ę ęż ę ę ę ę ż ć ź Ł Ę ę ż Ę ć ę Ż ę ęż ę ę ę ę ż ć ź Ę Ł ę ę Ą ż Ę ż Ę ż Ę ż ę Ą Ą ę Ę ę ę Ż ź Ż Ż ż ć ź ź ę ż Ę ż Ę ę Ę Ę ć ż ę ć ż ć ź Ł
ć ą ą ą ż ą ż ć Ę ą ą ż ć ą ą ń ą ą ż ń ą ą ą ą ą ą ą ą ż ż ń ą ą ą ż ą ń Ś ą ą Ó ą Ęż ż ń Ś ń ń ń Ę ą ą Ó ń ą ą Ż ą ą Ó ą Ó ą Ż Ó Ó ą Ż ą ą Ó Ó ą ą Ś ą ą ń ń ą ą ą Ó ą Ż Ó ą Ę Ę Ł ą ą Ł Ą Ł Ł Ś ć ą Ś
Kodowanie liczb. Kodowanie stałopozycyjne liczb całkowitych. Niech liczba całkowita a ma w systemie dwójkowym postać: Kod prosty
Kodownie licz Kodownie stłopozycyjne licz cłkowitych Niech licz cłkowit m w systemie dwójkowym postć: nn 0 Wtedy może yć on przedstwion w postci ( n+)-itowej przy pomocy trzech niżej zdefiniownych kodów
Maszyna Turinga języki
Maszyna Turinga języki Teoria automatów i języków formalnych Dr inż. Janusz Majewski Katedra Informatyki Maszyna Turinga (1) b b b A B C B D A B C b b Q Zależnie od symbolu obserwowanego przez głowicę
Wspomaganie obliczeń za pomocą programu MathCad
Wprowdzenie do Mthcd' Oprcowł:M. Detk P. Stąpór Wspomgnie oliczeń z pomocą progrmu MthCd Definicj zmiennych e f g h 8 Przykłd dowolnego wyrŝeni Ay zdefinowc znienną e wyierz z klwitury kolejno: e: e f
Wyznacznikiem macierzy kwadratowej A stopnia n nazywamy liczbę det A określoną następująco:
Def.8. Wyzncznikiem mcierzy kwdrtowej stopni n nzywmy liczbę det określoną nstępująco:.det.det dl n n det det n det n, gdzie i j ozncz mcierz, którą otrzymujemy z mcierzy przez skreślenie i- tego wiersz
Ż ż Ź ż ż ć ż ż ż ż ć ż Ź ż ż ż ć Ś ż Ś ć ż ć ż ż ż ć ć ż Ź ż ćż ż ż ż Ż ż Ą ż żć ż ż Ś ż ż ż ć ż ż ż ż ż ż ż ć Ć ż Ą Ż Ż ć Ś ż ż Ś Ś Ęż ż ć ż Ż Żż Ć ż ż ż ż ż ć Ż ż Ćż Ż ż ż ż Ą ż ż ć ż ć ż ż ć ż ż ż
Metody Lagrange a i Hamiltona w Mechanice
Metody Lgrnge i Hmilton w Mechnice Mriusz Przybycień Wydził Fizyki i Informtyki Stosownej Akdemi Górniczo-Hutnicz Wykłd 3 M. Przybycień (WFiIS AGH) Metody Lgrnge i Hmilton... Wykłd 3 1 / 15 Przestrzeń
RBD Relacyjne Bazy Danych
