Laboratorium wytrzymałości materiałów
|
|
- Bogumił Łuczak
- 8 lat temu
- Przeglądów:
Transkrypt
1 Plitechnika Lubelka MECHANIKA Labratrium wytrzymałści materiałów Ćwiczenie 4 - Swbdne kręcanie prętów kłwych Przygtwał: Andrzej Teter (d użytku wewnętrzneg)
2 Swbdne kręcanie prętów kłwych Jednym z prtych przypadków wytrzymałści materiałów jet wbdne kręcanie. W celu piania zjawik zachdzących w tym przypadku przyjmujemy d analizy wał długści l i przekrju krągłym prmieniu r, na pwierzchni któreg narywan iatkę kwadratwą (ry. a). (a) (b) Ry. Jeżeli analizwany wał bciążyć na kńcach dwma mmentami równej wartści M lecz zwrtach przeciwnych i ddatkw działających w płazczyźnie prtpadłej d i pręta t wzytkie iły wewnętrzne prwadzają ię d wewnętrzneg mmentu kręcająceg wartści M =M. Wynika t wprt z warunku równwagi. Na pdtawie zmian iatki znajdującej ię na pwierzchni wału (ry. b) mżemy twierdzić że:. Twrzące, które były równległe d i pręta, p defrmacji zmieniają ię w linie śrubwe kącie nachylenia γ jednakwym na całej długści pręta. 2. Przekrje kńcwe pręta pztają nadal płakie, przy czym ani długść l, ani średnica pręta nie ulega zmianie. 3. Linie bwdwe pztają nadal płakie i zachwują kztałt kłwy. 4. Narywany na kńcwym przekrju pręta prmień braca ię kąt ϕ, zwany kątem kręcenia pręta, pztając nadal prtym. Przedtawine berwacje pzwalają przyjąć za bwiązującą hiptezę płakich przekrjów. Ddatkw mżna przyjąć tezę, że tan naprężeń w pręcie kręcanym jet analgiczny d tanu czyteg ścinania. Naprężenia tyczne τ ą prtpadłe d prmieni pmyślanych w przekrjach pprzecznych pręta i zwiękzają ię prprcjnalnie: wartści zerwej w i pręta d wartści makymalnej τ max dla punktów płżnych przy zewnętrznej pwierzchni pręta (ry. 2a). Spełnina jet zależnść:
3 Plitechnika Lubelka, Lublin τ ρ = τmax r gdzie: ρ - dwlny prmień, r prmień zewnętrzny. () (a) (b) Ry. 2 Krzytając z przeprwadznych berwacji mżna piać tan dkztałceń kręcanych prętów kłwych (ry. 2b). Opiując gemetrię pwierzchniweg wycinka wału długści dx mżna wyprwadzić natępującą zależnść: dϕ γ = ρ (2) dx Kąt γ jet kątem dkztałcenia ptaciweg na zewnętrznej pwierzchni pręta krągłeg prmieniu ρ i mże ztać wyrażny przez naprężenie ścinające za pmcą prawa Hke'a dla ścinania: τ γ = (3) G Wpółczynnik prprcjnalnści G jet nazywany mdułem dkztałcenia ptaciweg lub mdułem Kirchhffa. Pdbnie jak mduł prężytści pdłużnej E, mduł dkztałcenia ptaciweg ma wymiar naprężeń [MPa]. Dwdzi ię, że pmiędzy mdułem ścinania G, mdułem Yunga E raz liczbą Pina ν zachdzi związek: E G = (4) 2( + ν) Na pdtawie pwyżzych równań trzymuje ię zależnść piującą makymalne naprężenia ścinające: d τ = G ϕ max r (5) dx Pdtawiając (5) d () trzymujemy zależnść naprężeń tycznych τ d prmienia ρ:
4 4 Plitechnika Lubelka, Lublin 2008 dϕ τ = G ρ (6) dx Zapiując warunki równwagi w ptaci umy mmentów względem i ymetrii pręta dla wydrębnineg elementu uzykuje ię zależnść pmiędzy mmentem kręcającym M i kątem kręcenia ϕ. Siła tnąca działająca na element pwierzchni df (ry. 2a) wyni τ df, a mment tej iły względem i pręta jet równy τ ρdf. P zumwaniu teg elementarneg mmentu p całym plu przekrju pprzeczneg uzykuje ię mment całkwity w przekrju pręta, który mui być zrównważny przez mment zewnętrzny M=M czyli: Pdtawiając (6) mamy: P wprwadzeniu znaczenia: F F ρ τ df M = 0 (7) 2 dϕ ρ G df M = 0 (8) dx I ρ df = 2 F gdzie: I jet t biegunwy mment bezwładnści kłweg przekrju pprzeczneg trzymujemy: d ϕ M = (0) dx GI Dla kła prmieniu r biegunwy mment bezwładnści wyni: I 4 (9) π r = () 2 zaś dla rury prmieniu wewnętrznym r i zewnętrznym R mment ten wyni: Pdtawiając (0) d (6) trzymuje ię: I 4 4 π ( R r ) = (2) 2 M τ = I ρ (3) Jet t zależnść naprężeń ścinających d dległści ρ d śrdka przekrju pręta. Pnieważ zarówn mment M, jak i biegunwy mment bezwładnści I ą tałe więc rzkład naprężeń tnących jet liniwą funkcją dległści d śrdka
5 Plitechnika Lubelka, Lublin ymetrii wałka. Najwiękze naprężenia ścinające w brębie przekrju pprzeczneg pręta krągłeg wytępują dla ρ = r i wynzą: lub gdzie: M τ max = r (4) I M W τ max = (5) I W = (6) r nazywany jet wkaźnikiem wytrzymałści na kręcanie. Dla przekrju kłweg wyni: 3 π r W = (7) 2 zaś dla rury prmieniu wewnętrznym r i zewnętrznym R wkaźnik ten wyni: 4 4 π( R r ) W = (8) 2R Kąt kręcenia ϕ mżna wyznaczyć przez całkwanie wyrażenia (8): l ϕ = 0 M GI dx (9) W przypadku wałka tałym prmieniu r i długści l, bciążnym tałym mmentem M =cnt trzymuje ię całkwity kąt kręcenia: M l GI ϕ = (20) Ogólny warunek wytrzymałściwy pręta kręcaneg ma ptać: τ M = k max max (2) W gdzie: k naprężenia dpuzczalne na kręcanie, przyjmuje ię, że k = k t, M max - makymalny mment kręcający. W przypadku kręcanych wałów należy również prawdzić warunek ztywnści: ϕ = l 0 M dx ϕ GI gdzie: ϕ dp - dpuzczalny kąt kręcenia, przyjmuje ię ϕ dp = 0,0087 rad/m. dp (22)
