znak minus wynika z faktu, że wektor F jest zwrócony

Wielkość: px
Rozpocząć pokaz od strony:

Download "znak minus wynika z faktu, że wektor F jest zwrócony"

Transkrypt

1 Wykład 6 : Pole grawitacyjne. Pole elektrostatyczne. Prąd elektryczny Pole grawitacyjne Każde dwa ciała o masach m 1 i m 2 przyciągają się wzajemnie siłą grawitacji wprost proporcjonalną do iloczynu mas, a odwrotnie proporcjonalną do kwadratu odległości między nimi. Ciężar - siła ciężkości działającą na ciało. Pole sił Masie M przypisujemy obszar wpływu (działania), czyli pole.jeżeli ciało o masie M umieścimy w początku układu. W punkcie przestrzeni opisanym wektorem r znajduje się inna masa m (wektor r opisuje położenie masy m względem masy M) to siłę oddziaływania grawitacyjnego między tymi masami możemy zapisać w postaci wektorowej przeciwnie do wektora r. znak minus wynika z faktu, że wektor F jest zwrócony Siłę tę możemy potraktować jako iloczyn masy m i wektora natężenie pola grawitacyjnego γ(r) przy czym Wektor γ(r) - nie zależy od obiektu na który działa siła (masy m') - zależy od źródła siły (masa M) - charakteryzuje przestrzeń otaczającą źródło (wektor r). 1

2 Pole grawitacyjne wewnątrz kuli Pole grawitacyjne wytwarzane przez sferę (czaszę) kulistą o masie m i promieniu R. Dla r > R (na zewnątrz sfery) pole grawitacyjne ma wartość Gm/r 2 jakby cała masa była skupiona w środku sfery. to znaczy jest takie Jakie jest jednak pole wewnątrz sfery? Rozważmy przyczynki od dwóch leżących naprzeciwko siebie elementów powierzchni S 1 i S 2 w dowolnym punkcie P wewnątrz sfery tak jak na rysunku poniżej. Rys. 1. Punkt P wewnątrz cienkiej sfery Fragment S 1 czaszy jest źródłem siły F 1 ~ S 1 /(r 1 ) 2 działającej w lewo. Powierzchnia S 2 jest źródłem siły działającej w prawo F 2 ~ S 2 /(r 2 ) 2. Otrzymujemy więc Z rozważań geometrycznych wynika natomiast, że Po podstawieniu do pierwszego równania otrzymujemy Tak więc wkłady wnoszone przez elementy powierzchni S 1 i S 2 znoszą się. Można w ten sposób podzielić całą sferę i pokazać, że siła wypadkowa jest równa zeru. Tak więc wewnątrz sfery pole grawitacyjne jest równe zeru. Pole wewnątrz czaszy mającej skorupę dowolnej grubości też jest zero bo zawsze możemy podzielić tę skorupę na szereg cienkich warstw koncentrycznych. 2

3 Na rysunku obok przedstawiono pełną kulę o promieniu R i masie M. W punkcie P pole grawitacyjne pochodzące od zewnętrznej warstwy jest równe zeru. Pole grawitacyjne pochodzi więc tylko od kuli o promieniu r czyli gdzie m jest masą kuli o promieniu r. Dla jednorodnej kuli o gęstości r równanie przyjmuje postać Uwzględniając, że Otrzymujemy ostatecznie Wewnątrz kuli przyspieszenie grawitacyjne (natężenie pola grawitacyjnego) i co za tym idzie siła zmieniają się liniowo z odległością r od środka. Praca sił pola Różnica energii potencjalnej E p pomiędzy punktami A i B jest równa pracy (ze znakiem minus) wykonanej przez siłę zachowawczą przy przemieszczaniu ciała od A do B i wynosi 3

4 Oddziaływanie elektromagnetyczne: Ładunek elektryczny w przyrodzie mamy do czynienia z dwoma rodzajami ładunków - dodatnimi i ujemnymi; ładunki jednoimienne odpychają się, a różnoimienne przyciągają się. W układzie SI jednostką ładunku jest kulomb (C). Jest to ładunek przenoszony przez prąd o natężeniu 1 ampera w czasie 1 sekundy 1 C = 1 A s. Wszystkie realnie istniejące ładunki są wielokrotnością ładunku e. ładunek elementarny e = C Wypadkowy ładunek elektryczny w układzie zamkniętym jest stały (zas. zachowanie ładunku) Prawo Coulomba Każde dwa ładunki punktowe q 1 i q 2 oddziaływają wzajemnie siłą wprost proporcjonalną do iloczynu tych ładunków, a odwrotnie proporcjonalną do kwadratu odległości między nimi. gdzie stała. Współczynnik ε 0 = C 2 /(Nm 2 ) - przenikalność elektryczna próżni. W ośrodku: ośrodek próżnia powietrze parafina szkło woda ε r Gdy mamy do czynienia z kilkoma naładowanymi ciałami, siłę wypadkową, analogicznie jak w przypadku siły grawitacyjnej, obliczamy dodając wektorowo poszczególne siły dwuciałowe (zasada superpozycji). 4

