Elektrodynamika Część 5 Pola magnetyczne w materii Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Wielkość: px
Rozpocząć pokaz od strony:

Download "Elektrodynamika Część 5 Pola magnetyczne w materii Ryszard Tanaś Zakład Optyki Nieliniowej, UAM"

Transkrypt

1 Elektrodynamika Część 5 Pola magnetyczne w materii Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

2 Spis treści 6 Pola magnetyczne w materii Magnetyzacja Pole namagnesowanego ciała Natężenie pola magnetycznego H Ośrodki liniowe i nieliniowe

3 6 Pola magnetyczne w materii 6.1 Magnetyzacja Diamagnetyki, paramagnetyki, ferromagnetyki Paramagnetyki materiały, dla których namagnesowanie M ma ten sam kierunek i zwrot co wektor indukcji B Diamagnetyki materiały, dla których namagnesowanie M ma ten sam kierunek, ale zwrot przeciwny do wektora B Ferromagnetyki materiały, które zachowują namagnesowanie M nawet wtedy, gdy zniknie zewnętrzne pole

4 6 Pola magnetyczne w materii 6.1 Magnetyzacja Diamagnetyki, paramagnetyki, ferromagnetyki Paramagnetyki materiały, dla których namagnesowanie M ma ten sam kierunek i zwrot co wektor indukcji B Diamagnetyki materiały, dla których namagnesowanie M ma ten sam kierunek, ale zwrot przeciwny do wektora B Ferromagnetyki materiały, które zachowują namagnesowanie M nawet wtedy, gdy zniknie zewnętrzne pole

5 6 Pola magnetyczne w materii 6.1 Magnetyzacja Diamagnetyki, paramagnetyki, ferromagnetyki Paramagnetyki materiały, dla których namagnesowanie M ma ten sam kierunek i zwrot co wektor indukcji B Diamagnetyki materiały, dla których namagnesowanie M ma ten sam kierunek, ale zwrot przeciwny do wektora B Ferromagnetyki materiały, które zachowują namagnesowanie M nawet wtedy, gdy zniknie zewnętrzne pole

6 6 Pola magnetyczne w materii 6.1 Magnetyzacja Diamagnetyki, paramagnetyki, ferromagnetyki Paramagnetyki materiały, dla których namagnesowanie M ma ten sam kierunek i zwrot co wektor indukcji B Diamagnetyki materiały, dla których namagnesowanie M ma ten sam kierunek, ale zwrot przeciwny do wektora B Ferromagnetyki materiały, które zachowują namagnesowanie M nawet wtedy, gdy zniknie zewnętrzne pole

7 6.1.2 Siły i momenty sił działających na dipole magnetyczne I Każdą pętlę z prądem można złożyć z infinitezymalnych prostokątów. Prądy od wewnętrznych boków znoszą się wzajemnie.

8 z z B I m B m θ F θ y a θ θ y a b F x N = af sin θ ˆx, moment sił

9 z z B I m B m θ F θ y a θ θ y a b F x N = af sin θ ˆx, moment sił F = IbB, wartość siły

10 z z B I m B m θ F θ y a θ θ y a b F x N = af sin θ ˆx, moment sił F = IbB, wartość siły N = Iab sin θ ˆx = mb sin θ ˆx

11 z z B I m B m θ F θ y a θ θ y a b F x N = af sin θ ˆx, moment sił F = IbB, wartość siły N = Iab sin θ ˆx = mb sin θ ˆx N = m B

12 F = I ( dl B) = I ( ) dl B = 0 W polu jednorodnym siła wypadkowa działająca na pętlę z prądem znika

13 B I I pole niejednorodne

14 B I I B z B I F x I R θ F y pole ma składową radialną siła ma składową pionową F = 2πIRB cos θ pole niejednorodne

15 F = (m B) Siła dla infinitezymalnej pętli o momencie dipolowym m umieszczonej w polu magnetycznym o indukcji B.

16 Modele momentu dipolowego N + m p m I S dipol magnetyczny (model Gilberta) dipol elektryczny dipol magnetyczny (model Ampère a)

17 6.1.3 Wpływ pola magnetycznego na orbity atomowe z v x R e y m T = 2πR v I = e T = ev 2πR ruch elektronu można potraktować jako prąd stały

18 6.1.3 Wpływ pola magnetycznego na orbity atomowe z v x R e y m T = 2πR v I = e T = ev 2πR ruch elektronu można potraktować jako prąd stały m = IπR 2 ẑ = 1 2 evr ẑ orbitalny moment dipolowy

19 6.1.3 Wpływ pola magnetycznego na orbity atomowe z v x R e y m T = 2πR v I = e T = ev 2πR ruch elektronu można potraktować jako prąd stały m = IπR 2 ẑ = 1 2 evr ẑ orbitalny moment dipolowy N = m B moment siły, mały efekt paramagnetyczny

20 1 e 2 4πɛ 0 R 2 = m v 2 e R w nieobecności pola magnetycznego siła dośrodkowa pochodzi wyłącznie od ładunków elektrycznych

21 1 e 2 4πɛ 0 R 2 = m v 2 e R w nieobecności pola magnetycznego siła dośrodkowa pochodzi wyłącznie od ładunków elektrycznych e(v B) dodatkowa siła w polu magnetycznym; elektron przyspiesza i zwalnia

22 1 e 2 4πɛ 0 R 2 = m v 2 e R w nieobecności pola magnetycznego siła dośrodkowa pochodzi wyłącznie od ładunków elektrycznych e(v B) dodatkowa siła w polu magnetycznym; elektron przyspiesza i zwalnia B B z B B zakładamy, że pole B jest v +e R e y prostopadłe do płaszczyzny orbity x

23 1 e 2 4πɛ 0 R 2 = m v 2 e R w nieobecności pola magnetycznego siła dośrodkowa pochodzi wyłącznie od ładunków elektrycznych e(v B) dodatkowa siła w polu magnetycznym; elektron przyspiesza i zwalnia B B z B B zakładamy, że pole B jest v +e R e y prostopadłe do płaszczyzny orbity x 1 e 2 4πɛ 0 R 2 + e vb = m e v 2 R nowa wartość prędkości v

24 e vb = m e R ( v2 v 2 ) = m e ( v + v)( v v) R

25 e vb = m e R ( v2 v 2 ) = m e ( v + v)( v v) R δv = erb 2m e elektron przyspiesza

26 e vb = m e R ( v2 v 2 ) = m e ( v + v)( v v) R δv = erb 2m e elektron przyspiesza δm = 1 2 e(δv)r ẑ = e2 R 2 4m e B zmiana momentu dipolowego

27 e vb = m e R ( v2 v 2 ) = m e ( v + v)( v v) R δv = erb 2m e elektron przyspiesza δm = 1 2 e(δv)r ẑ = e2 R 2 4m e B zmiana momentu dipolowego Zmiana momentu magnetycznego m ma przeciwny zwrot niż sama indukcja B diamagnetyzm

28 6.1.4 Magnetyzacja M magnetyczny moment dipolowy na jednostkę objętości

29 6.1.4 Magnetyzacja M magnetyczny moment dipolowy na jednostkę objętości M magnetyzacja, namagnetyzowanie, polaryzacja magnetyczna

