1. Jaką kwotę zgromadzimy po 3 latach na lokacie bankowej jeśli roczna NSP wynosi 4%, pierwsza wpłata wynosi 300 zl i jest dokonana na poczatku
|
|
- Monika Sobczyk
- 10 lat temu
- Przeglądów:
Transkrypt
1 1. Jaką kwotę zgromadzimy po 3 latach na lokacie bankowej jeśli roczna NSP wynosi 4%, pierwsza wpłata wynosi 300 zl i jest dokonana na poczatku miesiąca a każda następna miesięczna wpłata jest (a) Większa od poprzedniej o 10 zł. (b) Większa od poprzedniej o 5%. (c) To samo co w (a) ale pierwsza wpłata jest dokonana na końcu pierwszego miesiąca. (d) To samo co w (b) ale pierwsza wpłata jest dokonana na końcu pierwszego miesiąca. 2. Obliczyć realną wartość zgromadzonego kapitału w zad. 1 ( w każdym z przypadków (a), (b), (c), (d)) jeśli stopa inflacji w pierwszym roku wynosiła 2%, w drugim 3% a w trzecim 2%. 3. Jaką kwotę zgromadzimy po 3 latach na lokacie bankowej jeśli pierwszego roku wpłacamy na końcu każdego miesiąca po 200 zl, drugiego roku wpłacamy miesięcznie po 300 zl a trzeciego roku wpłacamy po 400 zl? Roczne NSP wynosi 5%. 4. Przeciętna płaca w 2020 roku wyniosła 4000 zł miesięcznie. W wyniku negocjacji ustalono, że płace w każdym roku będą indeksowane wskaźnikiem równym 0,6 stopy inflacji w roku poprzedzającym. W latach 2020 do 2022 stopa inflacji była odpowiednio równa 2%, 3%, 3%,. Obliczyć (a) Przeciętną płacę w 2023 r. (b) Przeciętną roczną stopę inflacji w tych latach. (c) Realną stopę wzrostu płac. 5. Wpłacamy miesięcznie po 500 zł z dołu przez okres 20 lat, roczna NSP wynosi 6%. Po 20 latach zamierzamy pobierać rentę ze zgromadzonego kapitału. Obliczyć wysokość miesięcznej renty jeśli (a) Zamierzamy ją pobierać przez 10 lat. (b) Chcemy ją pobierać dożywotnio ( przez czas nieskończony). (c) Renta ma być wypłacana przez 10 lat ale przy wypłacie renty bank stosuje kapitalizację ciągłą. 6. Możemy kupić samochód za zł płatne gotówką od razu lub w czterech półrocznych ratach w wysokości wpłacanych na konto sprzedawcy. Kapitalizacja miesięczna, miesięczna stopa oprocentowania jest równa 0,95%. Co jest dla nas lepsze? 7. Dług można spłacić za pomocą 48 miesięcznych płatności po 100 zł na koniec kolejnych miesięcy lub wpłacając kwotę 4279 zł na koniec miesiąca N. Jeśli roczna NSP wynosi 12%, kapitalizacja jest miesięczna, ile wynosi N? 8. Przez 15 lat na koniec każdego roku dokonywane były wpłaty na rachunek oprocentowany wg stopy 6% przez pierwszych 10 lat i 4% w następnych latach. Każda z pierwszych pięciu wpłat była w wysokości 500 zł a każda z następnych dziesięciu w wysokości 700 zł. Dwa 1
2 lata po ostatniej wpłacie stopa oprocentowania wzrosła do 5%. Jaką stałą kwotę można pobierać bez końca z tego rachunku. Zakładamy, że stopa NSP pozostanie na poziomie 5% a pierwsza wypłata nastąpi dokładnie po 3 latach po ostatniej wpłacie. 9. Firma X stoi przed wyborem jednego z dwoch wariantów realizacji inwestycji. I. Co miesiąc, przez rok, będzie ponosić koszty w wysokości zł. II. W pierwszym kwartale miesięczne koszty wyniosą po zł, w drugim po zł, w trzecim i czwartym po zł. Który wariant powinna wybrać firma jeśli roczna stopa procentowa wynosi 4%. Wpłaty są dokonywane na koniec miesiąca, kapitalizacja miesięczna. 10. Dług 50 mln złotych ma być spłacony równymi ratami kapitałowymi w ciągu 5 lat. Ułożyć plan spłaty jeśli roczna stopa procentowa wynosi 6%; kapitalizacja roczna. 11. Po ilu latach zostanie spłacony dług w wysokości 200 mln zł równymi ratami 30 mln zł każda, jeżeli NSP wynosi 8% i kapitalizacja roczna. Wyznaczyć wysokość ostatniej nierównej spłaty. Wyjaśnienie. Latwo obliczyć, że nie jest możliwe aby w całkowitej liczbie rat spłacić ten dług ratami po 30 mln. Jeśli liczbę spłat oznaczymy przez n to ma być n 1 spłat po 30 mln a ostatnia, n ta, rata będzie mniejsza. Trzeba obliczyć n i tę ostatnią ratę. 12. Kredyt 200 mln zł ma być spłacany kwartalnie w ciągu 10 lat w równych ratach kapitałowych. Wyznaczyć wysokość piątej raty łącznej jeśli roczna NSP wynosi 6% a kapitalizacja jest kwartalna. 13. Dług 20 mln zł oprocentowany na 10% rocznie ma być spłacony w 10 równych ratach rocznych. Wyznaczyć wartość reszty długu po spłaceniu 5 rat. Jaką część długu zawierać będzie szósta rata ( tzn. ile wynosi szósta rata kapitałowa). 