System finansowy gospodarki. Zajęcia nr 6 Matematyka finansowa
|
|
- Edyta Cieślik
- 8 lat temu
- Przeglądów:
Transkrypt
1 System finansowy gospodarki Zajęcia nr 6 Matematyka finansowa
2 Rachunek rentowy (annuitetowy) Mianem rachunku rentowego określa się regularne płatności w stałych odstępach czasu przy założeniu stałej stopy procentowej. Przykłady płatności rentowych (annuitetowych): Wpłaty na fundusze rentowe; Płatności na fundusze emerytalne; Płatności wynikające z umowy dzierżawy, najmu itp.; Opłaty leasingowe; Spłaty kredytu bankowego (tzw. annuitetowego w kolejnych okresach równe płatności, płatność to suma raty kapitałowej i odsetek, czyli rata kredytu).
3 Rachunek rentowy (annuitetowy) dla procentu składanego (wzory) Renta płatna z dołu (płatność z dołu) K K n 0 (1 a 1 a i) i (1 i i) Renta płatna z góry (płatność z góry) n 1 n K n a (1 i) (1 i) i n 1 K 0 a (1 i) 1 (1 i i) n
4 Wyjaśnienie oznaczeń K n wartość przyszła renty (annuity), w literaturze często oznaczana jako FV i,n K 0 wartość bieżąca renty (annuity), w literaturze często oznaczana jako PV i,n i stopa procentowa lub dyskontowa (dla jednego okresu), w literaturze często oznaczana jako r n liczba płatności (okresów) a wielkość cyklicznej płatności (annuity, renty), w literaturze często oznaczana jako PMT
5 Wartość przyszła annuity, czyli renty (kapitalizacja z dołu) Przykład 1 Do banku pan X wpłaca pod koniec każdego roku przez okres 3 lat po zł. Oprocentowanie roczne wynosi 12% przy rocznej kapitalizacji. Oblicz wartość końcową (przyszłą) wkładu.
6 Przykład 2 Kowalski zdecydował się wpłacać do banku po 800 zł co roku z góry przez okres 3 lat. Stopa procentowa nominalna roczna wynosi 5%. Jaka będzie wartość przyszła tej lokaty?
7 Przykład 3 Małżeństwo Y zdecydowało się stworzyć własny fundusz emerytalny. Wpłaciło j.p. na 20 lat oraz zobowiązało się wpłacać po j.p. co roku z góry. Jaki fundusz zostanie zgromadzony na koniec 20 roku, jeżeli wiadomo, że stopa procentowa wynosi 10 punktów..
8 Przykład 4 Pewna osoba zdecydowała się dokonywać wpłat oszczędnościowych co miesiąc z dołu w wysokości 505,43 j.p., tak aby zgromadzić fundusz w wysokości j.p. Proszę obliczyć, przez ile lat należy dokonywać wpłat przy stopie 12%, wiedząc że kapitalizacja odbywa się co miesiąc, czyli jest równa z okresami wpłat.
9 Równanie bankierów (uproszczone) R Równanie bankierów stanowi różnicę między kapitałem początkowym, a sumą wypłat rentowych na koniec okresu. K n1 K n2 K (1 i) K n w procencie Gdzie: składanym K n1 kapitał początkowy sprowadzony na koniec okresu K n2 suma wypłat rentowych sprowadzona na koniec okresu 0 n a (1 i) i n 1 K n w rachunku rentowym (dla płatności z dołu) R różnica między K n1 i K n2
10 Przykład 5 W banku został zgromadzony kapitał w wysokości j.p. Z tego kapitału wypłaca się co miesiąc rentę z dołu. Obowiązuje kapitalizacja miesięczna wg stopy procentowej miesięcznej 1%. a) Jaka będzie maksymalna renta wieczysta? b) Jak długo można pobierać rentę stałą w wysokości 2000 j.p. Ad a) a K 0 i , Ad b) Obliczamy metodą iteracji Liczba miesięcy 69 (reszta 1310)
11 Spłata kredytu ratą zmienną i stałą Przykład 6 Przedsiębiorstwo produkcyjne zaciągnęło kredyt w wysokości 1000 j.p. na 5 lat przy oprocentowaniu rocznym równym 20%. Proszę zaprojektować plan spłaty kredytu dla dwóch wariantów: a) Kredyt jest spłacany pod koniec każdego roku w 5 stałych ratach kapitałowych, zaś odsetki naliczane są według malejącego salda zadłużenia na koniec każdego roku. W konsekwencji rata kredytu (płatność okresowa) jest zmienna. b) Kredyt jest spłacany pod koniec każdego roku w 5 stałych płatnościach (annuity, renta). Zatem płatność okresowa jest co roku identyczna oraz stanowi sumę raty kapitałowej i odsetek. Rata kredytu (płatność okresowa) jest więc stała.
12 Przykład 7 Kredyt o wartości 1000 PLN wypłacany w momencie 0 będzie spłacany w 8 miesięcznych ratach. Miesięczne oprocentowanie kredytu dane jest stopą 5%. Przedstaw schemat spłaty długu spłacanego metodą stałej raty kapitałowej i stałej raty spłaty, przy założeniu że: 1. Warunki nie ulegną zmianie, 2. Od czwartego miesiąca stopa wynosi 3%, 3. Dłużnik na koniec czwartego okresu wpłaca rentę i dodatkowo kwotę 100 PLN, 4. Po zapłaceniu 3 raty dłużnik wystąpił do banku z wnioskiem o wydłużenie okresu spłaty długu o kolejne 2 miesiące, 5. Dłużnik nie zapłaci czwartej raty, lecz wpłaci ją z należnymi odsetkami razem z piątą ratą, 6. Rozpoczęcie spłaty długu odroczone jest o 2 miesiące.
