Egzamin dla Aktuariuszy z 6 grudnia 2003 r.
|
|
- Irena Maj
- 8 lat temu
- Przeglądów:
Transkrypt
1 Komisja Egzaminacyjna dla Aktuariuszy Egzamin dla Aktuariuszy z 6 grudnia 2003 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Ośrodek Doskonalenia Kadr Resortu Finansów, Warszawa 6 grudnia 2003 r.
2 1. Pożyczka w wysokości jest spłacana przez okres 20 lat według następującego planu: (i) (ii) w pierwszym 10 letnim okresie spłaty płatności w równych wysokościach są dokonywane na końcu każdego kwartału, w drugim 10 letnim okresie spłaty równe raty kapitałowe są płatne na końcu każdego kwartału, natomiast odsetki naliczone od bieżącego zadłużenia są płacone na początku każdego kwartału. Wiadomo, że efektywne oprocentowanie pożyczki wynosi 10% oraz 8%, odpowiednio w pierwszym oraz drugim 10 letnim okresie spłaty (ang. annual effective interest rate). Wiadomo też, że kwota zadłużenia według stanu na koniec 10 roku (po dokonaniu ostatniej płatności w pierwszym 10 letnim okresie spłaty, ale przed dokonaniem jakiejkolwiek płatności w drugim 10 letnim okresie spłaty) będzie wynosić Wyznacz łączną wysokość odsetek zapłaconych przez cały okres spłaty pożyczki. A B C D E
3 2. Informacje o wartości jednostki w czasie w pewnym funduszu inwestycyjnym zestawiono w poniższej tabeli: Data Wartość jednostki r r r r r Wiadomo, że do funduszu dokonywane są wpłaty wysokościach w dniu r. i w dniu r. oraz wypłaty w wysokościach w dniu r. i w dniu r. Wiadomo też, że w dniu r. wycofywane są wszystkie środki z funduszu i że w tym dniu następuje zakończenie okresu inwestowania. Oblicz, ile wynosi różnica pomiędzy stopą zwrotu z inwestowania środków w tym funduszu w 2002 r. wyznaczoną za pomocą metody kapitałowej (ang. dollar - weighted) oraz metody ważenia czasem (ang. time - weighted). A. 0.3% B. 12.3% C. 30.7% D. 32.8% E. 62.3% 2
4 3. Pożyczka w wysokości 1 jest spłacana przez okres n - lat przy użyciu wpłat dokonywanych do funduszu umorzeniowego (ang. sinking fund) oraz odsetek spłacanych na bieżąco. Zarówno wpłaty do funduszu umorzeniowego, jak i płatności odsetek dokonywane są na końcu każdego roku. Wiadomo, że fundusz umorzeniowy akumulowany jest w oparciu o efektywną roczną stopę procentową i (ang. annual effective interest rate). Wiadomo też, że odsetki naliczane są przy użyciu efektywnej rocznej stopy procentowej j. Wyznacz wysokość odsetek netto uzyskanych w ciągu pierwszych k lat (1 k n ), to jest różnicę pomiędzy odsetkami zapłaconymi a odsetkami zakumulowanymi w funduszu. Odpowiedź: ( Is ) A. k j i s k 1 i n i B. C. D. ( Is ) k j i s n i ( Is && ) k j i s k i k 1 i n i ( Is && ) k j i s n i k i E. żadna z odpowiedzi A, B, C, oraz D nie jest prawidłowa 3
5 4. Rozważmy ciąg nieskończony rent nieskończonych, o którym wiadomo, że płatności otrzymywane z tytułu k tej renty są stałe i wynoszą k, natomiast pierwsza płatność z jej tytułu wypłacana jest na końcu k tego roku ( { 1, 2,... } k ). Znajdź wartość obecną netto tego ciągu rent (ang. net present value) skalkulowaną przy użyciu efektywnej rocznej stopy procentowej i = 5.00% (ang. annual effective interest rate). A B C D E
6 5. Wiadomo, że inwestor ma otrzymać płatności odpowiednio w wysokościach 4 w chwili t 0 oraz ( m + 1) w chwili t = 2. Wiadomo też, że będzie musiał zapłacić 0 = 2 2 ( m 4 ) w chwili = 1. Podaj warunek konieczny i wystarczający dla parametru m, t 1 gwarantujący, że będą istniały dwie różne wewnętrzne stopy zwrotu rate of return) spełniające równocześnie następujące warunki: oraz i (ang. internal i1 2 (i) każda z nich będzie większa od 25%, (ii) każda z nich będzie mniejsza od 100%, (iii) ich suma będzie mniejsza od 150%. Odpowiedź: 10 A. m ; 3 B. m ( 0;+ ) 10 3 C. m ; ( 0; + ) 8 3 D. m ; ( 0; + ) E. żadna z odpowiedzi A, B, C oraz D nie jest prawidłowa 5
