Ćwiczenia ZPI. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym 1
|
|
- Małgorzata Jóźwiak
- 8 lat temu
- Przeglądów:
Transkrypt
1 Ćwiczenia ZPI 1
2 W banku A oprocentowanie lokat 4% przy kapitalizacji kwartalnej. W banku B oprocentowanie lokat 4,5% przy kapitalizacji miesięcznej. W banku A ulokowano kwotę 1000 zł. Jaki kapitał należy ulokować w banku B, aby po 2 latach stan kont był taki sam? Bank A Bank B oprocentowanie 4,00% 4,50% kapitalizacja kwartalna miesięczna lokata 1000,00? po 2 latach 1082,86 989,82 FV PV 1 082,86 zł 989,82 2
3 Pan Scott zdyskontował weksel handlowo w banku po stopie 16% na 1 miesiąc przed datą zapadalności weksla. Suma wekslowa wynosiła 5000 PLN. Ile otrzymał? ( d/360 * W o = W n *(1 r d W o wartość początkowa, r d stopa dyskonta, d- czas pozostały do zapadalności W n wartość końcowa (suma wekslowa), 3
4 Zadanie 3. Wartość pieniądza w czasie dyskontowanie Inwestor ma czteroletnią obligację o wartości nominalnej 1000 zł, oprocentowaną 8% rocznie, przy czym odsetki wypłacane są raz na koniec roku. Stopa zwrotu w okresie do wykupu (YTM) dla tej obligacji wynosi 9%. Oblicz cenę obligacji. YTM stopa zwrotu w terminie do wykupu, którą uzyska inwestor z inwestycji w obligację, którą kupił po cenie P o do momentu zapadalności, reinwestując otrzymane z niej odsetki wg. tej samej stopy zwrotu. P o = n t=1 C t /(1+YTM)t +M/(1+YTM) n YTM =[C+(M- P o )/n]/[(m+ P o )/2] P 0 cena obligacji w chwili t=0, C t strumień pieniężny generowany przez obligację w chwili t 4
5 Zadanie 4. Realna efektywna stopa procentowa Oblicz realną efektywną roczną stopę procentową dla poszczególnych ofert kredytów bankó (inflacja 5%): 1/ stopa nominalna 10%, kapitalizacja kwartalna, 2/ stopa nominalna 8%, kapitalizacja półroczna. Który z banków ma korzystniejszą ofertę? Bank I Bank II stopa nominalna 10% 8% kapitalizacja 4 2 Inflacja 5% 5% 5
6 Zadanie 5. Rachunek rentowy Należy wyznaczyć przyszłą wartość renty po 3 latach i przy rocznej kapitalizacji odsetek i stopie nominalnej 5%, jeżeli rata wynosi 600 zł, a płatności są wpłacane: 1/ pod koniec każdego roku, 2/ na początku każdego roku. 6
7 Zadanie 6. Rachunek rentowy Proszę wyznaczyć wartość renty z dołu i z góry, po dwóch latach, przy kwartalnych wpłatach i kwartalnej kapitalizacji odsetek oraz stopie nominalnej 5%. Stała rata renty wynosi 400 zł. 7
8 Firma zaciągnęła kredyt zł na 4 lata przy oprocentowaniu rocznym 16%. Jak będzie wyglądał plan spłaty kredytu jeśli: a) Kredyt jest spłacany pod koniec każdego roku w 4 stałych ratach kapitałowych, odsetki naliczane od malejącej kwoty kredytu na koniec każdego roku. W związku z czym okresowa kwota spłaty kredytu jest zmienna (stała rata kapitałowa + zmienne odsetki). b) Kredyt jest spłacany pod koniec każdego roku w 4 stałych płatnościach (annuity). W związku z czym okresowa kwota spłaty kredytu jest stała (suma raty kapitałowej i odsetek). 8
9 (płatność kredytu=stała rata +zmieniające się odsetki) Ko kwota zaciągniętego kredytu na początku, r nominalna stopa procentowa w skali roku, n - ilość rat spłaty, T= Ko/n wysokość stałej raty kapitałowej, m liczba podokresów spłaty kredytu w roku. Kwota kredytu na Rata Odsetki płatne Kwota Kwota kredytu na Stopa Lata początek okresu kapitałowa raz w roku płatności koniec okresu procen , , , , ,00 0, , , , , , , , , , , , ,00 800, ,00 - Razem x , , ,00 9
10 stała płatność kredytu=zmienna rata +zmieniające się odsetki) Ko kwota zaciągniętego kredytu, i nominalna stopa procentowa w skali roku, n -ilość rat spłaty, a - wysokość stałej płatności wyliczona wg rachunku rentowego, Kwota kredytu na Rata Odsetki płatne Stała kwota Kwota kredytu na Stopa Lata początek okresu kapitałowa raz w roku płatności koniec okresu procen , , , , ,50 0, , , , , , , , , , , , ,64 985, ,50 - Razem x , , ,01 x 10
11 11
12 Zadanie 7. Rozkład normalny Prawdopodobieństwa wystąpienia oraz spodziewane stopy zwrotu w przypadku danej spółki giełdowej są zaprezentowane w tabeli. 1/ Oblicz oczekiwaną wartości stopy zwrotu. 2/ Oblicz wariancję i odchylenie standardowe. 3/ Określ parametry rozkładu stopy zwrotu i przedstaw je graficznie. 4/ Zinterpretuj wyniki. R1 R2 R3 R4 R5 R6-1,00% -2,00% 0,50% 1,50% 2,00% 4,00% P1 P2 P3 P4 P5 P6 0,05 0,10 0,20 0,40 0,20 0,05 12
13 Zadanie 8. Rozkład normalny Na podstawie danych stóp zwrotu i prawdopodobieństwa oblicz oczekiwana stopę zwrotu i odchylenie standardowe? Przedstaw graficznie rozkład stóp zwrotu. Prognoza Prawdopodobieństwo Stopa zwrotu % 1 0,1 12,00 2 0,2 10,00 3 0,5 5,00 4 0,1 0,00 5 0,1-10,00 Oczekiwana stopa zwrotu Wariancja 13