Wykłd 6 RBD Relcyjne Bzy Dnych Bzy Dnych - A. Dwid 2011 1 Bzy Dnych - A. Dwid 2011 2 Sum ziorów A i B Teori ziorów B A R = ) ( Iloczyn ziorów A i B ( ) B A R = Teori ziorów Różnic ziorów ( A) i B Iloczyn
Ó Ę Ę ź ź ź Ź ź ź ź Ż Ś Ś Ż Ś ź ź Ó Ś Ż ź ć Ść Ź Ż ć Ż Ć ć ź Ź Ź Ó Ś ć ć Ż Ć Ś ć ź Ż ć Ść ć ć Ż Ś Ż ć Ż ź ć ź Ż ź ć ć Ś Ź Ż ć ć ć ć ć Ś Ś Ż ź Ę Ś Ś Ś Ż ć ź ć ć ć Ż Ż ć ć Ż Ź ć Ś Ś Ś Ś Ź Ó Ś Ś ć Ś ć Ć ź
ż Ą ż Ó Ę Ś ć ż ć ż ć Ś ż Ś ż Ń ż ż Ź ż Ź ż Ą Ś ż ć ć Ś Ą ż ż ż ź ż ż Ń Ę ż ż ć Ń ż Ń ż ż ź ż ż ż ż ż ź Ś ż ż ź ż Ś Ś ż ź ź ż ź Ą ż Ź ż ź ź Ź ź Ź ź ż Ź ż ź Ę ż ż Ę ż Ó Ń ż ź ć ż ź ż Ę ż ć ż ź ź ź ż ż
Ę Ś ź Ę Ę ć ć ź ć ć ć ć ć źć ć ć ć ć Ź ź Ś ć Ł Ę ć ć Ą ź ć Ó Ł ź ć ć Ź Ł ć ć ć ć ć ć ć ź ć ć ć ć ź Ź ć ź ć ć ź ć ź Ź Ź ź ź ź Ś ź ź ć ć Ś Ę ć ź ć ć Ś ć ć ć ć ź ź ć ź ć ć ć Ź Ź ć Ś Ę ć Ć ć ź ć Ę ć ć ć ć
Ł Ę Ł Ż ż Ń Ą Ó Ó ż Ś Ź ć ż ż ć Ć ż Ż ć Ó ż Ś Ó Ś ż Ó ż Ś ć ć Ż Ł ż ż ż ć ć ż Ó Ó Ę Ż Ó Ż ż Ó ż Ó Ź Ż ż Ó Ó ć Ó ż ż ć ż Ś Ż ć Ó ż Ś Ś ż ć ć Ó ż Ó Ó ż Ź Ę Ł Ż Ł Ź Ż ż Ó ż ż ż ż Ż ż ż Ż ż Ł ć Ż ż Ż ż Ó Ż
ć Ł ć ć ź Ą ć ć ć źć Ź Ź ŹĆ ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć Ą ć Ł ć ć ć ć ć ć ć ŚĆ Ś ź ć ć ć Ć Ó Ć ć Ą Ł Ł Ł ź Ś Ł ć ć Ą Ą ź ć ć Ą ć ź ć ź ź ć ź ź Ą Ą Ń ć ź Ł ć Ć ć ź ć Ś ć ć ć ć ć ć ć Ś ć ć ć ć
ć Ń Ż Ł ć ć Ś ź ŚĆ Ą ć ź ć ć Ż Ś ź Ą ć Ń Ć Ć ć ć Ą ć źć Ń Ł Ł Ł ź ć Ą ź Ś ź ć Ń Ń ć Ć Ć ź Ś ź ć Ś Ś Ł ź Ś Ś ź ć ź ć Ś ć Ś ć ć Ż ć Ż ź ź Ą ć Ł Ń Ć ć Ż Ś ć ć ć ć Ś ć ć ć Ą ć ć ź ć ć ć ć ć Ń Ż Ż Ż Ż Ś ć Ą
Ś ć ć Ż ć ć Ż ć ć ć ć ć Ę Ź Ż Ż ć Ę ć Ę Ź Ź Ó ć ć Ź ć Ó Ś ć Ź Ę Ę Ę ć Ń ć Ś ć Ż ć Ę Ę ć Ż Ł ź Ź Ś Ą ć Ą Ą ć Ą Ę ć ć Ę ć ć ć Ż ć Ź Ą Ł ć ć ć ć Ę ć Ź ć Ź ć Ą ć Ą ć ć ć ć Ą ć Ą ć Ż Ą ć ć ć ć ć ć Ść ć źć Ę
Ł Ł Ź Ź ź ź ć ź ć Ę Ź Ś Ś ć ć Ś ć ć ć Ź ć źć ć ć ć ć Ź ć ć ć ć ć ć ź ć Ś ć ć Ą ć Ź ć Ś Ó Ź Ś ź ć ź Ś ć Ł Ą ć ć ć ć Ź Ź ć Ź ć ć ć Ź ź ć ć ć ć ć Ś ć ć ć ć ć Ł ć Ś ć Ź Ź Ź ć ć Ś Ś ć ć ć ź Ą ć ć ć ć ć ć ć