7 6. Inwestor rozważa zakup 51 letniej renty pewnej natychmiast płatnej o płatnościach r k otrzymywanych na końcu każdego roku zadanych wzorem: r k { 2k;38} dla k { 1; 2;...; 26} dla k { 29; 30;...; 40} 2 dla k { 41; 42;...; } min = 26 rk 1 51 Wiadomo też, że płatności otrzymane na końcu roku 27 oraz 28 wynoszą odpowiednio 34 oraz 30. Oblicz cenę brutto tej renty, jeśli wiadomo, że jej cena netto stanowi 80% ceny brutto i jest równa wartości obecnej netto (ang. net present value). W kalkulacji użyto efektywnej rocznej stopy procentowej i = 10% (ang. annual effective interest rate). A B C D E
8 7. Pożyczkobiorca zaciągnął kredyt w wysokości L = na okres 14 lat. Kredyt miał być spłacony przy użyciu renty pewnej natychmiast płatnej o równych płatnościach R 1 dokonywanych na końcu każdego roku. Przy kalkulacji wysokości płatności R 1 założono, że efektywna roczna stopa procentowa (ang. annual effective interest rate) będzie wynosić i 1 = 5% oraz i 2 = 10% odpowiednio w pierwszym oraz drugim 7 letnim okresie spłaty. Po zapłaceniu 3 rat postanowiono, że pożyczkobiorca dodatkowo pożyczy oraz że spłaci całość zadłużenia równymi płatnościami R 2 dokonywanymi na końcu każdego roku przez okres 20 lat licząc od tej chwili. Wiadomo też, że przy kalkulacji wysokości płatności R 2 użyto efektywnej rocznej stopy procentowej i 3 = 15%. Oblicz R 2. A B C D E
9 8. Sprawdź, które z poniższych tożsamości są prawdziwe: (i) v n ( n d + 1) = i 2 i n t= 1 (ii) + t k k 1 i s (1 i ) = k (1+ i ) (1+ i ) k i t= 1 t= 1 v t t k (iii) t 1 + = ( t δ ) (1 i ) t δ k=0 k! k Odpowiedź: A. tylko (i) B. tylko (ii) C. tylko (iii) D. tylko (i) oraz (iii) E. żadna z odpowiedzi A, B, C oraz D nie jest prawdziwa Uwaga: f x oznacza pochodną funkcji f liczoną po argumencie x. 8
10 9. Cena europejskiej opcji call akcji firmy X zostaje wyznaczona przy zastosowaniu modelu dwumianowego. Oblicz cenę europejskiej opcji call firmy X, jeśli wiadomo, że termin wykonania wynosi 2 lata i że cena wykonania jest równa Wiadomo też, że: (i) obecna cena akcji wynosi 100, (ii) w każdym z 2 lat cena akcji może zmienić się o 20% w odniesieniu do jej wartości z początku roku, a prawdopodobieństwa zmian są takie same w każdym roku, (iii) cena europejskiej opcji call firmy X o rocznym terminie wykonania i cenie wykonania równej wyznaczona przy zastosowaniu modelu dwumianowego wynosi 9.09, (iv) efektywna roczna stopa procentowa (ang. annual effective interest rate) wynosi i = 10.00%. A B C D E
11 10. Natężenie oprocentowania (ang. force of interest) zadane jest wzorem: 1 2 δ t = + dla t > 0. t 2t e e Wyznacz efektywną roczną stopę zwrotu (ang. annual effective interest rate) w ciągu 3 roku trwania inwestycji, to jest w okresie pomiędzy t = oraz t = A. 2.7% B. 4.7% C. 6.7% D. 8.7% E. 10.7% 10
12 Egzamin dla Aktuariuszy z 6 grudnia 2003 r. Matematyka finansowa Arkusz odpowiedzi * Imię i nazwisko:...klucz odpowiedzi... Pesel:... Zadanie nr Odpowiedź Punktacja 1 A 2 E 3 A 4 E 5 E 6 C 7 D 8 C 9 A 10 B * Oceniane są wyłącznie odpowiedzi umieszczone w Arkuszu odpowiedzi. Wypełnia Komisja Egzaminacyjna. 11
Egzamin XXVII dla Aktuariuszy z 12 października 2002 r.
Komisja Egzaminacyjna dla Aktuariuszy Egzamin XXVII dla Aktuariuszy z 12 października 2002 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Ośrodek Doskonalenia
Matematyka finansowa 17.05.2003
1. Na początku roku (w chwili t = 0 ) portfel pewnego funduszu inwestycyjnego składa się z 40% obligacji typu I oraz 60% obligacji typu II. O obligacjach typu I oraz typu II wiadomo, że: (i) obligacja
Matematyka finansowa 10.12.2012 r. Komisja Egzaminacyjna dla Aktuariuszy. LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r.
Komisja Egzaminacyjna dla Aktuariuszy LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.
Matematyka finansowa 11.10.2004 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r.
