1.9. PROSTE SKRĘCANIE

Wielkość: px
Rozpocząć pokaz od strony:

Download "1.9. PROSTE SKRĘCANIE"

Transkrypt

1 .9. PROSTE SKRĘCNE.9.. Wprwadeie Prte kręcaie wtępuje wówca gd bciążeie ewętre redukuje ię d wektra mmetu kręcająceg któreg kieruek pkrwa ię główą cetralą ią prekrju O. Wiele elemetów ktrukcji budwlach pdlega diałaiu mmetu kręcająceg. Prkładami takich ktrukcji ą: rgle ram pretrech wieńce trpów belki pdprwe płt balkwch belki pduwicwe c belki kraje bciąże jedtrie płtą. Diałaie mmetu kręcająceg jet cególie itte w prpadku ciekściech prekrjów metalwch. Zagadieie bregwe kręcaia prętów prmatcch dwlm ktałcie prekrju ppreceg jet trude d rwiąaia. Prekrje takie ulegają deplaacji (paceiu) więc d rwiąaia agadieia bregweg treba wkrtać metd terii prężtści. Jedie w prpadku prętów prekrju kłw metrcm pełia jet hiptea BERNOULL EGO (prekrje ptają płakie p dktałceiu) atem waceie w ich tau aprężeia i dktałceia jet tukw łatwe mżliwe d ukaia prtmi metdami wtrmałści materiałów..9.. Sta aprężeia i dktałceia w prętach prekrju kłwm Rważm pręt kłw metrc (krągł) długści l i prmieiu r bciąż mmetem kręcającm (r. ). R. Z ruku teg wika że jedą iłą prekrjwą w takim pręcie jet mmet kręcając. Zatem rważa pręt jet pdda prtemu kręcaiu. Sta aprężeń i dktałceń w rważam pręcie wacm prjmując atępujące ałżeia upracające: (i) wpłw ił mawej jet pmijal

2 (ii) ie C i C ą iami główmi cetralmi prekrju (iii) pełia jet hiptea płakich prekrjów BERNOULL EGO (iv) pełia jet hiptea DE SNT-VENNT Stra gemetrca g g g () S S () Ze pbu dktałceia pręta wika (r. ) że wtkie jeg prekrje pprece bracają ię wględem i pdłużej kąt Θ wa kątem kręcaia achwując gdie ałżeiem (iii) wój pierwt ktałt pr cm prmieie prekrjów pprecch pręta p dktałceiu ptają dcikami liii prtch. Natmiat twrące pręta prjmują ktałt liii śrubwch (heli). Każda tch liii precia. twrące pd tałm kątem rówm dktałceiu ptaciwemu (kątwemu) R. u u puktów prekrju pręta ma w clidrcm (walcwm) układie dieieia (r. ) atępujące wpółręde: Na pdtawie pwżej aali mżem prjąć że wektr premieceia u u gdie u u u Θ () u jet premieceiem prmieiwm (radialm) u premieceiem bwdwm atmiat Θ kątem kręcaia któr ależ wacć. Pieważ ś jet ią metrii prekrju (prekrój jet kłw metrc) atem wpółręde te ie ależą d kąta Θ.

3 R. W celu waceia wpółrędch wektra premieceia w prtkątm układie dieieia krtam ależści (r. 4) R. 4 u Θ v u i i Θ w u c Θ c Θ (4) Rówaia gemetrce (.4.) predtawie w apiie iżierkim (.4.8) mają atępującą ptać: u v u u v v w w w (5) kąd p uwględieiu ptaci wpółrędch (4) trmujem Θ Θ (6)

4 Zatem macier dktałceń (.4.8) ma ptać Θ Θ ij Θ (7) Θ Stra fica Uwględiając wpółręde tera dktałceń (6) w rówaiach ficch (.5. ) pr wkrtaiu aceń (..6) dtajem atępujące wpółręde tera aprężeń: GΘ GΘ (8) gdie G jet mdułem prężtści pprecej (mdułem KRCHOFF). Zatem macier aprężeń (..6) ma ptać Stra tatca Z uwagi a ta aprężeia w pręcie (r. 5) GΘ GΘ ij GΘ (9) GΘ R. 5 ależści (..56)4 (rówaia rówwagi elemetareg wcika pręta kręcaeg) prjmują ptać

5 d GΘ d d GΘ d d GΘ d () aś rówaia (..56) ą pełie tżamściw. Pieważ d S d S t uwagi a ałżeie (ii) pierwe dwa pwżch rówań ą rówież pełie tżamściw. Pdtawiając w trecim pwżch rówań trmujem GΘ d () Pieważ d jet bieguwm mmetem bewładści atem () wika że Θ () G 4 pr cm Πr. Wart auważć że jeśli mmet kręcając jet tał t pchda kąta kręcaia też jet tała..9.. Naprężeie tce i brt w prekrju kłwm Pdtawiając fukcję () d wrów (8) trmujem ależści () Pieważ (r.6) R. 6

6 i c (4) atem ależść kreślająca aprężeie tce (ściające) pr prtm kręcaiu prjmuje ptać (5) Z pwżeg wru wika e rkład aprężeń tcch w prekrju kłwm jet liiw ą e prtpadłe d prmieia wdąceg puktu aś wartść makmalą rówą ma r r (6) aprężeia tce iągają we włókach krajch prekrju ppreceg (r. 7). Z uwagi a kłwą metrię prekrju taki am rkład aprężeń wtępuje a każdm dciku prechdącm pre śrdek prekrju ppreceg. R. 7 Pdb rkład aprężeń ma miejce a płacach rówległch d i pdłużej pręta i prechdącch pre jeg śrdek ciężkści (r. 8). R. 8

7 Wór (6) mża predtawić w atępującej rówważej ptaci: ma (7) W gdie W (8) r awam wkaźikiem wtrmałści pr kręcaiu (bieguwm wkaźikiem wtrmałści) pręta krągłeg pr cm W Πr. Całkując rówaie () trmujem Θ d d Θ c G (9) G gdie c jet tałą całkwaia. Pieważ w miejcu utwierdeia pręta kąt kręcaia jet rów eru (waruek bregw w premieceiach) atem pwżeg rówaia wika że i w kekwecji c Θ () Θ () G Zatem brót kńca pręta prekrju kłwm (makmal kąt kręcaia) i długści l wi Θ l l G Θ ma () Wart wrócić uwagę a pdbieńtw pwżeg wru d wru (.7.). Pieważ pr małch dktałceiach pełia jet ależść (r. 9) R. 9

8 Θ Θ () atem wkrtując wór () dtajem atępującą frmułę kreślającą dktałceie ptaciwe (kątwe) pr prtm kręcaiu (4) G Wart pdkreślić że uwagi a ałżeie pełieiu aad de Sait-Veata wr (5) () i (4) ptają waże rówież w prpadku ieg tatcie rówważeg bciążeia pręta Naprężeie tce w prekrju prtkątm Pieważ prekrój prtkąt ulega paceiu (r. ) atem kreśleie tau aprężeia i dktałceia ie jet mżliwe prtmi metdami wtrmałści materiałów. R. Wac metdami terii prężtści rkład aprężeń tcch w prekrju prtkątm wkści h i erkści b predtawia r.. Z ruku teg wika że aprężeia ściające w arżikach prekrju ą rówe eru. Jet t reultatem braku bciążeia a pwierchiach bcch pręta. W takim prpadku w puktach tch ra i w kekwecji rówież i. R.