30 6.2 Pole namagnesowanego ciała Prądy związane m dτ R P A(r) = µ 0 4π m ˆR R 2 potencjał wektorowy dipola m

31 6.2 Pole namagnesowanego ciała Prądy związane m dτ R P A(r) = µ 0 4π m ˆR R 2 potencjał wektorowy dipola m A(r) = µ 0 4π M(r ) ˆR R 2 dτ

32 1 R = ˆR R 2

33 1 R = ˆR R 2 A(r) = µ 0 4π [ ( M(r ) 1 ) ] dτ R

34 1 R = ˆR R 2 A(r) = µ 0 4π [ ( M(r ) 1 ) ] dτ R (fa) = f( A) A ( f) pochodne iloczynów

35 1 R = ˆR R 2 A(r) = µ 0 4π [ ( M(r ) 1 ) ] dτ R (fa) = f( A) A ( f) pochodne iloczynów A(r) = µ 0 4π 1 R [ M(r )] dτ [ M(r ) R ] dτ

36 1 R = ˆR R 2 A(r) = µ 0 4π [ ( M(r ) 1 ) ] dτ R (fa) = f( A) A ( f) pochodne iloczynów A(r) = µ 0 4π 1 R [ M(r )] dτ [ M(r ) R ] dτ ( A) dτ = A da twierdzenie V S

37 A(r) = µ 0 4π 1 R [ M(r )] dτ + µ 0 4π 1 R [M(r ) da ]

38 A(r) = µ 0 4π 1 R [ M(r )] dτ + µ 0 4π 1 R [M(r ) da ] J zw = M K zw = M ˆn

39 A(r) = µ 0 4π 1 R [ M(r )] dτ + µ 0 4π 1 R [M(r ) da ] J zw = M K zw = M ˆn A(r) = µ 0 4π V J zw (r ) R dτ + µ 0 4π S K zw (r ) R da

40 Przykład: Znaleźć pole magnetyczne jednorodnie namagnesowanej kuli. z r θ x M φ y J zw = M = 0, K zw = M ˆn = M sin θ ˆφ

41 K = σv = σωr sin θ ˆφ dla obracającej się sfery, patrz wcześniejszy przykład

42 K = σv = σωr sin θ ˆφ dla obracającej się sfery, patrz wcześniejszy przykład Pole jednorodnie namagnesowanej kuli jest takie samo, jak pole obracającej się jednorodnie naładowanej sfery, po podstawieniu σrω M.

43 K = σv = σωr sin θ ˆφ dla obracającej się sfery, patrz wcześniejszy przykład Pole jednorodnie namagnesowanej kuli jest takie samo, jak pole obracającej się jednorodnie naładowanej sfery, po podstawieniu σrω M. B = 2 3 µ 0M wewnątrz sfery, pole jednorodne

44 K = σv = σωr sin θ ˆφ dla obracającej się sfery, patrz wcześniejszy przykład Pole jednorodnie namagnesowanej kuli jest takie samo, jak pole obracającej się jednorodnie naładowanej sfery, po podstawieniu σrω M. B = 2 3 µ 0M wewnątrz sfery, pole jednorodne m = 4 3 πr3 M na zewnątrz sfery, pole dipola m

45 K = σv = σωr sin θ ˆφ dla obracającej się sfery, patrz wcześniejszy przykład Pole jednorodnie namagnesowanej kuli jest takie samo, jak pole obracającej się jednorodnie naładowanej sfery, po podstawieniu σrω M. B = 2 3 µ 0M wewnątrz sfery, pole jednorodne m = 4 3 πr3 M na zewnątrz sfery, pole dipola m Podobieństwo do pola elektrycznego spolaryzowanej kuli, ale tu mamy 2 3 zamiast 1 3.

46 6.2.2 Fizyczna interpretacja prądów związanych

47 6.2.2 Fizyczna interpretacja prądów związanych M I I I t

48 6.2.2 Fizyczna interpretacja prądów związanych I M I I I M t I ˆn

49 6.2.2 Fizyczna interpretacja prądów związanych I M I I I M t ˆn M I I a t

50 6.2.2 Fizyczna interpretacja prądów związanych I M I I I M t ˆn M I I a t m = Mat = Ia I = Mt K zw = I/t = M

51 6.2.2 Fizyczna interpretacja prądów związanych I M I I I M t ˆn M I I a t m = Mat = Ia I = Mt K zw = I/t = M K zw = M ˆn

52 z M z (y) M z (y + dy) I dz dy y x magnetyzacja niejednorodna

53 dy z M z (y) M z (y + dy) z dz M y (z + dz) I dz M y (z) dy y y x magnetyzacja niejednorodna x I x = [M z (y + dy) M z (y)] dz = M z y dy dz

54 dy z M z (y) M z (y + dy) z dz M y (z + dz) I dz M y (z) dy y y x magnetyzacja niejednorodna x I x = [M z (y + dy) M z (y)] dz = M z y dy dz (J zw ) x = M z y podobnie (J zw ) x = M y z

55 (J zw ) x = M z y M y z

56 (J zw ) x = M z y M y z J zw = M ogólnie

57 (J zw ) x = M z y M y z J zw = M ogólnie J zw = ( M) = 0 równanie ciągłości

58 (J zw ) x = M z y M y z J zw = M ogólnie J zw = ( M) = 0 równanie ciągłości Pole magnetyczne w materii Mówiąc o polu magnetycznym w materii mamy na myśli pole makroskopowe (uśrednione po obszarze wytarczająco dużym by zawierał bardzo wiele atomów)

59 6.3 Natężenie pola magnetycznego H Prawo Ampère a w materiałach magnetycznych J = J zw + J sw

60 6.3 Natężenie pola magnetycznego H Prawo Ampère a w materiałach magnetycznych J = J zw + J sw 1 µ 0 ( B = J = J sw + J zw = J sw + ( M)

61 6.3 Natężenie pola magnetycznego H Prawo Ampère a w materiałach magnetycznych J = J zw + J sw 1 µ 0 ( B = J = J sw + J zw = J sw + ( M) ( ) 1 B M µ 0 = J sw

62 6.3 Natężenie pola magnetycznego H Prawo Ampère a w materiałach magnetycznych J = J zw + J sw 1 µ 0 ( B = J = J sw + J zw = J sw + ( M) ( ) 1 B M µ 0 = J sw H 1 µ 0 B M

63 6.3 Natężenie pola magnetycznego H Prawo Ampère a w materiałach magnetycznych J = J zw + J sw 1 µ 0 ( B = J = J sw + J zw = J sw + ( M) ( ) 1 B M µ 0 = J sw H 1 µ 0 B M H = J sw prawo Ampère a

64 H dl = I sw c prawo Ampère a w postaci całkowej

65 H dl = I sw c prawo Ampère a w postaci całkowej I sw c całkowite natężenie prądu swobodnego płynącego przez kontur Ampère a

66 6.3.2 Myląca analogia H = J sw

67 6.3.2 Myląca analogia H = J sw H = M 0 dywergencja różna od zera

68 6.3.2 Myląca analogia H = J sw H = M 0 dywergencja różna od zera Natężenie pola H nie musi być zerem, kiedy J sw = 0

69 6.3.3 Warunki brzegowe W języku natężenia pola magnetycznego H i gęstości prądów swobodnych: H nad H pod = (M nad M pod)

70 6.3.3 Warunki brzegowe W języku natężenia pola magnetycznego H i gęstości prądów swobodnych: H nad H pod = (M nad M pod) H nad H pod = K sw ˆn

71 6.3.3 Warunki brzegowe W języku natężenia pola magnetycznego H i gęstości prądów swobodnych: H nad H pod = (M nad M pod) H nad H pod = K sw ˆn B nad B pod = 0

72 6.3.3 Warunki brzegowe W języku natężenia pola magnetycznego H i gęstości prądów swobodnych: H nad H pod = (M nad M pod) H nad H pod = K sw ˆn B nad B pod = 0 B nad B pod = µ 0(K ˆn)

73 6.4 Ośrodki liniowe i nieliniowe Podatność i przenikalność magnetyczna M = 1 µ 0 χ m B (niepoprawnie!)