5 Przykład Dipol elektryczny składa się z dwóch ładunków +Q i -Q oddalonych od siebie o l. Obliczmy siłę jaka jest wywierana na dodatni ładunek q umieszczony na symetralnej dipola: Z podobieństwa trójkątów wynika, że gdzie p = Ql jest momentem dipolowym. 5

6 Natężenie pola Siła działająca na ładunek próbny q (umieszczony w danym punkcie przestrzeni) podzieloną przez ten ładunek. Tak więc, żeby zmierzyć natężenie pola elektrycznego E w dowolnym punkcie przestrzeni, należy w tym punkcie umieścić ładunek próbny (ładunek jednostkowy) i zmierzyć wypadkową siłę elektryczną F działającą na ten ładunek. Wtedy Przyjęto konwencję, że ładunek próbny jest dodatni więc kierunek wektora E jest taki sam jak kierunek siły działającej na ładunek dodatni. Jeżeli pole elektryczne jest wytworzone przez ładunek punktowy Q to zgodnie z prawem Coulomba siła działająca na ładunek próbny q umieszczony w odległości r od tego ładunku wynosi gdzie jest wektorem jednostkowym zgodnym z kierunkiem siły pomiędzy Q i q. Dla n ładunków punktowych pole elektryczne jest równe sumie wektorowej pól elektrycznych od poszczególnych ładunków Kierunek pola E w przestrzeni można przedstawić graficznie za pomocą tzw. linii sił (linii pola). 6

7 Linie sił pola: - to linie, do których wektor E jest styczny w każdym punkcie. - zaczynają się zawsze na ładunkach dodatnich, a kończą na ładunkach ujemnych. Linie sił rysuje się tak, że liczba linii przez jednostkową powierzchnię jest proporcjonalna do wartości E; gdy linie są blisko siebie to E jest duże, a gdy są odległe od siebie to E jest małe. Linie sił pola elektrycznego dla układu dwóch ładunków różno- i jednoimiennych 7

8 Prawo Gaussa Strumień pola elektrycznego Strumień Φ pola elektrycznego przez powierzchnię S definiujemy jako iloczyn skalarny wektora powierzchni S i natężenia pola elektrycznego E. gdzie α jest kątem pomiędzy wektorem powierzchni S i wektorem E. Jeżeli wektor natężenia pola E, w różnych punktach powierzchni S, ma różną wartość i przecina tę powierzchnię pod różnymi kątami to wówczas dzielimy powierzchnię na małe elementy ds i obliczamy iloczyn skalarny wektora powierzchni ds i lokalnego natężenia pola elektrycznego. Strumień pola E przez elementarną powierzchnię ds definiujemy jako iloczyn dφ = E ds Całkowity strumień przechodzący przez rozciągłą powierzchnię S obliczamy jako sumę przyczynków dla elementarnych powierzchni ds. W praktyce najczęściej oblicza się strumień przez powierzchnię zamkniętą. lub 8

9 Strumień dla ładunku punktowego Q w odległości r od niego: a) rysujemy sferę o promieniu r wokół ładunku Q b) liczymy strumień przechodzących przez tę powierzchnię. Strumień pola elektrycznego przez zamkniętą sferyczną powierzchnię Pole E ma jednakową wartość w każdym punkcie sfery i jest prostopadłe do powierzchni (równoległe do wektora powierzchni ds) więc w każdym punkcie α = 0 i całkowity strumień wynosi Strumień nie zależy od r, a zatem strumień jest jednakowy dla wszystkich r. Całkowity strumień pola E wytworzonego przez ładunek Q jest równy Q/ε 0. Strumień jest niezależny od r, jest taki sam dla każdej zamkniętej powierzchni (o dowolnym kształcie), która otacza ładunek Q. Taką całkowicie zamkniętą powierzchnię nazywamy powierzchnią Gaussa. 9

