1 Renty życiowe. 1.1 Podstawowe renty życiowe
|
|
- Bronisław Rutkowski
- 8 lat temu
- Przeglądów:
Transkrypt
1 Renty życiowe Renta życiowa jest serią płatności okonywanych w czasie życia ubezpieczonego Jej wartość teraźniejsza jest zienną losową (bo zależy o przyszłego czasu życia T, oznaczaną Y Postawowe renty życiowe Renta ożywotnia płatna z góry (ang whole life annuity ue zapewnia coroczną wypłatę kwoty opóki żyje ubezpieczony Płatności są okonywane w oentach 0,,, K Jej wartość teraźniejsza to: May Y = + υ + υ υ K = ä K+ Pr(Y = ä k+ = Pr(K = k = k p x q x+k, la k = 0,, 2, Skłakę netto oznaczay ä x Zate Zienną Y ożna zapisać w postaci gzie ( = jest funkcją inykatorową, a więc ä x = ä k+ kp x q x+k ( Y = υ k (K k, {, jeśli zanie jest prawziwe 0, jeśli zanie jest fałszywe ä x = E(Y = υ k kp x W takiej interpretacji renta jest traktowana jako sua ubezpieczeń na ożycie
2 Uwaga Wzór ( ożna przekształcić bezpośrenio: ä x = = ( k ä k+ kp x q x+k = υ kp i x q x+k = i=0 υ i kp x q x+k = υ i Pr(K = k = υ i ip x i=0 k=i i=0 k=i i=0 Skłakę netto la renty ożna wyrazić w zależności o skłaki la ubezpieczenia na życie May bowie: Y = υk+ υ = υk+ = Z, ä K+ = υk+, (2 ską, obliczając wartości oczekiwane, otrzyujey: lub ä x = A x, = ä x + A x Równość tą ożna interpretować następująco: ług jest spłacany osetkai (z góry i końcową płatnością na koniec roku śierci Wzór (2 ożna również uzyskać traktując rentę ożywotnią jako różnicę wóch rent jenej rozpoczynającej się w chwili 0 (o wartości obecnej, rugiej w chwili K + (o wartości obecnej υ K+ Z zależności Y = Z ożna wyznaczyć oenty ziennej losowej Y, np Var(Y = Var(Z 2 W praktyce renty wypłacane są częściej niż raz w roku, np iesięcznie Ogólnie, załóży, że renta jest płatna -krotnie w ciągu roku Przy rencie płatnej z góry wypłaty w wysokości / następują w chwilach 0,, 2,, tak ługo jak rentobiorca żyje Wartość obecna jest zienną losową Y = ( + υ / + υ 2/ + υ (K+S( / 2
3 Suując otrzyay Inna postać: Y = K+S ( υ k/ = Z υ / Y = υ k/ (T k Jenorazową skłakę netto ( wartość oczekiwaną ziennej Y oznaczay ä ( x Zate ä ( x = E(Y = υ k/ k p x Skłakę netto la renty ożna też wyrazić w zależności o skłaki la ubezpieczenia na życie May bowie: Y = Z υ, / ską, obliczając wartości oczekiwane i uwzglęniając, że ( υ / = ( otrzyujey: ä ( x = A( x ( Rozważyy teraz renty czasowe (terinowe, tj płatne póki ubezpieczony żyje, ale nie łużej niż ustalony okres Dla renty czasowej n-letniej ay: Y = Poobnie jak poprzenio ay: { äk+ la K = 0,,, n ä n la K = n, n +, ä x:n = n ä k+ kp x q x+k + ä n n p x, lub ä x:n = n υ k kp x 3
4 May także Y = Z, gzie { υ Z = K la K = 0,,, n 0 la K = n, n +, Zate ä x:n = A x:n, = ä x:n + A x:n Rozpatrzy teraz renty płatne z ołu Wtey: Y = υ + υ υ K = a K Ta zienna losowa różni się o opowieniej ziennej losowej la rent płatnych z góry jeynie skłanikie stały Zate skłaka netto: Ponieważ la rent stałych: a x = ä x a n = υn, r = ra n + υ n, więc postawiając n = K otrzyujey = ra K + υ K = ra K + ( + rυ K+ Obliczając wartości oczekiwane otrzyujey = ra x + ( + ra x 2 Renty ze zienną wartością Rozważy rentę zapewniającą wypłaty r 0, r, r 2 w oentach 0,,, K Wartość teraźniejsza wynosi: Y = υ k r k (K k 4
5 Stą skłaka netto: E(Y = υ k r k kp x Ogólniej, rozważy rentę złożoną z płatności z 0, z, z 2, w oentach 0,, 2,, K + S( (przyponijy, że S( = [S + ] Najpierw zastąpiy rocznych płatności ich suą: r k = j=0 υ j zk+ j Ponieważ w roku śierci nie bęzie wszystkich płatności, konieczny jest skłanik korygujący ujene ubezpieczenie na życie, przy czy sua ubezpieczenia w chwili k + u, 0 < u <, jest wartością teraźniejszą nieoszłych płatności: c(k + u = υ j u z k+ j, j J gzie J = J(u jest zbiore tych j {, 2,, } la których j > u Wiey już, że przy Założeniu a (tzn u q x = uq x la 0 < u < ; wtey K i S są niezależne: c k+ = Postawiając wartość c(k + u ostajey: c k+ = = 0 ( 0 j J 0 = j J j= c(k + u( + r u u υ j u z k+ j ( + r j zk+ j ( + r u u = u = j( + r j zk+ j A zate jenorazowa skłaka netto la ubezpieczenia z wypłatai razy w roku wynosi: υ k r kk p x c k+ υ k+ kp x q x+k, gzie współczynniki r k i c k określone są wzorai wyżej 5