14 Analiza wskaźnika C/Z (cena do zysku na 1 akcję) wykazała, że: A/ średnia wartość C/Z dla wszystkich spółek giełdowych wynosi 16,9 a odchylenie standardowe 5,1. B/ średnia wartość C/Z dla spółek giełdowych z branży ubezpieczeniowej wynosi 10, a odchylenie standardowe 3,8. Rozkład tego zjawiska zbliżony jest do rozkładu normalnego. Pewna spółka ubezpieczeniowa ma wartość C/Z =6,6. Porównaj wartość wskaźnika C/Z tej spółki ze wskaźnikiem C/Z dla całej giełdy i dla branży ubezpieczeniowej? 14
15 Z i =abs(r i - E(R))/S R i stopa zwrotu z inwestycji Korzystając z rozkładu dystrybuanty należy pamiętać: F(Z i )=0,5 + F(Z i ), dla Z i >0 F(Z i )=1-F(Z i ), dla Z i <=0 15
16 Odpowiedź: Zadanie 9 Z = (6,6-16,9)/5,1= -2,02, co oznacza, że C/Z tej spółki odchyla się od średniej wartości wskaźnika dla wszystkich spółek giełdowych o 2 S na lewo. Potwierdza to również rozkład wartości dystrybuanty rozkładu normalnego. Dla P(X<6,6)=P(Z<-2,02)= 1-0,97831 = 0, =2% Interpretacja: Stosując regułę 3 sigm można powiedzieć, że jedynie ok. 2% spółek ma C/Z niższe od tego ubezpieczyciela. Rozkład wskaźnika C/Z dla wszystkich spółek 16
17 Odpowiedź: Zadanie 9 cd Z= (6,6-10)/3,8 = -0,89 co oznacza, że C/Z tej spółki odchyla się od średniej wartości wskaźnika dla spółek ubezpieczeniowych o mniej niż 1 S na lewo od średniej. Stosując regułę 3 sigm można powiedzieć, że jest to w miarę typowa spółka dla tego sektora, ma C/Z niewiele niższe od pozostałych. Potwierdza to również rozkład wartości dystrybuanty rozkładu normalnego. Dla P(X<6,6) = P(Z<-0,89) = 1-0,8133 = 0,1867 = 18% Interpretacja: Około 18% spółek sektora ubezpieczeniowego ma wartość wskaźnika C/Z niższą niż 6,6 (odchyloną o więcej niż 0,89 odchylenia standardowego na lewo od średniej). Rozkład wskaźnika C/Z dla spółek ubezpieczeniowych 17
18 Rozkład normalny wykorzystanie pakietu MS Excel Wykorzystanie funkcji EXCEL: NORMALIZUJ, ROZKŁAD NORMALNY, ROZKŁAD NORMALNY ODW 18
19 Zadanie 10. Kryteria oceny dobroci inwestycji Kryterium I spośród dwóch inwestycji o podobnym ryzyku lepszą jest ta, która maksymalizuje oczekiwaną stopę zwrotu. Dla przykładu: R A, śr =9%, S(R A )=4% R B, śr =6%, S(R B )=4% lepszą będzie akcja A, ponieważ przy takim samym ryzyku daje wyższy zysk. Rozkład akcji o tym samym ryzyku i różnych stopach zwrotu 19
20 Zadanie 10. Kryteria oceny dobroci inwestycji Kryterium II spośród dwóch inwestycji o podobnej stopie zwrotu lepszą jest ta, która minimalizuje ryzyko. Dla przykładu: R A, śr =9%, S(R A )=6% R B, śr =9%, S(R B )=4% lepszą będzie akcja B, ponieważ przy mniejszym ryzyku daje szansę na taki sam zysk. Rozkład akcji o tych samych stopach zwrotu i różnym ryzyku 20
21 Zadanie 10. Kryteria oceny dobroci inwestycji Kryterium III w przypadku porównywania inwestycji o różnych oczekiwanych stopach zwrotu i różnych odchyleniach standardowych, miarą oceny jest współczynnik zmienności. Miara ta określa, ile ryzyka przypada na 1 jednostkę średniego zysku. Lepszą inwestycją będzie zatem ta, która niższy współczynnik zmienności. Miara liczona dla R śr >0 V=S(R)/R śr *100, Dla przykładu: R A, śr =5%, S(R A )=7%, V=7/5=1,4 R B, śr =9%, S(R B )=11%, V=11/9=1,2 dla R śr <0 W=R śr /S(R) lepszą będzie akcja B, ponieważ mimo wyższego ryzyka, jednostkę zysku inwestor uzyska przy mniejszym ryzyku 1,2. Rozkład akcji o różnych stopach zwrotu i ryzyku 21
22 Na podstawie cen akcji wybranych 4 spółek indeksu WIXX w roku 2008, proszę obliczyć dla każdej ze spółek: 1/ średnią stopę zwrotu, 2/ odchylenie standardowe, 3/ współczynnik zmienności, oraz oceń, która ze spółek jest najbardziej, najmniej ryzykowna? 4/ jakie jest prawdopodobieństwo straty przy zakupie akcji spółki Beta po kursie 500? 22
23 Na podstawie cen akcji wybranych spółek z GPW, proszę obliczyć dla każdej ze spółek: 1/ średnią stopę zwrotu, 2/ odchylenie standardowe, 3/ współczynnik zmienności, oraz oceń, która ze spółek jest najbardziej, najmniej ryzykowna? 4/ jakie jest prawdopodobieństwo straty przy zakupie akcji Banku PKO BP po kursie 30,00? 23
24 24
25 25
Matematyka finansowa. Ćwiczenia ZPI. Ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym 1
Matematyka finansowa Ćwiczenia ZPI 1 Zadanie 1. Procent składany W banku A oprocentowanie lokat 4% przy kapitalizacji kwartalnej. W banku B oprocentowanie lokat 4,5% przy kapitalizacji miesięcznej. W banku
Ryzyko i efektywność. Ćwiczenia ZPI. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym 1
Ryzyko i efektywność Ćwiczenia ZPI 1 Stopa zwrotu 2 Zadanie 1. Rozkład normalny Prawdopodobieństwa wystąpienia oraz spodziewane stopy zwrotu w przypadku danej spółki giełdowej są zaprezentowane w tabeli.