9 Najwięką wartść aprężeia tce ma w takim prekrju iągają w ma ma pukcie wpółrędch b i blicam ją e wru ma (5) W W pwżm wre W b h (6) jet wkaźikiem wtrmałści pr kręcaiu pręta prtkąteg. Wartści fukcji h b predtawia piża tabela h b (a) Waruek wtrmałści.9.4. Waruki prjektwaia prętów kręcach ma Rt (7) W gdie R t aca wtrmałść bliceiwą a ściaie. Pwż waruek mża wkrtać d waceia śści pręta W R (8) t lub pla pwierchi jeg prekrju ppreceg W (9) Rt (b) Waruek twści gdie dp dpucal kąt kręcaia pręta. Θma Θ dp ()

10 .9.5. Sta aprężeia i dktałceia w clidrcm układie dieieia Wprwadeie wrów kreślającch ta aprężeia i dktałceia pręta kręcaeg prekrju kłwm jet acie prte jeśli wkrtam clidrc układ dieieia. Wpółręde prtkąte ą pwiąae e wpółrędmi clidrcmi atępującmi relacjami: Stra gemetrca c i () Z ależści () wika że wpółręde wektra premieceia u clidrcm układie dieieia mają ptać gdie Θ jet kątem kręcaia któr ależ wacć. Pdtawiając ieerwe pchde tch wpółrędch d rówań gemetrcch w układie clidrcm u u u u w u u Θ () u Θ u Θ u () u u u u u u u u u u u () trmujem atępujące wpółręde tera dktałceia Θ (4) Z pwżch ależści wika że macier dktałceń pr prtm kręcaiu pręta kłweg ma w układie clidrcm atępującą ptać:

11 Θ Θ E (5) Stra fica Sta aprężeń w clidrcm układie dieieia predtawia r. R. Wkrtując predtawie a tm ruku aceia wpółrędch tera aprężeń w rówaiach ficch (.5. ) dtajem: G G G G G G (6) Pdtawiając d pwżch rówań wpółręde tera dktałceń (5) trmujem wpółręde tera aprężeń GΘ (7) Zatem macier aprężeń (..6) ma w układie clidrcm atępującą ptać: GΘ GΘ T (8)

12 Stra tatca Z uwagi a ta aprężeia w pręcie (r ) rówaie rówwagi elemetareg wcika pręta kręcaeg (..56)4 prjmuje w układie clidrcm atępującą ptać: d GΘ d (9) aś ptałe rówaia (..56) ą pełie tżamściw. Pieważ R. d jet bieguwm mmetem bewładści atem (9) dtajem wór kreślając pchdą pukiwaeg kąta kręcaia Θ (4) G Pdtawiając (4) d ależści (4) i (7) trmujem wr kreślające dktałceie ra aprężeie (4) G (4) w pręcie kręcam prekrju kłwm. Są e takie ame jak wr (4) i (5). Spób waceie kąta kręcaia predtawiają ależści (9) d (). Prkład. Wacć aprężeia główe i kieruki główe pr prtm kręcaiu Dae: acier aprężeń pr prtm kręcaiu

13 ij Sukae: Rwiąaie: Krk. Oblicam aprężeia główe Krtając e wru (..6) blicam iemieiki macier aprężeń Pdtawiając pwże iemieiki d rówaia charaktertceg (..5) trmujem Pwże rówaie ma atępujące pierwiatki (aprężeia główe) W układie dieieia wacm pre kieruki główe macier aprężeń ma atem ptać ij Krk. Wacam kieruki główe Pdtawiając wpółręde tera aprężeń d rówań (..) prwadam je d ptaci Natmiat waruek (..8) apiujem jak Pdtawiając d pwżch rówań kleje aprężeia główe trmujem

14 Cli aprężeia główe i kieruki główe w prpadku prteg kręcaia mają atępującą ptać: Z pwżch wrów wika że kieruki główe ą achle d twrącch pręta pd kątem 45º atmiat aprężeia główe którch pierwe jet ścikające aś drugie rciągające ą rówe c d wartści aprężeim tcm ściającm (r. P); wektr jet kierwa prtpadle d płac ruku. R. P

1.9. PROSTE SKRĘCANIE

1.9. PROSTE SKRĘCANIE J. Wrwał Wkład mechaiki materiałów.9. PROSTE SKRĘCNIE.9.. Wprwadeie Prte kręcaie wtępje wówca gd bciążeie ewętre redkje ię d wektra mmet kręcająceg któreg kierek pkrwa ię główą cetralą ią prekrj O. Wiele

Bardziej szczegółowo

1.8. PROSTE ŚCINANIE

1.8. PROSTE ŚCINANIE .8. PROSTE ŚCINNIE.8.. Wprowadeie Proste ściaie wstępuje wówcas, gd obciążeie ewętre redukuje się do wektora sił poprecej T, której kieruek pokrwa się główą, cetralą osią prekroju O. Prostm ściaie praktcie

Bardziej szczegółowo

SKRĘCANIE PRĘTÓW 1 1. SFORMUŁOWANIE ZAGADNIENIA. q vz. q vy

SKRĘCANIE PRĘTÓW 1 1. SFORMUŁOWANIE ZAGADNIENIA. q vz. q vy SKĘCNE PĘTÓW 1 1. SFOUŁOWNE ZGDNEN S q v L q v - oś pręta,, - oe główe, cetrale prekroju poprecego pręta pręt prmatc, utwerdo "puktowo" w pkt. S (0, 0, 0) poocca wola od ocążeń deko = L ocążoe łam o gętośc

Bardziej szczegółowo

Wytrzymałość materiałów

Wytrzymałość materiałów Wtrzmałość materiałów IMiR - IA - Wkład Nr 8 Aaliza stau aprężeia Sta aprężeia w pukcie, tesor aprężeia, klasfikacja staów aprężeia, aaliza jedoosiowego stau aprężeia, aaliza płaskiego stau aprężeia, koło

Bardziej szczegółowo

Przykład 3.1. Wyznaczanie prędkości i przyśpieszenia ruchu płaskim

Przykład 3.1. Wyznaczanie prędkości i przyśpieszenia ruchu płaskim Przykład 31 Wyzaczaie prędkści i przyśpieszeia ruchu płaskim Prędkść chwilwa i przyśpieszeie chwilwe puktu pręta w płżeiu przedstawiym a rysuku 1 wyszą: = a = a, Zaleźć prędkść i przyśpieszeie puktu pręta

Bardziej szczegółowo

2.2. ZGINANIE UKOŚNE

2.2. ZGINANIE UKOŚNE .. ZGINNIE UKŚNE Zginnie ukśne (dwukierunkwe) wstępuje wówcs, gd bciążenie ewnętrne redukuje się d wektr mmentu ginjąceg, leżąceg w płscźnie prekrju, któreg kierunek nie pkrw się żdną głównch, centrlnch

Bardziej szczegółowo

Podstawy wytrzymałości materiałów

Podstawy wytrzymałości materiałów Podstaw wtrzmałości materiałów IMiR - MiBM - Wkład Nr 4 Aaliza stau aprężeia Sta aprężeia w pukcie, tesor aprężeia, klasfikacja staów aprężeia, aaliza jedoosiowego stau aprężeia, aaliza płaskiego stau

Bardziej szczegółowo

( ) O k k k. A k. P k. r k. M O r 1. -P n W. P 1 P k. Rys. 3.21. Redukcja dowolnego przestrzennego układu sił

( ) O k k k. A k. P k. r k. M O r 1. -P n W. P 1 P k. Rys. 3.21. Redukcja dowolnego przestrzennego układu sił 3.7.. Reducja dowolego uładu sił do sił i par sił Dowolm uładem sił będiem awać uład sił o liiach diałaia dowolie romiescoch w prestrei. tm pucie ajmiem się sprowadeiem (reducją) taiego uładu sił do ajprostsej

