SKRĘCANIE PRĘTÓW 1 1. SFORMUŁOWANIE ZAGADNIENIA. q vz. q vy
|
|
- Aleksander Wilczyński
- 6 lat temu
- Przeglądów:
Transkrypt
1 SKĘCNE PĘTÓW 1 1. SFOUŁOWNE ZGDNEN S q v L q v - oś pręta,, - oe główe, cetrale prekroju poprecego pręta pręt prmatc, utwerdo "puktowo" w pkt. S (0, 0, 0) poocca wola od ocążeń deko = L ocążoe łam o gętośc q (0, q v, q v ). Ocążee redukuje ę do par ł o momece, dałającej w płacźe (, ) ł maowe X. OZWĄZNE POBLEU SKĘCN Podejśce kematce u( + k. war. reg.) Tε Tσ ( rów. Navera + tat. war. reg. ) kematce waruk regowe w pkt. S (0, 0, 0) u = v = w v w = rak orotu wg. o u w = rak orotu wg. o u v = rak orotu wg. o
2 SKĘCNE PĘTÓW FUNKCJE PZEESZCZEŃ u ' ' u ' '' α v '' α ρ ' ρ w ' '' = ( 0, v, w ) ' = ( u, v, w ) kąt kręcea prekroju α = α () ałożee : α = θ θ - jedotkow kąt kręcea fukcje premeceń pkt. [ ( )] [ ( ) ] v = ρco ρ co α + = ρco+ ρ co αco ρ α w = ρ α + ρ = ρ αco+ ρ coα ρ ał. o małch premeceach ρ = ρ ; α α ; coα 1 v = ρα w = ρ α co ρ = ρ co = v = θ w = θ Fukcja u wąaa jet e "paceem" (deplaacją) prekroju dla różch ktałtów jet oa odmea. Dla utaloego ktałtu prekroju pręta e oerwuje ę jedak różc w paceu pocególch prekrojów poprecch pręta. Tak węc u = u (, ). ałożee u(, ) =θϕ (, )
3 SKĘCNE PĘTÓW 3 prawdee kematcch waruków regowch dla S (0, 0, 0) u ; v ;w ϕ ( 0, 0) v w w u = u (0,0,0) u wacee kładowch teora odktałcea ε = u =, 0 ε (0,0,0) = v, ε = w = γ = v + w = θ + θ =,, 0 γ γ = u, + v, = θ = u, + w, = θ + wacee kładowch teora aprężea σ = σ = σ ;, 0 = G θ ; θ = G + prawdee rówań rówowag σ θ ϕ ϕ, +, +, G + ϕ pootałe dwa rówaa Navera ą pełoe tożamoścowo prawdee tatcch waruków regowch poocca ν = ( 0, α ν, α ν ) α ν + α ν = α ν α ν pootałe dwa waruk ą pełoe tożamoścowo ścak poprece ν= ( ±10,, 0) ν q ν Gθ =± =± q ν Gθ =± =± + q
4 SKĘCNE PĘTÓW 4 Podumowae : fukcja ϕ (, ) mu ć taka, że peła : 1. rówae harmoce ϕ. tatce waruk regowe 3. kematce waruk regowe ϕ ( 00, ) (0,0) α ν α ν + + (0,0) uą poadto ć pełoe relacje męd kładowm oc. ewętrego fukcją ϕ (, ) q ν Gθ =± q ν Gθ =± + agadee Neumaa (W1) (W) ϕ + α ν α ν + + teje tlko jedo rowąae ag. Neumaa dokładoścą do tałej, którą waca ϕ 00,. ę waruku ( ) Waruk (W1) dla prekroju co ajmej jedą oą metr ą pełoe, a dla ch wtarcającą dokładoścą. Ocążee ewętre mu ć take, a pełoe ł waruk (W), gde θ jet parametrem ocążea. Ocążee ścak poprecej mometem kręcającm q v q v owąae ukae dla ocążea q (0, q v, q v ) może ć pr wkortau aad de Sat-Veata atoowae dla ocążea w potac mometu kręcającego pod warukem, że ocążea ą tatce rówoważe, t. ( q q ) d G = = + + ν ν θ d def = + + d =θ G θ= G e wę kematce Stoując podejśce tatce moża wkaać, że teor odktałcea aprężea e meają ę. e ą jede fukcje premeceń.