1. Klasyfikacja stóp zwrotu 2. Zmienność stóp zwrotu 3. Mierniki ryzyka 4. Mierniki wrażliwości wyceny na ryzyko rynkowe
I Ryzyko i rentowność instrumentów finansowych 1. Klasyfikacja stóp zwrotu 2. Zmienność stóp zwrotu 3. Mierniki ryzyka 4. Mierniki wrażliwości wyceny na ryzyko rynkowe 1 Stopa zwrotu z inwestycji w ujęciu
Wskaźniki efektywności Sharpe a, Treynora, Jensena, Information Ratio, Sortino
Ćwiczenia 5 Pojęcie benchmarku, tracking error Wskaźniki efektywności Sharpe a, Treynora, Jensena, Information Ratio, Sortino Renata Karkowska, Wydział Zarządzania UW 1 Współczynnik Sharpe a Renata Karkowska,
mgr Katarzyna Niewińska; Wydział Zarządzania UW Ćwiczenia 3
Ćwiczenia 3 Rachunek rentowy Jako rachunek rentowy traktuje się regularne płatności płacone w stałych przedziałach czasu przy czym towarzyszy temu stała stopa procentowa. Wykorzystanie: renty; płatności
System finansowy gospodarki. Zajęcia nr 6 Matematyka finansowa
System finansowy gospodarki Zajęcia nr 6 Matematyka finansowa Rachunek rentowy (annuitetowy) Mianem rachunku rentowego określa się regularne płatności w stałych odstępach czasu przy założeniu stałej stopy
Powtórzenie. Ćwiczenia ZPI. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym 1
Powtórzenie Ćwiczenia ZPI 1 Zadanie 1. Średnia wartość stopy zwrotu dla wszystkich spółek finansowych wynosi 12%, a odchylenie standardowe 5,1%. Rozkład tego zjawiska zbliżony jest do rozkładu normalnego.
mgr Katarzyna Niewińska; Wydział Zarządzania UW Ćwiczenia 2
Ćwiczenia 2 Wartość pieniądza w czasie Zmienna wartość pieniądza w czasie jest pojęciem, które pozwala porównać wartość różnych sum pieniężnych otrzymanych w różnych okresach czasu. Czy 1000 PLN otrzymane
zaliczenie na ocenę z elementarnej matematyki finansowej I rok MF, 21 czerwca 2012 godz. 8:15 czas trwania 120 min.
zaliczenie na ocenę z elementarnej matematyki finansowej I rok MF, 21 czerwca 2012 godz. 8:15 czas trwania 120 min. Imię nazwisko:... numer indeksu:... nr zadania zad.1 zad.2 zad.3 zad.4 zad.5 zad.6 zad.7
Ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym Zadanie 1 Procent składany
Zadanie 1 Procent składany W banku A oprocentowanie lokat 4% przy kapitalizacji kwartalnej. W banku B oprocentowanie lokat 4,5% przy kapitalizacji miesięcznej. W banku A ulokowano kwotę 1000 zł. Jaki kapitał
Matematyka finansowa 11.10.2004 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r.
Komisja Egzaminacyjna dla Aktuariuszy XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... WERSJA TESTU Czas egzaminu: 100 minut
Licz i zarabiaj matematyka na usługach rynku finansowego
Licz i zarabiaj matematyka na usługach rynku finansowego Przedstawiony zestaw zadań jest przeznaczony dla uczniów szkół ponadgimnazjalnych i ma na celu ukazanie praktycznej strony matematyki, jej zastosowania
Wartość przyszła pieniądza
O koszcie kredytu nie można mówić jedynie na podstawie wysokości płaconych odsetek. Dla pożyczającego pieniądze najważniejszą kwestią jest kwota, jaką będzie musiał zapłacić za korzystanie z cudzych środków
Arkusz kalkulacyjny MS EXCEL ĆWICZENIA 3
Arkusz kalkulacyjny MS EXCEL ĆWICZENIA 3 Uwaga! Każde ćwiczenie rozpoczynamy od stworzenia w katalogu Moje dokumenty swojego własnego katalogu roboczego, w którym będziecie Państwo zapisywać swoje pliki.
Elementy matematyki finansowej w programie Maxima
Maxima-03_windows.wxm 1 / 8 Elementy matematyki finansowej w programie Maxima 1 Wartość pieniądza w czasie Umiejętność przenoszenia kwot pieniędzy w czasie, a więc obliczanie ich wartości na dany moment,
Temat 1: Wartość pieniądza w czasie
Temat 1: Wartość pieniądza w czasie Inwestycja jest w istocie bieżącym wyrzeczeniem się dla przyszłych korzyści. Ale teraźniejszość jest względnie dobrze znana, natomiast przyszłość to zawsze tajemnica.