14. Dług zł należy spłacić w ciągu 10 lat, przy rocznej stopie procentowej 6% i kapitalizacji półrocznej. Wyznaczyć wysokość stałych rat spłacanych: (a) rocznie, (b) półrocznie, (c) kwartalnie. Wsk. W (c) niech a będzie spłatą kwartalną. Odsetki od wpłaty a wynoszą a0.015 i są doliczane po drugim kwartale ( po pół roku). Zatem po dwóch wpłatach wartość tych wpłat wynosi na tę chwilę 2a + a Można więc (c) traktować jak (b) z półroczną ratą równą a Pożyczka zaciągnięta na 6% rocznie miała być spłacona w 12 równych ratach rocznych. Ponieważ dłużnik nie zapłacił czterech pierwszych rat, więc przez następne 8 lat musiał spłacać raty w wysokości 12 mln zł rocznie. Jaka była wysokość pożyczki? 16. Ułożyć plan spłaty długu 100 mln zł w czterech ratach jeśli wiadomo, że T 1 = 30, T 3 = 20, T 4 = 20, A 2 = 37. 2
3 17. Wyznaczyć cenę obligacji 10-letniej o wartości nominalnej zł i oprocentowaniu 12% jeśli rynkowa stopa dyskontowa wynosi 15%, odsetki są wypłacane rocznie. 18. Cena 5-letniej obligacji wynosi oprocentowanej na 5% wynosi zł. Rynkowa stopa dyskontowa wynosi 8%. Wyznaczyć wartość nominalną. 19. Wyznaczyć cenę akcji, dla której pierwsza dywidenda wynosiła zł, przez kolejne 5 lat wzrastała w tempie 10%, a następnie rosła w tempie 2%. Stopa dyskontowa wynosi 11%. 20. Wyznaczyć cenę akcji, która dała pierwszą dywidendę w wysokości zł i w ciągu pierwszych 5 lat dywidendy rosły w tempie 10%. Po 5 latach dywidendy ustabilizowały się na stałym poziomie. Stopa dyskontowa wynosi 6%. 21. Firma zrealizowała w końcu 2010 roku inwestycję o łącznych nakładach zł. Eksploatacja inwestycji przyniesie- jak się oczekuje- następujące zyski w kolejnych latach: , , , zł.wykorzystując kryterium NPV ocenić opłaalność tej inwestycji. Przyjąć stopę dyskontową równą 20%. 22. Pewna inwestycja, wymagająca zł nakładów, w kolejnych latach jej eksploatacji przyniesie zyski zł oraz zł. Wyznaczyć wewnętrzną stopę zwrotu tej inwestycji. 23. Oszacować metodą interpolacji liniowej wewnętrzną stopę zwrotu dla przedwsięzięcia o wartości nakładów początkowych zł, które przyniosło dochody w okresie 4 lat równe odpowiednio , , oraz zł. 24. Dla przedwsięzięcia z zad.23 oszacować IRR z dokładnością do Odpowiedzi 1. Podstawić do wzorów. 2. Niech K oznacza kapitał obliczony w zad. 1. Odp: K Po pierwszym roku mamy , z tego po jeszcze 2 latach mamy Z wplat po 300 zl mamy po 2 roku ; po nastepnym roku z tego mamy Z wplat po 400 mamy Ostatecznie : (a) 4000 ( )( )( ) = (b) 3 ( )( )( ) 1. (c) Realna płaca w 2003 : = Realna stopa wzrostu płac za te 3 lata: = Roczna stopa realna wzrostu ) 1 = Po 20 latach zgromadzimy (a) A ( ) = 0. Stąd A = Jeśli pierwszą rentę pobieramy po miesiącu od zakończenia wpłat. 3
4 (b) A = = (c) Zdyskontujmy rentę. Mamy = e 0.6 (e ) = e A e A e A e Stąd A = Dyskontujemy raty: = = jeśli pierwsza rata jest płacona pół roku od chwili zakupu. Opłaca się kupić za gotówkę. 7. Niech K oznacza dług w chwili 0. Dyskontując spłaty mamy K = 100( 1 1 ) = Teraz N = Stąd N = Mozna obliczyc koszty przeliczajac je na chwile po roku ( mozna tez dyskontowac). Wariant I, koszty po roku: 75000(q q +1), gdzie q = Wariant II : (q11 + q 10 + q 9 ) (q 8 + q 7 + q 6 ) (q q + 1). Wziąc to co mniejsze. 10. Sporządzić tabelkę. Wszystkie T n są równe 10 mln. 11. Z równania S n = 0 obliczamy q n 30 = więc 9 rat po 30. Po 9 ratach S 9 = 200 q 9 30 q = q 1 gdzie q = Stąd n = 9.9. Bedzie = Ostatnia spłata wynosi więc 12. Każda rata kapitałowa T n wynosi 5 mln. Po 5 ratach S 5 wynosi więc 175 mln. Mozna sporządzić tabelkę do n = 5. Można też tak: Przy równych ratach kapitalowych, równych T, S k = S 0 kt. Zatem S 4 = 180. Z 5 = S = 2.7. Zatem A 5 = Z = 7.7 mln. 13. Najpierw rata roczna A. Ze wzoru S 10 = 0 obliczamy A = S 5 = Z 6 = = T 6 = A Z 6 = Przy racie rocznej wziąc q = przy polrocznej q = 1.03, przy kwartalnej jak we wskazówce. Traktujemy to jak spłatę w 20 ratach równych 2A Ze wzoru S 20 = 0, q = 1.03, znaleźć A. 15. Niech S oznacza wielkość pożyczki. Po czterech latach dług urósł do S = 1.26 S. Teraz potraktować to jako dlug o poczatkowej wartości S 1.26 spłacany w 8 ratach ; zastosować wzór S 8 = 0, q = 1.06, S 0 = 1.26 S. Wszystkie A n są równe 12. Otrzymamy S = T 1 + T 3 + T 4 = 70 więc T 2 = 30. Z 2 = A 2 T 2 = 7. Z 2 = S 1 r, S 1 = 70. Stąd r = 0.1. Dokończyc tabelkę C = 0.05M. M = ? 19. Dywidendy w ciągu pierwszych 5 lat są równe: 10000, 11000, 12100, 13310, 14641, Niech D = , nastęone dywidendy tworzą ciąg geometryczny z ilorazem 1.02 i pierwszym wyrazem D Dyskontując to wszystko mamy P = D D = 4