Bardziej szczegółowo

2.3. ROZCIĄGANIE (ŚCISKANIE) MIMOŚRODOWE

2.3. ROZCIĄGANIE (ŚCISKANIE) MIMOŚRODOWE .. RZCĄGNE (ŚCSKNE) MMŚRDWE Rcągne (ścskne) mmśrdwe wstępuje wówcs gd bcążene ewnętrne redukuje sę d wektr sł prstpdłeg d prekrju pprecneg cepneg p jeg śrdkem cężkśc (rs. ). Rs. Złżene: se C r C są sm

Bardziej szczegółowo

III. LICZBY ZESPOLONE

III. LICZBY ZESPOLONE Pojęcie ciała 0 III LICZBY ZESPOLONE Defiicja 3 Niech K będie dowolm biorem Diałaiem wewętrm (krótko będiem mówić - diałaiem) w biore K awam każdą fukcję o : K K K Wartość fukcji o dla elemetów K oacam

Bardziej szczegółowo

Przykład 3.7. Naprężenia styczne przy zginaniu belki cienkościennej.

Przykład 3.7. Naprężenia styczne przy zginaniu belki cienkościennej. Prkład.7. Naprężenia tcne pr ginaniu belki cienkościennej. Wnac rokład naprężenia tcnego w prekroju podporowm belki wpornikowej o prekroju cienkościennm obciążonej na wobodnm końcu pionową iłą P. Siła

Bardziej szczegółowo

Zadania domowe z Analizy Matematycznej III - czȩść 2 (funkcje wielu zmiennych)

Zadania domowe z Analizy Matematycznej III - czȩść 2 (funkcje wielu zmiennych) Zadaia domowe z AM III dla grup E7 (semestr zimow 07/08) Czȩść Zadaia domowe z Aaliz Matematczej III - czȩść (fukcje wielu zmiech) Zadaie. Obliczć graice lub wkazać że ie istiej a: (a) () (00) (b) + ()

Bardziej szczegółowo

Obliczanie naprężeń stycznych wywołanych momentem skręcającym w przekroju cienkościennym zamkniętym i otwartym 8

Obliczanie naprężeń stycznych wywołanych momentem skręcającym w przekroju cienkościennym zamkniętym i otwartym 8 Oblcane naprężeń tycnych wywłanych mmentem kręcającym w prekrju cenkścennym amknętym twartym 8 Wprwadene D blcena naprężeń tycnych wywłanych mmentem kręcającym w prekrju cenkścennym amknętym wykrytujemy

Bardziej szczegółowo

Informacje uzupełniające: Siły krytyczne przy wyboczeniu skrętnym i giętnoskrętnym. Spis treści

Informacje uzupełniające: Siły krytyczne przy wyboczeniu skrętnym i giętnoskrętnym. Spis treści Infrmacje uupełniające: Sił krtcne pr wbceniu skrętnm i giętn-skrętnm Pdan frmuł d blicania sił krtcnej pr wbceniu skrętnm i giętn-skrętnm. Spis treści 1. Pstanwienia gólne. Wbcenie skrętne 3. Wbcenie

Bardziej szczegółowo

2. RÓWNOWAGA PRZESTRZENNEGO UKŁADU SIŁ

2. RÓWNOWAGA PRZESTRZENNEGO UKŁADU SIŁ . RÓWOWG PRZETRZEEGO UKŁDU IŁ Zadaie. Wyzaczyć siły siwe w trzech prętach przegubwych twrzących wysięgik przedstaw a rysuku.. Wysięgik bciąży jest piwą siłą przyłżą w pukcie. Rys.. Rzwiązaie Zakładamy

Bardziej szczegółowo

Rys.1. Rozkład wzdłuż długości wału momentów wewnętrznych skręcających ten wał wyznacza

Rys.1. Rozkład wzdłuż długości wału momentów wewnętrznych skręcających ten wał wyznacza Intrukcja przygtwania i realizacji cenariuza dtycząceg ćwiczenia T5 z przedmitu "Wytrzymałść materiałów", przeznaczna dla tudentów II rku tudiów tacjnarnych I tpnia w kierunku Energetyka na Wydz. Energetyki

Bardziej szczegółowo

Mechanika kwantowa III

Mechanika kwantowa III Mecaika kwatowa III Opracowaie: Barbara Pac, Piotr Petele Powtóreie Moet pędu jest wielkością pojęciowo bardo istotą, gdż dla wsstkic pól o setrii sfercej operator jego kwadratu ( ˆM koutuje ailtoiae (

Bardziej szczegółowo

Przykładowe zadania dla poziomu rozszerzonego

Przykładowe zadania dla poziomu rozszerzonego Przkładowe zadaia dla poziomu rozszerzoego Zadaie. ( pkt W baku w pierwszm roku oszczędzaia stopa procetowa bła rówa p%, a w drugim roku bła o % iższa. Po dwóch latach, prz roczej kapitalizacji odsetek,

Bardziej szczegółowo

Opis ruchu we współrzędnych prostokątnych (kartezjańskich)

Opis ruchu we współrzędnych prostokątnych (kartezjańskich) Opis ruchu we współrędch prosokąch (karejańskich) Opis ruchu we współrędch prosokąch jes podob do opisu a pomocą wekora wodącego, kórego pocąek leż w pocąku układu odiesieia. Położeie. Położeie puku A

Bardziej szczegółowo

ANALIZA MECHANIZMU DŹWIGNIOWEGO. 1. Synteza strukturalna i geometryczna mechanizmu

ANALIZA MECHANIZMU DŹWIGNIOWEGO. 1. Synteza strukturalna i geometryczna mechanizmu NLIZ MECHNIZMU DŹWIGNIOWEGO 1. Syteza strukturala i gemetrycza mechaizmu 1. 1. Budwa łańcucha kiematyczeg schemat idewy. Symbliczy zapis struktury i parametrów prjektwaeg mechaizmu przedstawia tabela 1

Bardziej szczegółowo

Przykład 6.1. Przestrzenny stan naprężenia i odkształcenia

Przykład 6.1. Przestrzenny stan naprężenia i odkształcenia Prkład Pretrenn tan naprężenia i odktałcenia Stan naprężenia Stan naprężenia w punkcie jet określon a pomocą diewięciu kładowch, które onacam literą odpowiednimi indekami Pierw indek onaca normalną ewnętrną

Bardziej szczegółowo

0, co implikuje tezę. W interpretacji geometrycznej: musi istnieć punkt, w którym styczna ( f (c)

0, co implikuje tezę. W interpretacji geometrycznej: musi istnieć punkt, w którym styczna ( f (c) RACHUNEK RÓŻNCZKOWY cd Twierdzeie Lagrage a: Jeżeli jest ciągła w [a,b], jest różiczkwala w a,b), t ca,b) : b)-a)= c) b-a) b) Dwód Wystarczy rzpatrzyć ukcję t) t) t a), t[a,b], która b a spełia załżeia

Bardziej szczegółowo

A B - zawieranie słabe

A B - zawieranie słabe NAZEWNICTWO: : rówoważość defcj : rówość defcj dla każdego steje! ZBIORY steje dokłade jede {,,,...} - całkowte * - całkowte be era - wmere - ujeme plus ero - recwste - espoloe A B - awerae słabe A :

Bardziej szczegółowo

Przykład 6.3. Uogólnione prawo Hooke a

Przykład 6.3. Uogólnione prawo Hooke a Prkład 6 Uogónione prawo Hooke a Zwiąki międ odkstałceniami i naprężeniami w prpadku ciała iotropowego opisuje uogónione prawo Hooke a: ] ] ] a Rowiąując równania a wgędem naprężeń otrmujem wiąki: b W