Matematyka finansowa 08.01.2007 r. Komisja Egzaminacyjna dla Aktuariuszy. XLI Egzamin dla Aktuariuszy z 8 stycznia 2007 r. Część I
Komisja Egzaminacyjna dla Aktuariuszy XLI Egzamin dla Aktuariuszy z 8 stycznia 2007 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 00 minut . Ile
WARTOŚĆ PIENIĄDZA W CZASIE WPROWADZENIE
WARTOŚĆ PIENIĄDZA W CZASIE WPROWADZENIE PYTANIA KONTROLNE Różnica pomiędzy: inwestycją, projektem inwestycyjnym, przedsięwzięciem inwestycyjnym Rodzaje inwestycji ze względu na cel Wartość pieniądza w
Zajęcia 1. Pojęcia: - Kapitalizacja powiększenie kapitału o odsetki, które zostały przez ten kapitał wygenerowane
Zajęcia 1 Pojęcia: - Procent setna część całości; w matematyce finansowej korzyści płynące z użytkowania kapitału (pojęcie używane zamiennie z terminem: odsetki) - Kapitalizacja powiększenie kapitału o
Matematyka finansowa 05.12.2005 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXVII Egzamin dla Aktuariuszy z 5 grudnia 2005 r.
Komisja Egzaminacyjna dla Aktuariuszy XXXVII Egzamin dla Aktuariuszy z 5 grudnia 2005 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... WERSJA TESTU A Czas egzaminu: 100 minut 1 1.
WARTOŚĆ PIENIĄDZA W CZASIE c.d. (WACC + Spłata kredytu)
WARTOŚĆ PIENIĄDZA W CZASIE c.d. (WACC + Spłata kredytu) PYTANIA KONTROLNE Co oznacza pojęcie kapitalizacja odsetek? Co oznacza pojęcie wartość przyszła i bieżąca? Jakimi symbolami we wzorach oznaczamy
Arkusz kalkulacyjny MS EXCEL ĆWICZENIA 3. Zadanie 1 Amortyzacja środków trwałych
Arkusz kalkulacyjny MS EXCEL ĆWICZENIA 3 Uwaga! Każde ćwiczenie rozpoczynamy od stworzenia w katalogu Moje dokumenty swojego własnego katalogu roboczego, w którym będziecie Państwo zapisywać swoje pliki.
System finansowy gospodarki. Zajęcia nr 5 Matematyka finansowa
System finansowy gospodarki Zajęcia nr 5 Matematyka finansowa Wartość pieniądza w czasie 1 złoty posiadany dzisiaj jest wart więcej niż 1 złoty posiadany w przyszłości, np. za rok. Powody: Suma posiadana
WACC Montaż finansowy Koszt kredytu
WACC Montaż finansowy Koszt kredytu PYTANIA KONTROLNE Co oznacza pojęcie kapitalizacja odsetek? Zdefiniuj stopę procentową i dyskontową Co oznacza pojęcie wartość przyszła i bieżąca? Jakimi symbolami we
Paulina Drozda WARTOŚĆ PIENIĄDZA W CZASIE
Paulina Drozda WARTOŚĆ PIENIĄDZA W CZASIE Zmianą wartości pieniądza w czasie zajmują się FINANSE. Finanse to nie to samo co rachunkowość. Rachunkowość to opowiadanie JAK BYŁO i JAK JEST Finanse zajmują
WACC Montaż finansowy Koszt kredytu
WACC Montaż finansowy Koszt kredytu Na następne zajęcia proszę przygotować listę zakupów niezbędną do realizacji projektu. PYTANIA KONTROLNE Co oznacza pojęcie kapitalizacja odsetek? Zdefiniuj stopę procentową
www.pokonac-rynek.pl Wzory - matematyka finansowa Opracował: Łukasz Zymiera
www.pokonac-rynek.pl Wzory - matematyka finansowa Opracował: Łukasz Zymiera Wartość pieniądza w czasie MWP mnożnik wartości przyszłej MWO mnożnik wartości obecnej MWPR mnożnik wartości przyszłej renty
Wartość przyszła pieniądza: Future Value FV
Wartość przyszła pieniądza: Future Value FV Jeśli posiadamy pewną kwotę pieniędzy i mamy możliwość ulokowania ich w banku na ustalony czas i określony procent, to kwota w przyszłości (np. po 1 roku), zostanie
Rachunek rent. Pojęcie renty. Wartość początkowa i końcowa renty. Renty o stałych ratach. Renta o zmiennych ratach. Renta uogólniona.
Temat: Rachunek rent. Pojęcie renty. Wartość początkowa i końcowa renty. Renty o stałych ratach. Renta o zmiennych ratach. Renta uogólniona. Zadanie Przez 2 lata na koniec każdego miesiąca wpłacamy 200
Matematyka finansowa 10.12.2012 r. Komisja Egzaminacyjna dla Aktuariuszy. LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r.
Komisja Egzaminacyjna dla Aktuariuszy LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.
Komisja Egzaminacyjna dla Aktuariuszy. XXXII Egzamin dla Aktuariuszy z 7 czerwca 2004 r. Część I. Matematyka finansowa
Komisja Egzaminacyjna dla Aktuariuszy XXXII Egzamin dla Aktuariuszy z 7 czerwca 2004 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Trzy osoby biorą
Matematyka finansowa 03.10.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVIII Egzamin dla Aktuariuszy z 3 października 2011 r.
Komisja Egzaminacyjna dla Aktuariuszy LVIII Egzamin dla Aktuariuszy z 3 października 2011 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut
Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXI Egzamin dla Aktuariuszy z 1 października 2012 r.