Komisja Egzaminacyjna dla Aktuariuszy XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... WERSJA TESTU Czas egzaminu: 100 minut
Matematyka finansowa 05.12.2005 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXVII Egzamin dla Aktuariuszy z 5 grudnia 2005 r.
Komisja Egzaminacyjna dla Aktuariuszy XXXVII Egzamin dla Aktuariuszy z 5 grudnia 2005 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... WERSJA TESTU A Czas egzaminu: 100 minut 1 1.
Matematyka finansowa 30.09.2013 r. Komisja Egzaminacyjna dla Aktuariuszy. LXV Egzamin dla Aktuariuszy z 30 września 2013 r.
Komisja Egzaminacyjna dla Aktuariuszy LXV Egzamin dla Aktuariuszy z 30 września 2013 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.
Komisja Egzaminacyjna dla Aktuariuszy. XLIV Egzamin dla Aktuariuszy z 3 grudnia 2007 r. Część I. Matematyka finansowa
Komisja Egzaminacyjna dla Aktuariuszy XLIV Egzamin dla Aktuariuszy z 3 grudnia 2007 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Rachunki oszczędnościowe
Matematyka finansowa 15.12.2008 r. Komisja Egzaminacyjna dla Aktuariuszy. XLVIII Egzamin dla Aktuariuszy z 15 grudnia 2008 r.
Komisja Egzaminacyjna dla Aktuariuszy XLVIII Egzamin dla Aktuariuszy z 15 grudnia 2008 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1
Komisja Egzaminacyjna dla Aktuariuszy. XXXIX Egzamin dla Aktuariuszy z 5 czerwca 2006 r. Część I. Matematyka finansowa
Komisja Egzaminacyjna dla Aktuariuszy XXXIX Egzamin dla Aktuariuszy z 5 czerwca 006 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Inwestor dokonuje
Matematyka finansowa 13.12.2010 r. Komisja Egzaminacyjna dla Aktuariuszy. LV Egzamin dla Aktuariuszy z 13 grudnia 2010 r. Część I
Komisja Egzaminacyjna dla Aktuariuszy LV Egzamin dla Aktuariuszy z 13 grudnia 2010 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Pan
Matematyka finansowa 03.10.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVIII Egzamin dla Aktuariuszy z 3 października 2011 r.
Komisja Egzaminacyjna dla Aktuariuszy LVIII Egzamin dla Aktuariuszy z 3 października 2011 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut
Matematyka finansowa 26.05.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część I
Komisja Egzaminacyjna dla Aktuariuszy LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Przyjmijmy
Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXI Egzamin dla Aktuariuszy z 1 października 2012 r.
Komisja Egzaminacyjna dla Aktuariuszy LXI Egzamin dla Aktuariuszy z 1 października 2012 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1
Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXIV Egzamin dla Aktuariuszy z 17 czerwca 2013 r.
Komisja Egzaminacyjna dla Aktuariuszy LXIV Egzamin dla Aktuariuszy z 17 czerwca 2013 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 0 minut 1 1. Rozważamy
Matematyka finansowa 04.04.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część I
Komisja Egzaminacyjna dla Aktuariuszy LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.
Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. XLIX Egzamin dla Aktuariuszy z 6 kwietnia 2009 r.
Komisja Egzaminacyjna dla Aktuariuszy XLIX Egzamin dla Aktuariuszy z 6 kwietnia 2009 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.
Matematyka finansowa 15.06.2015 r. Komisja Egzaminacyjna dla Aktuariuszy. LXXI Egzamin dla Aktuariuszy z 15 czerwca 2015 r.
Komisja Egzaminacyjna dla Aktuariuszy LXXI Egzamin dla Aktuariuszy z 1 czerwca 201 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Pracownik
Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXIII Egzamin dla Aktuariuszy z 25 marca 2013 r. Część I
Komisja Egzaminacyjna dla Aktuariuszy LXIII Egzamin dla Aktuariuszy z 25 marca 2013 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.
Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. L Egzamin dla Aktuariuszy z 5 października 2009 r.
Komisja Egzaminacyjna dla Aktuariuszy L Egzamin dla Aktuariuszy z 5 października 2009 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 0 minut 1 1.
Komisja Egzaminacyjna dla Aktuariuszy LXX Egzamin dla Aktuariuszy z 23 marca 2015 r. Część I Matematyka finansowa
Komisja Egzaminacyjna dla Aktuariuszy LXX Egzamin dla Aktuariuszy z 23 marca 2015 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Rozważmy
Komisja Egzaminacyjna dla Aktuariuszy XXXV Egzamin dla Aktuariuszy z 16 maja 2005 r. Część I Matematyka finansowa
Komisja Egzaminacyjna dla Aktuariuszy XXXV Egzamin dla Aktuariuszy z 6 maja 005 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... WERSJA TESTU A Czas egzaminu: 00 minut . Inwestorzy
Matematyka finansowa 08.01.2007 r. Komisja Egzaminacyjna dla Aktuariuszy. XLI Egzamin dla Aktuariuszy z 8 stycznia 2007 r. Część I
Komisja Egzaminacyjna dla Aktuariuszy XLI Egzamin dla Aktuariuszy z 8 stycznia 2007 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 00 minut . Ile
Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXXIII Egzamin dla Aktuariuszy z 7 marca 2016 r. Część I
Komisja Egzaminacyjna dla Aktuariuszy LXXIII Egzamin dla Aktuariuszy z 7 marca 2016 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.