Bardziej szczegółowo

FUNKCJE DWÓCH ZMIENNYCH

FUNKCJE DWÓCH ZMIENNYCH FUNKCJE DWÓCH MIENNYCH De. JeŜel kaŝdemu puktow (, ) ze zoru E płaszczz XY przporządkujem pewą lczę rzeczwstą z, to mówm, Ŝe a zorze E określoa została ukcja z (, ). Gd zór E e jest wraźe poda, sprawdzam

Bardziej szczegółowo

KONWENCJA ZNAKOWANIA MOMENTÓW I WZÓR NA NAPRĘŻENIA

KONWENCJA ZNAKOWANIA MOMENTÓW I WZÓR NA NAPRĘŻENIA ĆWICZENIE 5 KONWENCA ZNAKOWANIA OENTÓW I WZÓR NA NAPRĘŻENIA Wektor momentu pr ginaniu ukośnm można rutować na osie,, będące głównmi centralnmi osiami bewładności prekroju. Prjmujem konwencję nakowania

Bardziej szczegółowo

Siła ciężkości. Siła ciężkości jest to siła grawitacyjna wynikająca z oddziaływania na siebie dwóch ciał. Jej wartość obliczamy z zależności

Siła ciężkości. Siła ciężkości jest to siła grawitacyjna wynikająca z oddziaływania na siebie dwóch ciał. Jej wartość obliczamy z zależności Sła cężkośc Sła cężkośc jest to sła grawtacja wkająca oddałwaa a sebe dwóch cał. Jej wartość obcam aeżośc G gde: G 6,674 10-11 Nm /kg M m r stała grawtacja, M, m mas cał, r odegłość pomęd masam. Jeże mam

Bardziej szczegółowo

ANALIZA I BADANIE MAGNETOREOLOGICZNEGO SPRZĘGŁA ROZRUCHOWO-PRZECIĄŻENIOWEGO

ANALIZA I BADANIE MAGNETOREOLOGICZNEGO SPRZĘGŁA ROZRUCHOWO-PRZECIĄŻENIOWEGO ` Mazyy Elektrycze Zezyty Prblemwe Nr 3/25 (7) 27 Cezary Jędryczka, Wjciech Szeląg, Adam Myzkwki, Mariuz Barańki, Plitechika Pzańka ANALIZA I BADANIE MAGNETOREOLOGICZNEGO SPRZĘGŁA ROZRUCHOWO-PRZECIĄŻENIOWEGO

Bardziej szczegółowo

Wytrzymałość materiałów

Wytrzymałość materiałów 1 Wtrmałość materiałów EiP - Wkład Nr 9 Odkstałceia beek giach iia ugięcia beki, kąt obrotu beki, waruek stwości pr giaiu, rówaie różickowe iii ugięcia beki, waruki bregowe, waruki ciągłości odkstałceń,

Bardziej szczegółowo

M. Guminiak - Analiza płyt cienkich metodą elementów brzegowych CAŁKOWE SFORMUŁOWANIE ZADANIA STATECZNOŚCI POCZĄTKOWEJ PŁYTY

M. Guminiak - Analiza płyt cienkich metodą elementów brzegowych CAŁKOWE SFORMUŁOWANIE ZADANIA STATECZNOŚCI POCZĄTKOWEJ PŁYTY . umiiak - Aaiza płt ciekic metoą eemetó brzegoc... 6 6.. CAŁKOWE SFORUŁOWAIE ZADAIA SAECZOŚCI POCZĄKOWEJ PŁYY Róaie różiczkoe tateczości płt moża zapiać atępująco [8]: D 4 p 6. gzie p jet obciążeiem zatępczm

Bardziej szczegółowo

5.3.1. Zmiana układów odniesienia

5.3.1. Zmiana układów odniesienia 531 Zmi ukłdów odieiei Z kżdą brłą twą możem wiąć ukłd wółrędch oiując ruch tej brł w retrei Dltego w dlm ciągu w kiemtce brł będiem ię jmowć główie wjemm ruchem ukłdów wółrędch Zjąc ruch ukłdu wółrędch

Bardziej szczegółowo

Analiza układu II rzędu

Analiza układu II rzędu Akademia Mrka w Gdyi Katedra Autmatyki Okrętwej Teria terwaia Aaliza układu II rzędu Matlab Mirław Tmera. WPROWADZENIE Ocea jakści terwaia plega a ceie dwóch taów układu regulacji: tau przejściweg tau

Bardziej szczegółowo

Laboratorium wytrzymałości materiałów

Laboratorium wytrzymałości materiałów Plitechnika Lubelka MECHANIKA Labratrium wytrzymałści materiałów Ćwiczenie 4 - Swbdne kręcanie prętów kłwych Przygtwał: Andrzej Teter (d użytku wewnętrzneg) Swbdne kręcanie prętów kłwych Jednym z prtych

Bardziej szczegółowo

Analiza układu II rzędu Matlab

Analiza układu II rzędu Matlab Uiwerytet Mrki w Gdyi atedra Autmatyki Okrętwej Teria terwaia Aaliza układu II rzędu Matlab Mirław Tmera. WPROWADZENIE Ocea jakści terwaia plega a ceie dwóch taów układu regulacji: tau przejściweg tau

Bardziej szczegółowo

Ruch kulisty bryły. Kąty Eulera. Precesja regularna

Ruch kulisty bryły. Kąty Eulera. Precesja regularna Ruch kulist brł. Kąt Eulera. Precesja regularna Ruchem kulistm nawam ruch, w casie którego jeden punktów brł jest stale nieruchom. Ruch kulist jest obrotem dookoła chwilowej osi obrotu (oś ta mienia swoje

Bardziej szczegółowo

Rozdział 9. Baza Jordana

Rozdział 9. Baza Jordana Rodiał 9 Baa Jordana Niech X będie n wmiarową prestrenią wektorową nad ciałem F = R lub F = C Roważm dowoln endomorfim f : X X Wiem, że postać macier endomorfimu ależ od wboru ba w prestreni X Wiem również,

Bardziej szczegółowo

Wprowadzenie. metody elementów skończonych

Wprowadzenie. metody elementów skończonych Metody komputerowe Wprowadzeie Podstawy fizycze i matematycze metody elemetów skończoych Literatura O.C.Ziekiewicz: Metoda elemetów skończoych. Arkady, Warszawa 972. Rakowski G., acprzyk Z.: Metoda elemetów

Bardziej szczegółowo

(x 1 y 1 ) (x n y n ) 2. 1<j<m x i y i. x2 y 2 gdy x 1 = y 1 x 2 y 2 + x 1 + y 1 gdy x 1 = y 1. gdy x, y, 0 nie są współliniowe

(x 1 y 1 ) (x n y n ) 2. 1<j<m x i y i. x2 y 2 gdy x 1 = y 1 x 2 y 2 + x 1 + y 1 gdy x 1 = y 1. gdy x, y, 0 nie są współliniowe . Metrka Zadaie.. Pokazać, że metrka jest fukcją ieujemą. Zadaie.2. Odowodić, że poiższe wzor defiiuja metrki. a) (metrka euklidesowa) X = R. d e (, ) := ( ) 2 +... + ( ) 2 b) (metrka taksówkowa) X = R

Bardziej szczegółowo

Płaskie układy obciąŝeń. Opis analityczny wielkości podstawowych. wersory. mechanika techniczna i wytrzymałość materiałów 1 statyka 2