Komisja Egzaminacyjna dla Aktuariuszy LXI Egzamin dla Aktuariuszy z 1 października 2012 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1
Zadania do wykładu Matematyka bankowa 2
Zadania do wykładu Matematyka bankowa 2 Dorota Klim Department of Nonlinear Analysis, Faculty of Mathematics and Computer Science, University of Łódź, Banacha 22, 90-238 Łódź, Poland E-mail address: klimdr@math.uni.ldz.pl
Matematyka finansowa 26.05.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część I
Komisja Egzaminacyjna dla Aktuariuszy LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Przyjmijmy
Forward Rate Agreement
Forward Rate Agreement Nowoczesne rynki finansowe oferują wiele instrumentów pochodnych. Należą do nich: opcje i warranty, kontrakty futures i forward, kontrakty FRA (Forward Rate Agreement) oraz swapy.
Prof. nadzw. dr hab. Marcin Jędrzejczyk
Prof. nadzw. dr hab. Marcin Jędrzejczyk 1. Zakup akcji, udziałów w obcych podmiotach gospodarczych według cen nabycia. 2. Zakup akcji i innych długoterminowych papierów wartościowych, traktowanych jako
Do grupy podstawowych wskaźników rynku kapitałowego należy zaliczyć: zysk netto liczba wyemitowanych akcji
VIII. Repetytorium Temat 1.6. Wskaźniki rynku kapitałowego Wskaźniki rynku kapitałowego służą do pomiaru efektywności finansowej spółek akcyjnych, notowanych na giełdzie papierów wartościowych. Stanowią
Zadanie 1. Zadanie 2. Zadanie 3
Zadanie 1 Inwestor rozważa nabycie obligacji wieczystej (konsoli), od której będzie otrzymywał na koniec każdego półrocza kupon w wysokości 80 zł. Wymagana przez inwestora stopa zwrotu w terminie do wykupu
Matematyka finansowa 15.06.2015 r. Komisja Egzaminacyjna dla Aktuariuszy. LXXI Egzamin dla Aktuariuszy z 15 czerwca 2015 r.
Komisja Egzaminacyjna dla Aktuariuszy LXXI Egzamin dla Aktuariuszy z 1 czerwca 201 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Pracownik
OPŁACALNOŚĆ INWESTYCJI
3/27/2011 Ewa Kusideł ekusidel@uni.lodz.pl 1 OPŁACALNOŚĆ INWESTYCJI www.kep.uni.lodz.pl\ewakusidel 3/27/2011 Inwestycje i ryzyko na rynku nieruchomości 2 Inwestycja Inwestycja Nakład na zwiększenie lub
Zadania do wykładu Matematyka bankowa 1 i 2
Zadania do wykładu Matematyka bankowa 1 i 2 Dorota Klim Department of Nonlinear Analysis, Faculty of Mathematics and Computer Science, University of Łódź, Banacha 22, 90-238 Łódź, Poland E-mail address:
1. Jaką kwotę zgromadzimy po 3 latach na lokacie bankowej jeśli roczna NSP wynosi 4%, pierwsza wpłata wynosi 300 zl i jest dokonana na poczatku
1. Jaką kwotę zgromadzimy po 3 latach na lokacie bankowej jeśli roczna NSP wynosi 4%, pierwsza wpłata wynosi 300 zl i jest dokonana na poczatku miesiąca a każda następna miesięczna wpłata jest (a) Większa
WARTOŚĆ PIENIĄDZA W CZASIE c.d. (WACC + Spłata kredytu)
WARTOŚĆ PIENIĄDZA W CZASIE c.d. (WACC + Spłata kredytu) PYTANIA KONTROLNE Co oznacza pojęcie kapitalizacja odsetek? Co oznacza pojęcie wartość przyszła i bieżąca? Jakimi symbolami we wzorach oznaczamy
Matematyka finansowa 04.04.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część I
Komisja Egzaminacyjna dla Aktuariuszy LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.
Zastosowanie matematyki w finansach i bankowości
Zastosowanie matematyki w finansach i bankowości Maciej Wolny I. Kalkulacja wartości pieniądza w czasie... 1 II. Nominalna, efektywna i realna stopa procentowa... 4 III. Spłata kredytów w równych i różnych
[1 ] M. Podgórska, J. Klimkowska, Matematyka finansowa, PWN
LITERATURA: [1 ] M. Podgórska, J. Klimkowska, Matematyka finansowa, PWN [2 ] E. Smaga, Arytmetyka finansowa, PWN [3 ] M. Sobczyk, Matematyka finansowa, Placet [4 ] M. Szałański, Podstawy matematyki finansowej,
Zadania do wykładu Matematyka bankowa 2
Zadania do wykładu Matematyka bankowa 2 Dorota Klim Instytut Matematyki i Informatyki, PWSZ w Płocku E-mail address: klimdr@math.uni.ldz.pl http://math.uni.lodz.pl/ klimdr/ Bibliografia [1] M. Podgórska,
dr hab. Marcin Jędrzejczyk
dr hab. Marcin Jędrzejczyk Przez inwestycje należy rozumieć aktywa nabyte w celu osiągnięcia korzyści ekonomicznych, wynikających z przyrostu wartości tych zasobów, uzyskania z nich przychodów w postaci
1. Charakterystyka obligacji. 2. Rodzaje obligacji. 3. Zadania praktyczne-duration/ceny obligacji.
mgr Maciej Jagódka 1. Charakterystyka obligacji 2. Rodzaje obligacji. 3. Zadania praktyczne-duration/ceny obligacji. Wierzycielski papier wartościowy, w którym emitent obligacji jest dłużnikiem posiadacza
Inwestycje finansowe. Wycena obligacji. Stopa zwrotu z akcji. Ryzyko.
Inwestycje finansowe Wycena obligacji. Stopa zwrotu z akcji. yzyko. Inwestycje finansowe Instrumenty rynku pieniężnego (np. bony skarbowe). Instrumenty rynku walutowego. Obligacje. Akcje. Instrumenty pochodne.