5 SKĘCNE PĘTÓW 5 3. SKĘCNE PĘT O PZEKOJU KOŁOWY ν ( α ν, α ν ) α ν α ν = = agadee Neumaa ϕ ϕ 000,, ( ) Jedorodość rówaa harmocego waruków regowch prowad do rowąaa fukcje premeceń ϕ (, ) 0 u 0 ; v = ; w = G G WNOSEK: prekrój kołow e ulega deplaacj aprężea r = ; = = + = r keruek wektora aprężea (,, ) (, rr, ) 0 ; ν 0 o ν WNOSEK: wektor aprężea tcego jet protopadł do promea wodącego puktu aprężee makmale ( ) ma = def π d π = + d = o = = 3 waruk projektowaa 1. waruek wtrmałoścow ma t 4 4 W o 3 3 t W o π π d o = = = 16. waruek geometrc θ θ ma dop G o θ dop
6 SKĘCNE PĘTÓW 6 4. SKĘCNE PĘT O PZEKOJU POSTOKĄTNY h h h > waruk regowe a krawędach = ± / ( α v = ± 1, α v ) ( ± 1) = waruk regowe a krawędach = ± h/ ( α v, α v = ± 1 ) agadee Neumaa ϕ + Skc rowąaa - wprowadam fukcję - agadee Neumaa + ( ± 1) = = = ϑ ϕ 000,, ; + ( ) (, ) = ϕ(, ) ϑ ϑ ϑ + = - prjmujem fukcję ϑ w potac eregu - olcea prowadą do reultatu B (, ) ϕ = ( 1) = rokład aprężeń tcch ; + ( ) (, ) = ( ) ( ) ϑ f g k 8 ( + 1) B k cohk coh h k π ; k = ( + 1) π ϑ 000,, ( = h/) h > ( = /) ma ( ) = ma. apr. tce w połowe dłużego oku
7 SKĘCNE PĘTÓW 7 momet ewładośc a kręcae h = h 3 wkaźk wtrmałośc pr kręcau waruk projektowaa 1. waruek wtrmałoścow ma t W h = h α W t. waruek geometrc θ θ ma dop G θ dop 5. PZYBLŻONE OZWĄZNE SKĘCNEGO PĘT CENKOŚCENNEGO Pręt o proflu otwartm k j - t elemet h >> h Założea : 1. Jedotkow kąt kręcea każdej cęśc jet tak am rów jedotkowemu kątow kręcea całego prekroju θ= G θ = θ = = G G h 3. Całkowt momet kręcając jet umą mometów kręcającch pocególe cęśc prekroju makmale aprężee tce = = θ G = θ G h = 1 = 1 = 1 = 3 h = 1 3 ma ma = = W ma = α uprocee dla prekrojów o cęścach kładowch pełającch waruek h 5 α = ma = ma
8 SKĘCNE PĘTÓW 8 Pręt o proflu amkętm Założee : 1. okład aprężeń tcch a gruośc ścak jet rówomer δ 1 δ 1 ówowaga ł w keruku o δ δ δ = δ δ = cot. Waruek rówoważośc układu ł ewętrch wewętrch c df d df d h() h() ( ) δ ( ) = dph = h d c c ( ) df = 1 h d = δ df = δf F - pole oaru ogracoego lą środkową "c" Naprężee tce ma c = δ F = F δ m