13 Przykład 8 Bank udzielił kredytu w wysokości PLN z następującym harmonogramem spłat: 1 rata za rok 2 rata za 2 lata, 3 rata za 3 lata. Bank ustalił spłatę kredytu w równych ratach PLN przy zastosowaniu stałej stopy procentowej z roczną kapitalizacją odsetek. Podaj wysokość stopy procentowej.
14 Przykład 9 Kwota pożyczki 1000 EUR w dniu 1 stycznia 2012 r. Spłata jednorazowa w wysokości 1200 EUR dokonana 1 lipca 2013 r., tj, 1,5 roku lub 546 dni od dnia poręki. Oblicz stopę procentową.
15 Przykład 10 Kwota pożyczki 1000 EUR w dniu 1 stycznia 2012 r. lecz pożyczkodawca zatrzymuje 50 PLN na koszty administracyjne, a więc kwota pożyczki wynosi 950 EUR. Spłata jednorazowa w dniu 1 lipca 2013 r. Oblicz stopę procentową.
16 Przykład 11 Oblicz stopę procentową rzeczywistą kredytu w wysokości PLN spłacanego w stałych ratach miesięcznych wynoszących 800 PLN. Część kapitałowa wynosiła 500 PLN, część odsetkowa 300 PLN. Kredyt spłacany przez 36 miesięcy.
17 Praca domowa Zadanie nr 1 Spółka pragnie ulokować depozyt w banku przy stałej stopie 16% rocznie, aby móc podjąć po upływie roku 2 mln PLN, a po upływie następnego roku kolejne 5 mln PLN. Proszę ustalić kwotę początkowego depozytu (jedna liczba!), aby spółka mogła w przyszłości zrealizować te dwie planowane wypłaty. Zadanie nr 2 Bank 26 kwietnia przyjął do dyskonta weksel na sumę PLN płatny 9 maja. Zdyskontowana wartość weksla wyniosła PLN. Proszę podać obowiązującą w danym banku stopę dyskontową oraz spodziewaną roczną stopę zwrotu z tej operacji (obowiązuje dokładność do 0,01%).
18 Dziękuję za uwagę
mgr Katarzyna Niewińska; Wydział Zarządzania UW Ćwiczenia 3
Ćwiczenia 3 Rachunek rentowy Jako rachunek rentowy traktuje się regularne płatności płacone w stałych przedziałach czasu przy czym towarzyszy temu stała stopa procentowa. Wykorzystanie: renty; płatności
Bardziej szczegółowozaliczenie na ocenę z elementarnej matematyki finansowej I rok MF, 21 czerwca 2012 godz. 8:15 czas trwania 120 min.
zaliczenie na ocenę z elementarnej matematyki finansowej I rok MF, 21 czerwca 2012 godz. 8:15 czas trwania 120 min. Imię nazwisko:... numer indeksu:... nr zadania zad.1 zad.2 zad.3 zad.4 zad.5 zad.6 zad.7
Bardziej szczegółowomgr Katarzyna Niewińska; Wydział Zarządzania UW Ćwiczenia 2
Ćwiczenia 2 Wartość pieniądza w czasie Zmienna wartość pieniądza w czasie jest pojęciem, które pozwala porównać wartość różnych sum pieniężnych otrzymanych w różnych okresach czasu. Czy 1000 PLN otrzymane
Bardziej szczegółowoZadania do wykładu Matematyka bankowa 2
Zadania do wykładu Matematyka bankowa 2 Dorota Klim Department of Nonlinear Analysis, Faculty of Mathematics and Computer Science, University of Łódź, Banacha 22, 90-238 Łódź, Poland E-mail address: klimdr@math.uni.ldz.pl
Bardziej szczegółowoZadania do wykładu Matematyka bankowa 2
Zadania do wykładu Matematyka bankowa 2 Dorota Klim Instytut Matematyki i Informatyki, PWSZ w Płocku E-mail address: klimdr@math.uni.ldz.pl http://math.uni.lodz.pl/ klimdr/ Bibliografia [1] M. Podgórska,
Bardziej szczegółowoĆwiczenia ZPI. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym 1
Ćwiczenia ZPI 1 W banku A oprocentowanie lokat 4% przy kapitalizacji kwartalnej. W banku B oprocentowanie lokat 4,5% przy kapitalizacji miesięcznej. W banku A ulokowano kwotę 1000 zł. Jaki kapitał należy
Bardziej szczegółowoZajęcia 1. Pojęcia: - Kapitalizacja powiększenie kapitału o odsetki, które zostały przez ten kapitał wygenerowane
Zajęcia 1 Pojęcia: - Procent setna część całości; w matematyce finansowej korzyści płynące z użytkowania kapitału (pojęcie używane zamiennie z terminem: odsetki) - Kapitalizacja powiększenie kapitału o
Bardziej szczegółowoRachunek rent. Pojęcie renty. Wartość początkowa i końcowa renty. Renty o stałych ratach. Renta o zmiennych ratach. Renta uogólniona.