6 3 Renty stanarowe Rozważy rentę złożoną z płatności r 0, r, r 2,, gzie r k = k + Wtey wartość teraźniejsza wypłaty wynosi: Y = (k + υ k (K k Skłakę netto oznaczay (Iä x Ponieważ: ä n = (Iä n + nυ n, (ożna to interpretować tak: renta w wysokości jest spłacana osetkai z góry w wysokości, 2,, n oraz kwotą n na koniec n-tego roku więc zastępując n przez K + ay: ä K+ = (Iä K+ + (K + υ K+ Obliczając wartości oczekiwane uzyskujey 2 Skłaki netto ä x = (Iä x + (IA x Polisa ubezpieczeniowa określa z jenej strony wypłaty la ubezpieczonego (jenorazowe lub w forie renty, a z rugiej strony skłaki płacone przez niego Można wyróżnić trzy fory płacenia skłaki: skłaka jenorazowa; 2 skłaki okresowe stałe; 3 skłaki okresowe zienne Z zasay skłaki są opłacane z góry Dla anej polisy ubezpieczeniowej określay całkowitą stratę ubezpieczyciela L, jako różnicę ięzy teraźniejszą wartością wypłat a teraźniejszą wartością skłaek Strata jest rozuiana algebraicznie w szczególności oże być ujena Skłakę nazyway skłaką netto, jeśli spełnia zasaę równoważności: E(L = 0 6
7 Jenorazowa skłaka netto, o której była już owa, spełnia ten warunek Przykła Rozważy 0-letnie ubezpieczenie na życie la 40-latka z suą ubezpieczenia C płatną na koniec roku śierci Skłaki w wysokości Π są płacone co roku z góry opóki ubezpieczony żyje, ale nie łużej niż 0 lat Wtey L = { Cυ K+ Πä K+ la K = 0,,, 9 Πä 0 la K 0 Zienna L a rozkła yskretny -punktowy, przy czy: Pr(L = Cυ k+ Πä k+ = k p 40 q 40+k, k = 0,,, 9; Pr(L = Πä 0 = 0 p 40 Wyznaczyy skłakę Π Z zasay równoważności ay 9 9 (Cυ k+ Πä k+ k p 40 q 40+k + ( Πä 0 0 p 40 = 0, ( 9 Cυ k+ kp 40 q 40+k Π ä k+ kp 40 q 40+k + ä 0 0p 40 = 0, więc otrzyujey warunek CA 40:0 Πä 40:0 = 0, Π = C A 40:0 ä 40:0 Dla ilustracji liczbowej weźy r = 4% i załóży, że śiertelność polega prawu e Moivre a, z wiekie końcowy ω = 00 Wtey k p 40 q 40+k =, 60 więc 0 A 40:0 = υ k 60 = 60 a 0 = 0, 352, oraz k= A 40:0 = 5 6 υ0 = 0, 5630, 7
8 zate Ostatecznie: A 40:0 = 0, 6982, ä 40:0 = A 40:0 Π = 0, 072C = 7, 8476 Oczywiście nie ożna oczekiwać, że ubezpieczyciel bęzie wypłacał świaczenia tylko za skłaki netto Pobiera on jeszcze skłakę za ryzyko Metoa wyznaczania tej skłaki opiera się na pojęciu funkcji użyteczności Jest to funkcja, której wartościai są wartości użyteczności (satysfakcji, kofortu psychicznego Można ówić o użyteczności różnych zjawisk Użyteczność pieniąza (bogactwa jest np funkcją, która wartości pieniężnej przyporząkowuje użyteczność la otrzyującego tę wartość Funkcja użyteczności jest pojęcie psychologiczny, co oznacza, że każy a swoją funkcję użyteczności Jenak pewne ogólne własności są wspólne Mianowicie, ponieważ każy woli posiaać więcej niż niej, więc funkcja użyteczności jest rosnąca Ponato krańcowa użyteczność jest alejąca, tzn każy oatkowy procent wzrostu bogactwa powouje coraz niejszy przyrost użyteczności Dla naszych potrzeb bęziey więc zakłaać, że funkcja użyteczności u(x jest funkcją spełniającą warunki: u (x > 0, u (x < 0, i określającą użyteczność posiaania przez ubezpieczyciela wartości (pieniężnej x Przykłaowo, załóży, że u(x = a ( e ax, gzie paraetr a ierzy awersję ubezpieczyciela o ryzyka Po uwzglęnieniu funkcji użyteczności warunek E(L = 0 zostaje zastąpiony warunkie: E(u( L = u(0 Oznacza to, że skłaka jest teraz wyznaczana tak, aby oczekiwana strata użyteczności była równa 0 Dla powyższej funkcji użyteczności ay: E( a ( eal = 0, ( E( E(e al = 0, a 8
9 Dla anych z przykłau: 60 E(e al = 9 exp(acυ k+ aπä k exp( aπä 0 = Wybierzy a = 0 6 aby zobaczyć, jak zieniają się skłaki: Sua ub C Skł netto Skł Π Procskł netto % % % % % Oczywiście teraz skłaka nie jest proporcjonalna o suy ubezpieczenia C Ozwierciela to fakt, że np sua stanowi ałe ryzyko la ubezpieczyciela, stą preia za ryzyko wynosi tylko 4% W przypaku suy ryzyko jest istotne, stą preia za nie wynosi aż 48% Uwaga W praktyce skłaki są jenak proporcjonalne o suy ubezpieczenia Ubezpieczyciel oże np oliczać 53% la każej wartości C Wtey suy ubezpieczenia przekraczające wyagają reasekuracji Natoiast przy kwotach niejszych ubezpieczony przepłaca (to w pewny sensie rekopensuje stosunkowo wyższe kwoty stałe takich polis 3 Postawowe typy ubezpieczeń Rozważy ubezpieczenie na życie w wysokości, płatne na koniec roku śierci, które a być opłacone rocznyi skłakai netto w wysokości P x Strata ubezpieczyciela jest zienną losową: Z warunku E(L = 0 otrzyujey: L = υ K+ P x ä K+ P x = A x ä x Aby obliczyć wariancję wykorzystay wzór (2: ä K+ = υk+ 9