5 = D ( ) = = D Obliczyć. 20. Podobnie jak zadanie NP V = jest ujemne. Inwestycja nieopłacalna q + 36 q 2 = 0. Rozwiązać, IRR = q NP V (r) = r (1+r) (1+r) (1+r) 4. NP V (0.1) = , NP V (0.2) = IRR i 1 NP V (i 1)(i 1 i 2 ) NP V (i 1 ) NP V (i 2 ) = ( 0.1) = IRR jest równe ok %. 24. Ponieważ NP V (0.1) > 0 a NP V (0.2) < 0 to IRR leży między 0.1 a 0.2. Zatem 0.15 różni się od IRR mniej niż Odp. IRR 0.15 czyli 15%. Jeśli chcemy IRR oszacować dokładniej to obliczamy NP V (0.15) = < 0. Zatem IRR leży między 0.1 a Zatem przyjmując IRR = (średnią arytmetyczną 0.1 i 0.15) wiemy, że to się rózni od prawdziwej wartości mniej niż W ten sposob można wyznaczyć IRR z dowolną dokładnością. 5
zaliczenie na ocenę z elementarnej matematyki finansowej I rok MF, 21 czerwca 2012 godz. 8:15 czas trwania 120 min.
zaliczenie na ocenę z elementarnej matematyki finansowej I rok MF, 21 czerwca 2012 godz. 8:15 czas trwania 120 min. Imię nazwisko:... numer indeksu:... nr zadania zad.1 zad.2 zad.3 zad.4 zad.5 zad.6 zad.7
System finansowy gospodarki. Zajęcia nr 6 Matematyka finansowa
System finansowy gospodarki Zajęcia nr 6 Matematyka finansowa Rachunek rentowy (annuitetowy) Mianem rachunku rentowego określa się regularne płatności w stałych odstępach czasu przy założeniu stałej stopy
Zadania do wykładu Matematyka bankowa 2
Zadania do wykładu Matematyka bankowa 2 Dorota Klim Department of Nonlinear Analysis, Faculty of Mathematics and Computer Science, University of Łódź, Banacha 22, 90-238 Łódź, Poland E-mail address: klimdr@math.uni.ldz.pl
Rachunek rent. Pojęcie renty. Wartość początkowa i końcowa renty. Renty o stałych ratach. Renta o zmiennych ratach. Renta uogólniona.
Temat: Rachunek rent. Pojęcie renty. Wartość początkowa i końcowa renty. Renty o stałych ratach. Renta o zmiennych ratach. Renta uogólniona. Zadanie Przez 2 lata na koniec każdego miesiąca wpłacamy 200
Zadania do wykładu Matematyka bankowa 2
Zadania do wykładu Matematyka bankowa 2 Dorota Klim Instytut Matematyki i Informatyki, PWSZ w Płocku E-mail address: klimdr@math.uni.ldz.pl http://math.uni.lodz.pl/ klimdr/ Bibliografia [1] M. Podgórska,
Matematyka I dla DSM zbiór zadań
I Sumowanie skończone W zadaniach -4 obliczyć podaną sumę. Matematyka I dla DSM zbiór zadań do użytku wewnętrznego dr Leszek Rudak Uniwersytet Warszawski Wydział Zarządzania. 5 i. i= 4 i 3. i= 5 ( ) i
[1 ] M. Podgórska, J. Klimkowska, Matematyka finansowa, PWN
LITERATURA: [1 ] M. Podgórska, J. Klimkowska, Matematyka finansowa, PWN [2 ] E. Smaga, Arytmetyka finansowa, PWN [3 ] M. Sobczyk, Matematyka finansowa, Placet [4 ] M. Szałański, Podstawy matematyki finansowej,
mgr Katarzyna Niewińska; Wydział Zarządzania UW Ćwiczenia 2
Ćwiczenia 2 Wartość pieniądza w czasie Zmienna wartość pieniądza w czasie jest pojęciem, które pozwala porównać wartość różnych sum pieniężnych otrzymanych w różnych okresach czasu. Czy 1000 PLN otrzymane
Zadania do wykładu Matematyka bankowa 1 i 2
Zadania do wykładu Matematyka bankowa 1 i 2 Dorota Klim Department of Nonlinear Analysis, Faculty of Mathematics and Computer Science, University of Łódź, Banacha 22, 90-238 Łódź, Poland E-mail address:
Zajęcia 1. Pojęcia: - Kapitalizacja powiększenie kapitału o odsetki, które zostały przez ten kapitał wygenerowane
Zajęcia 1 Pojęcia: - Procent setna część całości; w matematyce finansowej korzyści płynące z użytkowania kapitału (pojęcie używane zamiennie z terminem: odsetki) - Kapitalizacja powiększenie kapitału o
Dariusz Wardowski Katedra Analizy Nieliniowej. Bankowość i metody statystyczne w biznesie - zadania i przykłady część II
Wydział Matematyki i Informatyki Uniwersytetu Łódzkiego w Łodzi Dariusz Wardowski Katedra Analizy Nieliniowej Bankowość i metody statystyczne w biznesie - zadania i przykłady część II Łódź 2008 Rozdział
mgr Katarzyna Niewińska; Wydział Zarządzania UW Ćwiczenia 3
Ćwiczenia 3 Rachunek rentowy Jako rachunek rentowy traktuje się regularne płatności płacone w stałych przedziałach czasu przy czym towarzyszy temu stała stopa procentowa. Wykorzystanie: renty; płatności
Matematyka finansowa 11.10.2004 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r.