6 6 Plitechnika Lubelka, Lublin 2008 Badania tenmetryczne Analgicznie jak w przypadku czyteg zginania w badaniach dświadczalnych d pmiaru dkztałceń zatujemy tenmetry prwe. Budwa i działanie tenmetrów prwych pian w rzdziale pt. Czyte zginanie tatycznie wyznaczalnej belki. Ry. 3 Zgdnie z przeprwadznymi berwacjami wiemy, że pwierzchnia kręcanej rury pddana jet czytemu ścinaniu, które jet zczególnym przypadkiem płakieg tanu naprężeń. W tym przypadku naprężenia działają w kierunkach głównych () i (2) równe c d wartści naprężenia nrmalne, ale przeciwnych znakach: σ y = -σ x = σ i ą brócne kąt 45 raz -45 (ry. 3). Kł Mhra dla czyteg ścinania przedtawin na ry. 4. Ry. 4 W celu wyznaczenia wartści naprężeń tycznych τ max wytępujących na pwierzchni rury naklejamy tenmetr pd kątem 45 d i rury. Odkztałcenia ε, które mierzy ten tenmetr mżemy bliczyć z ugólnineg prawa Hke a dla płakieg tanu naprężeń:
7 Plitechnika Lubelka, Lublin ε = E Z kła Mhra mżemy dczytać (ry. 4): Pdtawiając (24) d (23) trzymujemy: więc: ( σ νσ ) 2 (23) σ = τ max σ 2 = τmax (24) τmax ε = E τ max = ( + ν) ε E ( + ν) (25) (26) Zależnść (26) mżemy wykrzytać d wyznaczenia mdułu Kirchhffa G. Pdtawiamy (4) i trzymujemy: G τ M 2ε 2ε W max = = (27)
8 8 Plitechnika Lubelka, Lublin 2008 Plitechnika Lubelka, Wydział Mechaniczny Katedra Mechaniki Stwanej Labratrium Wytrzymałści Materiałów Imię i nazwik Grupa Data wyknania Prwadzący Ocena Labratrium Wytrzymałści Materiałów Swbdne kręcanie prętów kłwych. Cel ćwiczenia. Celem ćwiczenia jet dświadczalne badanie z zatwaniem tenmetrów prwych kręcania wbdneg rury raz wyznaczenie mduły prężytści ptaciwej G. 2. Opi tanwika badawczeg Badania dświadczalne prwadzimy na tanwiku (ry. ) kładającym ię z rury zamurwanej jednym kńcem i bciążnej parą ił wywłujących kręcanie. Na pwierzchni rury naklejn tenmetry płączne z układem pmiarwym ESAM TRAVELLER i kmputerem zbierającym wyniki pmiarów. Ry.
9 Plitechnika Lubelka, Lublin Przebieg ćwiczenia. Dknać pmiaru w kilku miejcach gemetrii rury: r średnica wewnętrzna, R średnica zewnętrzna, a dległść między iłami. Pmiary pwtarzamy, a w prawzdaniu zamiezczamy wartści średnie. 2. Zgdnie z wytycznymi prwadząceg przygtwać układ pmiarwy. 3. Dknać pmiarów dkztałcenia dla wkazanych bciążeń. 4. Opracwanie wyników i wyknanie prawzdania W celu pracwania prawzdania należy: a) Wzytkie wyniki pmiarów umieść w prawzdaniu. b) Nazkicwać zary tanwika. c) Z badań dświadczalnych bliczyć naprężenia tyczne τ maxd na zewnętrznych pwierzchniach rury. d) Obliczyć teretyczne wartści naprężenia tycznych τ maxt na zewnętrznych pwierzchniach rury. e) Błąd ppełniny bliczyć ze wzru: τ δσ = max t τ τ max t max d 00% f) Wyznaczyć wartść mdułu Kirchhffa G ze wzrów: τ max G = 2ε M G = 2ε W g) Błąd ppełniny dla G bliczyć ze wzru: δg = E G 2( + ν ) E 2( + ν ) 00% h) Otrzymane wartści naprężeń teretycznych i dświadczalnych przenieść na wykre w funkcji mmentu kręcająceg.
10 0 Plitechnika Lubelka, Lublin Wymiary tanwika i inne dane: Tabela r R a ν E I W Lp. [ ] [..] [ ] [..] [ ] [ ] [ ] 2 3 Średnia 6. Wyniki pmiarów i bliczeń Obciążenie P [..] Mment kręcający M [ ] Odkztałcenie względne ε [ ] Naprężenie dświadczalne τ maxd [ ] Naprężenie teretyczne τ maxt [ ] Tabela 2 Błąd pmiaru Obciążenie P [..] Mment kręcający M [ ] Mduł dświadczalne G d [ ] Mduł teretyczne G t [ ] Błąd pmiaru Tabela 3 Uwaga. Pdać wzytkie wzry, pdtawienia i wyniki bliczeń teretycznych i błędów.
11 Plitechnika Lubelka, Lublin Wykre naprężeń tycznych: τ d i τ t w funkcji mmentu kręcająceg 8. Wniki i uwagi kńcwe
Rys.1. Rozkład wzdłuż długości wału momentów wewnętrznych skręcających ten wał wyznacza
Intrukcja przygtwania i realizacji cenariuza dtycząceg ćwiczenia T5 z przedmitu "Wytrzymałść materiałów", przeznaczna dla tudentów II rku tudiów tacjnarnych I tpnia w kierunku Energetyka na Wydz. Energetyki
Bardziej szczegółowoNaprężenia styczne i kąty obrotu
Naprężenia tyczne i kąty obrotu Rozpatrzmy pręt pryzmatyczny o przekroju kołowym obciążony momentem kręcającym 0 Σ ix 0 0 A A 0 0 Skręcanie prętów o przekroju kołowym, pierścieniowym, cienkościennym. Naprężenia
Bardziej szczegółowoObliczanie naprężeń stycznych wywołanych momentem skręcającym w przekrojach: kołowym, pierścieniowym, prostokątnym 7
Obiczanie naprężeń tycznych wywołanych momentem kręcającym w przekrojach: kołowym, pierścieniowym, protokątnym 7 Wprowadzenie Do obiczenia naprężeń tycznych wywołanych momentem kręcającym w przekrojach
Bardziej szczegółowo6. POWIERZCHNIOWE MOMENTY BEZWŁADNOŚCI
6. POWERZCHNOWE MOMENTY BEZWŁADNOŚC Zadanie 6. Dla figury przedstawinej na rysunku 6.. wyznaczyć płżenie głównh centralnh si bezwładnści i kreślić względem nich główne centralne mmenty bezwładnści. Rys.6..
Bardziej szczegółowoPrzekroje efektywne wyboczenia lokalnego 61,88 28,4 0,81 4 =1,34>0,673. = 28,4 ε k. ρ,, = λ 0,22 λ = 1,34 0,22 1,34 =0,62. = =59,39,
Przekrój efektywny stalweg dźwigara z zastępczymi płytami rttrpwymi klasy 4 W bustrnnie sztywn umcwanym dźwigarze skrzynkwym długści 15,0 m ze stali S355 usztywnin pasy i śrdniki żebrami pdłużnymi (rys.