STATYKA. Cel statyki. Prof. Edmund Wittbrodt
STATYKA Cel statyk Celem statyk jest zastąpee dowolego układu sł ym, rówoważym układem sł, w tym układem złożoym z jedej tylko sły jedej pary sł (redukcja do sły mometu główego) lub zbadae waruków, jake
Siła ciężkości. Siła ciężkości jest to siła grawitacyjna wynikająca z oddziaływania na siebie dwóch ciał. Jej wartość obliczamy z zależności
Sła cężkośc Sła cężkośc jest to sła grawtacja wkająca oddałwaa a sebe dwóch cał. Jej wartość obcam aeżośc G gde: G 6,674 10-11 Nm /kg M m r stała grawtacja, M, m mas cał, r odegłość pomęd masam. Jeże mam
1.8. PROSTE ŚCINANIE
.8. PROSTE ŚCINNIE.8.. Wprowadeie Proste ściaie wstępuje wówcas, gd obciążeie ewętre redukuje się do wektora sił poprecej T, której kieruek pokrwa się główą, cetralą osią prekroju O. Prostm ściaie praktcie
Dynamika układu punktów materialnych
Daka układu puktów ateralch Układ puktów ateralch jest to bór puktów ateralch, w któr ruch każdego puktu jest ależ od ruchu ch puktów. P P,,,,,,,,,,,, sł wewętre P P P sł ewętre Układ puktów ateralch sł
Naprężenia styczne i kąty obrotu
Naprężenia tyczne i kąty obrotu Rozpatrzmy pręt pryzmatyczny o przekroju kołowym obciążony momentem kręcającym 0 Σ ix 0 0 A A 0 0 Skręcanie prętów o przekroju kołowym, pierścieniowym, cienkościennym. Naprężenia
A B - zawieranie słabe
NAZEWNICTWO: : rówoważość defcj : rówość defcj dla każdego steje! ZBIORY steje dokłade jede {,,,...} - całkowte * - całkowte be era - wmere - ujeme plus ero - recwste - espoloe A B - awerae słabe A :
Płaskie układy obciąŝeń. Opis analityczny wielkości podstawowych. wersory. mechanika techniczna i wytrzymałość materiałów 1 statyka 2
Opis aalitcz wielkości podstawowch wersor e x, e Opis aalitcz wielkości podstawowch współrzęde puktów A( x A, B( x B, A B ) ) Opis aalitcz wielkości podstawowch współrzęde puktów A( x A, B( x B, A B )