METODY OCENY PROJEKTÓW INWESTYCYJNYCH WPROWADZENIE WARTOŚĆ PIENIĄDZA W CZASIE. Ćwiczenia nr 1 i 2
METODY OCENY PROJEKTÓW INWESTYCYJNYCH WPROWADZENIE WARTOŚĆ PIENIĄDZA W CZASIE Ćwiczenia nr 1 i 2 - Cel ćwiczeń - Komunikacja email: i.ratuszniak@efficon.pl, w temacie - mopi - Konsultacje: pokój: 428,
RACHUNEK EFEKTYWNOŚCI INWESTYCJI
RACHUNEK EFEKTYWNOŚCI INWESTYCJI METODY PROSTE STATYCZNE 4 maj 2015 r. Metody oceny efektywności projektu inwestycyjnego Wybór metody oceny Przygotowanie danych (prognozy) Wyliczenie wskaźników Wynik analizy
Komisja Egzaminacyjna dla Aktuariuszy. XXXIX Egzamin dla Aktuariuszy z 5 czerwca 2006 r. Część I. Matematyka finansowa
Komisja Egzaminacyjna dla Aktuariuszy XXXIX Egzamin dla Aktuariuszy z 5 czerwca 006 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Inwestor dokonuje
Komisja Egzaminacyjna dla Aktuariuszy XXXV Egzamin dla Aktuariuszy z 16 maja 2005 r. Część I Matematyka finansowa
Komisja Egzaminacyjna dla Aktuariuszy XXXV Egzamin dla Aktuariuszy z 6 maja 005 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... WERSJA TESTU A Czas egzaminu: 00 minut . Inwestorzy
Rachunek rent. Pojęcie renty. Wartość początkowa i końcowa renty. Renty o stałych ratach. Renta o zmiennych ratach. Renta uogólniona.
Temat: Rachunek rent Pojęcie renty Wartość początkowa i końcowa renty Renty o stałych ratach Renta o zmiennych ratach Renta uogólniona Zadanie 1 Przez 2 lata na koniec każdego miesiąca wpłacamy 1 000 PLN
Matematyka finansowa 13.12.2010 r. Komisja Egzaminacyjna dla Aktuariuszy. LV Egzamin dla Aktuariuszy z 13 grudnia 2010 r. Część I
Komisja Egzaminacyjna dla Aktuariuszy LV Egzamin dla Aktuariuszy z 13 grudnia 2010 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Pan
Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXIV Egzamin dla Aktuariuszy z 17 czerwca 2013 r.
Komisja Egzaminacyjna dla Aktuariuszy LXIV Egzamin dla Aktuariuszy z 17 czerwca 2013 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 0 minut 1 1. Rozważamy
INDEKS FINANSISTY. Monika Skrzydłowska. PWSZ w Chełmie. październik Projekt dofinansowała Fundacja mbanku
INDEKS FINANSISTY Monika Skrzydłowska PWSZ w Chełmie październik 2017 Projekt dofinansowała Fundacja mbanku Monika Skrzydłowska (PWSZ w Chełmie) INDEKS FINANSISTY październik 2017 1 / 19 Spis treści 1
Ekonomika i Logistyka w Przedsiębiorstwach Transportu Morskiego wykład 06 MSTiL niestacjonarne (II stopień)
dr Adam Salomon Ekonomika i Logistyka w Przedsiębiorstwach Transportu Morskiego wykład 06 MSTiL niestacjonarne (II stopień) program wykładu 06. Rola współczynnika procentowego i współczynnika dyskontowego
Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXIII Egzamin dla Aktuariuszy z 25 marca 2013 r. Część I
Komisja Egzaminacyjna dla Aktuariuszy LXIII Egzamin dla Aktuariuszy z 25 marca 2013 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.
Matematyka finansowa 20.06.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVII Egzamin dla Aktuariuszy z 20 czerwca 2011 r.
Komisja Egzaminacyjna dla Aktuariuszy LVII Egzamin dla Aktuariuszy z 20 czerwca 2011 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.
Liczba godzin Punkty ECTS Sposób zaliczenia. ćwiczenia 16 zaliczenie z oceną
Wydział: Zarządzanie i Finanse Nazwa kierunku kształcenia: Finanse i Rachunkowość Rodzaj przedmiotu: podstawowy Opiekun: prof. nadzw. dr hab. Piotr Szczepankowski Poziom studiów (I lub II stopnia): I stopnia
Matematyka finansowa, rozkład normalny, Model wyceny aktywów kapitałowych, Forward, Futures
Matematyka finansowa, rozkład normalny, Model wyceny aktywów kapitałowych, Forward, Futures 1 Inwestor ma trzyletnią obligację o wartości nominalnej 2000 zł, oprocentowaną 8% rocznie, przy czym odsetki
Dr hab. Renata Karkowska, ćwiczenia Zarządzanie ryzykiem 1
1 Rodzaje i źródła ryzyka stopy procentowej: Ryzyko niedopasowania terminów przeszacowania, np. 6M kredyt o stałym oprocentowaniu finansowany miesięcznymi lokatami o zmiennym oprocentowaniu. Ryzyko podstawy
Charakterystyka i wycena kontraktów terminowych forward
Charakterystyka i wycena kontraktów terminowych forward Profil wypłaty forward Profil wypłaty dla pozycji długiej w kontrakcie terminowym Long position Zysk/strata Cena spot Profil wypłaty dla pozycji
Funkcje w MS Excel. Arkadiusz Banasik arkadiusz.banasik@polsl.pl
Funkcje w MS Excel Arkadiusz Banasik arkadiusz.banasik@polsl.pl Plan prezentacji Wprowadzenie Funkcje matematyczne Funkcje logiczne Funkcje finansowe Podsumowanie 2/27 Wprowadzenie Funkcje: Są elementami
Komisja Egzaminacyjna dla Aktuariuszy LXX Egzamin dla Aktuariuszy z 23 marca 2015 r. Część I Matematyka finansowa
Komisja Egzaminacyjna dla Aktuariuszy LXX Egzamin dla Aktuariuszy z 23 marca 2015 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Rozważmy
Matematyka I dla DSM zbiór zadań
I Sumowanie skończone W zadaniach -4 obliczyć podaną sumę. Matematyka I dla DSM zbiór zadań do użytku wewnętrznego dr Leszek Rudak Uniwersytet Warszawski Wydział Zarządzania. 5 i. i= 4 i 3. i= 5 ( ) i
Egzamin dla Aktuariuszy z 16 listopada 1996 r.