Bardziej szczegółowoObliczanie naprężeń stycznych wywołanych momentem skręcającym w przekroju cienkościennym zamkniętym i otwartym 8
Oblcane naprężeń tycnych wywłanych mmentem kręcającym w prekrju cenkścennym amknętym twartym 8 Wprwadene D blcena naprężeń tycnych wywłanych mmentem kręcającym w prekrju cenkścennym amknętym wykrytujemy
Bardziej szczegółowoZakład Inżynierii Komunikacyjnej Wydział Inżynierii Lądowej Politechnika Warszawska PODSTAWY PROJEKTOWANIA LINII I WĘZŁÓW TRAMWAJOWYCH
Zakład Inżynierii Kmunikacyjnej Wydział Inżynierii Lądwej Plitechnika Warzawka DROGI SZYNOWE PODSTAWY PROJEKTOWANIA LINII I WĘZŁÓW TRAMWAJOWYCH CZĘŚĆ II - PROJEKTOWANIE POŁĄCZEŃ TORÓW TRAMWAJOWYCH Płączenie
Bardziej szczegółowoM s1 = 1000 Nm s =? M s2 = 1000 Nm =? L = 1000 mm m =? D = 60 mm
Zadanie Prêt talw taùm wmiarze na caùej dùugœci bci¹ n jet dwiema parami iù mmentach M i M rzmiezcznch w pób przedtawin na runku. Obliczenia nale przeprwadziã dla dwóch przjêtch przekri kùw metrcznch:
Bardziej szczegółowoLaboratorium wytrzymałości materiałów
Plitechnika Lubelska MECHANIKA Labratrium wytrzymałści materiałów Ćwiczenie 8 - Próba udarnści Przygtwał: Andrzej Teter (d użytku wewnętrzneg) Próba udarnści W prcesie eksplatacji wiele elementów knstrukcyjnych
Bardziej szczegółowoZintegrowany interferometr mikrofalowy z kwadraturowymi sprzęgaczami o obwodzie 3/2λ
VII Międzynardwa Knferencja Elektrniki i Telekmunikacji Studentów i Młdych Pracwników Nauki, SECON 006, WAT, Warzawa, 08 09.. 006r. ppr. mgr inż. Hubert STADNIK ablwent WAT, Opiekun naukwy: dr inż. Adam
Bardziej szczegółowoSkręcanie prętów naprężenia styczne, kąty obrotu 4
Skręcanie prętów naprężenia tyczne, kąty obrotu W przypadku kręcania pręta jego obciążenie tanowią momenty kręcające i. Na ry..1a przedtawiono przykład pręta ztywno zamocowanego na ewym końcu (punkt ),
Bardziej szczegółowo1. Wykres momentów zginających M(x) oraz sił poprzecznych Q(x) Rys2.
Zadanie. Zginanie prote belek. Dla belki zginanej obciążonej jak na Ry. wyznaczyć:. Wykre oentów zginających M(x) oraz ił poprzecznych Q(x).. Położenie oi obojętnej.. Wartość akyalnego naprężenia noralnego
Bardziej szczegółowo1. Elementy wytrzymałości materiałów
. Elementy wytrzymałści materiałów.. Odkształcenie Zmiana jednstkwa wymiaru (dimensin) lub kształtu (shape) przekrju pprzeczneg ciała materialneg, spwdwana ddziaływaniem zewnętrznym - dniesina d wyjściweg
Bardziej szczegółowo( ) σ v. Adam Bodnar: Wytrzymałość Materiałów. Analiza płaskiego stanu naprężenia.
Adam Bdnar: Wtrzmałść Materiałów Analiza płaskieg stanu naprężenia 5 ANALIZA PŁASKIEGO STANU NAPRĘŻENIA 5 Naprężenia na dwlnej płaszczźnie Jak pamiętam płaski stan naprężenia w punkcie cechuje t że wektr
Bardziej szczegółowoM. Guminiak - Analiza płyt cienkich metodą elementów brzegowych Moment zginający w punkcie B [M xb /pl ]
M. Guminiak Analiza płyt cienkich metdą elementów brzegwych... 44 600 500 400 300 200 100 Mment zginający w punkcie B [M xb /pl 2 10 4 ] 700 600 500 400 300 200 100 Mment zginający w punkcie B [M yb /pl
Bardziej szczegółowocz. 1. dr inż. Zbigniew Szklarski
Wykład 1: lektrstatyka cz. 1. dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Kwantyzacja ładunku Każdy elektrn ma masę m e ładunek -e i Każdy prtn ma masę m p ładunek
Bardziej szczegółowoWYZNACZANIE MODUŁU SPRĘŻYSTOŚCI POSTACIOWEJ G ORAZ NAPRĘŻEŃ SKRĘCAJĄCYCH METODĄ TENSOMETRYCZNĄ
Ćwiczenie 7 WYZNACZANIE ODUŁU SPRĘŻYSTOŚCI POSTACIOWEJ G ORAZ NAPRĘŻEŃ SKRĘCAJĄCYCH ETODĄ TENSOETRYCZNĄ A. PRĘT O PRZEKROJU KOŁOWY 7. WPROWADZENIE W pręcie o przekroju kołowym, poddanym obciążeniu momentem
Bardziej szczegółowoCZAS ZDERZENIA KUL SPRAWDZENIE WZORU HERTZA
Ćwiczenie Nr CZAS ZDRZNIA KUL SPRAWDZNI WZORU HRTZA Literatura: Opracwanie d ćwiczenia Nr, czytelnia FiM LDLandau, MLifszic Kurs fizyki teretycznej, tm 7, Teria sprężystści, 9 (dstępna w biblitece FiM,
Bardziej szczegółowoProjektowanie dróg i ulic
Plitechnika Białstcka Zakład Inżynierii Drgwej Jan Kwalski 1/11 Ćwiczenie prjektwe z przedmitu Prjektwanie dróg i ulic strna - 1 -.3. Przepusty Na prjektwanym dcinku A-B-C-D trasy zaprjektwan 4 przepusty
Bardziej szczegółowoRys. 1. Wymiary próbek do badań udarnościowych.