74 6.4 Ośrodki liniowe i nieliniowe Podatność i przenikalność magnetyczna M = 1 µ 0 χ m B (niepoprawnie!) M = χ m H ośrodki liniowe

75 6.4 Ośrodki liniowe i nieliniowe Podatność i przenikalność magnetyczna M = 1 µ 0 χ m B (niepoprawnie!) M = χ m H ośrodki liniowe χ m podatność magnetyczna, dodatnia dla paramagnetyków, ujemna dla diamagnetyków; typowe wartości są rzędu 10 5

76 6.4 Ośrodki liniowe i nieliniowe Podatność i przenikalność magnetyczna M = 1 µ 0 χ m B (niepoprawnie!) M = χ m H ośrodki liniowe χ m podatność magnetyczna, dodatnia dla paramagnetyków, ujemna dla diamagnetyków; typowe wartości są rzędu 10 5 B = µ 0 (H + M) = µ 0 (1 + χ m )H

77 6.4 Ośrodki liniowe i nieliniowe Podatność i przenikalność magnetyczna M = 1 µ 0 χ m B (niepoprawnie!) M = χ m H ośrodki liniowe χ m podatność magnetyczna, dodatnia dla paramagnetyków, ujemna dla diamagnetyków; typowe wartości są rzędu 10 5 B = µ 0 (H + M) = µ 0 (1 + χ m )H B = µh, µ µ 0 (1 + χ m ) przenikalność magnetyczna

78 Przykład: Nieskończenie długi solenoid (o n zwojach na jednostkę długości, przez który płynie prąd o natężeniu I) wypełniony jest substancją liniową o podatności χ m. Znaleźć indukcję pola we wnętrzu solenoidu.

79 Przykład: Nieskończenie długi solenoid (o n zwojach na jednostkę długości, przez który płynie prąd o natężeniu I) wypełniony jest substancją liniową o podatności χ m. Znaleźć indukcję pola we wnętrzu solenoidu. ẑ φ

80 Przykład: Nieskończenie długi solenoid (o n zwojach na jednostkę długości, przez który płynie prąd o natężeniu I) wypełniony jest substancją liniową o podatności χ m. Znaleźć indukcję pola we wnętrzu solenoidu. ẑ Nie możemy wprost obliczyć B, bo nie znamy prądów związanych, ale ze względu na symetrię możemy obliczyć H ze znajomości prądów swobodnych H = niẑ B = µ 0 (1 + χ m )niẑ K zw = M ˆn = χ m (H ˆn) = χ m ni ˆφ φ

81 powierzchnia Gaussa paramagnetyk M = 0 próżnia M M da 0 dla powierzchni Gaussa

82 powierzchnia Gaussa paramagnetyk M = 0 próżnia M M da 0 dla powierzchni Gaussa M nie może znikać wszędzie wewnątrz powierzchni Gaussa

83 powierzchnia Gaussa paramagnetyk M = 0 próżnia M M da 0 dla powierzchni Gaussa M nie może znikać wszędzie wewnątrz powierzchni Gaussa J zw = M = (χ m H) = χ m J sw Jeśli prąd swobodny nie płynie w objętości próbki, prąd związany płynie jedynie na powierzchni.

84 6.4.2 Ferromagnetyzm M (trwały magnes) c (nasycenie) b d a g I e (nasycenie) f (trwały magnes) Pętla histerezy

Elektrodynamika. Część 5. Pola magnetyczne w materii. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.

Elektrodynamika. Część 5. Pola magnetyczne w materii. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu. Elektrodynamika Część 5 Pola magnetyczne w materii yszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 6 Pola magnetyczne w materii 3 6.1 Magnetyzacja.......................

Bardziej szczegółowo

Elektrodynamika Część 4 Magnetostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 4 Magnetostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 4 Magnetostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 5 Magnetostatyka 3 5.1 Siła Lorentza........................ 3 5.2 Prawo

Bardziej szczegółowo

Elektrodynamika Część 3 Pola elektryczne w materii Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 3 Pola elektryczne w materii Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 3 Pola elektryczne w materii Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 4 Pola elektryczne w materii 3 4.1 Polaryzacja elektryczna..................

Bardziej szczegółowo

Własności magnetyczne materii

Własności magnetyczne materii Własności magnetyczne materii Ośrodek materialny wypełniający solenoid (lub cewkę) wpływa na wartość indukcji magnetycznej, strumienia, a także współczynnika indukcji własnej solenoidu. Trzy rodzaje materiałów:

Bardziej szczegółowo

Momentem dipolowym ładunków +q i q oddalonych o 2a (dipola) nazwamy wektor skierowany od q do +q i o wartości:

Momentem dipolowym ładunków +q i q oddalonych o 2a (dipola) nazwamy wektor skierowany od q do +q i o wartości: 1 W stanie równowagi elektrostatycznej (nośniki ładunku są w spoczynku) wewnątrz przewodnika natężenie pola wynosi zero. Cały ładunek jest zgromadzony na powierzchni przewodnika. Tuż przy powierzchni przewodnika

Bardziej szczegółowo

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne......................

Bardziej szczegółowo

Elektrodynamika Część 10 Promieniowanie Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 10 Promieniowanie Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 10 Promieniowanie Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 11 Promieniowanie 3 11.1 Promieniowanie dipolowe............... 3 11

Bardziej szczegółowo

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne....................