LIII Egzamin dla Aktuariuszy z 31 maja 2010 r.
Komisja Egzaminacyjna dla Aktuariuszy LIII Egzamin dla Aktuariuszy z 31 maja 2010 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,
Egzamin dla Aktuariuszy z 16 listopada 1996 r.
Komisja Egzaminacyjna dla Aktuariuszy Egzamin dla Aktuariuszy z 16 listopada 1996 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:.... Czas egzaminu: l OO minut Ośrodek Doskonalenia
Matematyka finansowa 8.12.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXIX Egzamin dla Aktuariuszy z 8 grudnia 2014 r. Część I
Komisja Egzaminacyjna dla Aktuariuszy LXIX Egzamin dla Aktuariuszy z 8 grudnia 2014 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.
Komisja Egzaminacyjna dla Aktuariuszy. XXXII Egzamin dla Aktuariuszy z 7 czerwca 2004 r. Część I. Matematyka finansowa
Komisja Egzaminacyjna dla Aktuariuszy XXXII Egzamin dla Aktuariuszy z 7 czerwca 2004 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Trzy osoby biorą
LIV Egzamin dla Aktuariuszy z 4 października 2010 r.
Komisja Egzaminacyjna dla Aktuariuszy LIV Egzamin dla Aktuariuszy z 4 października 2010 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:...klucz odpowiedzi... Czas egzaminu:
Matematyka ubezpieczeń życiowych 17 marca 2008 r.
1. Niech oznacza przeciętne dalsze trwanie życia w ciągu najbliższego roku obliczone przy założeniu hipotezy interpolacyjnej o stałym natężeniu wymierania między wiekami całkowitymi. Podobnie niech oznacza
Egzamin dla Aktuariuszy z 19 cze1,\ ?99 r. Matematyka finansowa. Czas 1.:gzammu I OO mm ut. Część I. Imię i nazwisko osoby egzaminowanej:...
' ~;< \.._~l Komisja Egzaminacyjna dla Ak!Uariuszy ~~. Egzamin dla Aktuariuszy z 19 cze1,\ 1?99 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:..................... Czas 1.:gzammu
LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r.
Komisja Egzaminacyjna dla Aktuariuszy LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,
Egzamin dla Aktuariuszy z 26 października 1996 r.
Komisja Egzaminacyjna dla Aktuariuszy Egzamin dla Aktuariuszy z 26 października 1996 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:.... Czas egzaminu: l OO minut Ośrodek Doskonalenia
XLIV Egzamin dla Aktuariuszy z 3 grudnia 2007 r.
Komisja Egzaminacyjna dla Aktuariuszy XLIV Egzamin dla Aktuariuszy z 3 grudnia 2007 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,
XXXX Egzamin dla Aktuariuszy z 9 października 2006 r.
Komisja Egzaminacyjna dla Aktuariuszy XXXX Egzamin dla Aktuariuszy z 9 października 2006 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,
LIX Egzamin dla Aktuariuszy z 12 marca 2012 r.
Komisja Egzaminacyjna dla Aktuariuszy LIX Egzamin dla Aktuariuszy z 12 marca 2012 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,
LXVIII Egzamin dla Aktuariuszy z 29 września 2014 r.
Komisja Egzaminacyjna dla Aktuariuszy LXVIII Egzamin dla Aktuariuszy z 29 września 2014 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,
LXIX Egzamin dla Aktuariuszy z 8 grudnia 2014 r.
Komisja Egzaminacyjna dla Aktuariuszy LXIX Egzamin dla Aktuariuszy z 8 grudnia 2014 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,
LIII Egzamin dla Aktuariuszy z 31 maja 2010 r.
Komisja Egzaminacyjna dla Aktuariuszy LIII Egzamin dla Aktuariuszy z 31 maja 2010 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:. Czas egzaminu: 100 minut Warszawa, 31
XXXV Egzamin dla Aktuariuszy z 16 maja 2005 r.
Komisja Egzaminacyjna dla Aktuariuszy XXXV Egzamin dla Aktuariuszy z 6 maja 2005 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 00 minut Warszawa, 6
zaliczenie na ocenę z elementarnej matematyki finansowej I rok MF, 21 czerwca 2012 godz. 8:15 czas trwania 120 min.
zaliczenie na ocenę z elementarnej matematyki finansowej I rok MF, 21 czerwca 2012 godz. 8:15 czas trwania 120 min. Imię nazwisko:... numer indeksu:... nr zadania zad.1 zad.2 zad.3 zad.4 zad.5 zad.6 zad.7
Egzamin dla Aktuariuszy z 7 grudnia 1996 r.