10 Prawo Gaussa Rozpatrzmy zamkniętą powierzchnię obejmującą dwa ładunki Q 1 i Q 2. Całkowity strumień (liczba linii sił) przechodzący przez powierzchnię otaczającą ładunki Q 1 i Q 2 jest równy gdzie pole E 1 jest wytwarzane przez Q 1, a pole E 2 przez Q 2. całkujemy po zamkniętej powierzchni i otrzymujemy: Całkowity strumień pola elektrycznego przez zamkniętą powierzchnię jest więc równy całkowitemu ładunkowi otoczonemu przez tę powierzchnię podzielonemu przez ε 0. Dla dowolnej liczby ładunków wewnątrz dowolnej zamkniętej powierzchni. Otrzymujemy więc ogólny związek znany jako prawo Gaussa Strumień wychodzący z naładowanego ciała jest równy wypadkowemu ładunkowi tego ciała podzielonemu przez ε 0. Jeżeli wypadkowy ładunek ciała jest ujemny to strumień pola elektrycznego, tak jak i linie pola, wpływa do ciała. Gdy ładunek wypadkowy wewnątrz zamkniętej powierzchni jest równy zeru to całkowity strumień też jest równy zeru; tyle samo linii pola wpływa jak i wypływa przez powierzchnię Gaussa. Podobnie jest w sytuacji gdy ładunki znajdują się na zewnątrz zamkniętej powierzchni. Powierzchnie Gaussa wokół ładunków dodatnich i ujemnych: Całkowity strumień przez powierzchnię "1" jest dodatni, strumień przez powierzchnię "2" jest ujemny, a strumień przez powierzchnię "3" jest równy zeru 10

11 Ładunek wewnątrz dowolnej zamkniętej powierzchni przewodnika musi być równy zeru; cały ładunek gromadzi się na powierzchni przewodnika. Kuliste rozkłady ładunków - jednorodnie naładowana sfera : Kuliste rozkłady ładunków - jednorodnie naładowana kula Liniowy rozkład ładunków (wewnątrz kuli) (na zewnątrz pręta) (wewnątrz pręta) Płaskie rozkłady ładunków Kondensator plaski: w obszarze (I) w obszarze (II) Powierzchnia przewodnika a w obszarze (III) 11

12 Rozwiązania poszczególnych przypadków: Kuliste rozkłady ładunków - jednorodnie naładowana sfera Rozpatrzmy powierzchnię kulistą o promieniu R jednorodnie naładowaną ładunkiem Q. Chcemy obliczyć pole E w odległości r od jej środka na zewnątrz (r > R). W tym celu wybieramy powierzchnię Gaussa S w kształcie sfery o promieniu r Ponieważ w dowolnym punkcie powierzchni Gaussa pole E ma tę samą wartość i jest prostopadłe do powierzchni więc więc stąd Na zewnątrz sfery tj. dla r > R pole jest takie jakby cały ładunek skupiony był w środku sfery. Natomiast wewnątrz sfery (r < R) Q wewn. = 0 więc E wewn. = 0. Kuliste rozkłady ładunków - jednorodnie naładowana kula Kula może być rozpatrywana z zewnątrz jako szereg współśrodkowych powłok kulistych (opisanych powyżej). Pozostaje więc nam obliczenie pola elektrycznego w dowolnym punkcie wewnątrz kuli czyli w odległości r < R. Pole elektryczne na powierzchni Gaussa jest równe gdzie Q wewn. jest ładunkiem wewnątrz powierzchni Gaussa. Ponieważ kula jest naładowana równomiernie to (stosunek objętości kuli o promieniu r do objętości kuli o promieniu R). 12

13 Ostatecznie otrzymujemy dla r < R lub: Wykres natężenia pola E w funkcji odległości od środka jednorodnie naładowanej kuli>>>>>>>> Liniowy rozkład ładunków Obliczymy teraz pole E w odległości r od jednorodnie naładowanego pręta (drutu) o długości l >> r. Wprowadzamy liniową gęstość ładunku λ równą ilości ładunku przypadającego na jednostkę długości pręta λ = Q/l. Ze względu na symetrię układu jako powierzchnię Gaussa wybierzmy walec (oczywiście można wybrać dowolny kształt) o promieniu r większym od promienia pręta R bo chcemy policzyć pole na zewnątrz pręta. Z prawa Gaussa: Ze względu na symetrię pole elektryczne E jest skierowane radialnie względem pręta, tzn. jest prostopadłe do bocznej powierzchni walca (powierzchni Gaussa). Strumień pola E przez podstawy walca jest więc równy zeru bo E leży na powierzchni. Ponadto pole elektryczne ma taką samą wartość w każdym punkcie powierzchni bocznej walca więc spełnione jest równanie stąd 13