10 A więc: L = υ K+ υ K+ P x = ( + P x υk+ P x Stą ( Var(L = + P x 2Var(υ ( K+ = + P x 2Var(Z Pokazuje to, że ryzyko (ierzone wariancją jest większe w przypaku ubezpieczenia opłacanego rocznyi skłakai niż w przypaku ubezpieczenia opłacanego jenorazową skłaką Dla n-letniego ubezpieczenia na życie (sua ubezpieczenia, płatna na koniec roku śierci skłakę netto oznaczay Px:n Ponieważ strata ubezpieczyciela jest zienną losową: { υ K+ P L = x:n äk+ la K = 0,,, n Px:n än la K n, więc z warunku E(L = 0 ay A x:n P x:n ( n ä K+ kp x q x+k + ä n k p x = 0, P x:n = A x:n ä x:n 3 Ubezpieczenie na ożycie Załóży, że n-letnie ubezpieczenie na ożycie w wysokości opłacane jest rocznyi skłakai Px:n Wtey strata ubezpieczyciela wynosi: { P L = x:n äk+ la K = 0,,, n υ n Px:n än la K n, Zate: 0 = E(L = P x:n ( n ä K+ kp x q x+k ( n Px:n ä K+ kp x q x+k 0 + A x:n P x:n ä n n p x, + ä n n p x = A x:n
11 więc x:n = A x:n ä x:n P 32 Ubezpieczenie na życie i ożycie Skłakę netto oznaczay P x:n May: P x:n = A x:n ä x:n, oraz P x:n = P x:n + P x:n
ROZDZIAŁ 5. Renty życiowe
ROZDZIAŁ 5 Renty życiowe Rentą życiową nazywamy ciąg płatności który ustaje w chwili śmierci pewnej osoby (zwykle ubezpieczonego) Mówiąc o rencie życiowej nie zaznaczamy czy osoba której przyszły czas
Bardziej szczegółowoMODELE MATEMATYCZNE W UBEZPIECZENIACH WYKŁAD 5: RENTY ŻYCIOWE
MODELE MATEMATYCZNE W UBEZPIECZENIACH WYKŁAD 5: RENTY ŻYCIOWE Rentą życiową nazywamy ciąg płatności który ustaje w chwili śmierci pewnej osoby (zwykle ubezpieczonego) Mówiąc o rencie życiowej nie zaznaczamy
Bardziej szczegółowoMODELE MATEMATYCZNE W UBEZPIECZENIACH
MODELE MATEMATYCZNE W UBEZPIECZENIACH WYKŁAD 6: SKŁADKI OKRESOWE Składki okresowe netto Umowę pomiędzy ubezpieczycielem a ubezpieczonym dotyczącą ubezpieczenia na życie nazywa się polisą ubezpieczeniową
Bardziej szczegółowo1 Funkcja użyteczności
1 Funkcja użyteczności Funkcja użyteczności to funkcja, której wartościami są wartości użyteczności (satysfakcji, komfortu psychicznego). Można mówić o użyteczności różnych zjawisk. Użyteczność pieniądza
Bardziej szczegółowo1. Ubezpieczenia życiowe
1. Ubezpieczenia życiowe Przy ubezpieczeniach życiowych mamy do czynienia z jednorazową wypłatą sumy ubezpieczenia. Moment jej wypłaty i wielkość wypłaty może być funkcją zmiennej losowej T a więc czas
Bardziej szczegółowoSkładki i rezerwy netto
ROZDZIAŁ 6 Składki i rezerwy netto 1 Składki netto Umowę pomiędzy ubezpieczycielem a ubezpieczonym dotyczącą ubezpieczenia na życie nazywa się polisą ubezpieczeniową Polisa taka zawiera szczegółowe warunki
Bardziej szczegółowoUBEZPIECZENIE NA ŻYCIE Z LOSOWĄ STOPĄ PROCENTOWĄ
UBEZPIECZENIE NA ŻYCIE Z LOSOWĄ STOPĄ PROCENTOWĄ Krzysztof Janas Michał Krzeszowiec Koło Nauk Aktuarialnych Politechniki Łódzkiej Warszawa, 09-11.06.2008 r. Plan Założenia wstępne: Teoria oprocentowania
Bardziej szczegółowoUBEZPIECZENIA NA ŻYCIE
UBEZPIECZENIA NA ŻYCIE M BIENIEK Ubezpieczenie na życie jest to kontrakt pomiędzy ubezpieczycielem a ubezpieczonym gwarantujący, że ubezpieczyciel w zamian za opłacanie składek, wypłaci z góry ustaloną
Bardziej szczegółowoREZERWY UBEZPIECZEŃ I RENT ŻYCIOWYCH
REZERWY UBEZPIECZEŃ I RENT ŻYCIOWYCH M. BIENIEK Przypomnijmy, że dla dowolnego wektora przepływów c rezerwę w chwili k względem funkcji dyskonta v zdefiniowaliśmy jako k(c; v) = Val k ( k c; v), k = 0,
Bardziej szczegółowo= µ. Niech ponadto. M( s) oznacza funkcję tworzącą momenty. zmiennej T( x), dla pewnego wieku x, w populacji A. Wówczas e x wyraża się wzorem: 1
1. W populacji B natężenie wymierania µ ( B ) x jest większe od natężenia wymierania ( A) µ x w populacji A, jednostajnie o µ > 0, dla każdego wieku x tzn. ( B) ( A) µ µ x = µ. Niech ponadto x M( s) oznacza
Bardziej szczegółowoUbezpieczenia na życie
ROZDZIAŁ 4 Ubezpieczenia na życie Ubezpieczenie na życie jest to kontrakt (zwany polisą), w którym ubezpieczony zobowiązuje się do opłacenia składki (jednorazowo lub w ratach), a w zamian za to ubezpieczyciel
Bardziej szczegółowoMODELE MATEMATYCZNE W UBEZPIECZENIACH
MODELE MATEMATYCZNE W UBEZPIECZENIACH WYKŁAD 4: UBEZPIECZENIA NA ŻYCIE Ubezpieczenie na życie jest to kontrakt (zwany polisą), w którym ubezpieczony zobowiązuje się do opłacenia składki (jednorazowo lub
Bardziej szczegółowoLIX Egzamin dla Aktuariuszy z 12 marca 2012 r.