Temat: Rachunek rent. Pojęcie renty. Wartość początkowa i końcowa renty. Renty o stałych ratach. Renta o zmiennych ratach. Renta uogólniona. Zadanie Przez 2 lata na koniec każdego miesiąca wpłacamy 200
Bardziej szczegółowo1. Jaką kwotę zgromadzimy po 3 latach na lokacie bankowej jeśli roczna NSP wynosi 4%, pierwsza wpłata wynosi 300 zl i jest dokonana na poczatku
1. Jaką kwotę zgromadzimy po 3 latach na lokacie bankowej jeśli roczna NSP wynosi 4%, pierwsza wpłata wynosi 300 zl i jest dokonana na poczatku miesiąca a każda następna miesięczna wpłata jest (a) Większa
Bardziej szczegółowoArkusz kalkulacyjny MS EXCEL ĆWICZENIA 3
Arkusz kalkulacyjny MS EXCEL ĆWICZENIA 3 Uwaga! Każde ćwiczenie rozpoczynamy od stworzenia w katalogu Moje dokumenty swojego własnego katalogu roboczego, w którym będziecie Państwo zapisywać swoje pliki.
Bardziej szczegółowoMatematyka finansowa. Ćwiczenia ZPI. Ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym 1
Matematyka finansowa Ćwiczenia ZPI 1 Zadanie 1. Procent składany W banku A oprocentowanie lokat 4% przy kapitalizacji kwartalnej. W banku B oprocentowanie lokat 4,5% przy kapitalizacji miesięcznej. W banku
Bardziej szczegółowoArkusz kalkulacyjny MS EXCEL ĆWICZENIA 3. Zadanie 1 Amortyzacja środków trwałych
Arkusz kalkulacyjny MS EXCEL ĆWICZENIA 3 Uwaga! Każde ćwiczenie rozpoczynamy od stworzenia w katalogu Moje dokumenty swojego własnego katalogu roboczego, w którym będziecie Państwo zapisywać swoje pliki.
Bardziej szczegółowoZadania do wykładu Matematyka bankowa 1 i 2
Zadania do wykładu Matematyka bankowa 1 i 2 Dorota Klim Department of Nonlinear Analysis, Faculty of Mathematics and Computer Science, University of Łódź, Banacha 22, 90-238 Łódź, Poland E-mail address:
Bardziej szczegółowoINDEKS FINANSISTY. Monika Skrzydłowska. PWSZ w Chełmie. październik Projekt dofinansowała Fundacja mbanku
INDEKS FINANSISTY Monika Skrzydłowska PWSZ w Chełmie październik 2017 Projekt dofinansowała Fundacja mbanku Monika Skrzydłowska (PWSZ w Chełmie) INDEKS FINANSISTY październik 2017 1 / 19 Spis treści 1
Bardziej szczegółowoMatematyka I dla DSM zbiór zadań
I Sumowanie skończone W zadaniach -4 obliczyć podaną sumę. Matematyka I dla DSM zbiór zadań do użytku wewnętrznego dr Leszek Rudak Uniwersytet Warszawski Wydział Zarządzania. 5 i. i= 4 i 3. i= 5 ( ) i
Bardziej szczegółowoElementy matematyki finansowej w programie Maxima
Maxima-03_windows.wxm 1 / 8 Elementy matematyki finansowej w programie Maxima 1 Wartość pieniądza w czasie Umiejętność przenoszenia kwot pieniędzy w czasie, a więc obliczanie ich wartości na dany moment,
Bardziej szczegółowoRachunek rent. Pojęcie renty. Wartość początkowa i końcowa renty. Renty o stałych ratach. Renta o zmiennych ratach. Renta uogólniona.
Temat: Rachunek rent Pojęcie renty Wartość początkowa i końcowa renty Renty o stałych ratach Renta o zmiennych ratach Renta uogólniona Zadanie 1 Przez 2 lata na koniec każdego miesiąca wpłacamy 1 000 PLN
Bardziej szczegółowoMatematyka finansowa 11.10.2004 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r.
Komisja Egzaminacyjna dla Aktuariuszy XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... WERSJA TESTU Czas egzaminu: 100 minut
Bardziej szczegółowo[1 ] M. Podgórska, J. Klimkowska, Matematyka finansowa, PWN
LITERATURA: [1 ] M. Podgórska, J. Klimkowska, Matematyka finansowa, PWN [2 ] E. Smaga, Arytmetyka finansowa, PWN [3 ] M. Sobczyk, Matematyka finansowa, Placet [4 ] M. Szałański, Podstawy matematyki finansowej,
Bardziej szczegółowoPaulina Drozda WARTOŚĆ PIENIĄDZA W CZASIE
Paulina Drozda WARTOŚĆ PIENIĄDZA W CZASIE Zmianą wartości pieniądza w czasie zajmują się FINANSE. Finanse to nie to samo co rachunkowość. Rachunkowość to opowiadanie JAK BYŁO i JAK JEST Finanse zajmują
Bardziej szczegółowoSystem finansowy gospodarki. Zajęcia nr 5 Matematyka finansowa
System finansowy gospodarki Zajęcia nr 5 Matematyka finansowa Wartość pieniądza w czasie 1 złoty posiadany dzisiaj jest wart więcej niż 1 złoty posiadany w przyszłości, np. za rok. Powody: Suma posiadana
Bardziej szczegółowoMatematyka finansowa 03.10.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVIII Egzamin dla Aktuariuszy z 3 października 2011 r.
Komisja Egzaminacyjna dla Aktuariuszy LVIII Egzamin dla Aktuariuszy z 3 października 2011 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut
Bardziej szczegółowoJak wybrać kredyt? Waldemar Wyka Instytut Matematyki Politechniki Łódzkiej. 22 listopada 2014
Waldemar Wyka Instytut Matematyki Politechniki Łódzkiej 22 listopada 2014 Plan prezentacji 1 Powtórzenie 2 3 Plany spłaty długu - stałe raty Plany spłaty długu - stałe raty kapitałowe Plany spłaty długu
Bardziej szczegółowoAkademia Młodego Ekonomisty Matematyka finansowa dla liderów Albert Tomaszewski Grupy 1-2 Zadanie 1.