Dynamika układu punktów materialnych
Daka układu puktów ateralch Układ puktów ateralch est to bór puktów ateralch, w któr ruch każdego puktu est ależ od ruchu ch puktów. P,, P,,,, P sł ewętre P,,,,, sł wewętre, P Układ puktów ateralch sł
Ę Ę ŁĘ Ł Ł Ó Ż
ĄŁ Ł Ę Ę ŁĘ Ł Ł Ó Ż Ą Ó Ó Ó Ó Ó Ó Ó Ó Ż Ó ć Ę Ą Ę Ą Ę Ó Ó Ó Ż Ó Ę Ż Ż Ż Ó Ó Ó Ó Ó Ż Ż Ż Ó Ź Ó Ó ć Ż ć Ż ć Ą ć Ó Ó Ż Ź Ź ź ź ź ź Ą ź Ż Ź Ó Ź ź ć ź ć ź Ź Ż Ó ć ć Ó Ó Ż Ź Ó Ó Ż Ć Ź Ó Ż Ż Ż Ż Ż Ę Ł Ż Ą Ć Ó
Ś ć Ć ć ć Ź ć ć ć Ź ć ć Ś ć Ź ć Ź ć ć ć ź ć ć ć ć Ź Ć ćś ć ć Ć ć
Ł Ę Ś ć Ć ć ć Ź ć ć ć Ź ć ć Ś ć Ź ć Ź ć ć ć ź ć ć ć ć Ź Ć ćś ć ć Ć ć ć Ź ć ć ć Ś ć Ć ć Ś Ć ć ć Ś ć Ś ć Ś ć Ś Ć Ź ć ć ź Ź ć Ś Ć Ć Ą Ć Ś Ś Ś Ś Ś Ś Ś Ź Ć Ź Ź ŚĆ Ś Ę ź Ś Ź Ź Ź ć ć Ś Ś Ś Ś Ź Ź Ś Ś Ć Ś ć Ć Ą
Dynamika bryły sztywnej
W-5 (Jaoewc) 4 lajdów Dyaka były tywej Cało tywe jego uch uch potępowy cała tywego uch obotowy cała tywego wględe tałej o. oet bewładośc Dyaka cała tywego uch łożoy cała tywego 3/4 L.. Jaoewc j j j j j
Ł Ł Ó Ą ć ć Ó Ą Ź Ó ć Ó Ó Ę Ą
Ą ź Ą Ą Ź Ń ź Ł Ł Ó Ą ć ć Ó Ą Ź Ó ć Ó Ó Ę Ą Ó Ó Ź Ó Ó ć ć Ź ć Ł Ź ć ć Ą Ó Ź Ó Ó ć ć ć Ł Ę ź Ę Ę Ę Ę Ę Ę Ę ć Ę Ź Ę Ę ć Ó Ę ć Ó ź Ę ÓÓ Ę Ę Ź Ó Ó ÓŹ Ł Ź Ź Ę ć Ó Ó Ź Ó Ó Ą ÓĘĘ Ó Ą Ź Ó Ó Ź Ć ÓŹ Ó ć Ą Ć Ę Ć
ź Ę ŚŚ Ś Ą Ę Ó Ó Ł Ą Ą ń ź Ń ź ń
Ą Ł Ę Ó ń Ó ć Ś ź Ę ŚŚ Ś Ą Ę Ó Ó Ł Ą Ą ń ź Ń ź ń ź ń Ń Ą Ó ĄŁ Ł Ś Ą Ś Ó Ń Ó Ś Ń ń ć ć Ó Ę Ó Ą Ą ź ź ń Ł Ś Ę ć ć ń ć ź ć ć ź ć ć Ó Ą Ń Ż ń ć ć ń Ń ć ć ź ć ć ć ć ć ń ń ć Ą Ń Ę ń ń Ń ź ź ń Ń ń Ń ć ń ń ć ć
ć Ó Ó Ż
Ą Ą Ł Ą Ą ć Ó Ó Ż ć ć Ó ć Ó Ó Ó Ó Ó Ż Ą Ó Ż Ż Ż Ó Ó Ó Ó Ź Ó Ż Ó Ż Ą Ó Ó Ż ż Ż Ż Ż Ó Ó Ó Ó ÓĘ Ó Ż ż Ć Ż Ż Ż Ż Ł Ż Ó Ó Ó Ż Ó Ó Ó Ó Ć Ó Ó Ż ć Ó Ó Ż ŻĄ Ż Ó Ó Ż Ż Ż ć Ą ż ż Ź Ż Ź Ź Ż Ż Ó Ź Ó Ą Ó Ó Ó Ż Ó Ż Ó
Ą ŚĆ Ś Ś Ę ć
Ą Ę Ą Ą ŚĆ Ś Ś Ę ć ć ć ć ź ć ć ć ć ć ć ć ć Ą ć ć ć Ą Ś ć Ś ć ć Ą ć Ś Ś Ą Ś Ą ć ć Ą ź ź ć ć Ą ć ź ć Ą ć Ą ć ć ć ć ć ć ć ć ć ć ć ć ć ź ć ć Ś ć ć ć Ę Ą ć Ą ć ć ć ć ć ć Ł ź ź ź Ł Ł ć Ą ć ć ć ć ć Ą ć Ą ć Ą
Ę ź Ą