Komisja Egzaminacyjna dla Aktuariuszy XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... WERSJA TESTU Czas egzaminu: 100 minut
Elementy matematyki finansowej w programie Maxima
Maxima-03_windows.wxm 1 / 8 Elementy matematyki finansowej w programie Maxima 1 Wartość pieniądza w czasie Umiejętność przenoszenia kwot pieniędzy w czasie, a więc obliczanie ich wartości na dany moment,
Rachunek rent. Pojęcie renty. Wartość początkowa i końcowa renty. Renty o stałych ratach. Renta o zmiennych ratach. Renta uogólniona.
Temat: Rachunek rent Pojęcie renty Wartość początkowa i końcowa renty Renty o stałych ratach Renta o zmiennych ratach Renta uogólniona Zadanie 1 Przez 2 lata na koniec każdego miesiąca wpłacamy 1 000 PLN
Matematyka finansowa 26.05.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część I
Komisja Egzaminacyjna dla Aktuariuszy LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Przyjmijmy
Licz i zarabiaj matematyka na usługach rynku finansowego
Licz i zarabiaj matematyka na usługach rynku finansowego Przedstawiony zestaw zadań jest przeznaczony dla uczniów szkół ponadgimnazjalnych i ma na celu ukazanie praktycznej strony matematyki, jej zastosowania
INFLACJA
INFLACJA Zadanie 1 i. Nakłady na pewne działania z pewnym roku wzrosły o 10%, a inflacja roczna (w tym roku) wyniosła 5%. O ile, realnie wzrosły nakłady? A jeżeli nakłady wzrosły o 30%, a inflacja roczny
Matematyka finansowa 05.12.2005 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXVII Egzamin dla Aktuariuszy z 5 grudnia 2005 r.
Komisja Egzaminacyjna dla Aktuariuszy XXXVII Egzamin dla Aktuariuszy z 5 grudnia 2005 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... WERSJA TESTU A Czas egzaminu: 100 minut 1 1.
Zastosowanie matematyki w finansach i bankowości
Zastosowanie matematyki w finansach i bankowości Maciej Wolny I. Kalkulacja wartości pieniądza w czasie... 1 II. Nominalna, efektywna i realna stopa procentowa... 4 III. Spłata kredytów w równych i różnych
Matematyka finansowa - informacje egzaminacyjne
Matematyka finansowa - informacje egzaminacyjne Tutaj postaram się zebrać wszystko co trzeba wiedzieć o egzaminie i sprawdzianie zaliczeniowym. Jedynym wyjątkiem jest lista zagadnień do części teoretycznej,
Matematyka podstawowa V. Ciągi
Matematyka podstawowa V Ciągi Teoria ciąg arytmetyczny - pierwszy wyraz ciągu - różnica Kolejny wyraz ciągu arytmetycznego powstaje przez dodanie do poprzedniego różnicy. = + Np. =2,=3 :2,5,8,11 = 4,=2
Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXI Egzamin dla Aktuariuszy z 1 października 2012 r.
Komisja Egzaminacyjna dla Aktuariuszy LXI Egzamin dla Aktuariuszy z 1 października 2012 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1
Procent prosty Def.: Procent prosty Zad. 1. Zad. 2. Zad. 3
Procent prosty Zakładając konto w banku, decydujesz się na określone oprocentowanie tego rachunku. Zależy ono między innymi od czasu, w jakim zobowiązujesz się nie naruszać stanu konta, czyli tzw. lokaty
Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXIV Egzamin dla Aktuariuszy z 17 czerwca 2013 r.
Komisja Egzaminacyjna dla Aktuariuszy LXIV Egzamin dla Aktuariuszy z 17 czerwca 2013 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 0 minut 1 1. Rozważamy
ZADANIE 1. NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI
ZADANIE 1 Na budowę domu możesz zaciagn ać pożyczkę w wysokości 63450 e. Do wyboru sa dwa warianty spłaty: I w każdym miesiacu spłacasz równe raty, każda w wysokości 2% pożyczonej kwoty. II pierwsza rata
I = F P. P = F t a(t) 1
6. Modele wartości pieniądza w czasie. Współczynnik akumulacji kapitału. Kapitalizacja okresowa, kapitalizacja ciągła. Wartość bieżąca, wartość przyszła. Pojęcia kredytu, renty, renty wieczystej, zadłużenia
Stopa Inflacji. W oparciu o zbiór składający się z n towarów, stopa inflacji wyraża się wzorem. n 100w k p k. , p k
2.1 Stopa Inflacji Stopa inflacji, i, mierzy jak szybko ceny się zmieniają jako zmianę procentową w skali rocznej. Oblicza się ją za pomocą średniej ważonej cząstkowych stóp inflacji, gdzie cząstkowa stopa
Zadania do wykładu Rachunek efektywności projektów inwestycyjnych
Zadania do wykładu Rachunek efektywności projektów inwestycyjnych Dorota Klim Instytut Nauk Ekonomicznych i Informatyki, Państwowa Wyższa Szkoła Zawodowa w Płocku E-mail address: klimdr@math.uni.ldz.pl
Matematyka finansowa 10.12.2012 r. Komisja Egzaminacyjna dla Aktuariuszy. LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r.