ń ć ć ń Ń ź ć ć ć ć ź ć ć ń ć źć ń ź ć ć ć ć ć Ę ć ń ć ć ć Ę ź ń ń ć ć ń ć ć ć ć ć ć ć ć ć ć ń ć ź ć ć ć ć ź ć ń ć ć ć ń ć ć ć Ń ć ź ć ć ń ć ć ć ć ć ć ć ć ć ć ź ć ć ć ć ć ć ć ć ź Ń ń ź ń ć ń ć ć ć Ę ć
Ę Ę ć Ó ć ć Ń ź ź Ó Ć Ó ć ć ź ź ć ć ć Ń ć Ó ć ć ć ć Ó Ó ć Ó ć ć Ó Ę Ó ÓÓ Ę ć Ó ć ć Ó ć ć Ó Ę ć Ć Ó Ź Ę Ó Ó Ó ć Ó ź Ó ź Ń Ę Ó Ę Ę Ę ć ć Ć ć Ę Ę Ó Ó Ó ć ź Ń ć Ź ć ź ć ć Ę ć Ę ć ź ć Ó Ó Ę ć ć ć ź ć Ę ć Ź
Ó ż ń Ą ź ń ż ć Ó ń ć Ć Ą ż Ą ć Ł Ę Ę Ą ć Ó ź ć ć ć ń Ń Ą ć ć ż Ó ź Ł Ł Ę ć ż ć Ę Ł ć Ń Ą Ł Ł Ę Ł ć ż ż ż Ł ć ć Ę Ń Ę Ą ń Ą ń ń ż ż ń ż ź Ń ź ć ź ń Ó ń ć Ł Ą Ą ż ż ć Ó Ł ć ć ź Ó ź ź Ę ć ć ń źć Ą ż Ą ż
Ć Ć Ą ź ń ć ń Ź ń ć Ą ć ć ć Ę ć ń Ą Ą ź ń ź ń ń Ę ń ć ć Ę Ę ć Ę Ź Ź Ą Ę ń ń ń Ę ń ń Ą ń ń Ą Ą Ć Ą ć ń ć ń ć Ć ń ń Ą ń Ą Ą ć ć ź ź Ź ć ń ń Ą ń ń ń Ę Ą ć ń Ą ć Ą Ę ć ć Ę ń Ć Ę ń Ą Ź Ę ń Ę ń ń ć ć Ń ń Ą ń
Ł Ż ć Ę Ę Ę Ę Ż Ę Ź ć ć ć Ł Ż ć Ę ć Ł ć Ę ź Ż ć Ę ć ć Ł Ł ć ź Ż Ż Ż ć ć Ż ć ć ć ć ć ć ć ć ć ć ć ć ć Ś ć ć Ę Ę Ł ć Ś ć Ł Ż Ę ć ć ć Ż Ż Ę Ł Ę ć Ę ć ć ć ć ć Ę ć ć ć Ł ź Ż Ę Ż Ż ć Ę źć źć ź Ż Ł ć ć ć Ż Ę ź
Ł Ś ÓŻ Ż Ż Ż Ż Ś Ś Ę Ł ć Ą ŚĆ Ś Ą ć Ą Ś Ą Ś ź ć ź ć ć Ą ć Ą Ń ź ź ć Ą ć ć Ą ź Ę Ś Ą ź Ś ź Ą Ą ć Ę ć ź Ą ć Ą ć ć ć Ą Ą Ą Ą ŚĆ Ść ć Ń Ś ć ć Ę Ź ć Ę Ń ć Ć ć ć ć ć Ę Ń ć ć ć Ł ć Ą ć Ą Ą Ę Ć źć ć Ś ź Ę Ą Ś
Analiza leksykalna: problem dopasowywania wzorca, budowanie lekserów
Anliz leksykln: prolem dopsowywni wzorc, udownie lekserów Wyszukiwnie wzorc W prktycznych zstosownich teorii języków formlnych nie sposó nie wspomnieć o prolemie wyszukiwni wzorc. Zjmiemy się njprostszą
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 9. ZBIORY ROZMYTE Częstochow 204 Dr hb. inż. Grzegorz Dudek Wydził Elektryczny Politechnik Częstochowsk ZBIORY ROZMYTE Klsyczne pojęcie zbioru związne jest z logiką dwuwrtościową
Wprowadzenie do Sieci Neuronowych Łańcuchy Markowa
Wprowdzenie do Siei Neuronowyh Łńuhy Mrkow Mj Czoków, Jrosłw Piers 213-1-14 1 Przypomnienie Łńuh Mrkow jest proesem stohstyznym (iągiem zmiennyh losowyh), w którym rozkłd zmiennej w hwili t zleży wyłąznie