14 Pole wewnątrz jednorodnie naładowanego pręta. Ponownie wybieramy powierzchnię Gaussa w kształcie walca ale o promieniu r < R. Wprowadzamy gęstość objętościową ładunku ρ równą ładunkowi przypadającemu na jednostkę objętości. Możemy teraz zapisać ładunek zamknięty wewnątrz powierzchni Gaussa Z prawa Gaussa otrzymujemy Stąd Pole rośnie liniowo w miarę oddalania się od środka pręta. Płaskie rozkłady ładunków Teraz obliczymy pole od nieskończonej, jednorodnie naładowanej płaszczyzny. W tym celu wprowadzamy powierzchniową gęstość ładunku σ równą ilości ładunku przypadającego na jednostkę powierzchni. Powierzchnię Gaussa wybieramy na przykład w postaci walca takiego jak na rysunku Ładunek otoczony przez powierzchnię Gaussa jest równy Q wewn. = σs, gdzie σ jest gęstością powierzchniową, a S powierzchnią podstawy walca. Z symetrii wynika, że pole E jest prostopadłe do płaszczyzny więc nie przecina bocznej powierzchni walca (strumień przez boczną powierzchnię jest równy zeru). Z prawa Gaussa otrzymujemy dla 2 podstaw walca stąd 14

15 Układ dwóch płaskich równoległych płyt naładowanych ładunkami jednakowej wielkości ale o przeciwnych znakach (kondensator płaski). Pole między równoległymi płytami naładowanymi ładunkami tej samej wielkości ale o przeciwnych znakach Pole wytwarzane przez płytę naładowaną ładunkiem dodatnim jest równe E + = σ/2ε 0 i skierowane od płyty. Natomiast pole wytwarzane przez płytę naładowaną ujemnie ma tę samą wartość E - = σ/2ε 0 ale skierowane jest do płyty. Zatem w obszarze (I) w obszarze (II) a w obszarze (III) Widzimy, że na zewnątrz układu pole jest równe zeru a pomiędzy płytami ma w każdym punkcie stałą wartość σ/ε 0. Takie pole nazywamy polem jednorodnym. Powierzchnia przewodnika Sytuacja jest inna jeżeli naładowana powierzchnia stanowi część powierzchni przewodnika na przykład tak jak na rysunku Ponieważ cały ładunek gromadzi się na zewnętrznej powierzchni to wewnątrz pole E = 0. E musi być prostopadłe do powierzchni bo gdyby istniała składowa styczna do powierzchni to elektrony poruszałyby się po niej. Ponownie, jak w przypadku nieskończonej naładowanej płaszczyzny wybieramy powierzchnię Gaussa w kształcie walca, ale tym razem linie pole wychodzą tylko przez jedną podstawę walca S, na zewnątrz. Z prawa Gaussa wynika, że więc na powierzchni przewodnika. 15

16 Potencjał elektryczny. Energia potencjalna w polu elektrycznym Różnica energii potencjalnej E p pomiędzy punktami A i B jest równa pracy (ze znakiem minus) wykonanej przez siłę zachowawczą przy przemieszczaniu ciała od A do B i wynosi Dla pola elektrycznego energia potencjalna wynosi gdzie E jest natężeniem pola elektrycznego. Siły elektryczne są siłami zachowawczymi i wartość pracy nie zależy od wyboru drogi pomiędzy punktami A i B. Jeżeli przyjmiemy, że energia potencjalna pola elektrycznego jest równa zeru w nieskończoności to wówczas energia potencjalna w danym punkcie r pola elektrycznego jest dana wyrażeniem Jeżeli źródłem pola elektrycznego jest ładunek punktowy Q to energia potencjalna w odległości r od niego jest równa Ep ładunku w polu elektrycznym zależy od wielkości tego ładunku. Potencjał elektryczny definiujemy jako energię potencjalną pola elektrycznego podzieloną przez jednostkowy ładunek Jednostką potencjału elektrycznego jest wolt (V); 1 V = 1 J/C. Potencjał pola ładunku punktowego Q możemy zapisać: 16

17 Potencjał określa pracę potrzebną do przeniesienia jednostkowego ładunku z nieskończoności na odległość r od ładunku Q. Hharakteryzuje pole elektryczne; a nie zależy od umieszczonego w nim ładunku. Różnica potencjałów: napięcie (U) Różnica potencjałów między dwoma punktami A i B jest równa pracy potrzebnej do przeniesienia w polu elektrycznym ładunku jednostkowego (próbnego) q pomiędzy tymi punktami Znak minus odzwierciedla fakt, że potencjał maleje w kierunku wektora E. Potencjał elektryczny można przedstawialiśmy graficznie. W tym celu rysujemy powierzchnie lub linie ekwipotencjalne, które przedstawiają w przestrzeni zbiory punktów o jednakowym potencjale. Przykład - rozkład potencjału, na płaszczyźnie xy, wokół dipola elektrycznego. Kolorem czerwonym zaznaczono wybrane linie łączące punkty o jednakowym potencjale - linie ekwipotencjalne (każda krzywa odpowiada innej stałej wartości potencjału). Na podstawie wielkości zmiany potencjału, przypadającej na jednostkę długości w danym kierunku możemy określić natężenie pola elektrycznego E w tym kierunku. Warunek ten (we współrzędnych x, y, z) wyraża się następująco Możemy więc przy pomocy obliczania pochodnych cząstkowych z wielkości skalarnej (potencjału V) otrzymać składowe wielkości wektorowej (pola E) w dowolnym punkcie przestrzeni: Im większa (mniejsza) zmiana potencjału na jednostkę długości tym większe (mniejsze) pole elektryczne w danym kierunku. Znak minus odzwierciedla fakt, że wektor E jest skierowany w stronę malejącego potencjału. 17