Grupy 1-2 Zadanie 1. Sprawdźcie ofertę dowolnych 5 banków i wybierzcie najlepszą ofertę oszczędnościową (lokatę lub konto oszczędnościowe). Obliczcie, jaki zwrot przyniesie założenie jednej takiej lokaty
Bardziej szczegółowoWartość przyszła pieniądza: Future Value FV
Wartość przyszła pieniądza: Future Value FV Jeśli posiadamy pewną kwotę pieniędzy i mamy możliwość ulokowania ich w banku na ustalony czas i określony procent, to kwota w przyszłości (np. po 1 roku), zostanie
Bardziej szczegółowoWartość przyszła pieniądza
O koszcie kredytu nie można mówić jedynie na podstawie wysokości płaconych odsetek. Dla pożyczającego pieniądze najważniejszą kwestią jest kwota, jaką będzie musiał zapłacić za korzystanie z cudzych środków
Bardziej szczegółowoWACC Montaż finansowy Koszt kredytu
WACC Montaż finansowy Koszt kredytu PYTANIA KONTROLNE Co oznacza pojęcie kapitalizacja odsetek? Zdefiniuj stopę procentową i dyskontową Co oznacza pojęcie wartość przyszła i bieżąca? Jakimi symbolami we
Bardziej szczegółowoLicz i zarabiaj matematyka na usługach rynku finansowego
Licz i zarabiaj matematyka na usługach rynku finansowego Przedstawiony zestaw zadań jest przeznaczony dla uczniów szkół ponadgimnazjalnych i ma na celu ukazanie praktycznej strony matematyki, jej zastosowania
Bardziej szczegółowoSystem finansowy gospodarki
System fasowy gospodark Zajęca r 6 Matematyka fasowa c.d. Rachuek retowy (autetowy) Maem rachuku retowego określa sę regulare płatośc w stałych odstępach czasu przy założeu stałej stopy procetowej. Przykłady
Bardziej szczegółowoI = F P. P = F t a(t) 1
6. Modele wartości pieniądza w czasie. Współczynnik akumulacji kapitału. Kapitalizacja okresowa, kapitalizacja ciągła. Wartość bieżąca, wartość przyszła. Pojęcia kredytu, renty, renty wieczystej, zadłużenia
Bardziej szczegółowoWskaźniki efektywności Sharpe a, Treynora, Jensena, Information Ratio, Sortino
Ćwiczenia 5 Pojęcie benchmarku, tracking error Wskaźniki efektywności Sharpe a, Treynora, Jensena, Information Ratio, Sortino Renata Karkowska, Wydział Zarządzania UW 1 Współczynnik Sharpe a Renata Karkowska,
Bardziej szczegółowoMatematyka finansowa 17.05.2003
1. Na początku roku (w chwili t = 0 ) portfel pewnego funduszu inwestycyjnego składa się z 40% obligacji typu I oraz 60% obligacji typu II. O obligacjach typu I oraz typu II wiadomo, że: (i) obligacja
Bardziej szczegółowoEgzamin XXVII dla Aktuariuszy z 12 października 2002 r.
Komisja Egzaminacyjna dla Aktuariuszy Egzamin XXVII dla Aktuariuszy z 12 października 2002 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Ośrodek Doskonalenia
Bardziej szczegółowoMatematyka finansowa 13.12.2010 r. Komisja Egzaminacyjna dla Aktuariuszy. LV Egzamin dla Aktuariuszy z 13 grudnia 2010 r. Część I
Komisja Egzaminacyjna dla Aktuariuszy LV Egzamin dla Aktuariuszy z 13 grudnia 2010 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Pan
Bardziej szczegółowoWACC Montaż finansowy Koszt kredytu
WACC Montaż finansowy Koszt kredytu Na następne zajęcia proszę przygotować listę zakupów niezbędną do realizacji projektu. PYTANIA KONTROLNE Co oznacza pojęcie kapitalizacja odsetek? Zdefiniuj stopę procentową
Bardziej szczegółowo2) roczne oprocentowanie nominalne = 10,00% (oprocentowanie stałe w stosunku rocznym)
KREDYT GOTÓWKOWY I. Przykłady dla klientów posiadających w Banku, na dzień zawarcia umowy o kredyt, od co najmniej 12 miesięcy: a) rachunek oszczędnościowo rozliczeniowy wykazujący stałe miesięczne wpływy
Bardziej szczegółowoTemat 1: Wartość pieniądza w czasie
Temat 1: Wartość pieniądza w czasie Inwestycja jest w istocie bieżącym wyrzeczeniem się dla przyszłych korzyści. Ale teraźniejszość jest względnie dobrze znana, natomiast przyszłość to zawsze tajemnica.
Bardziej szczegółowoFunkcje w MS Excel. Arkadiusz Banasik arkadiusz.banasik@polsl.pl
Funkcje w MS Excel Arkadiusz Banasik arkadiusz.banasik@polsl.pl Plan prezentacji Wprowadzenie Funkcje matematyczne Funkcje logiczne Funkcje finansowe Podsumowanie 2/27 Wprowadzenie Funkcje: Są elementami
Bardziej szczegółowoEgzamin dla Aktuariuszy z 16 listopada 1996 r.