Komisja Egzaminacyjna dla Aktuariuszy LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.
2.1 Wartość Aktualna Renty Stałej
2.1 Wartość Aktualna Renty Stałej Zakładamy że dana osoba ma dostać kwotę o stałej wartości nominalnej x przez N okresów (zwykle miesięcznie lub rocznie), np. stała renta/emerytura. Zakładamy że pierwsza
Matematyka finansowa 17.05.2003
1. Na początku roku (w chwili t = 0 ) portfel pewnego funduszu inwestycyjnego składa się z 40% obligacji typu I oraz 60% obligacji typu II. O obligacjach typu I oraz typu II wiadomo, że: (i) obligacja
Komisja Egzaminacyjna dla Aktuariuszy. XLIV Egzamin dla Aktuariuszy z 3 grudnia 2007 r. Część I. Matematyka finansowa
Komisja Egzaminacyjna dla Aktuariuszy XLIV Egzamin dla Aktuariuszy z 3 grudnia 2007 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Rachunki oszczędnościowe
WARTOŚĆ PIENIĄDZA W CZASIE c.d. (WACC + Spłata kredytu)
WARTOŚĆ PIENIĄDZA W CZASIE c.d. (WACC + Spłata kredytu) PYTANIA KONTROLNE Co oznacza pojęcie kapitalizacja odsetek? Co oznacza pojęcie wartość przyszła i bieżąca? Jakimi symbolami we wzorach oznaczamy
Matematyka finansowa 30.09.2013 r. Komisja Egzaminacyjna dla Aktuariuszy. LXV Egzamin dla Aktuariuszy z 30 września 2013 r.
Komisja Egzaminacyjna dla Aktuariuszy LXV Egzamin dla Aktuariuszy z 30 września 2013 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.
Dariusz Wardowski Katedra Analizy Nieliniowej. Bankowość i metody statystyczne w biznesie - zadania i przykłady
Wydział Matematyki Uniwersytetu Łódzkiego w Łodzi Dariusz Wardowski Katedra Analizy Nieliniowej Bankowość i metody statystyczne w biznesie - zadania i przykłady Łódź 2006 Rozdział 1 Oprocentowanie lokaty
Arkusz kalkulacyjny MS EXCEL ĆWICZENIA 3
Arkusz kalkulacyjny MS EXCEL ĆWICZENIA 3 Uwaga! Każde ćwiczenie rozpoczynamy od stworzenia w katalogu Moje dokumenty swojego własnego katalogu roboczego, w którym będziecie Państwo zapisywać swoje pliki.
Elementy matematyki finansowej
ROZDZIAŁ 2 Elementy matematyki finansowej 1. Procent składany i ciągły Stopa procentowa i jest związana z podstawową jednostką czasu, jaką jest zwykle jeden rok. Jeśli pożyczamy komuś 100 zł na jeden rok,
Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXIII Egzamin dla Aktuariuszy z 25 marca 2013 r. Część I
Komisja Egzaminacyjna dla Aktuariuszy LXIII Egzamin dla Aktuariuszy z 25 marca 2013 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.
Arkusz kalkulacyjny MS EXCEL ĆWICZENIA 3. Zadanie 1 Amortyzacja środków trwałych
Arkusz kalkulacyjny MS EXCEL ĆWICZENIA 3 Uwaga! Każde ćwiczenie rozpoczynamy od stworzenia w katalogu Moje dokumenty swojego własnego katalogu roboczego, w którym będziecie Państwo zapisywać swoje pliki.
Matematyka finansowa 13.12.2010 r. Komisja Egzaminacyjna dla Aktuariuszy. LV Egzamin dla Aktuariuszy z 13 grudnia 2010 r. Część I
Komisja Egzaminacyjna dla Aktuariuszy LV Egzamin dla Aktuariuszy z 13 grudnia 2010 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Pan
Paulina Drozda WARTOŚĆ PIENIĄDZA W CZASIE
Paulina Drozda WARTOŚĆ PIENIĄDZA W CZASIE Zmianą wartości pieniądza w czasie zajmują się FINANSE. Finanse to nie to samo co rachunkowość. Rachunkowość to opowiadanie JAK BYŁO i JAK JEST Finanse zajmują
Komisja Egzaminacyjna dla Aktuariuszy. XXXII Egzamin dla Aktuariuszy z 7 czerwca 2004 r. Część I. Matematyka finansowa
Komisja Egzaminacyjna dla Aktuariuszy XXXII Egzamin dla Aktuariuszy z 7 czerwca 2004 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Trzy osoby biorą
Granice ciągów liczbowych
Granice ciągów liczbowych Obliczyć z definicji granicę ciągu o wyrazie, gdzie jest pewną stałą liczbą. Definicja: granicą ciągu jest liczba, jeśli Sprawdzamy, czy i kiedy granica rozpatrywanego ciągu wynosi
Wartość pieniądza w czasie (time value of money)
Opracował Marcin Reszka Doradca Inwestycyjny nr 335 marcin@reszka.edu.pl Zeszyt I Wartość pieniądza w czasie (time value of money) Wszystkie prawa zastrzeżone. Nie zezwala się na kopiowania bez pisemnej
Egzamin dla Aktuariuszy z 16 listopada 1996 r.
Komisja Egzaminacyjna dla Aktuariuszy Egzamin dla Aktuariuszy z 16 listopada 1996 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:.... Czas egzaminu: l OO minut Ośrodek Doskonalenia
Matematyka finansowa 15.12.2008 r. Komisja Egzaminacyjna dla Aktuariuszy. XLVIII Egzamin dla Aktuariuszy z 15 grudnia 2008 r.