Komisja Egzaminacyjna dla Aktuariuszy LIX Egzamin dla Aktuariuszy z 12 marca 2012 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,
Bardziej szczegółowoUbezpieczenia życiowe
Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej Ubezpieczenia życiowe 1. Z historii ubezpieczeń W uproszczeniu mówiąc mamy dwa tradycyjne modele ubezpieczeń. Pierwszy ma źródło w towarzystwach
Bardziej szczegółowoPrzekształcenie całkowe Fouriera
Przekształcenie całkowe Fouriera Postać zespolona szeregu Fouriera Niech ana bęzie funkcja f spełniająca w przeziale [, ] warunki Dirichleta. Wtey szereg Fouriera tej funkcji jest o niej zbieżny, tj. przy
Bardziej szczegółowo3 Ubezpieczenia na życie
3 Ubezpieczenia na życie O ile nie jest powiedziane inaczej, w poniższych zadaniach zakładamy HJP. 3.1. Zadania 7.1-7.26 z Miśkiewicz-Nawrocka, Zeug-Żebro, Zbiór zadań z matematyki finansowej. 3.2. Mając
Bardziej szczegółowoOGÓLNE RENTY ŻYCIOWE
OGÓLNE RENTY ŻYCIOWE M. BIENIEK Rentą życiową nazywamy kontrakt między ubezpieczycielem a ubezpieczonym, w którym ubezpieczony w zamian za określoną opłatę, zwaną składką, otrzymuje ciąg z góry określonych
Bardziej szczegółowoMatematyka finansowa i ubezpieczeniowa - 11 Ubezpieczenia Ŝyciowe 2
Matematyka finansowa i ubezpieczeniowa - Ubezpieczenia Ŝyciowe 2 Składki netto w ubezpieczeniach Ŝyciowych Zakład ubezpieczeniowy pobiera za ubezpieczenia składkę brutto, składającą się ze składki netto
Bardziej szczegółowoLIII Egzamin dla Aktuariuszy z 31 maja 2010 r.
Komisja Egzaminacyjna dla Aktuariuszy LIII Egzamin dla Aktuariuszy z 31 maja 2010 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,
Bardziej szczegółowoMODELE MATEMATYCZNE W UBEZPIECZENIACH
MODELE MATEMATYCZNE W UBEZPIECZENIACH WYKŁAD 1: UWAGI WSTĘPNE. PROCENT SKŁADANY 1. Uwagi wstępne Ryzyko jest związane z niealże każdy rodzaje działalności człowieka: przy planowaniu urlopu ryzyko słabej
Bardziej szczegółowo= = a na podstawie zadania 6 po p. 3.6 wiemy, że. b 1. a 2 ab b 2
64 III. Zienne losowe jednowyiarowe D Ponieważ D (A) < D (B), więc należy wybrać partię A. Przykład 3.4. Obliczyć wariancję rozkładu jednostajnego. Ponieważ a na podstawie zadania 6 po p. 3.6 wiey, że
Bardziej szczegółowoLIV Egzamin dla Aktuariuszy z 4 października 2010 r.
Komisja Egzaminacyjna dla Aktuariuszy LIV Egzamin dla Aktuariuszy z 4 października 2010 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:...klucz odpowiedzi... Czas egzaminu:
Bardziej szczegółowoMatematyka ubezpieczeń życiowych 17 marca 2008 r.
1. Niech oznacza przeciętne dalsze trwanie życia w ciągu najbliższego roku obliczone przy założeniu hipotezy interpolacyjnej o stałym natężeniu wymierania między wiekami całkowitymi. Podobnie niech oznacza
Bardziej szczegółowoUbezpieczenia majątkowe
Funkcje użyteczności a składki Uniwersytet Przyrodniczy we Wrocławiu Instytut Nauk Ekonomicznych i Społecznych 2016/2017 Funkcja użyteczności Niech ω wielkość majątku decydenta wyrażona w j.p., u (ω) stopień
Bardziej szczegółowoLV Egzamin dla Aktuariuszy z 13 grudnia 2010 r.
Koisja Egzainacyjna dla Aktuariuszy LV Egzain dla Aktuariuszy z 13 grudnia 2010 r. Część II Mateatyka ubezpieczeń życiowych Iię i nazwisko osoby egzainowanej:... Czas egzainu: 100 inut Warszawa, 13 grudnia
Bardziej szczegółowoLXVIII Egzamin dla Aktuariuszy z 29 września 2014 r.
Komisja Egzaminacyjna dla Aktuariuszy LXVIII Egzamin dla Aktuariuszy z 29 września 2014 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,
Bardziej szczegółowoArytmetyka finansowa Wykład z dnia 30.04.2013
Arytmetyka fnansowa Wykła z na 30042013 Wesław Krakowak W tym rozzale bęzemy baać wartość aktualną rent pewnych, W szczególnośc, wartość obecną renty, a równeż wartość końcową Do wartośc końcowej renty
Bardziej szczegółowoRozważymy nieskończony strumień płatności i obliczymy jego wartość teraźniejszą.
Renty wieczyste Rozważyy nieskończony stuień płatności i obliczyy jego watość teaźniejszą Najpiew ozważy entę wieczystą polegającą na wypłacie jp co ok Jeśli piewsza płatność jest w chwili to ówiy o encie
Bardziej szczegółowoLXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r.
Komisja Egzaminacyjna dla Aktuariuszy LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,
Bardziej szczegółowoXLIV Egzamin dla Aktuariuszy z 3 grudnia 2007 r.