Komisja Egzaminacyjna dla Aktuariuszy Egzamin dla Aktuariuszy z 16 listopada 1996 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:.... Czas egzaminu: l OO minut Ośrodek Doskonalenia
Bardziej szczegółowoAkademia Młodego Ekonomisty
Akademia Młodego Ekonomisty Matematyka finansowa dla liderów Matematyka finansowa wokół nas dr Agnieszka Bem Uniwersytet Ekonomiczny we Wrocławiu 20 listopada 2017 r. Wartość pieniądzaw czasie Wartość
Bardziej szczegółowoWARTOŚĆ PIENIĄDZA W CZASIE c.d. (WACC + Spłata kredytu)
WARTOŚĆ PIENIĄDZA W CZASIE c.d. (WACC + Spłata kredytu) PYTANIA KONTROLNE Co oznacza pojęcie kapitalizacja odsetek? Co oznacza pojęcie wartość przyszła i bieżąca? Jakimi symbolami we wzorach oznaczamy
Bardziej szczegółowoMatematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXIV Egzamin dla Aktuariuszy z 17 czerwca 2013 r.
Komisja Egzaminacyjna dla Aktuariuszy LXIV Egzamin dla Aktuariuszy z 17 czerwca 2013 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 0 minut 1 1. Rozważamy
Bardziej szczegółowoMatematyka finansowa 26.05.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część I
Komisja Egzaminacyjna dla Aktuariuszy LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Przyjmijmy
Bardziej szczegółowo2) roczne oprocentowanie nominalne = 10,00% (oprocentowanie stałe w stosunku rocznym)
KREDYT GOTÓWKOWY I. Przykłady dla klientów posiadających w Banku, na dzień zawarcia umowy o kredyt, od co najmniej 12 miesięcy: a) rachunek oszczędnościowo rozliczeniowy wykazujący stałe miesięczne wpływy
Bardziej szczegółowodr hab. Marcin Jędrzejczyk
dr hab. Marcin Jędrzejczyk Przez inwestycje należy rozumieć aktywa nabyte w celu osiągnięcia korzyści ekonomicznych, wynikających z przyrostu wartości tych zasobów, uzyskania z nich przychodów w postaci
Bardziej szczegółowoMatematyka finansowa 05.12.2005 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXVII Egzamin dla Aktuariuszy z 5 grudnia 2005 r.
Komisja Egzaminacyjna dla Aktuariuszy XXXVII Egzamin dla Aktuariuszy z 5 grudnia 2005 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... WERSJA TESTU A Czas egzaminu: 100 minut 1 1.
Bardziej szczegółowowww.pokonac-rynek.pl Wzory - matematyka finansowa Opracował: Łukasz Zymiera
www.pokonac-rynek.pl Wzory - matematyka finansowa Opracował: Łukasz Zymiera Wartość pieniądza w czasie MWP mnożnik wartości przyszłej MWO mnożnik wartości obecnej MWPR mnożnik wartości przyszłej renty
Bardziej szczegółowoFinansowanie inwestycji rzeczowych w gospodarce rynkowej Sporządzanie planu spłaty kredytu wykład 5. dla 5. roku HM zaoczne.
Finansowanie inwestycji rzeczowych w gospodarce rynkowej Sporządzanie planu spłaty kredytu wykład 5. dla 5. roku HM zaoczne dr Adam Salomon Finansowanie inwestycji rzeczowych w gospodarce rynkowej Podręcznik
Bardziej szczegółowoFormularz informacyjny dotyczący kredytu konsumenckiego
Formularz informacyjny dotyczący kredytu konsumenckiego 1.Imię, nazwisko (nazwa) i adres (siedziba) kredytodawcy lub pośrednika kredytowego KREDYTODAWCA: Adres: POLI INVEST Spółka z ograniczoną odpowiedzialnością
Bardziej szczegółowoFinanse przedsiębiorstw mgr Kazimierz Linowski WyŜsza Szkoła Marketingu i Zarządzania
Finanse przedsiębiorstw mgr Kazimierz Linowski WyŜsza Szkoła Marketingu i Zarządzania Wstęp Celem wykładu jest przedstawienie podstawowych pojęć oraz zaleŝności z zakresu zarządzania finansami w szczególności
Bardziej szczegółowoMatematyka finansowa 10.12.2012 r. Komisja Egzaminacyjna dla Aktuariuszy. LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r.
Komisja Egzaminacyjna dla Aktuariuszy LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.
Bardziej szczegółowoNazwa funkcji (parametry) Opis Parametry
DB(koszt;odzysk;czas_życia;okres;miesiąc) DDB(koszt;odzysk;czas_życia;okres;współczynnik) Zwraca amortyzację środka trwałego w podanym okresie, obliczoną z wykorzystaniem metody równomiernie malejącego
Bardziej szczegółowoProcent prosty Def.: Procent prosty Zad. 1. Zad. 2. Zad. 3
Procent prosty Zakładając konto w banku, decydujesz się na określone oprocentowanie tego rachunku. Zależy ono między innymi od czasu, w jakim zobowiązujesz się nie naruszać stanu konta, czyli tzw. lokaty
Bardziej szczegółowoMatematyka finansowa 8.12.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXIX Egzamin dla Aktuariuszy z 8 grudnia 2014 r. Część I
Komisja Egzaminacyjna dla Aktuariuszy LXIX Egzamin dla Aktuariuszy z 8 grudnia 2014 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.