Komisja Egzaminacyjna dla Aktuariuszy Egzamin dla Aktuariuszy z 7 grudnia 1996 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:....... Czas egzaminu: 100 minut Ośrodek Doskonalenia
LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r.
Komisja Egzaminacyjna dla Aktuariuszy LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,
Matematyka finansowa 20.06.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVII Egzamin dla Aktuariuszy z 20 czerwca 2011 r.
Komisja Egzaminacyjna dla Aktuariuszy LVII Egzamin dla Aktuariuszy z 20 czerwca 2011 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.
XXXVIII Egzamin dla Aktuariuszy z 20 marca 2006 r.
Komisja Egzaminacyjna dla Aktuariuszy XXXVIII Egzamin dla Aktuariuszy z 20 marca 2006 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,
LVII Egzamin dla Aktuariuszy z 20 czerwca 2011 r.
Komisja Egzaminacyjna dla Aktuariuszy LVII Egzamin dla Aktuariuszy z 20 czerwca 2011 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,
Elementy matematyki finansowej w programie Maxima
Maxima-03_windows.wxm 1 / 8 Elementy matematyki finansowej w programie Maxima 1 Wartość pieniądza w czasie Umiejętność przenoszenia kwot pieniędzy w czasie, a więc obliczanie ich wartości na dany moment,
1. Niech g(t) oznacza gęstość wymierania, od momentu narodzin, pewnej populacji mężczyzn. Demografowie zauważyli, że po drobnej modyfikacji: =
. Niech g(t) oznacza gęstość wymierania, od momentu narodzin, pewnej populacji mężczyzn. Demografowie zauważyli, że po drobnej modyfikacji: ~ 0,9g( t) 0 t < 50 g ( t) =,2 g( t) 50 t. opisuje ona śmiertelność
Matematyka ubezpieczeń życiowych r.
1. W danej populacji intensywność śmiertelności zmienia się skokowo w rocznicę narodzin i jest stała aż do następnych urodzin. Jaka jest oczekiwana liczba osób z kohorty miliona 60-latków, które umrą po
LXI Egzamin dla Aktuariuszy z 1 października 2012 r.
Komisja Egzaminacyjna dla Aktuariuszy LXI Egzamin dla Aktuariuszy z 1 października 2012 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,
= µ. Niech ponadto. M( s) oznacza funkcję tworzącą momenty. zmiennej T( x), dla pewnego wieku x, w populacji A. Wówczas e x wyraża się wzorem: 1
1. W populacji B natężenie wymierania µ ( B ) x jest większe od natężenia wymierania ( A) µ x w populacji A, jednostajnie o µ > 0, dla każdego wieku x tzn. ( B) ( A) µ µ x = µ. Niech ponadto x M( s) oznacza
System finansowy gospodarki. Zajęcia nr 6 Matematyka finansowa
System finansowy gospodarki Zajęcia nr 6 Matematyka finansowa Rachunek rentowy (annuitetowy) Mianem rachunku rentowego określa się regularne płatności w stałych odstępach czasu przy założeniu stałej stopy
LXIII Egzamin dla Aktuariuszy z 25 marca 2013 r.
Komisja Egzaminacyjna dla Aktuariuszy LXIII Egzamin dla Aktuariuszy z 25 marca 2013 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,
1. Jaką kwotę zgromadzimy po 3 latach na lokacie bankowej jeśli roczna NSP wynosi 4%, pierwsza wpłata wynosi 300 zl i jest dokonana na poczatku
1. Jaką kwotę zgromadzimy po 3 latach na lokacie bankowej jeśli roczna NSP wynosi 4%, pierwsza wpłata wynosi 300 zl i jest dokonana na poczatku miesiąca a każda następna miesięczna wpłata jest (a) Większa
LXXV Egzamin dla Aktuariuszy z 5 grudnia 2016 r.
Komisja Egzaminacyjna dla Aktuariuszy LXXV Egzamin dla Aktuariuszy z 5 grudnia 2016 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,
LXX Egzamin dla Aktuariuszy z 23 marca 2015 r.
Komisja Egzaminacyjna dla Aktuariuszy LXX Egzamin dla Aktuariuszy z 23 marca 2015 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,
XLVIII Egzamin dla Aktuariuszy z 15 grudnia 2008 r.
Komisja Egzaminacyjna dla Aktuariuszy XLVIII Egzamin dla Aktuariuszy z 15 grudnia 2008 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,
mgr Katarzyna Niewińska; Wydział Zarządzania UW Ćwiczenia 3
Ćwiczenia 3 Rachunek rentowy Jako rachunek rentowy traktuje się regularne płatności płacone w stałych przedziałach czasu przy czym towarzyszy temu stała stopa procentowa. Wykorzystanie: renty; płatności
Matematyka ubezpieczeń życiowych r.