Komisja Egzaminacyjna dla Aktuariuszy XLIV Egzamin dla Aktuariuszy z 3 grudnia 2007 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,
Bardziej szczegółowoRozważymy nieskończony strumień płatności i obliczymy jego wartość teraźniejszą.
Renty wieczyste Rozważyy nieskończony stuień płatności i obliczyy jego watość teaźniejszą Najpiew ozważy entę wieczystą polegającą na wypłacie jp co ok Jeśli piewsza płatność jest w chwili, to ówiy o encie
Bardziej szczegółowoXLVIII Egzamin dla Aktuariuszy z 15 grudnia 2008 r.
Komisja Egzaminacyjna dla Aktuariuszy XLVIII Egzamin dla Aktuariuszy z 15 grudnia 2008 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,
Bardziej szczegółowo1.5. ZWIĄZKI KONSTYTUTYWNE STRONA FIZYCZNA
.5. ZWIĄZKI KONSTYTUTYWN STRONA FIZYCZNA.5.. Wprowazenie Wyprowazone w rozziałach.3 (strona statyczna i.4 (strona geoetryczna równania (.3.36 i (.4. są niezależne o rozaju ciała aterialnego, które oże
Bardziej szczegółowoKomisja Egzaminacyjna dla Aktuariuszy LXX Egzamin dla Aktuariuszy z 23 marca 2015 r. Część I Matematyka finansowa
Komisja Egzaminacyjna dla Aktuariuszy LXX Egzamin dla Aktuariuszy z 23 marca 2015 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Rozważmy
Bardziej szczegółowoXXXVI Egzamin dla Aktuariuszy z 10 października 2005 r.
Komisja Egzaminacyjna dla Aktuariuszy XXXVI Egzamin dla Aktuariuszy z 10 października 2005 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut
Bardziej szczegółowoLXVI Egzamin dla Aktuariuszy z 10 marca 2014 r.
Komisja Egzaminacyjna dla Aktuariuszy LXVI Egzamin dla Aktuariuszy z 10 marca 2014 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,
Bardziej szczegółowoLXIII Egzamin dla Aktuariuszy z 25 marca 2013 r.
Komisja Egzaminacyjna dla Aktuariuszy LXIII Egzamin dla Aktuariuszy z 25 marca 2013 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,
Bardziej szczegółowoMatematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXI Egzamin dla Aktuariuszy z 1 października 2012 r.
Komisja Egzaminacyjna dla Aktuariuszy LXI Egzamin dla Aktuariuszy z 1 października 2012 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1
Bardziej szczegółowoXXXVII Egzamin dla Aktuariuszy z 5 grudniaa 2005 r.
Komisja Egzaminacyjna dla Aktuariuszy XXXVII Egzamin dla Aktuariuszy z 5 grudniaa 2005 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,
Bardziej szczegółowoLXXV Egzamin dla Aktuariuszy z 5 grudnia 2016 r.
Komisja Egzaminacyjna dla Aktuariuszy LXXV Egzamin dla Aktuariuszy z 5 grudnia 2016 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,
Bardziej szczegółowoLXVII Egzamin dla Aktuariuszy z 26 maja 2014 r.
Komisja Egzaminacyjna dla Aktuariuszy LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,
Bardziej szczegółowoLXX Egzamin dla Aktuariuszy z 23 marca 2015 r.
Komisja Egzaminacyjna dla Aktuariuszy LXX Egzamin dla Aktuariuszy z 23 marca 2015 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,
Bardziej szczegółowoMatematyka ubezpieczeń majątkowych r.
Matematyka ubezpieczeń majątkowych 0.0.005 r. Zadanie. Likwidacja szkody zaistniałej w roku t następuje: w tym samym roku z prawdopodobieństwem 0 3, w następnym roku z prawdopodobieństwem 0 3, 8 w roku
Bardziej szczegółowoWyk lad 3 Grupy cykliczne
Wyk la 3 Grupy cykliczne Definicja 3.1. Niech a bezie elementem grupy (G,, e). Jeżeli istnieje liczba naturalna k taka, że a k = e, to najmniejsza taka liczbe naturalna k nazywamy rzeem elementu a. W przeciwnym
Bardziej szczegółowoXXXIII Egzamin dla Aktuariuszy z 17 stycznia 2005 r.
Komisja Egzaminacyjna dla Aktuariuszy XXXIII Egzamin dla Aktuariuszy z 17 stycznia 2005 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,
Bardziej szczegółowoLIII Egzamin dla Aktuariuszy z 31 maja 2010 r.
Komisja Egzaminacyjna dla Aktuariuszy LIII Egzamin dla Aktuariuszy z 31 maja 2010 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:. Czas egzaminu: 100 minut Warszawa, 31
Bardziej szczegółowoUNIWESRYTET EKONOMICZNY WE WROCŁAWIU HOSSA ProCAPITAL WYCENA OPCJI. Sebastian Gajęcki WYDZIAŁ NAUK EKONOMICZNYCH
UNIWESRYTET EKONOMICZNY WE WROCŁAWIU HOSSA ProCAPITAL WYCENA OPCJI Sebastian Gajęcki WYDZIAŁ NAUK EKONOMICZNYCH WPROWADZENIE Opcje są instrumentem pochonym, zatem takim, którego cena zależy o ceny instrumentu
Bardziej szczegółowoLXIV Egzamin dla Aktuariuszy z 17 czerwca 2013 r.