18 Kierunek pola elektrycznego w dowolnym punkcie odpowiada kierunkowi wzdłuż którego potencjał spada najszybciej co oznacza, że linie sił pola są prostopadłe do powierzchni (linii) ekwipotencjalnych. Powierzchnie ekwipotencjalne (linie czerwone) i linie sił pola (linie niebieskie): (a) ładunku punktowego, (b) dipola elektrycznego; linie ekwipotencjalne oznaczają przecięcia powierzchni ekwipotencjalnych z płaszczyzną rysunku Jeżeli pole E wzdłuż powierzchni przewodnika równa się zeru to różnica potencjałów też równa się zeru V = 0. Oznacza to, że Powierzchnia każdego przewodnika w stanie ustalonym jest powierzchnią stałego potencjału (powierzchnią ekwipotencjalną). 18

19 Prąd elektryczny ruch ładunków Na podstawie ruchu ładunków w metalicznych przewodnikach takich jak na przykład drut miedziany. Nośnikami ładunku w metalu są poruszające się swobodnie (nie związane z poszczególnymi atomami) elektrony tzw. elektrony przewodnictwa. Bez pola elektrycznego te elektrony poruszają się (dzięki energii cieplnej) przypadkowo we wszystkich kierunkach. Elektrony swobodne zderzają się z atomami (jonami) przewodnika zmieniając swoją prędkość i kierunek ruchu zupełnie tak jak cząsteczki gazu zamknięte w zbiorniku. Jeżeli rozpatrzymy przekrój poprzeczny S przewodnika, to elektrony w swoim chaotycznym ruchu cieplnym przechodzą przez tę powierzchnię w obu kierunkach i wypadkowy strumień ładunków przez tę powierzchnię jest równy zeru. Przez przewodnik nie płynie prąd. Ruchowi chaotycznemu nie towarzyszy przepływ prądu. Prąd elektryczny to uporządkowany ruch ładunków. Przyłożenie napięcia U (różnicy potencjałów V) pomiędzy końcami przewodnika wytwarza pole elektryczne E, które działa siłą na ładunki, powodując ich ruch w określonym kierunku w przewodniku. Ruch chaotyczny każdego elektronu zostaje zmodyfikowany. W przewodniku płynie prąd elektryczny. Chaotyczny ruch cieplny elektronów (strzałki niebieskie) i uporządkowany ruch elektronów w polu elektrycznym (strzałki czerwone) Przepływ prądu przez przewodnik jest opisywany przez natężenia prądu: Natężenie prądu elektrycznego definiujemy jako ilość ładunku jaka przepływa przez przekrój poprzeczny przewodnika w jednostce czasu Jednostką natężenie prądu jest amper (A); 1A = 1C/s. Gęstość prądu elektrycznego definiowana jest jako natężenie prądu na jednostkę powierzchni przekroju poprzecznego przewodnika. Za umowny kierunek prądu przyjmujemy kierunek ruchu ładunków dodatnich. 19

20 W nieobecności zewnętrznego pola elektrycznego swobodne elektrony w metalu poruszają się chaotycznie we wszystkich kierunkach. W zewnętrznym polu elektrycznym elektrony uzyskują średnią prędkość unoszenia v u. Jeżeli n jest koncentracją elektronów to ilość ładunku Q jaka przepływa przez przewodnik o długości l i przekroju poprzecznym S w czasie t = l/v u wynosi gdzie iloczyn ls jest objętością przewodnika. Natężenie prądu wynosi więc gdzie ρ jest gęstością ładunku. a gęstość prądu Prawo Ohma Stosunek napięcia przyłożonego do przewodnika do natężenia prądu przepływającego przez ten przewodnik jest stały i nie zależy ani od napięcia ani od natężenia prądu. Iloraz nazywamy oporem elektrycznym. Jednostką oporu jest ohm (Ω); 1Ω = 1V/A Prawo Ohma jest słuszne pod warunkiem, że przewodnik znajduje się w stałej temperaturze. Opór przewodnika zależy od jego wymiarów; opór R jest proporcjonalny do długości przewodnika l i odwrotnie proporcjonalny do jego przekroju S. Stałą ρ, charakteryzującą elektryczne własności materiału, nazywamy oporem właściwym (rezystywnością), a jej odwrotność σ = 1/ρ przewodnością właściwą. Jednostką przewodności elektrycznej właściwej jest 1Ω -1 m