Bardziej szczegółowoMatematyka bankowa 2
1. Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki Uniwersytet Łódzki 2. Instytut Nauk Ekonomicznych i Informatyki Państwowa Wyższa Szkoła Zawodowa w Płocku Matematyka bankowa 2 średnio- i
Bardziej szczegółowo2) roczne oprocentowanie nominalne = 10,00% (oprocentowanie stałe w stosunku rocznym)
KREDYT GOTÓWKOWY I. Przykłady dla klientów posiadających w Banku, na dzień zawarcia umowy o kredyt, od co najmniej 12 miesięcy: a) rachunek oszczędnościowo rozliczeniowy wykazujący stałe miesięczne wpływy
Bardziej szczegółowoKomisja Egzaminacyjna dla Aktuariuszy. XXXII Egzamin dla Aktuariuszy z 7 czerwca 2004 r. Część I. Matematyka finansowa
Komisja Egzaminacyjna dla Aktuariuszy XXXII Egzamin dla Aktuariuszy z 7 czerwca 2004 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Trzy osoby biorą
Bardziej szczegółowoProf. nadzw. dr hab. Marcin Jędrzejczyk
Prof. nadzw. dr hab. Marcin Jędrzejczyk 1. Zakup akcji, udziałów w obcych podmiotach gospodarczych według cen nabycia. 2. Zakup akcji i innych długoterminowych papierów wartościowych, traktowanych jako
Bardziej szczegółowoFormularz informacyjny dotyczący kredytu konsumenckiego FUNEDA Sp. z o.o.
Formularz informacyjny dotyczący kredytu konsumenckiego FUNEDA Sp. z o.o. 1. Imię, nazwisko (nazwa) i adres (siedziba) kredytodawcy lub pośrednika kredytowego Kredytodawca: Adres: FUNEDA Sp. z o.o. KRS
Bardziej szczegółowoFormularz informacyjny dotyczący kredytu konsumenckiego okazjonalnego sporządzony na podstawie reprezentatywnego przykładu
Formularz informacyjny dotyczący kredytu konsumenckiego okazjonalnego sporządzony na podstawie reprezentatywnego przykładu Imię, nazwisko (nazwa) i adres (siedziba) kredytodawcy lub pośrednika kredytowego
Bardziej szczegółowoNobilon Sp. z o.o. KRS , NIP , REGON ul. Łęgska 4, Włocławek Numer telefonu:
Formularz informacyjny dotyczący kredytu konsumenckiego. 1. Imię, nazwisko (nazwa) i adres (siedziba) kredytodawcy lub pośrednika kredytowego Kredytodawca: Nobilon Sp. z o.o. KRS 0000592391, NIP 8883123968,
Bardziej szczegółowoWartość pieniądza w czasie (time value of money)
Opracował Marcin Reszka Doradca Inwestycyjny nr 335 marcin@reszka.edu.pl Zeszyt I Wartość pieniądza w czasie (time value of money) Wszystkie prawa zastrzeżone. Nie zezwala się na kopiowania bez pisemnej
Bardziej szczegółowoMatematyka finansowa 15.12.2008 r. Komisja Egzaminacyjna dla Aktuariuszy. XLVIII Egzamin dla Aktuariuszy z 15 grudnia 2008 r.
Komisja Egzaminacyjna dla Aktuariuszy XLVIII Egzamin dla Aktuariuszy z 15 grudnia 2008 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1
Bardziej szczegółowoDariusz Wardowski Katedra Analizy Nieliniowej. Bankowość i metody statystyczne w biznesie - zadania i przykłady
Wydział Matematyki Uniwersytetu Łódzkiego w Łodzi Dariusz Wardowski Katedra Analizy Nieliniowej Bankowość i metody statystyczne w biznesie - zadania i przykłady Łódź 2006 Rozdział 1 Oprocentowanie lokaty
Bardziej szczegółowoZastosowanie matematyki w finansach i bankowości
Zastosowanie matematyki w finansach i bankowości Maciej Wolny I. Kalkulacja wartości pieniądza w czasie... 1 II. Nominalna, efektywna i realna stopa procentowa... 4 III. Spłata kredytów w równych i różnych
Bardziej szczegółowoFormularz informacyjny
Formularz informacyjny Formularz dotyczący kredytu konsumenckiego 1. Imię, nazwisko (nazwa) i adres (siedziba) kredytodawcy lub pośrednika kredytowego Kredytodawca: Dane identyfikacyjne: Aasa Polska S.A.
Bardziej szczegółowoMatematyka finansowa 04.04.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część I
Komisja Egzaminacyjna dla Aktuariuszy LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.
Bardziej szczegółowoDane identyfikacyjne: (Adres, z którego ma korzystać konsument) nie dotyczy
FORMULARZ INFORMACYJNY DOTYCZĄCY KREDYTU KONSUMENCKIEGO 1. Imię, nazwisko (nazwa) i adres (siedziba) kredytodawcy lub pośrednika kredytowego Dane identyfikacyjne: Kredytodawca: Aasa Polska S.A. Adres:
Bardziej szczegółowoDane identyfikacyjne: (Adres, z którego ma korzystać konsument) nie dotyczy
4FORMULARZ INFORMACYJNY DOTYCZĄCY KREDYTU KONSUMENCKIEGO 1. Imię, nazwisko (nazwa) i adres (siedziba) kredytodawcy lub pośrednika kredytowego Dane identyfikacyjne: Kredytodawca: Aasa Polska S.A. Adres:
Bardziej szczegółowoOgólne warunki umowy
Załącznik nr 5 do SIWZ zmieniony dnia 21.09.2016 r. Ogólne warunki umowy 1. 1. W wyniku postępowania o udzielenie zamówienia publicznego znak WO.271.26.2016, prowadzonego w trybie przetargu nieograniczonego,
Bardziej szczegółowoMatematyka finansowa 15.06.2015 r. Komisja Egzaminacyjna dla Aktuariuszy. LXXI Egzamin dla Aktuariuszy z 15 czerwca 2015 r.