Ę ź Ą Ę Ł Ń Ż Ż ć Ł ć ć ć ć Ż Ż Ć Ż ć Ż Ż Ń Ć Ć Ć Ż ć ć ć Ć ć Ż Ż Ć Ć Ż Ż Ź Ż Ż ć ć ć Ż Ż Ć Ć Ż Ź Ż Ż ć Ż Ż Ć Ż ć Ż Ł Ń Ę ć Ż Ł Ż ć Ć ć ć Ę Ż ć Ć Ż ć ć Ź Ć ć Ć Ź ć ć ć Ć ć ć Ż ć ć ć ć Ż Ę ć Ę Ć ć Ć Ą Ż
ź Ź Ź ć ć ć ź ć ć ć ć ć Ź
ź Ź Ź ć ć ć ź ć ć ć ć ć Ź ć ć ć ć ć ć ć ć Ż ć ć ć ć ć ć ć ć ć ć ć Ż Ż ć ć ć ć ć ć ć ć Ż ć ć ć ź ć Ź ć ć ć ć ć ć ć ć ć ź ć ć ć ć ć ć ć ć ć ć ć ć ć ć Ż ć ć ć ć Ż ć ć ć ć ć ć ć ć Ż ć Ł Ś Ś ć Ą Ę ć Ę ć Ż ć
Ń Ł Ł
Ń ź Ż Ń Ł Ł ĄŁ Ź ć ć Ó Ś ć Ź Ś Ż ć Ł ć ć ć Ą Ż ć Ż ć Ż Ą ć Ą Ś Ł Ł Ś Ń Ź ć Ó Ź ź ĄŁ Ą Ł Ą Ó Ś Ź Ż Ń ć Ą Ź ź Ź Ą Ź Ż Ź ź ć Ż Ż Ż Ś Ż ć ź Ć Ś Ź ć Ź ć Ż Ź Ó Ł ÓŁ Ł Ó Ł Ź Ś Ż Ź Ą ź Ę Ą Ś Ź Ź Ę Ś Ń Ż Ź Ł ź
ń ż Ż
Ł ń ć ń Ż ń ż Ż Ę ń Ź Ż Ń ż ń ż Ż ń ż Ć Ę Ę ć ć ż ć ń ć ć ć ć ć ć Ę ń ć ń Ż ć Ą Ż ć ń ż ć ć Ń Ń ż ć ć ć Ż ć ź ż ć ć ć ż Ę ć ć Ń ć ż ć Ą ć ć ć Ę ć ń ż ć ć ń Ń ż ń ć Ą ż ć ń ć ż ż Ę Ź Ż Ż ń Ę Ż Ę Ę ż ń ż
Ę ę ę Łó-ź ----
-Ę- - - - - - -ę- ę- - Łó-ź -ś - - ó -ą-ę- - -ł - -ą-ę - Ń - - -Ł - - - - - -óż - - - - - - - - - - -ż - - - - - -ś - - - - ł - - - -ą-ę- - - - - - - - - - -ę - - - - - - - - - - - - - ł - - Ł -ń ł - -
ś ść ść ś ść ść ś ś ś ś ść ś ś ś ść ść
Ą Ł Ł Ł Ę Ł ś ś ś ś ść ść ść ść Ś ść ŚĆ ś ŚĆ ś ś ść ść ś ść ść ś ś ś ś ść ś ś ś ść ść ś ś ś Ż ś Ś ś Ś ść ś ś ś ś ś ś ś ś Ś ś ś ś ś Ł Ś ś ś ś Ś ś ś ź Ś ŚĆ ś ś ś ś ś ś Ś ś Ś ś ś ś ś ś ś ś Ś Ś ść ś ś ś ś
Twierdzenia graniczne:
Twierdzeia graicze: Tw. ierówośd Markowa Jeżeli P(X > 0) = 1 oraz EX 0: P X k 1 k EX. Tw. ierówośd Czebyszewa Jeżeli EX = m i 0 < σ = D X 0: P( X m tσ) 1 t. 1. Z partii towaru o wadliwości
N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi.
3 Metody estymacj N ( µ, σ ) Wyzacz estymatory parametrów µ 3 Populacja geerala ma rozład ormaly mometów wyorzystując perwszy momet zwyły drug momet cetraly z prób σ metodą 3 Zmea losowa ma rozład geometryczy
Permutacje. } r ( ) ( ) ( ) 1 2 n. f = M. Przybycień Matematyczne Metody Fizyki I Wykład 2-2
Permutacje { 2,,..., } Defcja: Permutacją zboru lczb azywamy dowolą różowartoścową fukcję określoą a tym zborze o wartoścach w tym zborze. Uwaga: Lczba wszystkch permutacj wyos! Permutacje zapsujemy w