Bardziej szczegółowo

Księgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki

Księgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki Księgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki Spis treści Przedmowa... 11 Wstęp: Czym jest elektrodynamika i jakie jest jej miejsce w fizyce?... 13 1. Analiza wektorowa... 19 1.1. Algebra

Bardziej szczegółowo

Elektrodynamika Część 6 Elektrodynamika Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 6 Elektrodynamika Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 6 Elektrodynamika Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 7 Elektrodynamika 3 7.1 Siła elektromotoryczna................ 3 7.2

Bardziej szczegółowo

Kolokwium 2. Środa 14 czerwca. Zasady takie jak na pierwszym kolokwium

Kolokwium 2. Środa 14 czerwca. Zasady takie jak na pierwszym kolokwium Kolokwium 2 Środa 14 czerwca Zasady takie jak na pierwszym kolokwium 1 w poprzednim odcinku 2 Ramka z prądem F 1 n Moment sił działających na ramkę b/2 b/2 b M 2( F1 ) 2 b 2 F sin(θ ) 2 M 1 F 1 iab F 1

Bardziej szczegółowo

Własności magnetyczne materii

Własności magnetyczne materii Własności magnetyczne materii Dipole magnetyczne Najprostszą strukturą magnetyczną są magnetyczne dipole. Fe 3 O 4 Kompas, Chiny 220 p.n.e Kołowy obwód z prądem dipol magnetyczny! Wartość B w środku kołowego

Bardziej szczegółowo

Elektrodynamika. Część 6. Elektrodynamika. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM

Elektrodynamika. Część 6. Elektrodynamika. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 6 Elektrodynamika Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 7 Elektrodynamika 3 7.1 Siła elektromotoryczna.................. 3

Bardziej szczegółowo

Pole magnetyczne magnesu w kształcie kuli

Pole magnetyczne magnesu w kształcie kuli napisał Michał Wierzbicki Pole magnetyczne magnesu w kształcie kuli Rozważmy kulę o promieniu R, wykonaną z materiału ferromagnetycznego o stałej magnetyzacji M = const, skierowanej wzdłuż osi z. Gęstość

Bardziej szczegółowo

WŁASNOŚCI MAGNETYCZNE CIAŁA STAŁEGO

WŁASNOŚCI MAGNETYCZNE CIAŁA STAŁEGO WŁASNOŚCI MAGNETYCZNE CIAŁA STAŁEGO Moment magnetyczny atomu Polaryzacja magnetyczna Podatność magnetyczna i namagnesowanie Klasyfikacja materiałów magnetycznych Diamagnetyzm, paramagnetyzm, ferromagnetyzm

Bardziej szczegółowo

Elektrodynamika Część 2 Specjalne metody elektrostatyki Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 2 Specjalne metody elektrostatyki Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 2 Specjalne metody elektrostatyki Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 3 Specjalne metody elektrostatyki 3 3.1 Równanie Laplace

Bardziej szczegółowo

Wykład 4 i 5 Prawo Gaussa i pole elektryczne w materii. Pojemność.

Wykład 4 i 5 Prawo Gaussa i pole elektryczne w materii. Pojemność. Wykład 4 i 5 Prawo Gaussa i pole elektryczne w materii. Pojemność. Maciej J. Mrowiński mrow@if.pw.edu.pl Wydział Fizyki Politechnika Warszawska 21 marca 2016 Maciej J. Mrowiński (IF PW) Wykład 4 i 5 21

Bardziej szczegółowo

Podstawy elektrodynamiki / David J. Griffiths. - wyd. 2, dodr. 3. Warszawa, 2011 Spis treści. Przedmowa 11

Podstawy elektrodynamiki / David J. Griffiths. - wyd. 2, dodr. 3. Warszawa, 2011 Spis treści. Przedmowa 11 Podstawy elektrodynamiki / David J. Griffiths. - wyd. 2, dodr. 3. Warszawa, 2011 Spis treści Przedmowa 11 Wstęp: Czym jest elektrodynamika i jakie jest jej miejsce w fizyce? 13 1. Analiza wektorowa 19

Bardziej szczegółowo

Siła magnetyczna działająca na przewodnik

Siła magnetyczna działająca na przewodnik Siła magnetyczna działająca na przewodnik F 2 B b F 1 F 3 a F 4 I siła Lorentza: F B q v B IL B F B ILBsin a moment sił działający na ramkę: M' IabBsin a B F 2 b a S M moment sił działający cewkę o N zwojach

Bardziej szczegółowo

cz. 2. dr inż. Zbigniew Szklarski

cz. 2. dr inż. Zbigniew Szklarski Wykład 14: Pole magnetyczne cz.. dr inż. Zbigniew zklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.zklarski/ Prąd elektryczny jako źródło pola magnetycznego - doświadczenie Oersteda Kiedy przez

Bardziej szczegółowo

Pole magnetyczne. Magnes wytwarza wektorowe pole magnetyczne we wszystkich punktach otaczającego go przestrzeni.

Pole magnetyczne. Magnes wytwarza wektorowe pole magnetyczne we wszystkich punktach otaczającego go przestrzeni. Pole magnetyczne Magnes wytwarza wektorowe pole magnetyczne we wszystkich punktach otaczającego go przestrzeni. naładowane elektrycznie cząstki, poruszające się w przewodniku w postaci prądu elektrycznego,

Bardziej szczegółowo

Wykład FIZYKA II. 5. Magnetyzm. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA II. 5. Magnetyzm.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA II 5. Magnetyzm Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka2.html MAGNESY Pierwszymi poznanym magnesem był magnetyt

Bardziej szczegółowo

Ramka z prądem w jednorodnym polu magnetycznym

Ramka z prądem w jednorodnym polu magnetycznym Ramka z prądem w jednorodnym polu magnetycznym Siła wypadkowa = 0 Wypadkowy moment siły: τ = w F + w ( ) F ( ) = 2 w F w τ = 2wF sinθ = IBl 2 sinθ = θ=90 o IBl 2 θ to kąt między wektorem w i wektorem F

Bardziej szczegółowo

Wykład FIZYKA II. 5. Magnetyzm

Wykład FIZYKA II. 5. Magnetyzm Wykład FIZYKA II 5. Magnetyzm Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska http://www.if.pwr.wroc.pl/~wozniak/fizyka2.html ELEKTRYCZNOŚĆ I MAGNETYZM q q magnetyczny???

Bardziej szczegółowo

3. Równania pola elektromagnetycznego

3. Równania pola elektromagnetycznego 3. Równania pola elektromagnetycznego Oddziaływanie pola elektromagnetycznego z materią Pole elektromagnetyczne jest opisywane zazwyczaj za pomocą następujących 5 pól wektorowych: gęstości prądu J, natężenia

Bardziej szczegółowo

Ferromagnetyki, paramagnetyki, diamagnetyki.

Ferromagnetyki, paramagnetyki, diamagnetyki. Ferromagnetyki, paramagnetyki, diamagnetyki https://www.youtube.com/watch?v=u36qppveh2c Materiały magnetyczne Do tej pory rozważaliśmy przewody z prądem umieszczone w powietrzu lub w próżni. Jednak w praktycznych

Bardziej szczegółowo

Pole magnetyczne. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Pole magnetyczne. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Pole magnetyczne Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Pole magnetyczne Pole magnetyczne jest nierozerwalnie związane z polem elektrycznym. W zależności

Bardziej szczegółowo

Magnetyzm cz.i. Oddziaływanie magnetyczne Siła Lorentza Prawo Biote a Savart a Prawo Ampera

Magnetyzm cz.i. Oddziaływanie magnetyczne Siła Lorentza Prawo Biote a Savart a Prawo Ampera Magnetyzm cz.i Oddziaływanie magnetyczne Siła Lorentza Prawo Biote a Savart a Prawo Ampera 1 Magnesy Zjawiska magnetyczne (naturalne magnesy) były obserwowane i badane już w starożytnej Grecji 500 lat

Bardziej szczegółowo

Badanie pętli histerezy magnetycznej ferromagnetyków, przy użyciu oscyloskopu (E1)

Badanie pętli histerezy magnetycznej ferromagnetyków, przy użyciu oscyloskopu (E1) Badanie pętli histerezy magnetycznej ferromagnetyków, przy użyciu oscyloskopu (E1) 1. Wymagane zagadnienia - klasyfikacja rodzajów magnetyzmu - własności magnetyczne ciał stałych, wpływ temperatury - atomistyczna