Komisja Egzaminacyjna dla Aktuariuszy LXIV Egzamin dla Aktuariuszy z 17 czerwca 2013 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,
Bardziej szczegółowo1. Pięciu osobników pochodzi z populacji, w której pojedyncze życie podlega ryzyku śmierci
1. Pięciu osobników pochodzi z populacji, w której pojedyncze życie podlega ryzyku śmierci + t µ + t A + B 2. Wyznacz prawdopodobieństwo, że z grupy tej nikt nie umrze w ciągu najbliższych 5 lat, jeśli
Bardziej szczegółowoElementy teorii przeżywalności
Elementy teorii przeżywalności Zadanie 1.1 Zapisz 1. Prawdopodobieństwo, że noworodek umrze nie później niż w wieku 8 lat 2. P-two, że noworodek umrze nie później niż w wieku 3 lat 3. P-two, że noworodek
Bardziej szczegółowoAktuariat i matematyka finansowa. Metody kalkulacji składki w ubezpieczeniach typu non - life
Aktuariat i matematyka finansowa Metody kalkulacji składki w ubezpieczeniach typu non - life Budowa składki ubezpieczeniowej Składka ubezpieczeniowa cena jaką ubezpieczający płaci za ochronę ubezpieczeniowa
Bardziej szczegółowoUbez piecz enie ersalne saln D am a en e t n ow o a a S t S rat ra eg e i g a
Ubezpieczenie Uniwersalne Diamentowa Strategia 17 październik 2012 Diamentowa Strategia pozwoli Ci zabezpieczyć finansowo rodzinę przed utratą głównych dochodów w przypadku: inwalidztwa, poważnego zachorowania,
Bardziej szczegółowoPolitechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2017/2018
Politechnika Krakowska im. Tadeusza Kościuszki Karta przedmiotu obowiązuje studentów rozpoczynających studia w roku akademickim 2017/2018 Wydział Fizyki, Matematyki i Informatyki Kierunek studiów: Matematyka
Bardziej szczegółowo40:5. 40:5 = 500000υ5 5p 40, 40:5 = 500000 5p 40.
Portfele polis Poieważ składka jest ustalaa jako wartość oczekiwaa rzeczywistego, losowego kosztu ubezpieczeia, więc jest tym bliższa średiej wydatków im większa jest liczba ubezpieczoych Polisy grupuje
Bardziej szczegółowo1. Niech g(t) oznacza gęstość wymierania, od momentu narodzin, pewnej populacji mężczyzn. Demografowie zauważyli, że po drobnej modyfikacji: =
. Niech g(t) oznacza gęstość wymierania, od momentu narodzin, pewnej populacji mężczyzn. Demografowie zauważyli, że po drobnej modyfikacji: ~ 0,9g( t) 0 t < 50 g ( t) =,2 g( t) 50 t. opisuje ona śmiertelność
Bardziej szczegółowoUBEZPIECZ SIĘ, NAJLEPIEJ U MATEMATYKA
KARIERA MATEMATYKĄ KREŚLONA UBEZPIECZ SIĘ, NAJLEPIEJ U MATEMATYKA Ryzyko i ubezpieczenie Możliwość zajścia niechcianego zdarzenia nazywamy ryzykiem. Ryzyko prawie zawsze wiąże się ze stratą. Ryzyko i ubezpieczenie
Bardziej szczegółowoLX Egzamin dla Aktuariuszy z 28 maja 2012 r.
Komisja Egzaminacyjna dla Aktuariuszy LX Egzamin dla Aktuariuszy z 28 maja 2012 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa, 28
Bardziej szczegółowoElementy matematyki finansowej
ROZDZIAŁ 2 Elementy matematyki finansowej 1. Procent składany i ciągły Stopa procentowa i jest związana z podstawową jednostką czasu, jaką jest zwykle jeden rok. Jeśli pożyczamy komuś 100 zł na jeden rok,
Bardziej szczegółowoMatematyka ubezpieczeń życiowych r.
. W populacji, w której śmiertelnością rządzi prawo de Moivre a z wiekiem granicznym ω = 50, dzieckiem jest się do wieku d. W wieku d rozpoczyna się pracę i pracuje się do wieku p.w wieku p przechodzi
Bardziej szczegółowoAktuariat i matematyka finansowa. Rezerwy techniczno ubezpieczeniowe i metody ich tworzenia
Aktuariat i matematyka finansowa Rezerwy techniczno ubezpieczeniowe i metody ich tworzenia Tworzenie rezerw i ich wysokość wpływa na Obliczanie zysku dla potrzeb podatkowych, Sprawozdawczość dla udziałowców,
Bardziej szczegółowoMatematyka bankowa 2
1. Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki Uniwersytet Łódzki 2. Instytut Nauk Ekonomicznych i Informatyki Państwowa Wyższa Szkoła Zawodowa w Płocku Matematyka bankowa 2 średnio- i
Bardziej szczegółowo1. Oblicz prawdopodobieństwo zdarzenia, że noworodek wybrany z populacji, w której śmiertelnością rządzi prawo Gompertza
1. Oblicz prawdopodobieństwo zdarzenia, że noworodek wybrany z populacji, w której śmiertelnością rządzi prawo Gompertza x µ x = 06e. dożyje wieku największej śmiertelności (tzn. takiego wieku, w którym
Bardziej szczegółowoXXXX Egzamin dla Aktuariuszy z 9 października 2006 r.
Komisja Egzaminacyjna dla Aktuariuszy XXXX Egzamin dla Aktuariuszy z 9 października 2006 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,
Bardziej szczegółowoMetody aktuarialne - opis przedmiotu
Metody aktuarialne - opis przedmiotu Informacje ogólne Nazwa przedmiotu Metody aktuarialne Kod przedmiotu 11.5-WK-MATP-MA-W-S14_pNadGenEJ6TV Wydział Kierunek Wydział Matematyki, Informatyki i Ekonometrii
Bardziej szczegółowoLXXIV Egzamin dla Aktuariuszy z 23 maja 2016 r.
Komisja Egzaminacyjna dla Aktuariuszy LXXIV Egzamin dla Aktuariuszy z 23 maja 2016 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,
Bardziej szczegółowoXXXVIII Egzamin dla Aktuariuszy z 20 marca 2006 r.
Komisja Egzaminacyjna dla Aktuariuszy XXXVIII Egzamin dla Aktuariuszy z 20 marca 2006 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,
Bardziej szczegółowoXXXV Egzamin dla Aktuariuszy z 16 maja 2005 r.