Komisja Egzaminacyjna dla Aktuariuszy XLVIII Egzamin dla Aktuariuszy z 15 grudnia 2008 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1
Wartość przyszła pieniądza: Future Value FV
Wartość przyszła pieniądza: Future Value FV Jeśli posiadamy pewną kwotę pieniędzy i mamy możliwość ulokowania ich w banku na ustalony czas i określony procent, to kwota w przyszłości (np. po 1 roku), zostanie
System finansowy gospodarki. Zajęcia nr 7 Krzywa rentowności, zadania (mat. fin.), marża w handlu, NPV i IRR, obligacje
System finansowy gospodarki Zajęcia nr 7 Krzywa rentowności, zadania (mat. fin.), marża w handlu, NPV i IRR, obligacje Krzywa rentowności (dochodowości) Yield Curve Krzywa ta jest graficznym przedstawieniem
Ćwiczenia ZPI. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym 1
Ćwiczenia ZPI 1 W banku A oprocentowanie lokat 4% przy kapitalizacji kwartalnej. W banku B oprocentowanie lokat 4,5% przy kapitalizacji miesięcznej. W banku A ulokowano kwotę 1000 zł. Jaki kapitał należy
Egzamin dla Aktuariuszy z 26 października 1996 r.
Komisja Egzaminacyjna dla Aktuariuszy Egzamin dla Aktuariuszy z 26 października 1996 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:.... Czas egzaminu: l OO minut Ośrodek Doskonalenia
Matematyka finansowa 03.10.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVIII Egzamin dla Aktuariuszy z 3 października 2011 r.
Komisja Egzaminacyjna dla Aktuariuszy LVIII Egzamin dla Aktuariuszy z 3 października 2011 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut
PLANOWANIE I OCENA PRZEDSIĘWZIĘĆ INWESTYCYJNYCH
Mariusz Próchniak Katedra Ekonomii II, SGH PLANOWANIE I OCENA PRZEDSIĘWZIĘĆ INWESTYCYJNYCH Ekonomia menedżerska 1 2 Wartość przyszła (FV future value) r roczna stopa procentowa B kwota pieniędzy, którą
Egzamin dla Aktuariuszy z 6 grudnia 2003 r.
Komisja Egzaminacyjna dla Aktuariuszy Egzamin dla Aktuariuszy z 6 grudnia 2003 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Ośrodek Doskonalenia Kadr
System finansowy gospodarki. Zajęcia nr 5 Matematyka finansowa
System finansowy gospodarki Zajęcia nr 5 Matematyka finansowa Wartość pieniądza w czasie 1 złoty posiadany dzisiaj jest wart więcej niż 1 złoty posiadany w przyszłości, np. za rok. Powody: Suma posiadana
Funkcja akumulacji i wartość przyszła
Funkcja akumulacji i wartość przyszła Zadanie 1 An investment of $10000 is made into a fund at time t=0. The fund develops the following balances over the next 4 years: F (0) = 10000, F (1) = 10600, F
Matematyka finansowa 15.06.2015 r. Komisja Egzaminacyjna dla Aktuariuszy. LXXI Egzamin dla Aktuariuszy z 15 czerwca 2015 r.
Komisja Egzaminacyjna dla Aktuariuszy LXXI Egzamin dla Aktuariuszy z 1 czerwca 201 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Pracownik
Nauka o finansach. Prowadzący: Dr Jarosław Hermaszewski
Nauka o finansach Prowadzący: Dr Jarosław Hermaszewski WARTOŚĆ PIENIĄDZA W CZASIE Wykład 4 Prawda ekonomiczna Pieniądz, który mamy realnie w ręku, dziś jest wart więcej niż oczekiwana wartość tej samej
Wartość przyszła pieniądza
O koszcie kredytu nie można mówić jedynie na podstawie wysokości płaconych odsetek. Dla pożyczającego pieniądze najważniejszą kwestią jest kwota, jaką będzie musiał zapłacić za korzystanie z cudzych środków
Prof. nadzw. dr hab. Marcin Jędrzejczyk
Prof. nadzw. dr hab. Marcin Jędrzejczyk 1. Zakup akcji, udziałów w obcych podmiotach gospodarczych według cen nabycia. 2. Zakup akcji i innych długoterminowych papierów wartościowych, traktowanych jako
Funkcje w MS Excel. Arkadiusz Banasik arkadiusz.banasik@polsl.pl
Funkcje w MS Excel Arkadiusz Banasik arkadiusz.banasik@polsl.pl Plan prezentacji Wprowadzenie Funkcje matematyczne Funkcje logiczne Funkcje finansowe Podsumowanie 2/27 Wprowadzenie Funkcje: Są elementami
dr hab. Marcin Jędrzejczyk
dr hab. Marcin Jędrzejczyk Przez inwestycje należy rozumieć aktywa nabyte w celu osiągnięcia korzyści ekonomicznych, wynikających z przyrostu wartości tych zasobów, uzyskania z nich przychodów w postaci
Akademia Młodego Ekonomisty Matematyka finansowa dla liderów Albert Tomaszewski Grupy 1-2 Zadanie 1.