Ćwiczenie 5 - Badanie udarnści twrzyw sztucznych metdą młta Charpy eg, badanie udarnści metdą spadająceg młta, badania wytrzymałściwe, temperatura mięknienia wg Vicata. Badania udarnści metdą Charpy eg
Bardziej szczegółowo1. Elementy wytrzymałości materiałów
. lementy wytrzymałści materiałów.7. Mduł sprężystści Wielkść charakteryzująca reakcję materiału na sprężyste bciążenie zewnętrzne kreślneg rdzaju. Przy bciążeniu jednsiwym (uniaxial lad) dkształcenie
Bardziej szczegółowoIX POWIATOWY KONKURS MATEMATYCZNY SZKÓŁ GIMNAZJALNYCH W POGONI ZA INDEKSEM ZADANIA PRZYGOTOWAWCZE ROZWIĄZANIA I ODPOWIEDZI rok szkolny 2017/2018
rk szklny 017/018 1. Niech pierwsza sba dstanie 1, druga następni dpwiedni 3, 4 aż d n mnet. Więc 1++3+4+.+n 017, n( n 1) 017 n(n+1) 4034, gdzie n(n+1) t ilczyn klejnych liczb naturalnych. Warunek spełnia
Bardziej szczegółowoM. Guminiak - Analiza płyt cienkich metodą elementów brzegowych... 44
M. Guminiak Analiza płyt cienkich metdą elementów brzegwych... 44 Mment zginający w śrdku [M x /pa 2 10 4 ] Mment zginający w śrdku [M y /pa 2 10 4 ] 600 500 400 300 200 100 0 0 2,5 5 7,5 10 12,5 15 17,5
Bardziej szczegółowoPROPAGACJA BŁĘDU. Dane: c = 1 ± 0,01 M S o = 7,3 ± 0,1 g Cl 2 /1000g H 2 O S = 6,1 ± 0,1 g Cl 2 /1000g H 2 O. Szukane : k = k =?
PROPAGACJA BŁĘDU Zad 1. Rzpuszczalnść gazów w rztwrach elektrlitów pisuje równanie Seczenwa: S ln = k c S Gdzie S i S t rzpuszczalnści gazu w czystym rzpuszczalniku i w rztwrze elektrlitu stężeniu c. Obliczy
Bardziej szczegółowoĆwiczenie 1 PRÓBA STATYCZNA ROZCIĄGANIA METALI
LABORATORIUM WYTRZYMAŁOŚCI MATERIAŁÓW Ćwiczenie 1 PRÓBA STATYCZNA ROZCIĄGANIA METALI 1.1. Wprwadzenie Próba rzciągania metali jest pdstawwym badaniem metali mającym na celu kreślenie własnści mechanicznych
Bardziej szczegółowonie wyraŝa zgody na inne wykorzystywanie wprowadzenia niŝ podane w jego przeznaczeniu występujące wybranym punkcie przekroju normalnego do osi z
Wprwadzenie nr 4* d ćwiczeń z przedmitu Wytrzymałść materiałów przeznaczne dla studentów II rku studiów dziennych I stpnia w kierunku Energetyka na wydz. Energetyki i Paliw, w semestrze zimwym 0/03. Zakres
Bardziej szczegółowoWykłady z Hydrauliki- dr inż. Paweł Zawadzki, KIWIS WYKŁAD 8
WYKŁAD 8 8. RUCH WÓD GRUNTOWYCH 8.1. Właściwści gruntu, praw Darcy Ruch wód gruntwych w śrdku prwatym nazywamy filtracją. D śrdków prwatych zaliczamy grunt, skały, betn itp. Wda zawarta w gruncie występuje
Bardziej szczegółowoPodstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie
Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie Rozciąganie lub ściskanie Zginanie Skręcanie Ścinanie 1. Pręt rozciągany lub ściskany
Bardziej szczegółowoMES1pr 02 Konstrukcje szkieletowe 2. Belki
MES1pr 02 Kontrukcje zkieletowe 2. Belki Kiedy używamy modeli belkowe? Elementy kontrukcyjne, w których jeden z wymiarów jet wielokrotnie (> 4 razy) więkzy od innych i zginanie lub kręcanie ma wpływ na
Bardziej szczegółowo2. Pręt skręcany o przekroju kołowym
2. Pręt skręcany o przekroju kołowym Przebieg wykładu : 1. Sformułowanie zagadnienia 2. Warunki równowagi kąt skręcenia 3. Warunek geometryczny kąt odkształcenia postaciowego 4. Związek fizyczny Prawo
Bardziej szczegółowo9. DZIAŁANIE SIŁY NORMALNEJ
Część 2 9. DZIŁIE SIŁY ORMLEJ 1 9. DZIŁIE SIŁY ORMLEJ 9.1. ZLEŻOŚCI PODSTWOWE Przyjmiemy, że materiał pręta jet jednorodny i izotropowy. Jeśli ponadto założymy, że pręt jet pryzmatyczny, to łuzne ą wzory
Bardziej szczegółowoAkademia Morska w Gdyni Katedra Automatyki Okrętowej Teoria sterowania. Mirosław Tomera 1. WPROWADZENIE 2. PROBLEM STABILNOŚCI
Akademia Mrka w Gdyni Katedra Autmatyki Okrętwej Teria terwania Badanie tabilnści Kryterium Nyquita Mirław Tmera. WPROWADZENIE Kryterium Nyquita jet metdą wykreślną pzwalającą na kreślanie tabilnści układu
Bardziej szczegółowoŚCISKANIE SŁUPÓW PROSTYCH 1. P P kr. równowaga obojętna
ŚCISKNI SŁUÓW OSTYCH 1 1. ÓWNOWG T ZY ŚCISKNIU < > rónaga stateczna rónaga bjętna rónaga niestateczna Tak dług, jak < pręt zachuje się spsób stateczny, tzn. znajduje się stanie pczątkej rónagi prstliniej.
Bardziej szczegółowoZależność oporności przewodników metalicznych i półprzewodników od temperatury. Wyznaczanie szerokości przerwy energetycznej.
Zależnść prnści przewdników metalicznych i półprzewdników d temperatury. Wyznaczanie szerkści przerwy energetycznej. I. Cel ćwiczenia: badanie wpływu temperatury na prnść metali, stpów i termistrów raz
Bardziej szczegółowoZAŁĄCZNIK DO PROJEKTU "PODNOŚNIK ŚRUBOWY" OBLICZENIA WYTRZYMAŁOŚCIOWE I INNE
ZAŁĄCZNIK DO PROJEKTU "PODNOŚNIK ŚRUBOWY" OBLICZENIA WYTRZYMAŁOŚCIOWE I INNE LITERATURA: [1] - Skrzyszwski Z. Pdnśniki i prasy śrubwe Pdnśnik śrubwy, Henryk Sanecki, kwiecień, październik 2010 L.p. Obliczenia
Bardziej szczegółowoWPŁYW LUZU PROMIENIOWEGO NA TRWAŁOŚĆ ZMĘCZENIOWĄ PROMIENIOWEGO ŁOŻYSKA WALCOWEGO
PROBLEMY NIEKONWENCJONALNYCH UKŁADÓW ŁOŻYSKOWYCH Łódź, 15-16 maja 1997 r. Bgdan Warda Plitechnika Łódzka, Zakład GW i RT IKM WPŁYW LUZU PROMIENIOWEGO NA TRWAŁOŚĆ ZMĘCZENIOWĄ PROMIENIOWEGO ŁOŻYSKA WALCOWEGO
Bardziej szczegółowoPOLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ. ( i) E( 0) str. 1 WYZNACZANIE NADPOTENCJAŁU RÓWNANIE TAFELA
WYZNACZANIE NADPOTENCJAŁU RÓWNANIE TAFELA Różnica pmiędzy wartścią ptencjału elektrdy mierzneg przy przepływie prądu E(i) a wartścią ptencjału spczynkweg E(0), nsi nazwę nadptencjału (nadnapięcia), η.