. W populacji, w której śmiertelnością rządzi prawo de Moivre a z wiekiem granicznym ω = 50, dzieckiem jest się do wieku d. W wieku d rozpoczyna się pracę i pracuje się do wieku p.w wieku p przechodzi
XXXVII Egzamin dla Aktuariuszy z 5 grudniaa 2005 r.
Komisja Egzaminacyjna dla Aktuariuszy XXXVII Egzamin dla Aktuariuszy z 5 grudniaa 2005 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,
LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r.
Komisja Egzaminacyjna dla Aktuariuszy LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,
XXXIII Egzamin dla Aktuariuszy z 17 stycznia 2005 r.
Komisja Egzaminacyjna dla Aktuariuszy XXXIII Egzamin dla Aktuariuszy z 17 stycznia 2005 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,
LX Egzamin dla Aktuariuszy z 28 maja 2012 r.
Komisja Egzaminacyjna dla Aktuariuszy LX Egzamin dla Aktuariuszy z 28 maja 2012 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa, 28
XXXVI Egzamin dla Aktuariuszy z 10 października 2005 r.
Komisja Egzaminacyjna dla Aktuariuszy XXXVI Egzamin dla Aktuariuszy z 10 października 2005 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut
Matematyka I dla DSM zbiór zadań
I Sumowanie skończone W zadaniach -4 obliczyć podaną sumę. Matematyka I dla DSM zbiór zadań do użytku wewnętrznego dr Leszek Rudak Uniwersytet Warszawski Wydział Zarządzania. 5 i. i= 4 i 3. i= 5 ( ) i
LXXII Egzamin dla Aktuariuszy z 28 września 2015 r.
Komisja Egzaminacyjna dla Aktuariuszy LXXII Egzamin dla Aktuariuszy z 28 września 2015 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,
LXXIV Egzamin dla Aktuariuszy z 23 maja 2016 r.
Komisja Egzaminacyjna dla Aktuariuszy LXXIV Egzamin dla Aktuariuszy z 23 maja 2016 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,
XLVII Egzamin dla Aktuariuszy z 6 października 2008 r.
Komisja Egzaminacyjna dla Aktuariuszy XLVII Egzamin dla Aktuariuszy z 6 października 2008 r. Część II Matematyka ubezpieczeń Ŝyciowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,
Matematyka finansowa 04.10.2010 r. Komisja Egzaminacyjna dla Aktuariuszy. LIV Egzamin dla Aktuariuszy z 4 października 2010 r.
Komisa Egzaminacyna dla Aktuariuszy LIV Egzamin dla Aktuariuszy z 4 października 2010 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowane:... Czas egzaminu: 100 minut 1 1.
XLIII Egzamin dla Aktuariuszy z 8 października 2007 r.
Komisja Egzaminacyjna dla Aktuariuszy XLIII Egzamin dla Aktuariuszy z 8 października 2007 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,
1. Pięciu osobników pochodzi z populacji, w której pojedyncze życie podlega ryzyku śmierci
1. Pięciu osobników pochodzi z populacji, w której pojedyncze życie podlega ryzyku śmierci + t µ + t A + B 2. Wyznacz prawdopodobieństwo, że z grupy tej nikt nie umrze w ciągu najbliższych 5 lat, jeśli
FORMULARZ INFORMACYJNY DOTYCZĄCY KREDYTU KONSUMENCKIEGO 1. Imię, nazwisko (nazwa) i adres (siedziba) kredytodawcy lub pośrednika kredytowego
FORMULARZ INFORMACYJNY DOTYCZĄCY KREDYTU KONSUMENCKIEGO 1. Imię, nazwisko (nazwa) i adres (siedziba) kredytodawcy lub pośrednika kredytowego Kredytodawca: Adres: (siedziba) Numer telefonu: Dane identyfikacyjne:
FORMULARZ INFORMACYJNY DOTYCZĄCY KREDYTU KONSUMENCKIEGO
FORMULARZ INFORMACYJNY DOTYCZĄCY KREDYTU KONSUMENCKIEGO 1. Imię, nazwisko (nazwa) i adres (siedziba) kredytodawcy lub pośrednika kredytowego Kredytodawca: Dane identyfikacyjne: (Adres, z którego ma korzystać
Zadania do wykładu Matematyka bankowa 2
Zadania do wykładu Matematyka bankowa 2 Dorota Klim Department of Nonlinear Analysis, Faculty of Mathematics and Computer Science, University of Łódź, Banacha 22, 90-238 Łódź, Poland E-mail address: klimdr@math.uni.ldz.pl
LXVI Egzamin dla Aktuariuszy z 10 marca 2014 r.
Komisja Egzaminacyjna dla Aktuariuszy LXVI Egzamin dla Aktuariuszy z 10 marca 2014 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,
1. Oblicz prawdopodobieństwo zdarzenia, że noworodek wybrany z populacji, w której śmiertelnością rządzi prawo Gompertza
1. Oblicz prawdopodobieństwo zdarzenia, że noworodek wybrany z populacji, w której śmiertelnością rządzi prawo Gompertza x µ x = 06e. dożyje wieku największej śmiertelności (tzn. takiego wieku, w którym
Akademia Młodego Ekonomisty Matematyka finansowa dla liderów Albert Tomaszewski Grupy 1-2 Zadanie 1.