Komisja Egzaminacyjna dla Aktuariuszy XXXV Egzamin dla Aktuariuszy z 6 maja 2005 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 00 minut Warszawa, 6
Bardziej szczegółowoLXXII Egzamin dla Aktuariuszy z 28 września 2015 r.
Komisja Egzaminacyjna dla Aktuariuszy LXXII Egzamin dla Aktuariuszy z 28 września 2015 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,
Bardziej szczegółowoTablice trwania życia
ROZDZIAŁ 3 Tablice trwania życia 1 Przyszły czas życia Osobę, która ukończyła x lat życia, będziemy nazywać x-latkiem i oznaczać symbolem x Jej przyszły czas życia, tzn od chwili x do chwili śmierci, będziemy
Bardziej szczegółowoLXV Egzamin dla Aktuariuszy z 30 września 2013 r.
Komisja Egzaminacyjna dla Aktuariuszy LXV Egzamin dla Aktuariuszy z 30 września 2013 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,
Bardziej szczegółowoLXIX Egzamin dla Aktuariuszy z 8 grudnia 2014 r.
Komisja Egzaminacyjna dla Aktuariuszy LXIX Egzamin dla Aktuariuszy z 8 grudnia 2014 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,
Bardziej szczegółowoUOGÓLNIONA MIARA DOPASOWANIA W MODELU LINIOWYM
UOGÓLNIONA MIARA DOPASOWANIA W MODELU LINIOWYM Wojciech Zieliński Katedra Ekonoetrii i Statystyki, SGGW Nowoursynowska 159, PL-0-767 Warszawa wojtekzielinski@statystykainfo Streszczenie: W odelu regresji
Bardziej szczegółowoKomisja Egzaminacyjna dla Aktuariuszy. XXXIX Egzamin dla Aktuariuszy z 5 czerwca 2006 r. Część I. Matematyka finansowa
Komisja Egzaminacyjna dla Aktuariuszy XXXIX Egzamin dla Aktuariuszy z 5 czerwca 006 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Inwestor dokonuje
Bardziej szczegółowoOGŁOSZENIE O ZMIANACH STATUTU MM PRIME AKCJI FIZ
Warszawa, nia 18 września 2014 r. OGŁOSZENIE O ZMIANACH STATUTU MM PRIME AKCJI FIZ Niniejszym MM Prime Towarzystwo Funuszy Inwestycyjnych Spółka Akcyjna z siezibą w Warszawie ogłasza poniższe zmiany statutu
Bardziej szczegółowozaliczenie na ocenę z elementarnej matematyki finansowej I rok MF, 21 czerwca 2012 godz. 8:15 czas trwania 120 min.
zaliczenie na ocenę z elementarnej matematyki finansowej I rok MF, 21 czerwca 2012 godz. 8:15 czas trwania 120 min. Imię nazwisko:... numer indeksu:... nr zadania zad.1 zad.2 zad.3 zad.4 zad.5 zad.6 zad.7
Bardziej szczegółowoLVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r.
Komisja Egzaminacyjna dla Aktuariuszy LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,
Bardziej szczegółowoO nauczaniu oceny niepewności standardowej
8 O nauczaniu oceny niepewności stanarowej Henryk Szyłowski Wyział Fizyki UAM, Poznań PROBLEM O lat 90. ubiegłego wieku istnieją mięzynaroowe normy oceny niepewności pomiarowych [, ], zawierające jenolitą
Bardziej szczegółowoKarta Produktu UBEZPIECZENIE NA ŻYCIE DLA KREDYTOBIORCÓW RAIFFEISEN BANK POLSKA S.A. R-BEZPIECZNA SPŁATA. Ubezpieczający: Ubezpieczony:
Karta Produktu UBEZPIECZENIE NA ŻYCIE DLA KREDYTOBIORCÓW RAIFFEISEN BANK POLSKA S.A. R-BEZPIECZNA SPŁATA Ubezpieczający: Osoba fizyczna, prowadząca działalność gospodarczą na podstawie wpisu do ewidencji
Bardziej szczegółowoRegulamin Opcje na stopy procentowe
Regulamin Opcje na stopy procentowe Warszawa, Listopa 2013 mank.pl Spis treści: Rozział I Postanowienia ogólne...3 Rozział II Warunki transakcji sprzeaży opcji na stopy procentowe...4 Rozział III Zasay
Bardziej szczegółowoArt Zakład ubezpieczeń udziela ochrony ubezpieczeniowej na podstawie umowy ubezpieczenia zawartej z ubezpieczającym. 2. Umowa ubezpieczenia
UMOWA UBEZPIECZENIA Art. 15. 1. Zakład ubezpieczeń udziela ochrony ubezpieczeniowej na podstawie umowy ubezpieczenia zawartej z ubezpieczającym. 2. Umowa ubezpieczenia ma charakter dobrowolny, z zastrzeżeniem
Bardziej szczegółowoXLIII Egzamin dla Aktuariuszy z 8 października 2007 r.
Komisja Egzaminacyjna dla Aktuariuszy XLIII Egzamin dla Aktuariuszy z 8 października 2007 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,
Bardziej szczegółowo1. Przyszła długość życia x-latka
Przyszła długość życia x-latka Rozważmy osobę mającą x lat; oznaczenie: (x) Jej przyszłą długość życia oznaczymy T (x), lub krótko T Zatem x+t oznacza całkowitą długość życia T jest zmienną losową, której
Bardziej szczegółowo0 Rachunek czasu. Informacje pierwotne: początkowa i końcowa data inwestycji.
0 Rachunek czasu Inforacje pierwotne: początkowa i końcowa data inwestycji. Konwencja: nie naliczay odsetek za początkowy dzień trwania inwestycji, naliczay za końcowy. Liczba dni trwania inwestycji liczba
Bardziej szczegółowoMatematyka finansowa 04.04.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część I
Komisja Egzaminacyjna dla Aktuariuszy LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.