Bardziej szczegółowoPolitechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania
Plitechnika Gdańska Wydział Elektrtechniki i Autmatyki Katedra Inżynierii Systemów Sterwania MODELOWANIE I PODSTAWY IDENTYFIKACJI Systemy ciągłe budwa nieliniwych mdeli fenmenlgicznych z praw zachwania.
Bardziej szczegółowoPomiar wartości stałej Stefana-Boltzmanna
Pmiar wartści stałej Stefana-Bltzmanna I. Cel ćwiczenia: wyznaczenie wartści stałej Stefana-Bltzmanna, zapznanie z terią prmieniwania ciała dsknale czarneg. II. Przyrządy: żarówka, ampermierz, wltmierz,
Bardziej szczegółowoCzęść 1 9. METODA SIŁ 1 9. METODA SIŁ
Część 1 9. METOD SIŁ 1 9. 9. METOD SIŁ Metoda ił jet poobem rozwiązywania układów tatycznie niewyznaczalnych, czyli układów o nadliczbowych więzach (zewnętrznych i wewnętrznych). Sprowadza ię ona do rozwiązania
Bardziej szczegółowoPOMIAR MOCY CZYNNEJ W OBWODACH TRÓJFAZOWYCH
ĆWICZENIE NR POMIAR MOCY CZYNNEJ W OBWODACH TRÓJFAZOWYCH.. Cel ćwiczenia Celem ćwiczenia jest pznanie metd pmiaru mcy czynnej w układach trójfazwych... Pmiar metdą trzech watmierzy Metda trzech watmierzy
Bardziej szczegółowoDRGANIA OSCYLATOR HARMONICZNY
DRGANIA OSCYLATOR HARMONICZNY wyklad8 011/01, zima 1 Własnści sprężyste ciał stałych naprężenie rzciągające naprężenie ścinające naprężenie bjętściwe Względne dkształcenie ciała zależy d naprężenia naprężenie
Bardziej szczegółowo1. SIŁY PRZEKROJOWE W PŁASKICH UKŁADACH PRĘTOWYCH
J. Wyrwał Wykłady z mechaniki materiałów 1. SIŁY RZEKROJOWE W ŁSKIH UKŁDH RĘOWYH 1.1. Zasada zesztywnienia rzy wyznaczaniu sił biernych (reakcji pdpór) i sił przekrjwych przyjmuje się załżenie upraszczające
Bardziej szczegółowoDWUCZĘ STOTLIWOŚ CIOWY Ż YROSKOP LASEROWY POMIAR PARAMETRU NAWIGACYJNEGO
ZESZYTY NAUKOWE AKADEMII MARYNARKI WOJENNEJ ROK XLVII NR (64) 006 Tadeuz Dą brwi DWUCZĘ STOTLIWOŚ CIOWY Ż YROSKOP LASEROWY POMIAR PARAMETRU NAWIGACYJNEGO STRESZCZENIE W artyule przedtawin budwę, zaady
Bardziej szczegółowoCzujnik Termoelektryczny
Czujnik Termelektryczny wielpunktwy, Typ TTP- Karta katalgwa TTP-, Edycja 0 Zastswanie Zakres pmiarwy: -0.. +00 C Mnitrwanie prfilu temperatury w dużych zbirnikach Przemysł energetyczny Przemysł petrchemiczny
Bardziej szczegółowoPolitechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH
Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Próba skręcania pręta o przekroju okrągłym Numer ćwiczenia: 4 Laboratorium z
Bardziej szczegółowo2. Zasady sprawdzania podatności obudowy powłokowej
Górnictw i Geinżynieria Rk 3 Zeszyt 3 007 Andrzej Wichur*, Marek Bajrek*, Krnel Frydrych* METODA SPRAWDZANIA PODATNOŚCI OBUDOWY POWŁOKOWEJ**. Wstęp Eksplatacja węgla, rud i surwców mineralnych na craz
Bardziej szczegółowoCZERWIEC MATEMATYKA - poziom podstawowy. Czas pracy: 170 minut. Instrukcja dla zdającego
MATEMATYKA - pzim pdstawwy CZERWIEC 014 Instrukcja dla zdająceg 1. Sprawdź, czy arkusz zawiera 14 strn.. Rzwiązania zadań i dpwiedzi zamieść w miejscu na t przeznacznym.. W zadaniach d 1 d są pdane 4 dpwiedzi:
Bardziej szczegółowoSTATYCZNA PRÓBA SKRĘCANIA
Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: Wprowadzenie STATYCZNA PRÓBA SKRĘCANIA Opracowała: mgr inż. Magdalena Bartkowiak-Jowsa Skręcanie pręta występuje w przypadku
Bardziej szczegółowoPSO matematyka III gimnazjum. Szczegółowe wymagania edukacyjne na poszczególne oceny
PSO matematyka III gimnazjum Szczegółwe wymagania edukacyjne na pszczególne ceny POZIOMY WYMAGAŃ EDUKACYJNYCH: K knieczny cena dpuszczająca DZIAŁ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE pjęcie liczby naturalnej,
Bardziej szczegółowoPolitechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania
Plitechnika Gdańska Wydział Elektrtechniki i Autmatyki Katedra Inżynierii Systemów Sterwania MODELOWANIE I IDENTYFIKACJA Studia niestacjnarne Systemy ciągłe budwa mdeli fenmenlgicznych z praw zachwania.