Płaskie układy obciąŝeń. Opis analityczny wielkości podstawowych. wersory. mechanika techniczna i wytrzymałość materiałów 1 statyka 2 Opis aalitcz wielkości podstawowch wersor e x, e Opis aalitcz wielkości podstawowch współrzęde puktów A( x A, B( x B, A B ) ) Opis aalitcz wielkości podstawowch współrzęde puktów A( x A, B( x B, A B )

Bardziej szczegółowo

ZŁOŻONE RUCHY OSI OBROTOWYCH STEROWANYCH NUMERYCZNIE

ZŁOŻONE RUCHY OSI OBROTOWYCH STEROWANYCH NUMERYCZNIE KOMISJA BUDOWY MASZYN PAN ODDZIAŁ W POZNANIU Vol. 6 nr Archiwum Technologii Masn i Automatacji 6 ROMAN STANIEK * ZŁOŻONE RUCHY OSI OBROTOWYCH STEROWANYCH NUMERYCZNIE W artkule predstawiono ależności matematcne

Bardziej szczegółowo

MATURA 2014 z WSiP. Zasady oceniania zadań

MATURA 2014 z WSiP. Zasady oceniania zadań MATURA 0 z WSiP Matematyka Poziom rozszerzoy Zasady oceiaia zadań Copyright by Wydawictwa Szkole i Pedagogicze sp z oo, Warszawa 0 Matematyka Poziom rozszerzoy Kartoteka testu Numer zadaia Sprawdzaa umiejętość

Bardziej szczegółowo

Edyta Kujawska BADANIA PROCESU SEDYMENTACJI W OSADNIKU Z WYPEŁNIENIEM PŁYTOWYM I PROFILOWYM

Edyta Kujawska BADANIA PROCESU SEDYMENTACJI W OSADNIKU Z WYPEŁNIENIEM PŁYTOWYM I PROFILOWYM BADANIA PROCESU SEDYMENTACJI W OSADNIKU Z WYPEŁNIENIEM PŁYTOWYM I PROFILOWYM Edyta Kujawka Katedra Aparatury Chemicej i Prcewej, Plitechika Śląka, Gliwice WPROWADZENIE Sedymetacja jak prce wydielaia cątek

Bardziej szczegółowo

Egzamin ustny semestr piąty. Słuchacz

Egzamin ustny semestr piąty. Słuchacz Egzami usty semestr piąty Słuchacz 4 5 blicza średią ważą i dchyleie stadardwe zestawu daych zlicza biekty w prstych sytuacjach kmbiatryczych blicza prawdpdbieństwa w prstych sytuacjach, stsując klasyczą

Bardziej szczegółowo

KO OF Szczecin:

KO OF Szczecin: OF_III_T KO OF Szczeci: wwwfszcpl Źródł: XI OLIMPIADA FIZYCZNA (96/96) Stpień III zadaie teretycze T Nazwa zadaia: Działy: Słwa kluczwe: Kmitet Główy Olimpiady Fizyczej; Czesław Ścisłwski Fizyka w Szkle

Bardziej szczegółowo

W(s)= s 3 +7s 2 +10s+K

W(s)= s 3 +7s 2 +10s+K PRZYKŁAD (LINIE PIERWIASTKOWE) Tramitacja operatorowa otwartego układu regulacji z jedotkowym ujemym przęŝeiem zwrotym daa jet wzorem: G O K ( + )( + 5) a) Podaj obraz liii pierwiatkowych układu zamkiętego.

Bardziej szczegółowo

ZWIĄZKI FIZYCZNE DLA MATERIAŁÓW ORTOTROPOWYCH KONFIGURACJA NIEOSIOWA

ZWIĄZKI FIZYCZNE DLA MATERIAŁÓW ORTOTROPOWYCH KONFIGURACJA NIEOSIOWA ZWIĄZKI FIZYCZN DLA MATRIAŁÓW ORTOTROPOWYCH KONFIURACJA NIOIOWA Rówaie fizcze dla rttrpwej warstw kmpztu zbrjeg włókami jedkierukwmi w płaskim staie aprężeia, w układzie iesiwm (ff-ais) Relacje trasfrmacje

Bardziej szczegółowo

P π n π. Równanie ogólne płaszczyzny w E 3. Dane: n=[a,b,c] Wówczas: P 0 P=[x-x 0,y-y 0,z-z 0 ] Równanie (1) nazywamy równaniem ogólnym płaszczyzny

P π n π. Równanie ogólne płaszczyzny w E 3. Dane: n=[a,b,c] Wówczas: P 0 P=[x-x 0,y-y 0,z-z 0 ] Równanie (1) nazywamy równaniem ogólnym płaszczyzny Rówaie ogóle płaszczyzy w E 3. ae: P π i π o =[A,B,C] P (,y,z ) Wówczas: P P=[-,y-y,z-z ] P π PP PP= o o Rówaie () azywamy rówaiem ogólym płaszczyzy A(- )+B(y-y )+C(z-z )= ( ) A+By+Cz+= Przykład

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/17

Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/17 Egzami, 18.02.2017, godz. 9:00-11:30 Zadaie 1. (22 pukty) W każdym z zadań 1.1-1.10 podaj w postaci uproszczoej kresy zbioru oraz apisz, czy kresy ależą do zbioru (apisz TAK albo NIE, ewetualie T albo

Bardziej szczegółowo

3. Wykład III: Warunki optymalności dla zadań bez ograniczeń

3. Wykład III: Warunki optymalności dla zadań bez ograniczeń 3 Wkład III: Waruki optmalości dla zadań bez ograiczeń Podae poiże waruki optmalości dla są uogólieiem powszechie zach waruków dla fukci ede zmiee (zerowaie się pierwsze pochode i lokala wpukłość) 3 Twierdzeie

Bardziej szczegółowo

J. Szantyr - Wykład 4 Napór hydrostatyczny Napór hydrostatyczny na ściany płaskie

J. Szantyr - Wykład 4 Napór hydrostatyczny Napór hydrostatyczny na ściany płaskie J. antr - Wkład Napór hdrostatcn Napór hdrostatcn na ścian płaskie Napór elementarn: d n( p pa ) d nρgd Napór całkowit: ρg nd ρgn d gdie: C Napór hdrostatcn na ścianę płaską predstawia układ elementarnch

Bardziej szczegółowo

ZADANIA ZAMKNIĘTE. Zadanie 1. (1 pkt) Wartość wyrażenia. b dla a 2 3 i b 2 3 jest równa A B. 5 C. 6 D Zadanie 2.

ZADANIA ZAMKNIĘTE. Zadanie 1. (1 pkt) Wartość wyrażenia. b dla a 2 3 i b 2 3 jest równa A B. 5 C. 6 D Zadanie 2. Zachęcam do samodzielej prac z arkuszem diagostczm. Pozaj swoje moce i słabe stro, a astępie popracuj ad słabmi. Żczę przjemego rozwiązwaia zadań. Zadaie. ( pkt) Wartość wrażeia a ZADANIA ZAMKNIĘTE b dla

Bardziej szczegółowo

MACIERZE STOCHASTYCZNE

MACIERZE STOCHASTYCZNE MACIERZE STOCHASTYCZNE p ij - prawdopodobieństwo przejścia od stau i do stau j w jedym (dowolym) kroku, [p ij ]- macierz prawdopodobieństw przejść (w jedym kroku), Własości macierzy prawdopodobieństw przejść:

Bardziej szczegółowo

Arkusz ćwiczeniowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach od 1. do 21. wybierz i zaznacz poprawną odpowiedź. 1 C. 3 D.