Bardziej szczegółowoZabezpieczenie społeczne
Zabezpieczenie społeczne Zabezpieczenie społeczne - jako idea i przedmiot polityki Zabezpieczenie społeczne to całokształt środków i działań publicznych, za pomocą których społeczeństwo stara się chronić
Bardziej szczegółowoUMOWA UBEZPIECZENIA OSOBOWEGO
UMOWA UBEZPIECZENIA OSOBOWEGO zawarta w dniu... w..., pomiędzy: 1....... zwanym dalej Ubezpieczycielem a, 2....... zwanym dalej Ubezpieczającym, w dalszej części łącznie nazywani Stronami o następującej
Bardziej szczegółowoMatematyka ubezpieczeń życiowych r.
1. W danej populacji intensywność śmiertelności zmienia się skokowo w rocznicę narodzin i jest stała aż do następnych urodzin. Jaka jest oczekiwana liczba osób z kohorty miliona 60-latków, które umrą po
Bardziej szczegółowoKarta produktu Indywidualne Ubezpieczenie Uniwersalne DIAMENTOWA STRATEGIA
Karta produktu Indywidualne Ubezpieczenie Uniwersalne DIAMENTOWA STRATEGIA 1. Opis i charakter produktu Ubezpieczenie bezterminowe o charakterze ochronno-inwestycyjnym łączące szeroki zakres ochrony ubezpieczeniowej
Bardziej szczegółowo2,00 % 5,00 % 0,00 % 3,01 % 2,58 % 3,12 % ZAKUP podsumowanie najlepszych ofert. Strona 1 z ,29 zł 205,12 zł 203,83 zł. 0,00 zł 0,00 zł 0,00 zł
Jakub Misiewicz email: jakubmisiewicz@homebrokerpl telefon: Oferta przygotowana dnia: 06122015 (23:00) ZAKUP podsumowanie najlepszych ofert Parametry: Waluta: PLN, Kwota: 300 000, Wartość nieruchomości:
Bardziej szczegółowoUbezpieczenie na Życie POLISA DLA CIEBIE. Materiały szkoleniowe. Do użytku wewnętrznego
Ubezpieczenie na Życie POLISA DLA CIEBIE Atuty Dożywotnia ochrona na życie ze stałą składką Brak badań lekarskich Prosta forma zawarcia umowy Atrakcyjna prowizja dla Agenta Możliwość gromadzenia środków
Bardziej szczegółowo9 Funkcje Użyteczności
9 Funkcje Użyteczności Niech u(x) oznacza użyteczność wynikającą z posiadania x jednostek pewnego dobra. Z założenia, 0 jest punktem referencyjnym, czyli u(0) = 0. Należy to zinterpretować jako użyteczność
Bardziej szczegółowoRównania trygonometryczne z parametrem- inne spojrzenie
Agnieszka Zielińska aga7ziel@wppl Nauczyciel ateatyki w III Liceu Ogólnokształcący w Zaościu Równania trygonoetryczne z paraetre- inne spojrzenie Cele tego reeratu jest zapoznanie państwa z oii etodai
Bardziej szczegółowoKarta Produktu. Indywidualne Ubezpieczenie Następstw Nieszczęśliwych Wypadków - SPOKOJNY SEN dla Klientów Raiffeisen Bank Polska S.A.
Karta Produktu Indywidualne Ubezpieczenie Następstw Nieszczęśliwych Wypadków - SPOKOJNY SEN dla Klientów Raiffeisen Bank Polska S.A. Ubezpieczający : osoba fizyczna, która zawarła z Bankiem umowę o Produkt
Bardziej szczegółowoMUMIO Lab 6 (składki, kontrakt stop-loss)
MUMIO Lab 6 (składki, kontrakt stop-loss) 1. (6p.) Niech X oznacza ryzyko (zmienn a losow a o własności P (X 0) = 1), a H( ) niech oznacza formułȩ kalkulacji składki (przyporz adkowuj ac a każdemu ryzyku
Bardziej szczegółowoĆWICZENIE 4. WYZNACZANIE GĘSTOŚCI CIAŁ STAŁYCH I CIECZY PRZY POMOCY PIKNOMETRU Kraków, 2016
Krystyna Gronostaj Maria Nowotny-Różańska Zakła Fizyki, Uniwersytet Rolniczy o użytku wewnętrznego ĆWICZENIE 4 WYZNACZANIE GĘSTOŚCI CIAŁ STAŁYCH I CIECZY PRZY POMOCY PIKNOMETRU Kraków, 016 Spis treści:
Bardziej szczegółowoep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 6 Kalkulacja sk ladki netto II. Funkcje komutacyjne.
Wst ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 6 Kalkulacja sk ladki netto II. Funkcje komutacyjne. 1 Przypomnienie Umowa ubezpieczenia zawiera informacje o: Przedmiocie ubezpieczenia Czasie
Bardziej szczegółowoImmunizacja ryzyka stopy procentowej ubezpieczycieli życiowych
Immunizacja ryzyka stopy procentowej ubezpieczycieli życiowych Elżbieta Krajewska Instytut Matematyki Politechnika Łódzka Elżbieta Krajewska Immunizacja ubezpieczycieli życiowych 1/22 Plan prezentacji
Bardziej szczegółowoz przedziału 0,1 liczb dodatnich. Rozważmy dwie zmienne losowe:... ma złożony rozkład dwumianowy o parametrach 1,q i, gdzie X, wszystkie składniki X
Zadanie. Mamy dany ciąg liczb q, q,..., q n z przedziału 0,, oraz ciąg m, m,..., m n liczb dodatnich. Rozważmy dwie zmienne losowe: o X X X... X n, gdzie X i ma złożony rozkład dwumianowy o parametrach,q
Bardziej szczegółowoZadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami:
Zadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami: Pr(X 1 = 0) = 6/10, Pr(X 1 = 1) = 1/10, i gęstością: f(x) = 3/10 na przedziale (0, 1). Wobec tego Pr(X 1 + X 2 5/3) wynosi:
Bardziej szczegółowo