Bardziej szczegółowoPrzekładnia walcowa 1 stopniowa, Autor: Henryk Sanecki, 2009, 2010 Obliczenia wykonał:
L.p. Przekładnia walcwa 1 stpniwa, Autr: Henryk Sanecki, 2009, 2010 Obliczenia wyknał: Grupa: Data: 1 N = N I = 4.0 kw 2 DANE n = n I = 1000 1/min 3 WEJŚCIOWE i = n I /n II = 5.60 Przełżenie - wartść zadana
Bardziej szczegółowo36/42 WPŁ YW PARAMETRÓW TECHNOLOGICZNYCH PROCESU GTAW NA KSZTAŁTOWANIE WARSTWY WIERZCHNIEJ ODLEWÓW ŻELIWNYCH STRESZCZENIE:
3642 Slidificatin f Metais and Allys, Year 2000, Vlume 2, Bk N 42 Krzepnięcie Metali i Stpów, Rk 2000, Rcznik 2, Nr 42 FAN-Katwice, PL ISSN 0208-9386 WPŁ YW PARAMETRÓW TECHNOLOGICZNYCH PROCESU GTAW NA
Bardziej szczegółowoAleksandr Abakumow, Wiktor Taranenko. Identyfikacja i sterowanie układem dynamicznym obróbki skrawaniem
Alekandr Abakumw, Wiktr Taranenk Jarław Zubrzycki, Gergij Taranenk Identyfikacja i terwanie układem dynamicznym bróbki krawaniem Lublin 24 Identyfikacja i terwanie układem dynamicznym bróbki krawaniem
Bardziej szczegółowoWOJSKOWA AKADEMIA TECHNICZNA. M. Gabrylewski * J. Gąsienica - Samek * I. Łosik MECHANICZNA TECHNOLOGIA METALI WYBRANE MATERIAŁY DO PSI
WOJSKOWA AKADEMIA TECHNICZNA M. Gabrylewski * J. Gąsienica - Samek * I. Łsik MECHANICZNA TECHNOLOGIA METALI WYBRANE MATERIAŁY DO PSI Bibliteka Główna Wjskwej Akademii Technicznej S 5 ± IIIIIIIIIIII 07-003634
Bardziej szczegółowoy p WOJCIECH MELLER ZADANIA KONTROLNE wydanie internetowe Copyright Wojciech Meller 2013
y p j y p t t y p y p t t WOH M ZAANA KONTON wydanie internetwe www.teriabwdw.edu.pl pyriht Wjciech Meller www.teriabwdw.edu.pl Wtęp W pdręczniku Metdy analizy bwdów liniwych Wyd. AT publikwane ztały zadania
Bardziej szczegółowoKryteria przyznawania ocen z matematyki uczniom klas III Publicznego Gimnazjum nr 1 w Strzelcach Opolskich
Kryteria przyznawania cen z matematyki ucznim klas III Publiczneg Gimnazjum nr 1 w Strzelcach Oplskich Na cenę dpuszczającą uczeń: zna pjęcie ntacji wykładniczej zna spsób zakrąglania liczb rzumie ptrzebę
Bardziej szczegółowoModel efektywny dla materiałów komórkowych w zakresie liniowo-sprężystym Małgorzata Janus-Michalska
Model efektywny dla materiałów komórkowych w zakreie liniowo-prężytym Małgorzata Janu-Michalka Katedra Wytrzymałości Materiałów Intytut Mechaniki Budowli Politechnika Krakowka PAN PREZENTACJI. Wprowadzenie.
Bardziej szczegółowoTHE MODELLING OF STIFFNESS OF HARMONIC DRIVE FLEXSPLINE
ZESZYTY NAUOWE POLITECHNII ŚLĄSIEJ 1 Seria: TRANSPORT z. 67 Nr kl. 18 Pitr FOLĘGA, Grzegrz WOJNAR MODELOWANIE SZTYWNOŚCI OŁA PODATNEGO PRZEŁADNI FALOWEJ Strezczenie. W artykule mówin niektóre apekty mdelwania
Bardziej szczegółowoZJAWISKO TERMOEMISJI ELEKTRONÓW
ĆWICZENIE N 49 ZJAWISKO EMOEMISJI ELEKONÓW I. Zestaw przyrządów 1. Zasilacz Z-980-1 d zasilania katdy lampy wlframwej 2. Zasilacz Z-980-4 d zasilania bwdu andweg lampy z katdą wlframwą 3. Zasilacz LIF-04-222-2
Bardziej szczegółowoLABORATORIUM z TEORII MECHANIZMÓW I MASZYN. Mechanizmem kierującym nazywamy mechanizm, którego określony punkt porusza się po z góry założonym torze.
INSTYTUT MASZYN ROBOCZYCH NR ĆW.: LABORATORIUM z TORII MCHANIZMÓW I MASZYN ZAKŁAD TORII MCHANIZMÓW I MANIPULATORÓW TMAT: PROSTOWODY PRZYBLIŻON 1. WPROWADZNI Mechanizmem kierującym nazywamy mechanizm, któreg
Bardziej szczegółowoIII OLIMPIADA FIZYCZNA (1953/1954). Stopień I, zadanie doświadczalne D
Źródł: III OLIMPIADA FIZYCZNA (1953/1954). Stpień I, zadanie dświadczalne D Nazwa zadania: Działy: Słwa kluczwe: Kmitet Główny Olimpiady Fizycznej; Stefan Czarnecki: Olimpiady Fizyczne I IV. PZWS, Warszawa
Bardziej szczegółowoRUCH FALOWY. Ruch falowy to zaburzenie przemieszczające się w przestrzeni i zmieniające się w
RUCH FALOWY Ruch alowy to zaburzenie przemiezczające ię w przetrzeni i zmieniające ię w czaie. Podcza rozchodzenia ię al mechanicznych elementy ośrodka ą wytrącane z położeń równowagi i z powodu właności
Bardziej szczegółowoStatystyka - wprowadzenie
Statystyka - wprwadzenie Obecnie pjęcia statystyka używamy aby mówić : zbirze danych liczbwych ukazujących kształtwanie się kreślneg zjawiska jak pewne charakterystyki liczbwe pwstałe ze badań nad zbirwścią
Bardziej szczegółowoDrgania układów mechanicznych
LABORATORIUM ELEKTROAKUSTYKI ĆWICZENIE NR Drgania układów mechanicznych Cel ćwiczenia Celem ćwiczenia jest zapznanie się z właściwściami układów drgających raz metdami pmiaru i analizy drgań Ćwiczenie
Bardziej szczegółowos Dla prętów o stałej lub przedziałami stałej sztywności zginania mianownik wyrażenia podcałkowego przeniesiemy przed całkę 1 EI s
Wprowadzenie Kontrukcja pod wpływem obciążenia odkztałca ię, a jej punkty doznają przemiezczeń iniowych i kątowych. Umiejętność wyznaczania tych przemiezczeń jet konieczna przy prawdzaniu warunku ztywności
Bardziej szczegółowo2. Wpływ odporu sprężystego górotworu na projektowany rozstaw odrzwi obudowy łukowej
Górnictw i Geinżynieria Rk 32 Zeszyt 1 2008 Krnel Frydrych* BADANIA NAD WPŁYWEM WSPÓŁCZYNNIKA PODATNOŚCI PODŁOŻA NA NOŚNOŚĆ OBUDOWY WYROBISKA PODZIEMNEGO 1. Wstęp W bliczeniach prjektwych knstrukcji inżynierskich
Bardziej szczegółowoĆwiczenie 39 KLOCEK I WALEC NA RÓWNI POCHYŁEJ - STATYKA.