Grupy 1-2 Zadanie 1. Sprawdźcie ofertę dowolnych 5 banków i wybierzcie najlepszą ofertę oszczędnościową (lokatę lub konto oszczędnościowe). Obliczcie, jaki zwrot przyniesie założenie jednej takiej lokaty
Nauka o finansach. Prowadzący: Dr Jarosław Hermaszewski
Nauka o finansach Prowadzący: Dr Jarosław Hermaszewski WARTOŚĆ PIENIĄDZA W CZASIE Wykład 4 Prawda ekonomiczna Pieniądz, który mamy realnie w ręku, dziś jest wart więcej niż oczekiwana wartość tej samej
Rachunek rent. Pojęcie renty. Wartość początkowa i końcowa renty. Renty o stałych ratach. Renta o zmiennych ratach. Renta uogólniona.
Temat: Rachunek rent. Pojęcie renty. Wartość początkowa i końcowa renty. Renty o stałych ratach. Renta o zmiennych ratach. Renta uogólniona. Zadanie Przez 2 lata na koniec każdego miesiąca wpłacamy 200
FORMULARZ INFORMACYJNY DOTYCZĄCY KREDYTU KONSUMENCKIEGO. 1. Imię, nazwisko (nazwa) i adres (siedziba) kredytodawcy lub pośrednika kredytowego
FORMULARZ INFORMACYJNY DOTYCZĄCY KREDYTU KONSUMENCKIEGO 1. Imię, nazwisko (nazwa) i adres (siedziba) kredytodawcy lub pośrednika kredytowego Kredytodawca: Adres: (siedziba) Numer telefonu: Adres poczty
LXV Egzamin dla Aktuariuszy z 30 września 2013 r.
Komisja Egzaminacyjna dla Aktuariuszy LXV Egzamin dla Aktuariuszy z 30 września 2013 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,
10. / 42! 1 A$!! )$$$% 0 " + 42 + 1 +! "!" 1!" ""!1!!!!42 % "" t "1%/4( " +. 7 4'8 A. 5.62 B. 5.67 C. 5.72 D. 5.77 E. 5.82
Matematyka finansowa 09.12.2000 r. 10. / 42! 1 A$!! )$$$% 0 " + 42 + 1 +! "!" 1!" ""!1!!!!42 % "" * t "1%/4( " + i 10%. 7 4'8 A. 5.62 B. 5.67 C. 5.72 D. 5.77 E. 5.82 10 Matematyka finansowa 24.03.2001
Spis treści. Strona 2 z 9
XXX Sp. z o.o. Dokumentacja transakcji pomiędzy podmiotami powiązanymi za rok dotycząca udzielenia XXX Produkcja Sp. z o.o. pożyczki przez XXX Sp. z o.o. Spis treści Spis treści...2 Podstawa prawna...
WERSJA TESTU A. Komisja Egzaminacyjna dla Aktuariuszy. XLV Egzamin dla Aktuariuszy z 17 marca 2008 r. Część I. Matematyka finansowa
Komisja Egzaminacyjna dla Aktuariuszy XLV Egzamin dla Aktuariuszy z 17 marca 2008 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. RozwaŜmy
System finansowy gospodarki. Zajęcia nr 7 Krzywa rentowności, zadania (mat. fin.), marża w handlu, NPV i IRR, obligacje
System finansowy gospodarki Zajęcia nr 7 Krzywa rentowności, zadania (mat. fin.), marża w handlu, NPV i IRR, obligacje Krzywa rentowności (dochodowości) Yield Curve Krzywa ta jest graficznym przedstawieniem
2.1 Wartość Aktualna Renty Stałej
2.1 Wartość Aktualna Renty Stałej Zakładamy że dana osoba ma dostać kwotę o stałej wartości nominalnej x przez N okresów (zwykle miesięcznie lub rocznie), np. stała renta/emerytura. Zakładamy że pierwsza
(Adres, z którego ma korzystać konsument) Aasa Polska S.A. Hrubieszowska 2, Warszawa.