ZADANIA OTWARTE. Są więc takie same. Trzeba jeszcze pokazać, że wynoszą one 2b, gdyż taka jest długość krawędzi dwudziestościanu.
ZADANIA OTWARTE ZADANIE 1 DWUDZIESTOŚCIAN FOREMNY Wiemy, że z trzech złotych prostokątów możn skonstruowć dwudziestościn foremny. Wystrczy wykzć, że długości boków trójkąt ABC n rysunku obok są równe.
Temat I. Warunku współpracy betonu i zbrojenia w konstrukcjach żelbetowych. Wymagania. Beton. Zbrojenie
Dr inż. Zigniew PLEWAKO Ćwiczeni z konstrukcji żeletowych. Temt I Temt I. Wrunku współprcy etonu i zrojeni w konstrukcjch żeletowych. Wymgni. Beton Zdnie: Przeniesienie sił ściskjących, sclenie i zpewnienie
3. F jest lewostronnie ciągła
Def. Zmienną losową nzywmy funkcję X: tką, że x R : { : X( ) < x }. Ozn.: zmist pisd A = { : X( ) < x } piszemy A = { X < x } zdrzenie poleg n tym, że X( )
Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych
Klucz odpowiedzi do zdń zmkniętc i scemt ocenini zdń otwrtc Klucz odpowiedzi do zdń zmkniętc 4 7 9 0 4 7 9 0 D D D Scemt ocenini zdń otwrtc Zdnie (pkt) Rozwiąż nierówność x x 0 Oliczm wróżnik i miejsc
Podstawy programowania obiektowego
1/3 Podstwy progrmowni oiektowego emil: m.tedzki@p.edu.pl stron: http://rgorn.p.ilystok.pl/~tedzki/ Mrek Tędzki Wymgni wstępne: Wskzn yły znjomość podstw progrmowni strukturlnego (w dowolnym języku). Temty
Zadanie 1. Czy prawdziwa jest następująca implikacja? Jeśli L A jest językiem regularnym, to regularnym językiem jest też. A = (A, Q, q I, F, δ)
Zadanie 1. Czy prawdziwa jest następująca implikacja? Jeśli L A jest językiem regularnym, to regularnym językiem jest też L = {vw : vuw L dla pewnego u A takiego, że u = v + w } Rozwiązanie. Niech A =
10110 =
1. (6 punktów) Niedeterministyczny automat skończony nazwiemy jednoznacznym, jeśli dla każdego akceptowanego słowa istnieje dokładnie jeden bieg akceptujący. Napisać algorytm sprawdzający, czy niedeterministyczny