Ćwiczenie 39 KLOCEK WALEC A ÓW POCHYŁEJ - SAYKA. 39... Wiadoości ogólne Zjawiko tarcia jet jedny z najbardziej rozpowzechnionych w nazej codziennej rzeczywitości. W świecie w jaki żyjey tarcie jet dołownie
Bardziej szczegółowoWYZNACZANIE MODUŁU YOUNGA METODĄ STRZAŁKI UGIĘCIA
aboratorium z Fizyki Materiałów 010 Ćwiczenie WYZNCZNIE MODUŁU YOUNG METODĄ STRZŁKI UGIĘCI Zadanie: 1.Za pomocą przyrządów i elementów znajdujących ię w zetawie zmierzyć moduł E jednego pręta wkazanego
Bardziej szczegółowoL=1cm Zaprojektować wstępnie przekroje prętów. Obliczyć zaznaczone przemieszczenia od obciążenia siłami. oraz
WYZNACZANIE PRZEMIEZCZEŃ katwnica ił zmian temeatu zemiezczenia dó i błęd mntażu- 0 OBLICZENIE PRZEMIEZCZEŃ W KRAOWNICY PŁAKIEJ DANE WYJŚCIOWE DO OBLICZEŃ Dana jet katwnica jak na unku Lcm -0 C Wznaczć
Bardziej szczegółowoLaboratorium wytrzymałości materiałów
Politechnika Lubelska MECHANIKA Laboratorium wytrzymałości materiałów Ćwiczenie 19 - Ścinanie techniczne połączenia klejonego Przygotował: Andrzej Teter (do użytku wewnętrznego) Ścinanie techniczne połączenia
Bardziej szczegółowoZESTAW 1. A) 2 B) 3 C) 5 D) 7
ZESTAW Zadanie Punkty A = (,) i B = (, ) są klejnymi wierzchłkami kwadratu. Obwód teg kwadratu jest równy A) 4 6 B) 6 C) 4 4 D) 4 6 Zadanie Zbirem rzwiązań nierównści x + 5 > jest zbiór A) ( 7, ) B) (,
Bardziej szczegółowoOkreślenie maksymalnych składowych stycznych naprężenia na pobocznicy pala podczas badania statycznego
Określenie makymalnych kładowych tycznych naprężenia na pobocznicy pala podcza badania tatycznego Pro. dr hab. inż. Zygmunt Meyer, m inż. Krzyzto Żarkiewicz Zachodniopomorki Uniwerytet Technologiczny w
Bardziej szczegółowoLABORATORIUM OBRÓBKI SKRAWANIEM
AKADEMIA TECHNICZNO-HUMANISTYCZNA w Bielsku-Białej Katedra Technlgii Maszyn i Autmatyzacji Ćwiczenie wyknan: dnia:... Wyknał:... Wydział:... Kierunek:... Rk akadem.:... Semestr:... Ćwiczenie zaliczn: dnia:
Bardziej szczegółowoLaboratorium systemów wizualizacji informacji
Labratrium systemów wizualizacji infrmacji Badanie charakterystyk statycznych i dynamicznych raz pmiar przestrzenneg rzkładu kntrastu wskaźników ciekłkrystalicznych. Katedra Optelektrniki i Systemów Elektrnicznych,
Bardziej szczegółowoWytrzymałość Konstrukcji I - MEiL część II egzaminu. 1. Omówić wykresy rozciągania typowych materiałów. Podać charakterystyczne punkty wykresów.
Wytrzymałość Konstrukcji I - MEiL część II egzaminu 1. Omówić wykresy rozciągania typowych materiałów. Podać charakterystyczne punkty wykresów. 2. Omówić pojęcia sił wewnętrznych i zewnętrznych konstrukcji.
Bardziej szczegółowoLaboratorium wytrzymałości materiałów
Politechnika Lubelska MECHANIKA Laboratorium wytrzymałości materiałów Ćwiczenie 3 - Czyste zginanie statycznie wyznaczalnej belki Przygotował: Andrzej Teter (do użytku wewnętrznego) Czyste zginanie statycznie
Bardziej szczegółowoRozwój tekstury krystalograficznej
Areat krystaliczny Rzwój tekstury krystalraficznej! Rzpatrujemy reprezentatywny areat ziaren takim samym typie sieci ale różnej pczątkwej rientacji kmórki sieciwej wzlędem zewnętrzne układu współrzędnych!
Bardziej szczegółowo( L,S ) I. Zagadnienia
( L,S ) I. Zagadnienia. Elementy tatyki, dźwignie. 2. Naprężenia i odkztałcenia ciał tałych.. Prawo Hooke a.. Moduły prężytości (Younga, Kirchhoffa), wpółczynnik Poiona. 5. Wytrzymałość kości na ścikanie,
Bardziej szczegółowoPlanimetria, zakres podstawowy test wiedzy i kompetencji ZADANIA ZAMKNIĘTE. [ m] 2 cm dłuższa od. Nr pytania Odpowiedź
Planimetria, zakres pdstawwy test wiedzy i kmpetencji. Imię i nazwisk, klasa.. data ZADANIA ZAMKNIĘTE W zadaniach d 1-4 wybierz i zapisz czytelnie jedną prawidłwą dpwiedź. Nieczytelnie zapisana dpwiedź
Bardziej szczegółowoZmiany zagęszczenia i osiadania gruntu niespoistego wywołane obciążeniem statycznym od fundamentu bezpośredniego
Zmiany zagęzczenia i oiadania gruntu niepoitego wywołane obciążeniem tatycznym od fundamentu bezpośredniego Dr inż. Tomaz Kozłowki Zachodniopomorki Uniwerytet Technologiczny w Szczecinie, Wydział Budownictwa
Bardziej szczegółowoDZIAŁANIE MOMENTU SKRĘCAJĄCEGO ZALEśNOŚCI PODSTAWOWE Podstawy teorii skręcania swobodnego prętów spręŝystych
Część. DZIŁNIE MOMENTU SKRĘCJĄCEGO DZIŁNIE MOMENTU SKRĘCJĄCEGO.. ZLEśNOŚCI PODSTWOWE... Podtawy teorii kręcania wobodnego prętów pręŝytych RozwaŜmy jednorodny, izotropowy, liniowo-pręŝyty pręt pryzmatyczny
Bardziej szczegółowoDroga, prędkość, czas, przyspieszenie
Drga, prędkść, czas, przyspieszenie Prędkść i przyspieszenie fart g akselerasjn Prędkść (fart) kreśla jak szybk dany biekt przemieszcza się w kreślnym czasie. Wybraźmy sbie dla przykładu dwa samchdy ścigające
Bardziej szczegółowoSZEREGOWY SYSTEM HYDRAULICZNY
LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie N 1 SZEREGOWY SYSTEM HYDRAULICZNY 1. Cel ćwiczenia Sporządzenie wykreu Ancony na podtawie obliczeń i porównanie zmierzonych wyokości ciśnień piezometrycznych z obliczonymi..