FORMULARZ INFORMACYJNY DOTYCZĄCY KREDYTU KONSUMENCKIEGO 1. Imię, nazwisko (nazw a) i adres kredytodawcy lub pośrednika kredytowego Kredytodawca Adres strony internetowej: Pośrednik kredytowy:* (Adres,
Zadania do wykładu Matematyka bankowa 2
Zadania do wykładu Matematyka bankowa 2 Dorota Klim Instytut Matematyki i Informatyki, PWSZ w Płocku E-mail address: klimdr@math.uni.ldz.pl http://math.uni.lodz.pl/ klimdr/ Bibliografia [1] M. Podgórska,
Nobilon Sp. z o.o. KRS , NIP , REGON ul. Łęgska 4, Włocławek Numer telefonu:
Formularz informacyjny dotyczący kredytu konsumenckiego. 1. Imię, nazwisko (nazwa) i adres (siedziba) kredytodawcy lub pośrednika kredytowego Kredytodawca: Nobilon Sp. z o.o. KRS 0000592391, NIP 8883123968,
OPŁACALNOŚĆ INWESTYCJI
3/27/2011 Ewa Kusideł ekusidel@uni.lodz.pl 1 OPŁACALNOŚĆ INWESTYCJI www.kep.uni.lodz.pl\ewakusidel 3/27/2011 Inwestycje i ryzyko na rynku nieruchomości 2 Inwestycja Inwestycja Nakład na zwiększenie lub
www.pokonac-rynek.pl Wzory - matematyka finansowa Opracował: Łukasz Zymiera
www.pokonac-rynek.pl Wzory - matematyka finansowa Opracował: Łukasz Zymiera Wartość pieniądza w czasie MWP mnożnik wartości przyszłej MWO mnożnik wartości obecnej MWPR mnożnik wartości przyszłej renty
I N F O R M A C J A O SYTUACJI FINANSOWEJ GMINY NA DZIEŃ 30 WRZEŚNIA 2005 ROKU
I N F O R M A C J A O SYTUACJI FINANSOWEJ GMINY NA DZIEŃ 30 WRZEŚNIA 2005 ROKU Na dzień 30 września 2005 roku zadłużenie gminy Rawicz z tytułu podpisanych umów pożyczek wynosi 7.125.000 zł. W czwartym
Elementy matematyki finansowej
ROZDZIAŁ 2 Elementy matematyki finansowej 1. Procent składany i ciągły Stopa procentowa i jest związana z podstawową jednostką czasu, jaką jest zwykle jeden rok. Jeśli pożyczamy komuś 100 zł na jeden rok,
Standardowy arkusz informacyjny dotyczący kredytu konsumenckiego.
Standardowy arkusz informacyjny dotyczący kredytu konsumenckiego. 1. Dane identyfikacyjne i kontaktowe dotyczące kredytodawcy Kredytodawca: Pożycz tu sp. z o.o. KRS 0000607024, REGON 363941320 NIP 5732862436
Formularz informacyjny dotyczący kredytu konsumenckiego
Formularz informacyjny dotyczący kredytu konsumenckiego 1.Imię, nazwisko (nazwa) i adres (siedziba) kredytodawcy lub pośrednika kredytowego KREDYTODAWCA: Adres: POLI INVEST Spółka z ograniczoną odpowiedzialnością
Dane identyfikacyjne: (Adres, z którego ma korzystać konsument) nie dotyczy
FORMULARZ INFORMACYJNY DOTYCZĄCY KREDYTU KONSUMENCKIEGO 1. Imię, nazwisko (nazwa) i adres (siedziba) kredytodawcy lub pośrednika kredytowego Dane identyfikacyjne: Kredytodawca: Aasa Polska S.A. Adres:
Dane identyfikacyjne: (Adres, z którego ma korzystać konsument) nie dotyczy
4FORMULARZ INFORMACYJNY DOTYCZĄCY KREDYTU KONSUMENCKIEGO 1. Imię, nazwisko (nazwa) i adres (siedziba) kredytodawcy lub pośrednika kredytowego Dane identyfikacyjne: Kredytodawca: Aasa Polska S.A. Adres:
FORMULARZ INFORMACYJNY DOTYCZĄCY KREDYTU KONSUMENCKIEGO
FORMULARZ INFORMACYJNY DOTYCZĄCY KREDYTU KONSUMENCKIEGO 1. Imię, nazwisko (nazwa) i adres (siedziba) kredytodawcy lub pośrednika kredytowego Kredytodawca: Adres: (siedziba) Numer telefonu: radres poczty
Formularz informacyjny
Formularz informacyjny Formularz dotyczący kredytu konsumenckiego 1. Imię, nazwisko (nazwa) i adres (siedziba) kredytodawcy lub pośrednika kredytowego Kredytodawca: Dane identyfikacyjne: (Adres, z którego
I = F P. P = F t a(t) 1
6. Modele wartości pieniądza w czasie. Współczynnik akumulacji kapitału. Kapitalizacja okresowa, kapitalizacja ciągła. Wartość bieżąca, wartość przyszła. Pojęcia kredytu, renty, renty wieczystej, zadłużenia
ZAŁĄCZNIK NR 2 FORMULARZ INFORMACYJNY DOTYCZĄCY KREDYTU KONSUMENCKIEGO
ZAŁĄCZNIK NR 2 FORMULARZ INFORMACYJNY DOTYCZĄCY KREDYTU KONSUMENCKIEGO 1. Imię, nazwisko (nazwa) i adres (siedziba) kredytodawcy lub pośrednika kredytowego Kredytodawca: Dane identyfikacyjne: SOLVEN Finance