Arkusz ćwiczeniowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach od 1. do 21. wybierz i zaznacz poprawną odpowiedź. 1 C. 3 D. Arkusz ćwiczeiowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE W zadaiach od. do. wybierz i zazacz poprawą odpowiedź. Zadaie. ( pkt) Liczbę moża przedstawić w postaci A. 8. C. 4 8 D. 4 Zadaie. ( pkt)

Bardziej szczegółowo

( ) σ v. Adam Bodnar: Wytrzymałość Materiałów. Analiza płaskiego stanu naprężenia.

( ) σ v. Adam Bodnar: Wytrzymałość Materiałów. Analiza płaskiego stanu naprężenia. Adam Bdnar: Wtrzmałść Materiałów Analiza płaskieg stanu naprężenia 5 ANALIZA PŁASKIEGO STANU NAPRĘŻENIA 5 Naprężenia na dwlnej płaszczźnie Jak pamiętam płaski stan naprężenia w punkcie cechuje t że wektr

Bardziej szczegółowo

V OGÓLNOPOLSKI KONKURS Z FIZYKI Fizyka się liczy I Etap ZADANIA 27 lutego 2013r.

V OGÓLNOPOLSKI KONKURS Z FIZYKI Fizyka się liczy I Etap ZADANIA 27 lutego 2013r. V OGÓLNOPOLSKI KONKURS Z FIZYKI Fizka się licz I Etap ZDNI 7 lutego 3r.. Dwa pociski wstrzeloo jeocześie w tę saą stroę z wóch puktów oległch o o. Pierwsz pocisk wstrzeloo z prękością o po kąte α. Z jaką

Bardziej szczegółowo

Z-TRANSFORMACJA Spis treści

Z-TRANSFORMACJA Spis treści Z-TRANSFORMACJA Spi treści. Deiicja. Pryłady traormat 3. Właości -traormacji 4. Zwiąe -traormacji traormacją Fouriera 5. Z-traormacja ygału dwuwymiarowego Deiicja -traormacji Z-traormata jet eregiem Laureta

Bardziej szczegółowo

O y. Rys Opis położenia punktu za pomocą wektora wodzącego

O y. Rys Opis położenia punktu za pomocą wektora wodzącego 5.1. Uwgi ogóle Jk już powiedio w pukcie 1.1, kiemtk jmuje ię ruchem cił mterilch be uwględii prc (ił) te ruch wwołującch, cli kiemtk jmuje ię włącie mtemtcm opiem ruchu be uwględii prw ficch. Ruchem mechicm

Bardziej szczegółowo

Pochodna kierunkowa i gradient Równania parametryczne prostej przechodzącej przez punkt i skierowanej wzdłuż jednostkowego wektora mają postać:

Pochodna kierunkowa i gradient Równania parametryczne prostej przechodzącej przez punkt i skierowanej wzdłuż jednostkowego wektora mają postać: ochodna kierunkowa i gradient Równania parametrcne prostej prechodącej pre punkt i skierowanej wdłuż jednostkowego wektora mają postać: Oblicam pochodną kierunkową u ( u, u ) 1 + su + su 1 (, ) d d d ˆ

Bardziej szczegółowo

ELEKTROTECHNIKA I ELEKTRONIKA

ELEKTROTECHNIKA I ELEKTRONIKA UNIWERSYTET TECHNOLOGICZNO-RZYRODNICZY W BYDGOSZCZY WYDZIAŁ INŻYNIERII ECHANICZNEJ INSTYTUT EKSLOATACJI ASZYN I TRANSORTU ZAKŁAD STEROWANIA ELEKTROTECHNIKA I ELEKTRONIKA ĆWICZENIE: E7 BADANIE INDUKCYJNEGO

Bardziej szczegółowo

Matematyka. Opracował: dr hab. Mieczysław Kula, prof. WSBiF dr Michał Baczyński

Matematyka. Opracował: dr hab. Mieczysław Kula, prof. WSBiF dr Michał Baczyński Matematka Opracował: dr hab. Miecsław Kula, prof. WSBiF dr Michał Bacński I. Ogóle iformacje o predmiocie: Cel predmiotu: Celem główm kursu jest apoaie studetów wbrami diałami matematki stosowami w aukach

Bardziej szczegółowo

Materiał ćwiczeniowy z matematyki marzec 2012

Materiał ćwiczeniowy z matematyki marzec 2012 Materiał ćwiczeiowy z matematyki marzec 0 Klucz puktowaia do zadań zamkiętych oraz schemat oceiaia do zadań otwartych dla iewidomych POZIOM PODSTAWOWY Klucz puktowaia do zadań zamkiętych Nr zad 3 4 6 7

Bardziej szczegółowo

Drgania własne ramy wersja komputerowa, Wpływ dodatkowej podpory ( sprężyny ) na częstości drgań własnych i ich postacie

Drgania własne ramy wersja komputerowa, Wpływ dodatkowej podpory ( sprężyny ) na częstości drgań własnych i ich postacie Drgania własne ramy wersja kmputerwa, Wpływ ddatkwej pdpry ( sprężyny ) na częstści drgań własnych i ich pstacie Pniżej przedstawin rzwiązania dwóch układów ramwych takiej samej gemetrii i rzkładzie masy,

Bardziej szczegółowo

Zadania do rozdziału 4. Zad.4.1. względem osi obrotu krążka o promieniu

Zadania do rozdziału 4. Zad.4.1. względem osi obrotu krążka o promieniu Zadaia d rzdziału. Zad... Obliczyć et siły M dla siły r0 c, jeżeli działa a styczie d rąża. Rzwiązaie: F 0 N względe si brtu rąża prieiu M r x F M M r F si α α 90 si α M r F 0 N 0, M N Wetr etu siły M

Bardziej szczegółowo

Jan BANASIAK Jerzy BIENIEK Jerzy DETYNA. 1. Wprowadzenie. 1. Introduction

Jan BANASIAK Jerzy BIENIEK Jerzy DETYNA. 1. Wprowadzenie. 1. Introduction Ja BANASIAK Jer BIENIEK Jer DETYNA STAN NAPRĘŻENIA I TARCIE WEWNĘTRZNE MATERIAŁU PRZESIEWANEGO JAKO DETERMINANTY SKUTECZNEGO PROCESU SEPARACJI SITOWEJ THE STATE OF TENSION AND INTERNAL FRICTION OF MATERIAL

Bardziej szczegółowo

ROBOT Millennium wersja 20.1 - Podręcznik użytkownika strona: 371 9. ZAŁĄCZNIKI. Robobat www.robobat.com

ROBOT Millennium wersja 20.1 - Podręcznik użytkownika strona: 371 9. ZAŁĄCZNIKI. Robobat www.robobat.com ROBO Milleium wersja. - Podręcik użtkowika stroa: 37 9. ZAŁĄCZNIKI Robobat www.robobat.com stroa: 37 ROBO Milleium wersja. - Podręcik użtkowika 9.. Załącik - Elemet prętowe (ieliiowa aalia w programie

Bardziej szczegółowo

Wyznaczyć prędkości punktów A i B

Wyznaczyć prędkości punktów A i B Wyzaczaie prędkości i przyspieszeia puku ciała w ruchu płaskim (a) Wyzaczyć prędkości puków i Dae: rad/s; ε 0; 5 cm; 5 cm 48 mechaika echicza kiemayka 3 Wyzaczaie prędkości i przyspieszeia puku ciała w