21 Praca i moc prądu. Opory właściwe wybranych materiałów (w temperaturze pokojowej) metal, półprzewodnik, izolator Materiał Opór właściwy Ωm srebro miedź glin wolfram platyna krzem szkło Na rysunku 21.3 pokazany jest najprostszy obwód elektryczny składający się ze źródła prądu (np. baterii) oraz z dowolnego odbiornika energii elektrycznej takiego jak żarówka, grzejnik, silnik elektryczny, komputer itp. Jeżeli przez odbiornik przepływa prąd o natężeniu I, a napięcie na odbiorniku wynosi U to zmiana energii potencjalnej ładunku dq przepływającego przez odbiornik (od punktu A do B) wynosi Dzieląc obie strony równania przez dt otrzymujemy wzór, który przedstawia szybkość zmian energii elektrycznej czyli moc prądu elektrycznego Energia potencjalna ładunku przepływającego przez odbiornik maleje bo potencjał punktu A (połączonego z dodatnim biegunem baterii) jest wyższy niż punktu B (połączonego z ujemnym biegunem baterii). Ta tracona energia jest przekształcana w inny rodzaj energii w zależności od typu odbiornika. 21

22 Prawa Kirchoffa W praktyce mamy do czynienia z bardziej złożonymi obwodami elektrycznymi zawierającymi rozgałęzienia i większą liczbę źródeł. Wówczas przy znajdowaniu prądów i napięć posługujemy się prawami Kirchhoffa. Pierwsze prawo Kirchhoffa: Twierdzenie o punkcie rozgałęzienia. Algebraiczna suma natężeń prądów przepływających przez punkt rozgałęzienia (węzeł) jest równa zeru Drugie prawo Kirchhoffa: Twierdzenie o obwodzie zamkniętym. Algebraiczna suma sił elektromotorycznych i przyrostów napięć w dowolnym obwodzie zamkniętym jest równa zeru (spadek napięcia jest przyrostem ujemnym napięcia) Twierdzenie o obwodzie zamkniętym jest wynikiem zasady zachowania energii, a twierdzenie o punkcie rozgałęzienia wynika z zasady zachowania ładunku. Przy stosowaniu praw Kirchhoffa zakładamy jakiś kierunek prądu i jego natężenie w każdej gałęzi. Spadek napięcia pojawia się gdy "przechodzimy" przez opornik w kierunku zgodnym z przyjętym kierunkiem prądu, a przyrost napięcia gdy przechodzimy przez źródło SEM w kierunku od "-" do "+". Jeżeli w wyniku obliczeń otrzymamy ujemne natężenie prądu to znaczy, że rzeczywisty kierunek prądu jest przeciwny do przyjętego. 22

23 23

Wymiana ciepła. Ładunek jest skwantowany. q=n. e gdzie n = ±1, ±2, ±3 [1C = 6, e] e=1, C

Wymiana ciepła. Ładunek jest skwantowany. q=n. e gdzie n = ±1, ±2, ±3 [1C = 6, e] e=1, C Wymiana ciepła Ładunek jest skwantowany ładunek elementarny ładunek pojedynczego elektronu (e). Każdy ładunek q (dodatni lub ujemny) jest całkowitą wielokrotnością jego bezwzględnej wartości. q=n. e gdzie

Bardziej szczegółowo

Podstawy fizyki wykład 8

Podstawy fizyki wykład 8 Podstawy fizyki wykład 8 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Ładunek elektryczny Grecy ok. 600 r p.n.e. odkryli, że bursztyn potarty o wełnę przyciąga inne (drobne) przedmioty. słowo

Bardziej szczegółowo

Elektrostatyka ŁADUNEK. Ładunek elektryczny. Dr PPotera wyklady fizyka dosw st podypl. n p. Cząstka α

Elektrostatyka ŁADUNEK. Ładunek elektryczny. Dr PPotera wyklady fizyka dosw st podypl. n p. Cząstka α Elektrostatyka ŁADUNEK elektron: -e = -1.610-19 C proton: e = 1.610-19 C neutron: 0 C n p p n Cząstka α Ładunek elektryczny Ładunek jest skwantowany: Jednostką ładunku elektrycznego w układzie SI jest

Bardziej szczegółowo

Ładunki elektryczne i siły ich wzajemnego oddziaływania. Pole elektryczne. Copyright by pleciuga@ o2.pl