Komisja Egzaminacyjna dla Aktuariuszy LXXI Egzamin dla Aktuariuszy z 1 czerwca 201 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Pracownik
Bardziej szczegółowoDariusz Wardowski Katedra Analizy Nieliniowej. Bankowość i metody statystyczne w biznesie - zadania i przykłady część II
Wydział Matematyki i Informatyki Uniwersytetu Łódzkiego w Łodzi Dariusz Wardowski Katedra Analizy Nieliniowej Bankowość i metody statystyczne w biznesie - zadania i przykłady część II Łódź 2008 Rozdział
Bardziej szczegółowo1. Imię, nazwisko (nazwa) i adres (siedziba) kredytodawcy lub instytucji pośredniczącej
Formularz Informacyjny Pożyczki Ratalnej FinCol 1. Imię, nazwisko (nazwa) i adres (siedziba) kredytodawcy lub instytucji pośredniczącej Nazwa kredytodawcy Taimen Polska Sp. z o.o. Adres:(siedziba) Pl.
Bardziej szczegółowoTabela oprocentowania dla konsumentów
KONTA Konto Osobiste Oprocentowanie konta 0,10% Brak kwoty minimalnej. zmienne obowiązuje od 18.05.2015 r. Miesięczna kapitalizacja odsetek. Odsetki za niedozwolone saldo debetowe oraz odsetki za przekroczenie
Bardziej szczegółowoMatematyka finansowa, rozkład normalny, Model wyceny aktywów kapitałowych, Forward, Futures
Matematyka finansowa, rozkład normalny, Model wyceny aktywów kapitałowych, Forward, Futures 1 Inwestor ma trzyletnią obligację o wartości nominalnej 2000 zł, oprocentowaną 8% rocznie, przy czym odsetki
Bardziej szczegółowoFormularz informacyjny
Formularz informacyjny Formularz dotyczący kredytu konsumenckiego 1. Imię, nazwisko (nazwa) i adres (siedziba) kredytodawcy lub pośrednika kredytowego Kredytodawca: Dane identyfikacyjne: (Adres, z którego
Bardziej szczegółowoObowiązuje od 01.02.2016 r.
KONTA Konto osobiste konta 0,10% Brak kwoty minimalnej. zmienne obowiązuje od 18.05.2015 r. Miesięczna kapitalizacja odsetek. Odsetki za niedozwolone saldo debetowe oraz odsetki za przekroczenie limitu
Bardziej szczegółowoOgólne warunki umowy
Załącznik nr 5 do SIWZ zmieniony dnia 20.08.2014 r. Ogólne warunki umowy 1. 1. W wyniku postępowania o udzielenie zamówienia publicznego znak.., prowadzonego w trybie przetargu nieograniczonego, w oparciu
Bardziej szczegółowo4. Strumienie płatności: okresowe wkłady oszczędnościowe
4. Strumienie płatności: okresowe wkłady oszczędnościowe Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie Matematyka finansowa rzegorz Kosiorowski (Uniwersytet Ekonomiczny 4. Strumienie w Krakowie)
Bardziej szczegółowoMatematyka finansowa 30.09.2013 r. Komisja Egzaminacyjna dla Aktuariuszy. LXV Egzamin dla Aktuariuszy z 30 września 2013 r.
Komisja Egzaminacyjna dla Aktuariuszy LXV Egzamin dla Aktuariuszy z 30 września 2013 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.
Bardziej szczegółowoAkademia Młodego Ekonomisty
Akademia Młodego Ekonomisty Matematyka finansowa wokół nas Uniwersytet Szczeciński 7 grudnia 2017 r. Wartość pieniądza w czasie, siła procentu składanego, oprocentowanie rzeczywiste, nominalne i realne
Bardziej szczegółowoFORMULARZ INFORMACYJNY DOTYCZĄCY KREDYTU KONSUMENCKIEGO 1. Imię, nazwisko (nazwa) i adres (siedziba) kredytodawcy lub pośrednika kredytowego
FORMULARZ INFORMACYJNY DOTYCZĄCY KREDYTU KONSUMENCKIEGO 1. Imię, nazwisko (nazwa) i adres (siedziba) kredytodawcy lub pośrednika kredytowego Kredytodawca: Adres: (siedziba) Numer telefonu: Dane identyfikacyjne:
Bardziej szczegółowoZASADY I TERMINY KAPITALIZACJI ODSETEK
OPROCENTOWANIE ŚRODKÓW PIENIĘŻNYCH W WALUTACH WYMIENIALNYCH GROMADZONYCH NA RACHUNKACH BANKOWYCH I KREDYTÓW W WALUTACH WYMIENIALNYCH UDZIELANYCH PRZEZ PKO BANK POLSKI S.A. KLIENTOM RYNKU DETALICZNEGO:
Bardziej szczegółowoFORMULARZ INFORMACYJNY DOTYCZĄCY KREDYTU KONSUMENCKIEGO
FORMULARZ INFORMACYJNY DOTYCZĄCY KREDYTU KONSUMENCKIEGO 1. Imię, nazwisko (nazwa) i adres (siedziba) kredytodawcy lub pośrednika kredytowego Kredytodawca: Dane identyfikacyjne: (Adres, z którego ma korzystać
Bardziej szczegółowoTabela oprocentowania dla konsumentów
KONTA Konto Osobiste Oprocentowanie konta 0,10% Brak kwoty minimalnej. zmienne obowiązuje od 18.05.2015 r. Miesięczna kapitalizacja odsetek. Odsetki za niedozwolone saldo debetowe dwukrotność odsetek ustawowych,
Bardziej szczegółowoTabela oprocentowania dla konsumentów
KONTA Konto Osobiste Oprocentowanie konta 0,10% Brak kwoty minimalnej. zmienne obowiązuje od 18.05.2015 r. Miesięczna kapitalizacja odsetek. Odsetki za niedozwolone saldo debetowe dwukrotność odsetek ustawowych,
Bardziej szczegółowoFormularz informacyjny Formularz dotyczący kredytu konsumenckiego
Formularz informacyjny Formularz dotyczący kredytu konsumenckiego 1. Imię, nazwisko (nazwa) i adres (siedziba) kredytodawcy lub pośrednika kredytowego Kredytodawca: Adres: (siedziba) Numer telefonu: Adres
Bardziej szczegółowoOgólne warunki umowy
Załącznik nr 5 do SIWZ zmieniony dnia 22.09.2016 r. Ogólne warunki umowy 1. 1. W wyniku postępowania o udzielenie zamówienia publicznego znak WO.271.26.2016, prowadzonego w trybie przetargu nieograniczonego,
Bardziej szczegółowoZADANIE 1. NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI
ZADANIE 1 Na budowę domu możesz zaciagn ać pożyczkę w wysokości 63450 e. Do wyboru sa dwa warianty spłaty: I w każdym miesiacu spłacasz równe raty, każda w wysokości 2% pożyczonej kwoty. II pierwsza rata
Bardziej szczegółowo(Adres, z którego ma korzystać konsument) Aasa Polska S.A. Hrubieszowska 2, Warszawa.