Bardziej szczegółowo

Egzamin maturalny z matematyki CZERWIEC 2011

Egzamin maturalny z matematyki CZERWIEC 2011 Egzami maturaly z matematyki CZERWIEC 0 Klucz puktowaia do zadań zamkiętych oraz schemat oceiaia do zadań otwartych POZIOM PODSTAWOWY Poziom podstawowy czerwiec 0 Klucz puktowaia do zadań zamkiętych Nr

Bardziej szczegółowo

Metody Optyczne w Technice. Wykład 3 Optyka geometryczna

Metody Optyczne w Technice. Wykład 3 Optyka geometryczna Metody Optycze w Techice Wykład 3 Optyka geometrycza Promień świetly Potraktujmy światło jako trumień czątek eergii podróżujących w przetrzei Trajektorie takich czątek to promieie świetle W przypadku wiązki

Bardziej szczegółowo

Podstawy wytrzymałości materiałów

Podstawy wytrzymałości materiałów Podstaw wtrmałości materiałów IMiR IMT - Wkład Nr 0 Złożon stan naprężeń - wtężenie materiału stan krtcn materiału pojęcie wtężenia cel stosowania hipote wtężeniowch naprężenie redukowane pregląd hipote

Bardziej szczegółowo

x 2 5x + 6, (i) lim 9 + 2x 5 lim x + 3 ( ) 9 Zadanie 1.4. Czy funkcjom, (c) h(x) =, (b) g(x) = x x, (c) h(x) = x + x.

x 2 5x + 6, (i) lim 9 + 2x 5 lim x + 3 ( ) 9 Zadanie 1.4. Czy funkcjom, (c) h(x) =, (b) g(x) = x x, (c) h(x) = x + x. Zadaie.. Obliczyć graice x 2 + 2x 3 (a) x x x2 + x2 + 25 5 (d) x 0. Graica i ciągłość fukcji x 2 5x + 6 (b) x x 2 x 6 4x (e) x 0si 2x (g) x 0 cos x x 2 (h) x 8 Zadaie.2. Obliczyć graice (a) (d) (g) x (x3

Bardziej szczegółowo

Rozwiazania zadań. Zadanie 1A. Zadanie 1B. Zadanie 2A

Rozwiazania zadań. Zadanie 1A. Zadanie 1B. Zadanie 2A Rowiaania adań Zadanie A = ( i) = 4 8i 4 = 8i Badam licbȩ espolon a 8i Jej moduł 8i jest równ 8 Jej postać espolona jest równa 8(cosα + isinα) α = /π St ad cosα = i sinα = Mam pierwiastki które oblicam

Bardziej szczegółowo

Metody numeryczne. Marek Lefik. Wykład 1 Studia doktoranckie

Metody numeryczne. Marek Lefik. Wykład 1 Studia doktoranckie Metody umerycze Marek Lefik Wykład 1 Studia doktorackie 01-013 Metody umerycze: wstęp ogóly Czemu służą MN Rozwiązaia symbolicze zagadień brzegowych dla skomplikowaej geometrii ie jest możliwe Rozwiązaia

Bardziej szczegółowo

Postać Jordana macierzy

Postać Jordana macierzy Rodiał 8 Postać Jordana macier 8.1. Macier Jordana Niech F = R lub F = C. Macier J r () F r r postaci 1. 1... J r () =..........,.... 1 gdie F, nawam klatką Jordana stopnia r. Ocwiście J 1 () = [. Definicja

Bardziej szczegółowo

1. REDUKCJA DOWOLNYCH UKŁADÓW SIŁ. Redukcja płaskiego układu sił

1. REDUKCJA DOWOLNYCH UKŁADÓW SIŁ. Redukcja płaskiego układu sił . REDUKCJA DOWOLNYCH UKŁADÓW IŁ Redukcja płaskiego układu sił Zadanie. Znaleźć wartość licbową i równanie linii diałania wpadkowej cterech sił predstawionch na rsunku. Wartości licbowe sił są następujące:

Bardziej szczegółowo

KOMBINATORYKA ZADANIA

KOMBINATORYKA ZADANIA KOMBINATORYKA ZADANIA Magdalea Rudź 25 marca 2017 1 Zadaie 1. a Ile istieje liczb aturalych sześciocyfrowych? b Ile istieje liczb aturalych sześciocyfrowych takich, w których cyfra setek to sześć? 1.1

Bardziej szczegółowo

FILTRY ZE SKOŃCZONĄ ODPOWIEDZIĄ IMPULSOWĄ

FILTRY ZE SKOŃCZONĄ ODPOWIEDZIĄ IMPULSOWĄ FILTRY ZE SKOŃCZOĄ ODPOWIEDZIĄ IMPULSOWĄ FIR od ag. Fiite Impule Repoe Spi treści. Deiicja iltru FIR. Caraktertki cętotliwościo 3. Filtr FIR liiową caraktertką aową 4. Projektowaie iltrów pr pomoc eregów

Bardziej szczegółowo

Internetowe Kółko Matematyczne 2004/2005

Internetowe Kółko Matematyczne 2004/2005 Iteretowe Kółko Matematycze 2004/2005 http://www.mat.ui.toru.pl/~kolka/ Zadaia dla szkoły średiej Zestaw I (20 IX) Zadaie 1. Daa jest liczba całkowita dodatia. Co jest większe:! czy 2 2? Zadaie 2. Udowodij,

Bardziej szczegółowo

OBLICZENIE SIŁ WEWNĘTRZNYCH DLA BELKI SWOBODNIE PODPARTEJ SWOBODNIE PODPARTEJ ALGORYTM DO PROGRAMU MATHCAD

OBLICZENIE SIŁ WEWNĘTRZNYCH DLA BELKI SWOBODNIE PODPARTEJ SWOBODNIE PODPARTEJ ALGORYTM DO PROGRAMU MATHCAD OBLICZENIE SIŁ WEWNĘTRZNYCH DLA BELKI ALGORYTM DO PROGRAMU MATHCAD 1 PRAWA AUTORSKIE BUDOWNICTWOPOLSKIE.PL GRUDZIEŃ 2010 Rozpatrujemy belkę swobodie podpartą obciążoą siłą skupioą, obciążeiem rówomierie

Bardziej szczegółowo

Programowanie dynamiczne i modele rekurencyjne w ekonomii Wykład 3

Programowanie dynamiczne i modele rekurencyjne w ekonomii Wykład 3 Programowaie dyamice i modele rekurecyje w ekoomii Wykład 3 Michał Ramsa sierpia 0 Stresceie Wykład treci bauje główie a [, ro 7] i dotycy wykorystaia fukcji tworacych do rowiaywaia rekurecji Materiał

Bardziej szczegółowo

Mechanika analityczna wprowadzenie

Mechanika analityczna wprowadzenie Mechaika aalitycza wprowadzeie 1. Więzy i wpółrzęde uogólioe Jeśli rozważamy ruch układów iewobodych ależy określić ograiczeia ałożoe a ruch tzw. więzy. Gdy układ puktów jet ograiczoy więzami wówcza wpółrzęde

Bardziej szczegółowo

WYKŁAD 7. MODELE OBIEKTÓW 3-D3 część Koncepcja krzywej sklejanej. Plan wykładu:

WYKŁAD 7. MODELE OBIEKTÓW 3-D3 część Koncepcja krzywej sklejanej. Plan wykładu: WYKŁAD 7 MODELE OIEKTÓW -D cęść Pla wkład: Kocepcja krwej sklejaej Jedorode krwe -sklejae ejedorode krwe -sklejae Powerche eera, -sklejae URS. Kocepcja krwej sklejaej Istotą praktcego pkt wdea wadą krwej

Bardziej szczegółowo

Zestaw zadań 12: Przekształcenia liniowe. Macierze przekształceń liniowych. z z + 2 2x + y. x y z. x y + 2t 2x + 3y + 5z t x + z t