Komisja Egzaminacyjna dla Aktuariuszy Egzamin dla Aktuariuszy z 16 listopada 1996 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:.... Czas egzaminu: l OO minut Ośrodek Doskonalenia
Inwestowanie w obligacje
Inwestowanie w obligacje Ile zapłacić za obligację aby uzyskać oczekiwaną stopę zwrotu? Jaką stopę zwrotu uzyskamy kupując obligację po danej cenie? Jak zmienią się ceny obligacji, kiedy Rada olityki ieniężnej
Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXXIII Egzamin dla Aktuariuszy z 7 marca 2016 r. Część I
Komisja Egzaminacyjna dla Aktuariuszy LXXIII Egzamin dla Aktuariuszy z 7 marca 2016 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.
Zarządzanie portfelem inwestycyjnym
Zarządzanie portfelem inwestycyjnym Dr hab. Renata Karkowska Wykład 5, 6 Renata Karkowska, Wydział Zarządzania 1 Wykład 5 - cel 5. Tradycyjne i awangardowe miary efektywności portfelowej Pojęcie benchmarku,
Ekonomiczno-techniczne aspekty wykorzystania gazu w energetyce
Ekonomiczno-techniczne aspekty wykorzystania gazu w energetyce Janusz Kotowicz W8 Wydział Inżynierii i Ochrony Środowiska Politechnika Częstochowska Wpływ stopy dyskonta na przepływ gotówki. Janusz Kotowicz
Matematyka finansowa 8.12.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXIX Egzamin dla Aktuariuszy z 8 grudnia 2014 r. Część I
Komisja Egzaminacyjna dla Aktuariuszy LXIX Egzamin dla Aktuariuszy z 8 grudnia 2014 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.
Egzamin XXVII dla Aktuariuszy z 12 października 2002 r.
Komisja Egzaminacyjna dla Aktuariuszy Egzamin XXVII dla Aktuariuszy z 12 października 2002 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Ośrodek Doskonalenia
Akademia Młodego Ekonomisty
Akademia Młodego Ekonomisty Matematyka finansowa wokół nas Uniwersytet Szczeciński 7 grudnia 2017 r. Wartość pieniądza w czasie, siła procentu składanego, oprocentowanie rzeczywiste, nominalne i realne
Dariusz Wardowski Katedra Analizy Nieliniowej. Bankowość i metody statystyczne w biznesie - zadania i przykłady część II
Wydział Matematyki i Informatyki Uniwersytetu Łódzkiego w Łodzi Dariusz Wardowski Katedra Analizy Nieliniowej Bankowość i metody statystyczne w biznesie - zadania i przykłady część II Łódź 2008 Rozdział
Finansowanie inwestycji rzeczowych w gospodarce rynkowej Sporządzanie planu spłaty kredytu wykład 5. dla 5. roku HM zaoczne.
Finansowanie inwestycji rzeczowych w gospodarce rynkowej Sporządzanie planu spłaty kredytu wykład 5. dla 5. roku HM zaoczne dr Adam Salomon Finansowanie inwestycji rzeczowych w gospodarce rynkowej Podręcznik
dr hab. Renata Karkowska
dr hab. Renata Karkowska Rodzaje i źródła ryzyka stopy procentowej: Ryzyko niedopasowania terminów przeszacowania, np. 6M kredyt o stałym oprocentowaniu finansowany miesięcznymi lokatami o zmiennym oprocentowaniu.
Top 5 Polscy Giganci
lokata ze strukturą Top 5 Polscy Giganci Pomnóż swoje oszczędności w bezpieczny sposób inwestując w lokatę ze strukturą Top 5 Polscy Giganci to możliwy zysk nawet do 45%. Lokata ze strukturą Top 5 Polscy
Nauka o finansach. Prowadzący: Dr Jarosław Hermaszewski
Nauka o finansach Prowadzący: Dr Jarosław Hermaszewski WARTOŚĆ PIENIĄDZA W CZASIE Wykład 4 Prawda ekonomiczna Pieniądz, który mamy realnie w ręku, dziś jest wart więcej niż oczekiwana wartość tej samej
Pieniądz ma zmienną wartość w czasie również w przypadku zerowej inflacji. Jest kilka przyczyn tego zjawiska:
Prawie wszyscy wiedzą, że pewna suma pieniędzy ma dziś większą wartość niż ta sama suma w przyszłości. Mówi się, że pieniądz traci na wartości. Używając bardziej precyzyjnej terminologii trzeba powiedzieć
Zarządzanie portfelem inwestycyjnym. Renata Karkowska; Wydział Zarządzania UW
Zarządzanie portfelem inwestycyjnym 1 Cel wykładu Zarządzanie portfelem inwestycyjnym 1. Inwestycja na rynku kapitałowym. Instrumenty kasowe i terminowe. Zarządzanie portfelem miary ryzyka, oczekiwana
Akademia Młodego Ekonomisty Matematyka finansowa dla liderów Albert Tomaszewski Grupy 1-2 Zadanie 1.