Bardziej szczegółowo

Indukcja magnetyczna pola wokół przewodnika z prądem. dr inż. Romuald Kędzierski

Indukcja magnetyczna pola wokół przewodnika z prądem. dr inż. Romuald Kędzierski Indukcja magnetyczna pola wokół przewodnika z prądem dr inż. Romuald Kędzierski Pole magnetyczne wokół pojedynczego przewodnika prostoliniowego Założenia wyjściowe: przez nieskończenie długi prostoliniowy

Bardziej szczegółowo

Pole magnetyczne w ośrodku materialnym

Pole magnetyczne w ośrodku materialnym Pole magnetyczne w ośrodku materialnym Ryszard J. Barczyński, 2017 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Pole magnetyczne w materii

Bardziej szczegółowo

Promieniowanie dipolowe

Promieniowanie dipolowe Promieniowanie dipolowe Potencjały opóźnione φ i A dla promieniowanie punktowego dipola elektrycznego wygodnie jest wyrażać przez wektor Hertza Z φ = ϵ 0 Z, spełniający niejednorodne równanie falowe A

Bardziej szczegółowo

Wykład 18 Dielektryk w polu elektrycznym

Wykład 18 Dielektryk w polu elektrycznym Wykład 8 Dielektryk w polu elektrycznym Polaryzacja dielektryka Dielektryk (izolator), w odróżnieniu od przewodnika, nie posiada ładunków swobodnych zdolnych do przemieszczenia się na duże odległości.

Bardziej szczegółowo

Pole elektromagnetyczne

Pole elektromagnetyczne Pole elektromagnetyczne Pole magnetyczne Strumień pola magnetycznego Jednostką strumienia magnetycznego w układzie SI jest 1 weber (1 Wb) = 1 N m A -1. Zatem, pole magnetyczne B jest czasem nazywane gęstością

Bardziej szczegółowo

Magnetyzm cz.i. Oddziaływanie magnetyczne Siła Lorentza Prawo Biote a Savart a Prawo Ampera

Magnetyzm cz.i. Oddziaływanie magnetyczne Siła Lorentza Prawo Biote a Savart a Prawo Ampera Magnetyzm cz.i Oddziaływanie magnetyczne Siła Lorentza Prawo Biote a Savart a Prawo Ampera 1 Magnesy Zjawiska magnetyczne (naturalne magnesy) były obserwowane i badane już w starożytnej Grecji 2500 lat

Bardziej szczegółowo

Właściwości magnetyczne materii. dr inż. Romuald Kędzierski

Właściwości magnetyczne materii. dr inż. Romuald Kędzierski Właściwości magnetyczne materii dr inż. Romuald Kędzierski Kryteria podziału materii ze względu na jej właściwości magnetyczne - względna przenikalność magnetyczna - podatność magnetyczna Wielkości niemianowane!

Bardziej szczegółowo

Podstawy fizyki sezon 2 4. Pole magnetyczne 1

Podstawy fizyki sezon 2 4. Pole magnetyczne 1 Podstawy fizyki sezon 2 4. Pole magnetyczne 1 Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Pola magnetycznego

Bardziej szczegółowo

dr inż. Zbigniew Szklarski

dr inż. Zbigniew Szklarski Wykład 13: Pole magnetyczne dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Wektor indukcji pola magnetycznego, siła Lorentza F L Jeżeli na dodatni ładunek q poruszający

Bardziej szczegółowo

Pole elektrostatyczne

Pole elektrostatyczne Termodynamika 1. Układ termodynamiczny 5 2. Proces termodynamiczny 5 3. Bilans cieplny 5 4. Pierwsza zasada termodynamiki 7 4.1 Pierwsza zasada termodynamiki w postaci różniczkowej 7 5. Praca w procesie

Bardziej szczegółowo

Elektrostatyka, cz. 1

Elektrostatyka, cz. 1 Podstawy elektromagnetyzmu Wykład 3 Elektrostatyka, cz. 1 Prawo Coulomba F=k q 1 q 2 r 2 1 q1 q 2 Notka historyczna: 1767: John Priestley - sugestia 1771: Henry Cavendish - eksperyment 1785: Charles Augustin

Bardziej szczegółowo

Elektrodynamika. Część 9. Potencjały i pola źródeł zmiennych w czasie. Ryszard Tanaś

Elektrodynamika. Część 9. Potencjały i pola źródeł zmiennych w czasie. Ryszard Tanaś Elektrodynamika Część 9 Potencjały i pola źródeł zmiennych w czasie Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 10 Potencjały i pola źródeł zmiennych w

Bardziej szczegółowo

Właściwości magnetyczne

Właściwości magnetyczne Właściwości magnetyczne Historia magnetyzmu ok. 1400 BC chiński kompas; 1269 Pierre Pelerin de Maricourt (Epistola de magnete) naturalne sferyczne magnesy z magnetytu magnetyzujące igły, obraz pola magnetycznego,

Bardziej szczegółowo

Elektrostatyka ŁADUNEK. Ładunek elektryczny. Dr PPotera wyklady fizyka dosw st podypl. n p. Cząstka α

Elektrostatyka ŁADUNEK. Ładunek elektryczny. Dr PPotera wyklady fizyka dosw st podypl. n p. Cząstka α Elektrostatyka ŁADUNEK elektron: -e = -1.610-19 C proton: e = 1.610-19 C neutron: 0 C n p p n Cząstka α Ładunek elektryczny Ładunek jest skwantowany: Jednostką ładunku elektrycznego w układzie SI jest

Bardziej szczegółowo

Wykład Siły wynikające z prawa Lorentza i Biota-Savarta c.d Prądy polaryzacyjne w dielektrykach. 15. Magnetyczne własności materii

Wykład Siły wynikające z prawa Lorentza i Biota-Savarta c.d Prądy polaryzacyjne w dielektrykach. 15. Magnetyczne własności materii Wykład 11 14.4 Siły wynikające z prawa Lorentza i iota-savarta c.d. 14.5 Prądy polaryzacyjne w dielektrykach. 15. Magnetyczne własności materii 15.1 Momenty magnetyczne atomów i cząsteczek 15. Zależność

Bardziej szczegółowo

Strumień Prawo Gaussa Rozkład ładunku Płaszczyzna Płaszczyzny Prawo Gaussa i jego zastosowanie

Strumień Prawo Gaussa Rozkład ładunku Płaszczyzna Płaszczyzny Prawo Gaussa i jego zastosowanie Problemy elektrodynamiki. Prawo Gaussa i jego zastosowanie przy obliczaniu pól ładunku rozłożonego w sposób ciągły. I LO im. Stefana Żeromskiego w Lęborku 19 marca 2012 Nowe spojrzenie na prawo Coulomba

Bardziej szczegółowo

Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI.

Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI. Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI. 1. Ładunki q 1 =3,2 10 17 i q 2 =1,6 10 18 znajdują się w próżni

Bardziej szczegółowo

Pole magnetyczne Wykład LO Zgorzelec 13-01-2016

Pole magnetyczne Wykład LO Zgorzelec 13-01-2016 Pole magnetyczne Igła magnetyczna Pole magnetyczne Magnetyzm ziemski kompas Biegun północny geogr. Oś obrotu deklinacja Pole magnetyczne Ziemi pochodzi od dipola magnetycznego. Kierunek magnetycznego momentu

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 6 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15

Bardziej szczegółowo

Podstawy fizyki sezon 2 4. Pole magnetyczne 1

Podstawy fizyki sezon 2 4. Pole magnetyczne 1 Podstawy fizyki sezon 2 4. Pole magnetyczne 1 Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Pola magnetycznego

Bardziej szczegółowo

dr inż. Zbigniew Szklarski

dr inż. Zbigniew Szklarski Wykład 13: Pole magnetyczne dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Wektor indukcji pola magnetycznego, siła Lorentza v v F L Jeżeli na dodatni ładunek q poruszający

Bardziej szczegółowo

RÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego?

RÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego? RÓWNANIA MAXWELLA Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego? Wykład 3 lato 2012 1 Doświadczenia Wykład 3 lato 2012 2 1

Bardziej szczegółowo

Fizyka 2 Wróbel Wojciech. w poprzednim odcinku

Fizyka 2 Wróbel Wojciech. w poprzednim odcinku w poprzednim odcinku 1 Pole magnetyczne Linie pola magnetycznego analogiczne do linii pola elektrycznego Pole magnetyczne jest polem bezźródłowym (nie istnieje monopol magnetyczny!) Prawo Gaussa dla pola

Bardziej szczegółowo

POLE MAGNETYCZNE ŹRÓDŁA POLA MAGNETYCZNEGO. Wykład 9 lato 2016/17 1

POLE MAGNETYCZNE ŹRÓDŁA POLA MAGNETYCZNEGO. Wykład 9 lato 2016/17 1 POLE MAGNETYZNE ŹRÓDŁA POLA MAGNETYZNEGO Wykład 9 lato 2016/17 1 Definicja wektora indukcji pola magnetycznego F q( v) Jednostką indukcji pola jest 1T (tesla) 1T=1N/Am Pole magnetyczne zakrzywia tor ruchu

Bardziej szczegółowo

POMIAR TEMPERATURY CURIE FERROMAGNETYKÓW

POMIAR TEMPERATURY CURIE FERROMAGNETYKÓW Ćwiczenie 65 POMIAR TEMPERATURY CURIE FERROMAGNETYKÓW 65.1. Wiadomości ogólne Pole magnetyczne można opisać za pomocą wektora indukcji magnetycznej B lub natężenia pola magnetycznego H. W jednorodnym ośrodku

Bardziej szczegółowo

Fale elektromagnetyczne

Fale elektromagnetyczne Rozdział 7 Fale elektromagnetyczne 7.1 Prąd przesunięcia. II równanie Maxwella Poznane dotąd prawa elektrostatyki, magnetostatyki oraz indukcji elektromagnetycznej można sformułować w czterech podstawowych

Bardziej szczegółowo

Dielektryki. właściwości makroskopowe. Ryszard J. Barczyński, 2016 Materiały dydaktyczne do użytku wewnętrznego

Dielektryki. właściwości makroskopowe. Ryszard J. Barczyński, 2016 Materiały dydaktyczne do użytku wewnętrznego Dielektryki właściwości makroskopowe Ryszard J. Barczyński, 2016 Materiały dydaktyczne do użytku wewnętrznego Przewodniki i izolatory Przewodniki i izolatory Pojemność i kondensatory Podatność dielektryczna

Bardziej szczegółowo

Rezonanse magnetyczne oraz wybrane techniki pomiarowe fizyki ciała stałego

Rezonanse magnetyczne oraz wybrane techniki pomiarowe fizyki ciała stałego Paweł Szroeder Rezonanse magnetyczne oraz wybrane techniki pomiarowe fizyki ciała stałego Wykład I Moment magnetyczny a moment pędu czynnik g. Precesja Larmora. Zjawisko rezonansu magnetycznego. Fenomenologiczny

Bardziej szczegółowo

Odp.: F e /F g = 1 2,

Odp.: F e /F g = 1 2, Segment B.IX Pole elektrostatyczne Przygotował: mgr Adam Urbanowicz Zad. 1 W atomie wodoru odległość między elektronem i protonem wynosi około r = 5,3 10 11 m. Obliczyć siłę przyciągania elektrostatycznego

Bardziej szczegółowo

Badanie właściwości magnetycznych

Badanie właściwości magnetycznych Ćwiczenie 20 Badanie właściwości magnetycznych ciał stałych Filip A. Sala Spis treści 1 Cel ćwiczenia 2 2 Wstęp teoretyczny 2 2.1 Zagadnienia z teorii atomu............................ 2 2.2 Magnetyzm....................................

Bardziej szczegółowo

Wykład 8 ELEKTROMAGNETYZM

Wykład 8 ELEKTROMAGNETYZM Wykład 8 ELEKTROMAGNETYZM Równania Maxwella dive = ρ εε 0 prawo Gaussa dla pola elektrycznego divb = 0 rote = db dt prawo Gaussa dla pola magnetycznego prawo indukcji Faradaya rotb = μμ 0 j + εε 0 μμ 0

Bardziej szczegółowo

Podstawy fizyki sezon 2 4. Pole magnetyczne

Podstawy fizyki sezon 2 4. Pole magnetyczne Podstawy fizyki sezon 2 4. Pole magnetyczne Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Pola magnetycznego

Bardziej szczegółowo

Rozdział 4. Pole magnetyczne przewodników z prądem

Rozdział 4. Pole magnetyczne przewodników z prądem Rozdział 4. Pole magnetyczne przewodników z prądem 2018 Spis treści Prawo Ampere'a Zastosowanie prawa Ampere'a - prostoliniowy przewodnik Zastosowanie prawa Ampere'a - cewka Oddziaływanie równoległych

Bardziej szczegółowo

POLE MAGNETYCZNE ŹRÓDŁA POLA MAGNETYCZNEGO

POLE MAGNETYCZNE ŹRÓDŁA POLA MAGNETYCZNEGO POLE MAGNETYZNE ŹRÓDŁA POLA MAGNETYZNEGO Wykład lato 011 1 Definicja wektora indukcji pola magnetycznego F = q( v B) Jednostką indukcji pola B jest 1T (tesla) 1T=1N/Am Pole magnetyczne zakrzywia tor ruchu

Bardziej szczegółowo

Paramagnetyki i ferromagnetyki

Paramagnetyki i ferromagnetyki Wykład VI Przejścia fazowe 1 Paramagnetyki i ferromagnetyki Różne substancje znalazłszy się w polu magnetycznym wykazują zróżnicowane własności, które, co więcej, istotnie się zmieniają wraz z temperaturą.