23. CAŁKA POWIERZCHNIOWA NIEZORIENTOWANA
. CAŁKA POWIERZCHNIOWA NIEZORIENTOWANA Płat powiechniow o ównaniach paametcnch: ( ) ( ) ( ) () gdie oba jet obaem eglanm nawam płatem gładkim (płatem eglanm) gd w każdm pnkcie tego płata itnieje płacna
Novosibirsk, Russia, September 2002
Noobk, ua, Septebe 00 W-5 (Jaoewc) 4 lajdów Dyaka były tywej Cało tywe jego uch uch potępowy cała tywego uch obotowy cała tywego wględe tałej o obotu. oet bewładośc Dyaka cała tywego uch łożoy cała tywego
ą ą Ź Ą Ó Ó Ó ż ą Ź Ó Ę ą
ÓŚ ż Ć ą ą ą Ź Ą Ó Ó Ó ż ą Ź Ó Ę ą ą Ę ŁĄ ż ą ą ą Ś ą Ś ą ą ą ż ć Ź ą ć Ó Ą Ę ą ś ą Ę ż ą ś Ź ą Ś ą Ą ŁĄ ś Ź Ś Ł Ź Ż ą Ć ś ś ć ś ą Ź ą ą ć Ź ś ą ą ą Ż Ó ś ś ś ś Ą Ś Ś ą Ź ą Ź ż ś ż Ę ć ś ą Ó ż ż Ą Ź Ż
III. LICZBY ZESPOLONE
Pojęcie ciała 0 III LICZBY ZESPOLONE Defiicja 3 Niech K będie dowolm biorem Diałaiem wewętrm (krótko będiem mówić - diałaiem) w biore K awam każdą fukcję o : K K K Wartość fukcji o dla elemetów K oacam
Ć Ź ć Ę ć Ę Ć Ź Ź Ć
Ź Ć Ć Ź ć Ę ć Ę Ć Ź Ź Ć Ł Ą Ę Ć ć ćź ć Ź Ź Ź Ź Ą Ć ć Ł Ł Ł Ę ć ć Ź Ą ć Ę ć Ź Ź Ź Ź ć Ź Ź ć Ź ć Ł ć Ą Ć Ć Ć ć Ź Ą Ź ć Ź Ł Ł Ć Ź Ą ć Ć ć ć ć ć Ć Ć ć Ć ć ć Ł Ę Ź ć Ć ć Ź Ź Ć Ź Ź ć ć Ź ć Ź Ź Ź Ą Ę Ń Ź Ć Ą
Statystyka matematyczna. Wykład II. Estymacja punktowa
Statystyka matematycza. Wykład II. e-mail:e.kozlovski@pollub.pl Spis treści 1 dyskretych Rozkłady zmieeych losowych ciągłych 2 3 4 Rozkład zmieej losowej dyskretej dyskretych Rozkłady zmieeych losowych
ć ż ż ć Ą ż ż Ł ć Ż ż Ż Ż Ż Ż
Ł Ę Ł ż Ż ć ż ż ć ż ż ć Ą ż ż Ł ć Ż ż Ż Ż Ż Ż ż ż Ł ż Ż Ł Ż Ż Ż Ż ż ż Ż Ż Ż ć ć ż ć ż ż ŻĄ ć ć ż Ż Ż ż Ż Ż ć Ż ź ć ż Ę Ż Ę Ż ć Ż Ż ć Ż ć ż Ż Ż ż Ż Ą Ż ć ż ć Ś Ą ż Ż Ż Ż ż Ż Ż Ż Ż Ż Ż Ż Ż ż ż Ż ż ż Ż Ż
FUNKCJE DWÓCH ZMIENNYCH
FUNKCJE DWÓCH MIENNYCH De. JeŜel kaŝdemu puktow (, ) ze zoru E płaszczz XY przporządkujem pewą lczę rzeczwstą z, to mówm, Ŝe a zorze E określoa została ukcja z (, ). Gd zór E e jest wraźe poda, sprawdzam