Ładunki elektryczne i siły ich wzajemnego oddziaływania. Pole elektryczne. Copyright by pleciuga@ o2.pl Ładunki elektryczne i siły ich wzajemnego oddziaływania Pole elektryczne Copyright by pleciuga@ o2.pl Ładunek punktowy Ładunek punktowy (q) jest to wyidealizowany model, który zastępuje rzeczywiste naelektryzowane

Bardziej szczegółowo

Materiały pomocnicze 10 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej

Materiały pomocnicze 10 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej Materiały pomocnicze 10 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Siła Coulomba. F q q = k r 1 = 1 4πεε 0 q q r 1. Pole elektrostatyczne. To przestrzeń, w której na ładunek

Bardziej szczegółowo

Ładunek elektryczny. Ładunek elektryczny jedna z własności cząstek elementarnych

Ładunek elektryczny. Ładunek elektryczny jedna z własności cząstek elementarnych Ładunek elektryczny Ładunek elektryczny jedna z własności cząstek elementarnych http://pl.wikipedia.org/wiki/%c5%81a dunek_elektryczny ładunki elektryczne o takich samych znakach się odpychają a o przeciwnych

Bardziej szczegółowo

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne......................

Bardziej szczegółowo

Elektrostatyka. Potencjał pola elektrycznego Prawo Gaussa

Elektrostatyka. Potencjał pola elektrycznego Prawo Gaussa Elektrostatyka Potencjał pola elektrycznego Prawo Gaussa 1 Potencjał pola elektrycznego Energia potencjalna zależy od (ładunek próbny) i Q (ładunek który wytwarza pole), ale wielkość definiowana jako:

Bardziej szczegółowo

Ładunki elektryczne. q = ne. Zasada zachowania ładunku. Ładunek jest cechąciała i nie można go wydzielićz materii. Ładunki jednoimienne odpychają się

Ładunki elektryczne. q = ne. Zasada zachowania ładunku. Ładunek jest cechąciała i nie można go wydzielićz materii. Ładunki jednoimienne odpychają się Ładunki elektryczne Ładunki jednoimienne odpychają się Ładunki różnoimienne przyciągają się q = ne n - liczba naturalna e = 1,60 10-19 C ładunek elementarny Ładunek jest cechąciała i nie można go wydzielićz

Bardziej szczegółowo

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne....................

Bardziej szczegółowo

Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics)

Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics) Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics) Koniec XIX / początek XX wieku Lata 90-te XIX w.: odkrycie elektronu (J. J. Thomson, promienie katodowe), promieniowania Roentgena

Bardziej szczegółowo

ELEKTRONIKA ELM001551W

ELEKTRONIKA ELM001551W ELEKTRONIKA ELM001551W Podstawy elektrotechniki i elektroniki Definicje prądu elektrycznego i wielkości go opisujących: natężenia, gęstości, napięcia. Zakres: Oznaczenia wielkości fizycznych i ich jednostek,

Bardziej szczegółowo

Q t lub precyzyjniej w postaci różniczkowej. dq dt Jednostką natężenia prądu jest amper oznaczany przez A.

Q t lub precyzyjniej w postaci różniczkowej. dq dt Jednostką natężenia prądu jest amper oznaczany przez A. Prąd elektryczny Dotychczas zajmowaliśmy się zjawiskami związanymi z ładunkami spoczywającymi. Obecnie zajmiemy się zjawiskami zachodzącymi podczas uporządkowanego ruchu ładunków, który często nazywamy

Bardziej szczegółowo

Dielektryki polaryzację dielektryka Dipole trwałe Dipole indukowane Polaryzacja kryształów jonowych

Dielektryki polaryzację dielektryka Dipole trwałe Dipole indukowane Polaryzacja kryształów jonowych Dielektryki Dielektryk- ciało gazowe, ciekłe lub stałe niebędące przewodnikiem prądu elektrycznego (ładunki elektryczne wchodzące w skład każdego ciała są w dielektryku związane ze sobą) Jeżeli do dielektryka

Bardziej szczegółowo

1 K A T E D R A F I ZYKI S T O S O W AN E J

1 K A T E D R A F I ZYKI S T O S O W AN E J 1 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A P O D S T A W E L E K T R O T E C H N I K I I E L E K T R O N I K I Ćw. 1. Łączenie i pomiar oporu Wprowadzenie Prąd elektryczny Jeżeli w przewodniku

Bardziej szczegółowo

Strumień Prawo Gaussa Rozkład ładunku Płaszczyzna Płaszczyzny Prawo Gaussa i jego zastosowanie