Grupy 1-2 Zadanie 1. Sprawdźcie ofertę dowolnych 5 banków i wybierzcie najlepszą ofertę oszczędnościową (lokatę lub konto oszczędnościowe). Obliczcie, jaki zwrot przyniesie założenie jednej takiej lokaty
Matematyka Finansowa
Matematyka Finansowa MATERIAŁY DO WYKŁADU Procent to jedna setna. 1% = 0,01. Promil to jedna tysięczna. 1 = 0,001 = 0,1%. -procent od wartości to 0,01. Na przykład dwadzieścia trzy procent i cztery promile
5. Strumienie płatności: renty
5. Strumienie płatności: renty Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie Matematyka finansowa rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka
1940, 17 = K 4 = K 2 (1, 05)(1 + x 200 )3. Stąd, po wstawieniu K 2 dostaję:
Poniższe rozwiązania są jedynie przykładowe. Każde z tych zadań da się rozwiązać na wiele sposobów, ale te na pewno są dobre (i prawdopodobnie najprostsze). Komentarze (poza odpowiedziami) są zbędne -
Egzamin XXVII dla Aktuariuszy z 12 października 2002 r.
Komisja Egzaminacyjna dla Aktuariuszy Egzamin XXVII dla Aktuariuszy z 12 października 2002 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Ośrodek Doskonalenia
WACC Montaż finansowy Koszt kredytu
WACC Montaż finansowy Koszt kredytu PYTANIA KONTROLNE Co oznacza pojęcie kapitalizacja odsetek? Zdefiniuj stopę procentową i dyskontową Co oznacza pojęcie wartość przyszła i bieżąca? Jakimi symbolami we
Jak wybrać kredyt? Waldemar Wyka Instytut Matematyki Politechniki Łódzkiej. 22 listopada 2014
Waldemar Wyka Instytut Matematyki Politechniki Łódzkiej 22 listopada 2014 Plan prezentacji 1 Powtórzenie 2 3 Plany spłaty długu - stałe raty Plany spłaty długu - stałe raty kapitałowe Plany spłaty długu
Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. XLIX Egzamin dla Aktuariuszy z 6 kwietnia 2009 r.
Komisja Egzaminacyjna dla Aktuariuszy XLIX Egzamin dla Aktuariuszy z 6 kwietnia 2009 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.
8. Papiery wartościowe: obligacje
8. Papiery wartościowe: obligacje Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie Matematyka finansowa rzegorz Kosiorowski (Uniwersytet Ekonomiczny w 8. Krakowie) Papiery wartościowe: obligacje
INDEKS FINANSISTY. Monika Skrzydłowska. PWSZ w Chełmie. październik Projekt dofinansowała Fundacja mbanku
INDEKS FINANSISTY Monika Skrzydłowska PWSZ w Chełmie październik 2017 Projekt dofinansowała Fundacja mbanku Monika Skrzydłowska (PWSZ w Chełmie) INDEKS FINANSISTY październik 2017 1 / 19 Spis treści 1
www.pokonac-rynek.pl Wzory - matematyka finansowa Opracował: Łukasz Zymiera
www.pokonac-rynek.pl Wzory - matematyka finansowa Opracował: Łukasz Zymiera Wartość pieniądza w czasie MWP mnożnik wartości przyszłej MWO mnożnik wartości obecnej MWPR mnożnik wartości przyszłej renty
Zadania do wykładu Rachunek efektywności projektów inwestycyjnych
Zadania do wykładu Rachunek efektywności projektów inwestycyjnych Dorota Klim Instytut Nauk Ekonomicznych i Informatyki, Państwowa Wyższa Szkoła Zawodowa w Płocku E-mail address: klimdr@math.uni.ldz.pl
Matematyka finansowa 8.12.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXIX Egzamin dla Aktuariuszy z 8 grudnia 2014 r. Część I
Komisja Egzaminacyjna dla Aktuariuszy LXIX Egzamin dla Aktuariuszy z 8 grudnia 2014 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.
Czym jest ciąg? a 1, a 2, lub. (a n ), n = 1,2,
Ciągi liczbowe Czym jest ciąg? Ciąg liczbowy, to funkcja o argumentach naturalnych, której wartościami są liczby rzeczywiste. Wartość ciągu dla liczby naturalnej n oznaczamy symbolem a n i nazywamy n-tym
Komisja Egzaminacyjna dla Aktuariuszy LXX Egzamin dla Aktuariuszy z 23 marca 2015 r. Część I Matematyka finansowa
Komisja Egzaminacyjna dla Aktuariuszy LXX Egzamin dla Aktuariuszy z 23 marca 2015 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Rozważmy
Matematyka finansowa - lista zagadnień teoretycznych
Matematyka finansowa - lista zagadnień teoretycznych Ostatnie zadanie na egzaminie będzie się składać z jednego bardziej skomplikowanego lub dwóch prostych pytań teoretycznych. Pytanie takie będzie dotyczyło
Matematyka finansowa
Matematyka finansowa 26 kwietnia 2013 roku 1. Stopy procentowe. NSP - nominalna stopa procentowa - zwykle określona w skali roku. Jeśli rok dzieli się na n równych podokresów (miesięcy, kwartałów, tygodni,
Funkcja akumulacji i wartość przyszła
Funkcja akumulacji i wartość przyszła Zadanie 1 An investment of $10000 is made into a fund at time t=0. The fund develops the following balances over the next 4 years: F (0) = 10000, F (1) = 10600, F
Do grupy podstawowych wskaźników rynku kapitałowego należy zaliczyć: zysk netto liczba wyemitowanych akcji
VIII. Repetytorium Temat 1.6. Wskaźniki rynku kapitałowego Wskaźniki rynku kapitałowego służą do pomiaru efektywności finansowej spółek akcyjnych, notowanych na giełdzie papierów wartościowych. Stanowią
WACC Montaż finansowy Koszt kredytu
WACC Montaż finansowy Koszt kredytu Na następne zajęcia proszę przygotować listę zakupów niezbędną do realizacji projektu. PYTANIA KONTROLNE Co oznacza pojęcie kapitalizacja odsetek? Zdefiniuj stopę procentową
Funkcja akumulacji i wartość przyszła
Funkcja akumulacji i wartość przyszła Zadanie 1 An investment of $10000 is made into a fund at time t=0. The fund develops the following balances over the next 4 years: F (0) = 10000, F (1) = 10600, F
Matematyka finansowa. Ćwiczenia ZPI. Ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym 1
Matematyka finansowa Ćwiczenia ZPI 1 Zadanie 1. Procent składany W banku A oprocentowanie lokat 4% przy kapitalizacji kwartalnej. W banku B oprocentowanie lokat 4,5% przy kapitalizacji miesięcznej. W banku
Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXXIII Egzamin dla Aktuariuszy z 7 marca 2016 r. Część I
Komisja Egzaminacyjna dla Aktuariuszy LXXIII Egzamin dla Aktuariuszy z 7 marca 2016 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.