Zestaw zadań 12: Przekształcenia liniowe. Macierze przekształceń liniowych. z z + 2 2x + y. x y z. x y + 2t 2x + 3y + 5z t x + z t Zesaw adań : Preksałcenia liniowe. Maciere preksałceń liniowch () Kóre podanch niżej preksałceń ϕ : K n K m są preksałceniami liniowmi: a) n = m = 3, ϕ( + ) = +, b) n = m = 3, ϕ( ) = +, 3 + + + +, d) n

Bardziej szczegółowo

Podprzestrzenie macierzowe

Podprzestrzenie macierzowe Podprzestrzeie macierzowe Defiicja: Zakresem macierzy AŒ mâ azywamy podprzestrzeń R(A) przestrzei m geerowaą przez zakres fukcji ( ) : m f x = Ax ( A) { Ax x } = Defiicja: Zakresem macierzy A Œ âm azywamy

Bardziej szczegółowo

Dowolną niezerową macierz A o wymiarach m na n za pomocą ciągu przekształceń elementarnych można sprowadzić do postaci C 01

Dowolną niezerową macierz A o wymiarach m na n za pomocą ciągu przekształceń elementarnych można sprowadzić do postaci C 01 WYKŁD / RZĄD MCIERZY POSTĆ BZOW MCIERZY Dowolą ieerową mcier o wymirch m pomocą ciągu prekłceń elemerych moż prowdić do poci I r C m wej bową (koicą) W cególości mcier bow może mieć poć: r I dl r m I r

Bardziej szczegółowo

Mec Me han a ik i a a o gólna Wyp W a yp dko dk w o a w do d w o o w l o ne n g e o g o ukł uk a ł du du sił.

Mec Me han a ik i a a o gólna Wyp W a yp dko dk w o a w do d w o o w l o ne n g e o g o ukł uk a ł du du sił. echaika ogóla Wkład r 2 Wpadkowa dowolego układu sił. ówowaga. odzaje sił i obciążeń. odzaje ustrojów prętowch. Wzaczaie reakcji. Wpadkowa układu sił rówoległch rzłożeie układu zerowego (układ sił rówoważącch

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 2B, lato 2015/16

Jarosław Wróblewski Analiza Matematyczna 2B, lato 2015/16 Egzami,.9.6, godz. :-5: Zadaie. ( puktów) Wyzaczyć wszystkie rozwiązaia rówaia z 4 = 4 w liczbach zespoloych. Zapisać wszystkie rozwiązaia w postaci kartezjańskiej (bez używaia fukcji trygoometryczych)

Bardziej szczegółowo

Zginanie Proste Równomierne Belki

Zginanie Proste Równomierne Belki Zginanie Proste Równomierne Belki Prebieg wykładu : 1. Rokład naprężeń w prekroju belki. Warunki równowagi. Warunki geometrycne 4. Zwiąek fiycny 5. Wskaźnik wytrymałości prekroju na ginanie 6. Podsumowanie

Bardziej szczegółowo

1. Granica funkcji w punkcie

1. Granica funkcji w punkcie Graica ukcji w pukcie Deiicja Sąsiedztwem o promieiu r > 0 puktu a R azywamy zbiór S ( a ( a r ( a a Deiicja Sąsiedztwem lewostroym o promieiu r > 0 puktu a R azywamy zbiór S ( a ( a r Deiicja Sąsiedztwem

Bardziej szczegółowo

23. CAŁKA POWIERZCHNIOWA NIEZORIENTOWANA

23. CAŁKA POWIERZCHNIOWA NIEZORIENTOWANA . CAŁKA POWIERZCHNIOWA NIEZORIENTOWANA Płat powiechniow o ównaniach paametcnch: ( ) ( ) ( ) () gdie oba jet obaem eglanm nawam płatem gładkim (płatem eglanm) gd w każdm pnkcie tego płata itnieje płacna

Bardziej szczegółowo

Podprzestrzenie macierzowe

Podprzestrzenie macierzowe Podprzestrzeie macierzowe Defiicja: Zakresem macierzy AŒ mâ azywamy podprzestrzeń R(A) przestrzei m geerowaą przez zakres fukcji : m f x = Ax RAAx x Defiicja: Zakresem macierzy A Œ âm azywamy podprzestrzeń

Bardziej szczegółowo

,..., u x n. , 2 u x 2 1

,..., u x n. , 2 u x 2 1 . Równania różnickowe cąstkowe Definicja. Równaniem różnickowm cąstkowm (rrc) nawam równanie różnickowe, w którm wstępuje funkcja niewiadoma dwóch lub więcej miennch i jej pochodne cąstkowe. Ogólna postać

Bardziej szczegółowo

Zadanie 0 Obliczyć całki. Wyniki sprawdzić obliczając pochodne otrzymanych funkcji pierwotnych. x 4. x x. x x 1 , 11)

Zadanie 0 Obliczyć całki. Wyniki sprawdzić obliczając pochodne otrzymanych funkcji pierwotnych. x 4. x x. x x 1 , 11) PR DOMOW ŁK NIEOZNZON / Zadanie Oblicć całki Wniki prawdić oblicając pochodne ormanch funkcji pierwonch ) d ) d ) d ) d Zadanie Oblicć całki nieonacone całkując pre cęści ) ln d ) co d ) ln d ) d ) arcg

Bardziej szczegółowo

MARIUSZ KAWECKI zbiór zadań dla zainteresowanego matematyką licealisty

MARIUSZ KAWECKI zbiór zadań dla zainteresowanego matematyką licealisty MARIUSZ KAWECKI zbiór zadań dla zaiteresowaego matematyką licealisty Copyright by M. Kawecki 07 Spis treści Wstęp 3. Logika w praktyce 5. Liczby i działaia 0 3. Rówaia i układy rówań 6 4. Własości fukcji

Bardziej szczegółowo

sin sin ε δ Pryzmat Pryzmat Pryzmat Pryzmat Powierzchnia sferyczna Elementy optyczne II sin sin,

sin sin ε δ Pryzmat Pryzmat Pryzmat Pryzmat Powierzchnia sferyczna Elementy optyczne II sin sin, Wykład XI Elemety optycze II pryzmat kąt ajmiejszego odchyleia powierzchia serycza tworzeie obrazów rówaie soczewka rodzaje rówaia szliierzy i Gaussa kostrukcja obrazów moc optycza korekcja wad wzroku

Bardziej szczegółowo

Algebra z geometrią 2012/2013

Algebra z geometrią 2012/2013 Algebra geometrią 22/23 Seria XVI Javier de Lucas Zadanie. Wnacć rąd macier: A :, B : 2 4 3 4 3 2 3 3 5 7 3 3 6 3 Rowiąanie: Macier A: Sposób: Rąd macier to wmiar prestreni generowanej pre jej kolumn.

Bardziej szczegółowo

ENERGIA SPRĘŻYSTA 1 1. BILANS ENERGETYCZNY 2. RÓWNANIE STANU, POTENCJAŁ SIŁ WEWNĘTRZNYCH

ENERGIA SPRĘŻYSTA 1 1. BILANS ENERGETYCZNY 2. RÓWNANIE STANU, POTENCJAŁ SIŁ WEWNĘTRZNYCH NRG SPRĘŻYST. BLNS NRGTYCZNY.. PODSTO POJĘC Układ ic - ciało (lub układ ciał) łożoe uktów aterialch Otoceie - obsar otacając układ ic Ziee stau terodaicego - araetr charakterujące sta układu i otoceia

Bardziej szczegółowo