FORMULARZ INFORMACYJNY DOTYCZĄCY KREDYTU KONSUMENCKIEGO 1. Imię, nazwisko (nazw a) i adres kredytodawcy lub pośrednika kredytowego Kredytodawca Adres strony internetowej: Pośrednik kredytowy:* (Adres,
Bardziej szczegółowoRozdział 10. Wykorzystanie funkcji finansowych w analizie danych
Moduł 2. Wykorzystanie programu Excel do zadań analitycznych Rozdział 10. Wykorzystanie funkcji finansowych w analizie danych Zajęcia 10. 2 godziny Zakres zdobytych umiejętności: Zapoznanie się z wybranymi
Bardziej szczegółowoMatematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXXIII Egzamin dla Aktuariuszy z 7 marca 2016 r. Część I
Komisja Egzaminacyjna dla Aktuariuszy LXXIII Egzamin dla Aktuariuszy z 7 marca 2016 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.
Bardziej szczegółowoMatematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXI Egzamin dla Aktuariuszy z 1 października 2012 r.
Komisja Egzaminacyjna dla Aktuariuszy LXI Egzamin dla Aktuariuszy z 1 października 2012 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1
Bardziej szczegółowoFormularz informacyjny dotyczący kredytu konsumenckiego
Formularz informacyjny dotyczący kredytu konsumenckiego Ad Credit Sp. z o.o. z siedzibą w Warszawie 1. Imię, nazwisko (nazwa) i adres (siedziba) kredytodawcy lub pośrednika kredytowego Kredytodawca: Adres:
Bardziej szczegółowoEkonomika i Logistyka w Przedsiębiorstwach Transportu Morskiego wykład 03 MSTiL (II stopień)
dr Adam Salomon Ekonomika i Logistyka w Przedsiębiorstwach Transportu Morskiego wykład 03 MSTiL (II stopień) EiLwPTM program wykładu 03. Kredyt. Plan spłaty kredytu metodą tradycyjną i za pomocą współczynnika
Bardziej szczegółowoUwaga Niespłacenie zadłużenia przez Klienta powoduje czasowe zablokowanie środków do daty spłaty całości zadłużenia.
TABELA WARUNKÓW I OPROCENTOWANIA PRODUKTÓW KREDYTOWYCH W RAMACH KONT INTELIGO DLA KLIENTÓW, KTÓRZY ZAWARLI UMOWĘ RACHUNKU BANKOWEGO KONTA INTELIGO PRZED DNIEM 11 MAJA 2010 R. Limit debetowy Kanał dostępu
Bardziej szczegółowoMS Excel 2007 Kurs zaawansowany Funkcje finansowe. prowadzi: Dr inż. Tomasz Bartuś. Kraków: 2008 04 18
MS Excel 2007 Kurs zaawansowany Funkcje finansowe prowadzi: Dr inż. Tomasz Bartuś Kraków: 2008 04 18 Funkcje finansowe Excel udostępnia cały szereg funkcji finansowych, które pozwalają na obliczanie min.
Bardziej szczegółowoP O W I A D O M I E N I E o zmianach SIWZ
Gmina Grudziądz Wybickiego 38 86-300 Grudziądz Pismo: PLF.271.183.2011/4 Grudziądz dnia: 2011-11-10 P O W I A D O M I E N I E o zmianach SIWZ Dotyczy: zmiana zapisów SIWZ w postępowaniu na Udzielenie kredytu
Bardziej szczegółowoEgzamin dla Aktuariuszy z 7 grudnia 1996 r.
Komisja Egzaminacyjna dla Aktuariuszy Egzamin dla Aktuariuszy z 7 grudnia 1996 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:....... Czas egzaminu: 100 minut Ośrodek Doskonalenia
Bardziej szczegółowoFormularz informacyjny dotyczący kredytu konsumenckiego. 1. Imię, nazwisko (nazwa) i adres (siedziba) kredytodawcy lub pośrednika kredytowego
Formularz informacyjny dotyczący kredytu konsumenckiego 1. Imię, nazwisko (nazwa) i adres (siedziba) kredytodawcy lub pośrednika kredytowego Kredytodawca: PolCredit Sp. z o.o. z siedzibą w Warszawie, KRS
Bardziej szczegółowo