Akademia Młodego Ekonomisty
Akademia Młodego Ekonomisty Matematyka Finansowa dla liderów dr Aneta Kaczyńska Uniwersytet Ekonomiczny w Poznaniu 30 listopada 2017 r. Dr Tomaszie Projektami EKONOMICZNY UNIWERSYTET DZIECIĘCY Copywrite
Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. L Egzamin dla Aktuariuszy z 5 października 2009 r.
Komisja Egzaminacyjna dla Aktuariuszy L Egzamin dla Aktuariuszy z 5 października 2009 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 0 minut 1 1.
2. Funkcja akumulacji i wartość przyszła
2. Funkcja akumulacji i wartość przyszła Zadanie 1 An investment of $10000 is made into a fund at time t=0. The fund develops the following balances over the next 4 years: F (0) = 10000, F (1) = 10600,
Procenty zadania maturalne z rozwiązaniami
Każde zadanie 1 punkt. 1. Cena towaru bez podatku VAT jest równa 60 zł. Towar ten wraz z podatkiem VAT w wysokości 22% kosztuje 0,22 60 = 13,20 kwota VAT 60 + 13,20 = 73,20 Odp. A 2. Wskaż liczbę, której
Temat 1: Wartość pieniądza w czasie
Temat 1: Wartość pieniądza w czasie Inwestycja jest w istocie bieżącym wyrzeczeniem się dla przyszłych korzyści. Ale teraźniejszość jest względnie dobrze znana, natomiast przyszłość to zawsze tajemnica.
Wskaźniki efektywności Sharpe a, Treynora, Jensena, Information Ratio, Sortino
Ćwiczenia 5 Pojęcie benchmarku, tracking error Wskaźniki efektywności Sharpe a, Treynora, Jensena, Information Ratio, Sortino Renata Karkowska, Wydział Zarządzania UW 1 Współczynnik Sharpe a Renata Karkowska,
Matematyka bankowa 2
1. Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki Uniwersytet Łódzki 2. Instytut Nauk Ekonomicznych i Informatyki Państwowa Wyższa Szkoła Zawodowa w Płocku Matematyka bankowa 2 średnio- i
Matematyka finansowa 08.01.2007 r. Komisja Egzaminacyjna dla Aktuariuszy. XLI Egzamin dla Aktuariuszy z 8 stycznia 2007 r. Część I
Komisja Egzaminacyjna dla Aktuariuszy XLI Egzamin dla Aktuariuszy z 8 stycznia 2007 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 00 minut . Ile
Zadanie 1. Zadanie 2. Zadanie 3
Zadanie 1 Inwestor rozważa nabycie obligacji wieczystej (konsoli), od której będzie otrzymywał na koniec każdego półrocza kupon w wysokości 80 zł. Wymagana przez inwestora stopa zwrotu w terminie do wykupu
Zajęcia 8 - Równoważność warunków oprocentowania
Zajęcia 8 - Równoważność warunków oprocentowania Zadanie 1 Mając roczną stopę oprocentowania prostego 18% wyznaczyć równoważną stopę: 1. miesięczną. 2. tygodniową. 3. 2-letnią. Uzasadnić wyniki. Czy czas
5.1 Stopa Inflacji - Dyskonto odpowiadające sile nabywczej
5.1 Stopa Inflacji - Dyskonto odpowiadające sile nabywczej Stopa inflacji, i, mierzy jak szybko ceny się zmieniają jako zmianę procentową w skali rocznej. Oblicza się ją za pomocą średniej ważonej cząstkowych
Akademia Młodego Ekonomisty
Akademia Młodego Ekonomisty Matematyka finansowa dla liderów Matematyka finansowa wokół nas dr Agnieszka Bem Uniwersytet Ekonomiczny we Wrocławiu 20 listopada 2017 r. Wartość pieniądzaw czasie Wartość
4. Strumienie płatności: okresowe wkłady oszczędnościowe
4. Strumienie płatności: okresowe wkłady oszczędnościowe Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie Matematyka finansowa rzegorz Kosiorowski (Uniwersytet Ekonomiczny 4. Strumienie w Krakowie)
Komisja Egzaminacyjna dla Aktuariuszy. XXXIX Egzamin dla Aktuariuszy z 5 czerwca 2006 r. Część I. Matematyka finansowa
Komisja Egzaminacyjna dla Aktuariuszy XXXIX Egzamin dla Aktuariuszy z 5 czerwca 006 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Inwestor dokonuje
Finansowanie inwestycji rzeczowych w gospodarce rynkowej Sporządzanie planu spłaty kredytu wykład 5. dla 5. roku HM zaoczne.
Finansowanie inwestycji rzeczowych w gospodarce rynkowej Sporządzanie planu spłaty kredytu wykład 5. dla 5. roku HM zaoczne dr Adam Salomon Finansowanie inwestycji rzeczowych w gospodarce rynkowej Podręcznik