Bardziej szczegółowoPrzykłady obliczeń belek i słupów złożonych z zastosowaniem łączników mechanicznych wg PN-EN-1995
Politechnika Gdańska Wydział Inżynierii Lądowej i Środowiska Przykłady obliczeń belek i słupów złożonych z zastosowaniem łączników mechanicznych wg PN-EN-1995 Jerzy Bobiński Gdańsk, wersja 0.32 (2014)
Bardziej szczegółowoROZWIĄZYWANIE BELEK Z WYKORZYSTANIEM FUNKCJI HEAVISIDE A I DIRACA**
Górnictw i Geinżynieria Rk 1 Zeszyt 007 Włdzimierz Hałat* ROZWIĄZYWANIE BELEK Z WYKORZYSTANIEM FUNKCJI HEAVISIDE A I DIRACA** 1. Wprwadzenie W wielu prblemach budwnictwa, dnszących się d zginania belek,
Bardziej szczegółowoSPRAWDZENIE SG UŻYTKOWALNOŚCI (ZARYSOWANIA I UGIĘCIA) METODAMI DOKŁADNYMI, OMÓWIENIE PROCEDURY OBLICZANIA SZEROKOŚCI RYS ORAZ STRZAŁKI UGIĘCIA
SPRAWDZENIE SG UŻYTKOWALNOŚCI (ZARYSOWANIA I UGIĘCIA) METODAMI DOKŁADNYMI, OMÓWIENIE PROCEDURY OBLICZANIA SZEROKOŚCI RYS ORAZ STRZAŁKI UGIĘCIA ZAJĘCIA 11 PODSTAWY PROJEKTOWANIA SEM. V KONSTRUKCJI BETONOWYCH
Bardziej szczegółowoWOJEWÓDZKI KONKURS PRZEDMIOTOWY z FIZYKI dla uczniów gimnazjum woj. łódzkiego w roku szkolnym 2016/2017 zadania eliminacji wojewódzkich.
ŁÓDZKIE CENTRUM DOSKONALENIA NAUCZYCIELI I KSZTAŁCENIA PRAKTYCZNEGO Wypełnia Przewdniczący Wjewódzkiej Kmisji Knkurswej kd pracy Imię i nazwisk ucznia... Punkty uzyskane Prcent max. liczby pkt...... Zad
Bardziej szczegółowoRzut z góry na strop 1
Rzut z góry na strop 1 Przekrój A-03 Zestawienie obciążeń stałych oddziaływujących na płytę stropową Lp Nazwa Wymiary Cięzar jednostko wy Obciążenia charakterystyczn e stałe kn/m Współczyn n. bezpieczeń
Bardziej szczegółowoUjemne sprzężenie zwrotne
O T O I U M N O G O W Y H U K Ł D Ó W E E K T O N I Z N Y H Ujemne przężenie zwrtne 4 Ćwiczenie pracwał Jacek Jakuz. Wtęp Ćwiczenie umżliwia pmiar i prównanie właściwści teg ameg wzmacniacza pracująceg
Bardziej szczegółowo!Twoje imię i nazwisko... Numer Twojego Gimnazjum.. Tę tabelę wypełnia Komisja sprawdzająca pracę. Nazwisko Twojego nauczyciela...
XVIII KONKURS MTEMTYCZNY im. ks. dra F. Jakóbczyka 15 marca 01 r. wersja!twje imię i nazwisk... Numer Twjeg Gimnazjum.. Tę tabelę wypełnia Kmisja sprawdzająca pracę. Nazwisk Twjeg nauczyciela... Nr zad.
Bardziej szczegółowoTemat: OSTRZENIE NARZĘDZI WIELOOSTRZOWYCH
AKADEMIA TECHNICZNO-HUMANISTYCZNA w Bielsku-Białej Katedra Technlgii Maszyn i Autmatyzacji Ćwiczenie wyknan: dnia:... Wyknał:... Wydział:... Kierunek:... Rk akadem.:... Semestr:... Ćwiczenie zaliczn: dnia:...
Bardziej szczegółowoDr inż. Janusz Dębiński
Wytrzymałość materiałów ćwiczenia projektowe 5. Projekt numer 5 przykład 5.. Temat projektu Na rysunku 5.a przedstawiono belkę swobodnie podpartą wykorzystywaną w projekcie numer 5 z wytrzymałości materiałów.
Bardziej szczegółowoZadanie 1: śruba rozciągana i skręcana
Zadanie 1: śruba rozciągana i skręcana Cylindryczny zbiornik i jego pokrywę łączy osiem śrub M16 wykonanych ze stali C15 i osadzonych na kołnierzu. Średnica wewnętrzna zbiornika wynosi 200 mm. Zbiornik
Bardziej szczegółowoPręt nr 1 - Element żelbetowy wg. PN-B-03264
Pręt nr 1 - Element żelbetowy wg. PN-B-03264 Informacje o elemencie Nazwa/Opis: element nr 5 (belka) - Brak opisu elementu. Węzły: 13 (x6.000m, y24.000m); 12 (x18.000m, y24.000m) Profil: Pr 350x900 (Beton
Bardziej szczegółowoBlok 3: Zasady dynamiki Newtona. Siły.
Blk : Zasady dynamiki Newtna. Siły. I. Śrdek masy układu ciał Płżenie śrdka masy pisane jest wektrem: RSM xsm î ysm ĵ zsm kˆ. Dla daneg, nieruchmeg układu ciał, śrdek masy znajduje się zawsze w tym samym
Bardziej szczegółowoPrzykład 2.1. Wyznaczanie prędkości i przyśpieszenia w ruchu bryły
Przykłd 1 Wyzncznie prędkści i przyśpieszeni w ruchu bryły Stżek kącie rzwrci twrzących i pdstwie, której prmień wynsi tczy się bez pślizgu p płszczyźnie Wektr prędkści śrdk pdstwy m stłą długść równą
Bardziej szczegółowoPOLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA i ENERGETYKI INSTYTUT MASZYN i URZĄDZEŃ ENERGETYCZNYCH.
POLITEHNIKA ŚLĄSKA W GLIWIAH WYDZIAŁ INŻYNIERII ŚRODOWISKA i ENERGETYKI INSTYTUT MASZYN i URZĄDZEŃ ENERGETYZNYH Turbina parwa I Labratrium pmiarów maszyn cieplnych (PM 7) Opracwał: dr inż. Grzegrz Wiciak
Bardziej szczegółowoAl.Politechniki 6, Łódź, Poland, Tel/Fax (48) (42) Mechanika Budowli. Inżynieria Środowiska, sem. III
KATEDRA MECHANIKI MATERIAŁÓW POLITECHNIKA ŁÓDZKA DEPARTMENT OF MECHANICS OF MATERIALS TECHNICAL UNIVERSITY OF ŁÓDŹ Al.Politechniki 6, 93-590 Łódź, Poland, Tel/Fax (48) (42) 631 35 51 Mechanika Budowli
Bardziej szczegółowoEDOMETRYCZNE MODUŁY ŚCISLIWOŚCI GRUNTU
Dr inż. Grzegorz Straż Intrukcja do ćwiczeń laboratoryjnych pt: EDOMETRYCZNE MODUŁY ŚCISLIWOŚCI GRUNTU Wprowadzenie. Zalecenia dotyczące badań gruntów w edometrze: Zalecane topnie wywoływanego naprężenia:
Bardziej szczegółowo