ć Ą Ą Ł Ą
ź ź ź ć ć Ą Ą Ł Ą ź ź Ę Ą ź Ą ć Ł Ł Ą Ś Ę ź ź Ą Ą ź ć ć Ł Ę ć ź ć ć Ą Ć ź ź ź ć ć ć ć ć ź ź ć ć ź ć Ś Ę ć ć ć ć Ł ź ź ź ź ć Ę Ż ć ć ć ć Ę Ę ć Ę Ę ć ć Ę ć ć Ł ć Ć ć Ł Ł Ę Ę ć Ę ć ź ć Ń Ł Ł Ł Ś ć ć ć Ę Ś
ż ć
Ł Ł ż ć ć ż ć Ą Ł ó ó ć ż ć ć ż ć Ę ć Ę ć ć Ę ć ć ć Ę ż ć ć ć Ś ć Ę Ę ż ż ć ż Ę ć ć Ę ż ż Ę Ł ć ć Ą Ę Ł ć ć ć ż ć Ę Ł Ść Ą Ę Ł ć ć ć ć Ę Ł Ść Ą Ę Ł ć ć ć Ł ć Ę Ę ć ć ć ć Ł Ść ć ć Ę Ę Ł Ś Ą Ś Ś Ł Ą Ą ż
ź ź ŁĄ ź Ę Ę Ę Ę ź ź Ę Ę Ł ź
Ł Ę Ę Ć ź ź ŁĄ ź Ę Ę Ę Ę ź ź Ę Ę Ł ź ź ź ź ź Ę Ę Ł Ń Ł ź Ź ź ź ź Ą ź ź Ę Ę Ł Ę ź Ę Ę Ł Ę ź Ę Ą ź ź ź Ć ź ź Ę ź Ę ź Ę Ą Ę Ę Ę Ą ź Ą Ę Ę Ł ź Ć ź ź Ć ź Ę Ę Ł ź Ć ź Ą Ł Ć Ć Ę Ę Ę Ć Ł Ń ź ź Ę Ę Ł Ż ź Ć Ć Ż
Ę Ę ć ć Ę Ą Ę Ą Ę Ę Ę Ę Ę Ę ź Ę Ż Ę Ę Ę Ę ć Ę Ę ć Ę ć
Ł ź Ą Ł Ę Ż Ę Ą ź ź Ę Ę Ę Ę ć ć Ę Ą Ę Ą Ę Ę Ę Ę Ę Ę ź Ę Ż Ę Ę Ę Ę ć Ę Ę ć Ę ć ź Ę Ę Ę ź Ę ć ź Ę ć Ę ź ć Ę ć Ę Ł ź Ę Ę Ę Ę Ę Ę Ę Ę Ę Ę ź Ę ć ź Ę ć Ę Ę Ę Ę ź Ę Ę ź ź ź ź ź Ę ź ź ź Ę ć ć Ń ź ź ź ź ź Ą ć ź
Ś Ę Ą Ł Ś Ł Ł Ł Ł Ł Ś Ś Ł Ł Ł Ą Ł Ł Ł Ł Ł Ą Ą Ł
ę Ą Ł Ł Ś Ę Ą Ł Ś Ł Ł Ł Ł Ł Ś Ś Ł Ł Ł Ą Ł Ł Ł Ł Ł Ą Ą Ł Ł ś ś ś ś ę ś ę ę ś ść ść ść ę ę ę ść ę ś Ą Ą ś Ż ść Ź Ś Ą ę ść ść ść Ą ś Ż ę Ż Ń Ą Ł ś ę ś ę ś ś ę ś ś ść Ę Ś ś Ś ś Ś ś Ś ź ę ź ę ść ś ę Ę ś Ł ść
Ź ź Ź
ć Ą Ź ź Ź Ę Ń Ż Ź ć ć ć Ź ć Ż ć ć Ł Ż Ź Ź ć ć ć Ż Ą Ź ć ć Ż Ź ć Ń Ż Ń Ć Ż Ż Ń ć ć Ż ć Ź Ż Ź Ż Ż Ż Ż ć ć ć ć Ż Ż ć ć Ż ć Ź Ę ć Ń ć Ź Ń Ź Ł ć Ż Ż Ż Ź Ż ć Ę Ę Ę Ł Ę Ę Ę Ż Ę ć Ź Ź ć Ź Ń Ź Ż ć ź Ż Ń Ł Ł Ą ć
Ę Ż Ż Ż ś ż Ż
Ż ż ż ś ś ż ż ż ś ż Ż Ź ś Ź Ź ś ś ż ż ś ś ś ś Ż ś Ż Ę Ż Ż Ż ś ż Ż ś ś ś Ż Ą ż ś ś ź Ż ż ż ś ś ż Ł Ż ź ż ż ś ś Ę ż ż ż ż Ę ś ż ć ś Ę ż ś ż ś Ż ż ś ż ś ść ść Ę ż ż ż ś ż Ą Ż Ś ś Ą Ż ż ż ś Ę ś Ż ś Ń ś ż Ą
C e l e m c z ę ś c i d y s k u s y j n e j j e s t u ś w i a d o m i e n i e s o b i e, w o p a r c i u o r o z w a ż a n i a P i s m a Ś w.
1. C e l s p o t k a n i a. C e l e m c z ę ś c i d y s k u s y j n e j j e s t u ś w i a d o m i e n i e s o b i e, w o p a r c i u o r o z w a ż a n i a P i s m a Ś w., ż e : B y d z b a w i o n y m