Bardziej szczegółowo

Podstawy fizyki sezon 2 2. Elektrostatyka 2

Podstawy fizyki sezon 2 2. Elektrostatyka 2 Podstawy fizyki sezon 2 2. Elektrostatyka 2 Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Strumień wektora

Bardziej szczegółowo

ver magnetyzm cd.

ver magnetyzm cd. ver-10.01.12 magnetyzm cd. praca przemieszczenia obwodu w polu B B F F=ΙlB B j (siła Ampere a) dw =Fdx=Ι lbdx=ι BdS Φ B = B d S= BdS dφ B =BdS dw =ΙdΦ B =Ι B d S strumień dx dla obwodu: W =Ι dφ B =Ι Φ

Bardziej szczegółowo

Wykład FIZYKA II. 3. Magnetostatyka. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA II. 3. Magnetostatyka.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA II 3. Magnetostatyka Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ POLE MAGNETYCZNE Elektryczność zaobserwowana została

Bardziej szczegółowo

Równania dla potencjałów zależnych od czasu

Równania dla potencjałów zależnych od czasu Równania dla potencjałów zależnych od czasu Potencjały wektorowy A( r, t i skalarny ϕ( r, t dla zależnych od czasu pola elektrycznego E( r, t i magnetycznego B( r, t definiujemy poprzez następujące zależności

Bardziej szczegółowo

Wprowadzenie do fizyki pola magnetycznego

Wprowadzenie do fizyki pola magnetycznego Wprowadzenie do fizyki pola magnetycznego Wszystkie rysunki i animacje zaczerpnięto ze strony http://web.mit.edu/8.02t/www/802teal3d/visualizations/magnetostatics/index.htm Powszechnym źródłem pola magnetycznego

Bardziej szczegółowo

Magnetyzm. Wykład 13.

Magnetyzm. Wykład 13. Szczęście to łza, która się otarło i uśmiech, który się wywołało. Maxence van der Meersch Wykład 13. Magnetyzm 13.1. Pole magnetyczne Siła Lorentza Efekt Halla Siła magnetyczna 13.2. Prawo Biota-Savarta

Bardziej szczegółowo

Magnetostatyka ośrodki materialne

Magnetostatyka ośrodki materialne Rozdział 5 Magnetostatyka ośrodki materialne 5.1 Przenikalność magnetyczna. Wektor namagnesowania W rozdziale tym rozpatrywać będziemy wpływ ośrodka materialnego na pola magnetyczne, wytworzone przez przewodniki

Bardziej szczegółowo

Pole magnetyczne. Za wytworzenie pola magnetycznego odpowiedzialny jest ładunek elektryczny w ruchu

Pole magnetyczne. Za wytworzenie pola magnetycznego odpowiedzialny jest ładunek elektryczny w ruchu Pole magnetyczne Za wytworzene pola magnetycznego odpowedzalny jest ładunek elektryczny w ruchu Źródła pola magnetycznego Źródła pola magnetycznego I Sła Lorentza - wektor ndukcj magnetycznej Sła elektryczna

Bardziej szczegółowo

ver magnetyzm

ver magnetyzm ver-2.01.12 magnetyzm prądy proste prądy elektryczne oddziałują ze soą. doświadczenie Ampère a (1820): F ~ 2 Ι 1 Ι 2 siła na jednostkę długości przewodów prądy proste w próżni jednostki w elektryczności

Bardziej szczegółowo

POLE MAGNETYCZNE Magnetyzm. Pole magnetyczne. Indukcja magnetyczna. Siła Lorentza. Prawo Biota-Savarta. Prawo Ampère a. Prawo Gaussa dla pola

POLE MAGNETYCZNE Magnetyzm. Pole magnetyczne. Indukcja magnetyczna. Siła Lorentza. Prawo Biota-Savarta. Prawo Ampère a. Prawo Gaussa dla pola POLE MAGNETYCZNE Magnetyzm. Pole magnetyczne. Indukcja magnetyczna. Siła Lorentza. Prawo iota-savarta. Prawo Ampère a. Prawo Gaussa a pola magnetycznego. Prawo indukcji Faradaya. Reguła Lenza. Równania

Bardziej szczegółowo

Pole elektromagnetyczne. Równania Maxwella

Pole elektromagnetyczne. Równania Maxwella Pole elektromagnetyczne (na podstawie Wikipedii) Pole elektromagnetyczne - pole fizyczne, za pośrednictwem którego następuje wzajemne oddziaływanie obiektów fizycznych o właściwościach elektrycznych i

Bardziej szczegółowo

Plan Zajęć. Ćwiczenia rachunkowe

Plan Zajęć. Ćwiczenia rachunkowe Plan Zajęć 1. Termodynamika, 2. Grawitacja, Kolokwium I 3. Elektrostatyka + prąd 4. Pole Elektro-Magnetyczne Kolokwium II 5. Zjawiska falowe 6. Fizyka Jądrowa + niepewność pomiaru Kolokwium III Egzamin

Bardziej szczegółowo

POLE MAGNETYCZNE. Własności pola magnetycznego. powstawanie pola magnetycznego

POLE MAGNETYCZNE. Własności pola magnetycznego. powstawanie pola magnetycznego POLE MAGNETYCZNE Własności pola magnetycznego powstawanie pola magnetycznego W przestrzeni otaczającej przewodnik z prądem elektrycznym istnieje pole magnetyczne. Jego istnienie przejawia się tym, że oddziałuje

Bardziej szczegółowo

cz. 1. dr inż. Zbigniew Szklarski

cz. 1. dr inż. Zbigniew Szklarski Wykład 14: Pole magnetyczne cz. 1. dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Wektor indukcji pola magnetycznego, siła Lorentza v F L Jeżeli na dodatni ładunek

Bardziej szczegółowo

Wykład 14: Indukcja. Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok

Wykład 14: Indukcja. Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok Wykład 14: Indukcja Dr inż. Zbigniew zklarski Katedra Elektroniki, paw. -1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.zklarski/ Pole magnetyczne a prąd elektryczny Do tej pory omawiano skutki

Bardziej szczegółowo

MOMENT MAGNETYCZNY W POLU MAGNETYCZNYM

MOMENT MAGNETYCZNY W POLU MAGNETYCZNYM Ćwiczenie nr 16 MOMENT MAGNETYCZNY W POLU MAGNETYCZNYM Aparatura Zasilacze regulowane, cewki Helmholtza, multimetry cyfrowe, dynamometr torsyjny oraz pętle próbne z przewodnika. X Y 1 2 Rys. 1 Układ pomiarowy

Bardziej szczegółowo

Zadania na zaliczenie ćwiczeń z Elektrodynamiki

Zadania na zaliczenie ćwiczeń z Elektrodynamiki Zadania na zaliczenie ćwiczeń z Elektrodynamiki semest letni 2009 literatura: J. D. Jackson, Elektrodynamika klasyczna, PWN 1987 D. J. Griffiths, Podstawy Elektrodynamiki, PWN 2001 M. Suffczyński, Elektrodynamika,

Bardziej szczegółowo

VIII. VIII.1. ORBITALNY MOMENT MAGNETYCZNY ELEKTRONU, L= r p (VIII.1.1) p=m v (VIII.1.2) L= L =mvr (VIII.1.1a) r v. r=v (VIII.1.3)

VIII. VIII.1. ORBITALNY MOMENT MAGNETYCZNY ELEKTRONU, L= r p (VIII.1.1) p=m v (VIII.1.2) L= L =mvr (VIII.1.1a) r v. r=v (VIII.1.3) VIII. VIII.1. ORBITALNY MOMENT MAGNETYCZNY ELEKTRONU, L= r p (VIII.1.1) p=m v (VIII.1.2) Z (VIII.1.1) i (VIII.1.2) wynika (VIII.1.1a): L= L =mvr (VIII.1.1a) r v r=v (VIII.1.3) Z zależności (VIII.1.1a)