Grupy 1-2 Zadanie 1. Sprawdźcie ofertę dowolnych 5 banków i wybierzcie najlepszą ofertę oszczędnościową (lokatę lub konto oszczędnościowe). Obliczcie, jaki zwrot przyniesie założenie jednej takiej lokaty
LOKATY RENTIERSKIE min. kwota 500 zł oprocentowanie zmienne
Okres oszczędzania TABELE OPROCENTOWAŃ LOKAT LOKATY TERMINOWE kwota min. 500 zł oprocentowanie zmienne oprocentowanie stałe Lokata PRIMA 7 dni - 0,50 % 1 m-c 1,00 % 1,00 % 2 m-ce 1,00 % - 3 m-ce 1,00 %
LOKATY RENTIERSKIE min. kwota 500 zł oprocentowanie zmienne
Okres oszczędzania TABELE OPROCENTOWAŃ LOKAT LOKATY TERMINOWE kwota min. 500 zł oprocentowanie zmienne oprocentowanie stałe Lokata PRIMA 7 dni - 0,25 % 1 m-c 0,75 % 0,75 % 2 m-ce 0,75 % - 3 m-ce 0,75 %
LOKATY RENTIERSKIE min. kwota 500 zł oprocentowanie zmienne
Okres oszczędzania TABELE OPROCENTOWAŃ LOKAT LOKATY TERMINOWE kwota min. 500 zł oprocentowanie zmienne oprocentowanie stałe Lokata PRIMA 7 dni - 0,50 % 1 m-c 1,00 % 1,00 % 2 m-ce 1,00 % - 3 m-ce 1,00 %
Komisja Egzaminacyjna dla Aktuariuszy. XLIV Egzamin dla Aktuariuszy z 3 grudnia 2007 r. Część I. Matematyka finansowa
Komisja Egzaminacyjna dla Aktuariuszy XLIV Egzamin dla Aktuariuszy z 3 grudnia 2007 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Rachunki oszczędnościowe
Porównanie opłacalności kredytu w PLN i kredytu denominowanego w EUR Przykładowa analiza
Porównanie opłacalności kredytu w PLN i kredytu denominowanego w EUR Przykładowa analiza Opracowanie: kwiecień 2016r. www.strattek.pl strona 1 Spis 1. Parametry kredytu w PLN 2 2. Parametry kredytu denominowanego
Numer ogłoszenia: 410382-2011; data zamieszczenia: 04.12.2011 OGŁOSZENIE O ZMIANIE OGŁOSZENIA
Ogłoszenie powiązane: Ogłoszenie nr 405508-2011 z dnia 2011-11-30 r. Ogłoszenie o zamówieniu - Niechlów Zaciągnięcie kredytu długoterminowego w wysokości 522.400,00 PLN z przeznaczeniem na pokrycie planowanego
Akademia Młodego Ekonomisty
Temat spotkania: Matematyka finansowa dla liderów Temat wykładu: Matematyka finansowa wokół nas Prowadzący: Szkoła Główna Handlowa w Warszawie 14 października 2014 r. Matematyka finansowa dla liderów Po
Egzamin dla Aktuariuszy z 7 grudnia 1996 r.
Komisja Egzaminacyjna dla Aktuariuszy Egzamin dla Aktuariuszy z 7 grudnia 1996 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:....... Czas egzaminu: 100 minut Ośrodek Doskonalenia
Nazwa funkcji (parametry) Opis Parametry
DB(koszt;odzysk;czas_życia;okres;miesiąc) DDB(koszt;odzysk;czas_życia;okres;współczynnik) Zwraca amortyzację środka trwałego w podanym okresie, obliczoną z wykorzystaniem metody równomiernie malejącego
Jak wybrać kredyt? Waldemar Wyka Instytut Matematyki Politechniki Łódzkiej. 22 listopada 2014
Waldemar Wyka Instytut Matematyki Politechniki Łódzkiej 22 listopada 2014 Plan prezentacji 1 Powtórzenie 2 3 Plany spłaty długu - stałe raty Plany spłaty długu - stałe raty kapitałowe Plany spłaty długu
LOKATY RENTIERSKIE min. kwota 500 zł oprocentowanie zmienne
oszczędzania TABELE OPROCENTOWAŃ LOKAT LOKATY TERMINOWE kwota min. 500 zł oprocentowanie zmienne oprocentowanie stałe Lokata PRIMA 7 dni - 0,25 % 1 m-c 0,50 % 0,50 % 2 m-ce 0,50 % - 3 m-ce 0,50 % 0,50
Dariusz Wardowski Katedra Analizy Nieliniowej. Bankowość i metody statystyczne w biznesie - zadania i przykłady
Wydział Matematyki Uniwersytetu Łódzkiego w Łodzi Dariusz Wardowski Katedra Analizy Nieliniowej Bankowość i metody statystyczne w biznesie - zadania i przykłady Łódź 2006 Rozdział 1 Oprocentowanie lokaty
Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. XLIX Egzamin dla Aktuariuszy z 6 kwietnia 2009 r.
Komisja Egzaminacyjna dla Aktuariuszy XLIX Egzamin dla Aktuariuszy z 6 kwietnia 2009 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.
Matematyka finansowa 30.09.2013 r. Komisja Egzaminacyjna dla Aktuariuszy. LXV Egzamin dla Aktuariuszy z 30 września 2013 r.
Komisja Egzaminacyjna dla Aktuariuszy LXV Egzamin dla Aktuariuszy z 30 września 2013 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.
Akademia Młodego Ekonomisty
Akademia Młodego Ekonomisty Matematyka finansowa dla liderów Matematyka finansowa wokół nas dr Agnieszka Bem Uniwersytet Ekonomiczny we Wrocławiu 20 listopada 2017 r. Wartość pieniądzaw czasie Wartość