Bardziej szczegółowo

Fizyka 2 Wróbel Wojciech. w poprzednim odcinku

Fizyka 2 Wróbel Wojciech. w poprzednim odcinku w poprzednim odcinku 1 Model przewodnictwa metali Elektrony przewodnictwa dla metalu tworzą tzw. gaz elektronowy Elektrony poruszają się chaotycznie (ruchy termiczne), ulegają zderzeniom z atomami sieci

Bardziej szczegółowo

Wykład 15: Indukcja. Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok

Wykład 15: Indukcja. Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok Wykład 15: Indukcja Dr inż. Zbigniew zklarski Katedra Elektroniki, paw. -1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.zklarski/ 1 Pole magnetyczne a prąd elektryczny Do tej pory omawiano skutki

Bardziej szczegółowo

26 MAGNETYZM. Włodzimierz Wolczyński. Indukcja magnetyczna a natężenie pola magnetycznego. Wirowe pole magnetyczne wokół przewodnika prostoliniowego

26 MAGNETYZM. Włodzimierz Wolczyński. Indukcja magnetyczna a natężenie pola magnetycznego. Wirowe pole magnetyczne wokół przewodnika prostoliniowego Włodzimierz Wolczyński 26 MAGETYZM Indukcja magnetyczna a natężenie pola magnetycznego B indukcja magnetyczna H natężenie pola magnetycznego μ przenikalność magnetyczna ośrodka dla paramagnetyków - 1 1,

Bardziej szczegółowo

Podstawy fizyki sezon 2 5. Pole magnetyczne II

Podstawy fizyki sezon 2 5. Pole magnetyczne II Podstawy fizyki sezon 2 5. Pole magnetyczne II Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Indukcja magnetyczna

Bardziej szczegółowo

Potencjał pola elektrycznego

Potencjał pola elektrycznego Potencjał pola elektrycznego Pole elektryczne jest polem zachowawczym, czyli praca wykonana przy przesunięciu ładunku pomiędzy dwoma punktami nie zależy od tego po jakiej drodze przesuwamy ładunek. Spróbujemy

Bardziej szczegółowo

LXVII OLIMPIADA FIZYCZNA ZAWODY II STOPNIA

LXVII OLIMPIADA FIZYCZNA ZAWODY II STOPNIA LXVII OLIMPIADA FIZYCZNA ZAWODY II STOPNIA CZĘŚĆ TEORETYCZNA Za każde zadanie można otrzymać maksymalnie 0 punktów. Zadanie 1. przedmiot. Gdzie znajduje się obraz i jakie jest jego powiększenie? Dla jakich

Bardziej szczegółowo

ŁADUNEK I MATERIA Ładunki elektryczne są ściśle związane z atomową budową materii. Materia składa się z trzech rodzajów cząstek elementarnych:

ŁADUNEK I MATERIA Ładunki elektryczne są ściśle związane z atomową budową materii. Materia składa się z trzech rodzajów cząstek elementarnych: POLE ELEKTRYCZNE Ładunek i materia Ładunek elementarny. Zasada zachowania ładunku Prawo Coulomba Elektryzowanie ciał Pole elektryczne i pole zachowawcze Natężenie i strumień pola elektrycznego Prawo Gaussa

Bardziej szczegółowo

Ładunek elektryczny. Zastosowanie równania Laplace a w elektro- i magnetostatyce. Joanna Wojtal. Wprowadzenie. Podstawowe cechy pól siłowych

Ładunek elektryczny. Zastosowanie równania Laplace a w elektro- i magnetostatyce. Joanna Wojtal. Wprowadzenie. Podstawowe cechy pól siłowych 6 czerwca 2013 Ładunek elektryczny Ciała fizyczne mogą być obdarzone (i w znacznej większości faktycznie są) ładunkiem elektrycznym. Ładunek ten może być dodatni lub ujemny. Kiedy na jednym ciele zgromadzonych

Bardziej szczegółowo

Zadania z Elektrodynamiki

Zadania z Elektrodynamiki Zadania z Elektrodynamiki literatura: 1. J.D. Jackson, Elektrodynamika klasyczna, PWN 1987 2. D.J. Griffiths, Podstawy Elektrodynamiki, PWN 2001 3. M. Suffczyński, Elektrodynamika, PWN 1980 4. W. Panofsky,

Bardziej szczegółowo

Przedmowa do wydania drugiego Konwencje i ważniejsze oznaczenia... 13

Przedmowa do wydania drugiego Konwencje i ważniejsze oznaczenia... 13 Przedmowa do wydania drugiego... 11 Konwencje i ważniejsze oznaczenia... 13 1. Rachunek i analiza wektorowa... 17 1.1. Wielkości skalarne i wektorowe... 17 1.2. Układy współrzędnych... 20 1.2.1. Układ

Bardziej szczegółowo

Wyk³ady z Fizyki. Magnetyzm. Zbigniew Osiak

Wyk³ady z Fizyki. Magnetyzm. Zbigniew Osiak Wyk³ady z Fizyki 07 Magnetyzm Zbigniew Osiak ORCID Linki do moich publikacji naukowych i popularnonaukowych, e-booków oraz audycji telewizyjnych i radiowych są dostępne w bazie ORCID pod adresem internetowym:

Bardziej szczegółowo

Elektrostatyczna energia potencjalna U

Elektrostatyczna energia potencjalna U Elektrostatyczna energia potencjalna U Żeby zbliżyć do siebie dwa ładunki jednoimienne trzeba wykonać pracę przeciwko siłom pola nadając ładunkowi energię potencjalną. Podobnie trzeba wykonać pracę przeciwko

Bardziej szczegółowo

Elektrodynamika Część 8 Fale elektromagnetyczne Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 8 Fale elektromagnetyczne Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 8 Fale elektromagnetyczne Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 9 Fale elektromagnetyczne 3 9.1 Fale w jednym wymiarze.................

Bardziej szczegółowo

30/01/2018. Wykład XII: Właściwości magnetyczne. Zachowanie materiału w polu magnetycznym znajduje zastosowanie w wielu materiałach funkcjonalnych

30/01/2018. Wykład XII: Właściwości magnetyczne. Zachowanie materiału w polu magnetycznym znajduje zastosowanie w wielu materiałach funkcjonalnych Wykład XII: Właściwości magnetyczne JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Ceramiki i Materiałów Ogniotrwałych Treść wykładu: Treść wykładu: 1. Wprowadzenie 2. Rodzaje magnetyzmu

Bardziej szczegółowo

Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics)

Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics) Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics) Koniec XIX / początek XX wieku Lata 90-te XIX w.: odkrycie elektronu (J. J. Thomson, promienie katodowe), promieniowania Roentgena

Bardziej szczegółowo

Wyznaczanie przenikalności magnetycznej i krzywej histerezy

Wyznaczanie przenikalności magnetycznej i krzywej histerezy Ćwiczenie 13 Wyznaczanie przenikalności magnetycznej i krzywej histerezy 13.1. Zasada ćwiczenia W uzwojeniu, umieszczonym na żelaznym lub stalowym rdzeniu, wywołuje się przepływ prądu o stopniowo zmienianej

Bardziej szczegółowo