Strumień Prawo Gaussa Rozkład ładunku Płaszczyzna Płaszczyzny Prawo Gaussa i jego zastosowanie Problemy elektrodynamiki. Prawo Gaussa i jego zastosowanie przy obliczaniu pól ładunku rozłożonego w sposób ciągły. I LO im. Stefana Żeromskiego w Lęborku 19 marca 2012 Nowe spojrzenie na prawo Coulomba

Bardziej szczegółowo

STAŁY PRĄD ELEKTRYCZNY

STAŁY PRĄD ELEKTRYCZNY STAŁY PRĄD ELEKTRYCZNY Natężenie prądu elektrycznego Wymuszenie w przewodniku różnicy potencjałów powoduje przepływ ładunków elektrycznych. Powszechnie przyjmuje się, że przepływający prąd ma taki sam

Bardziej szczegółowo

Potencjalne pole elektrostatyczne. Przypomnienie

Potencjalne pole elektrostatyczne. Przypomnienie Potencjalne pole elektrostatyczne Wszystkie rysunki i animacje zaczerpnięto ze strony http://webmitedu/802t/www/802teal3d/visualizations/electrostatics/indexhtm Tekst jest wolnym tłumaczeniem pliku guide03pdf

Bardziej szczegółowo

Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI.

Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI. Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI. 1. Ładunki q 1 =3,2 10 17 i q 2 =1,6 10 18 znajdują się w próżni

Bardziej szczegółowo

Wykład 2. POLE ELEKTROMEGNETYCZNE:

Wykład 2. POLE ELEKTROMEGNETYCZNE: Wykład 2. POLE ELEKTROMEGNETYCZNE: Ładunek elektryczny Ładunki elektryczne: -dodatnie i ujemne - skwantowane, czyli że mają pewną najmniejszą wartość, której nie można już dalej podzielić. Nie można ładunków

Bardziej szczegółowo

Wykład 8 ELEKTROMAGNETYZM

Wykład 8 ELEKTROMAGNETYZM Wykład 8 ELEKTROMAGNETYZM Równania Maxwella dive = ρ εε 0 prawo Gaussa dla pola elektrycznego divb = 0 rote = db dt prawo Gaussa dla pola magnetycznego prawo indukcji Faradaya rotb = μμ 0 j + εε 0 μμ 0

Bardziej szczegółowo

Elektrostatyka. Prawo Coulomba Natężenie pola elektrycznego Energia potencjalna pola elektrycznego

Elektrostatyka. Prawo Coulomba Natężenie pola elektrycznego Energia potencjalna pola elektrycznego Elektrostatyka Prawo Coulomba Natężenie pola elektrycznego Energia potencjalna pola elektrycznego 1 Prawo Coulomba odpychanie naelektryzowane szkło nie-naelektryzowana miedź F 1 4 0 q 1 q 2 r 2 0 8.85

Bardziej szczegółowo

Fizyka 2 Wróbel Wojciech. w poprzednim odcinku

Fizyka 2 Wróbel Wojciech. w poprzednim odcinku Fizyka w poprzednim odcinku Obliczanie natężenia pola Fizyka Wyróżniamy ładunek punktowy d Wektor natężenia pola d w punkcie P pochodzący od ładunku d Suma składowych x-owych wektorów d x IĄGŁY ROZKŁAD

Bardziej szczegółowo

FIZYKA 2. Janusz Andrzejewski

FIZYKA 2. Janusz Andrzejewski FIZYKA 2 wykład 3 Janusz Andrzejewski Prąd elektryczny Prąd elektryczny to uporządkowany ruch swobodnych ładunków. Ruchowi chaotycznemu nie towarzyszy przepływ prądu. Strzałki szare - to nieuporządkowany(chaotyczny)

Bardziej szczegółowo

Badanie rozkładu pola elektrycznego

Badanie rozkładu pola elektrycznego Ćwiczenie 8 Badanie rozkładu pola elektrycznego 8.1. Zasada ćwiczenia W wannie elektrolitycznej umieszcza się dwie metalowe elektrody, połączone ze źródłem zmiennego napięcia. Kształt przekrojów powierzchni

Bardziej szczegółowo

Wykład 2. POLE ELEKTROMEGNETYCZNE:

Wykład 2. POLE ELEKTROMEGNETYCZNE: Wykład 2. POLE ELEKTROMEGNETYCZNE: Ładunek elektryczny Ładunki elektryczne: -dodatnie i ujemne - skwantowane, czyli że mają pewną najmniejszą wartość, której nie można już dalej podzielić. Nie można ładunków

Bardziej szczegółowo

Podstawy fizyki sezon 2 3. Prąd elektryczny

Podstawy fizyki sezon 2 3. Prąd elektryczny Podstawy fizyki sezon 2 3. Prąd elektryczny Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Prąd elektryczny

Bardziej szczegółowo

Lekcja 40. Obraz graficzny pola elektrycznego.

Lekcja 40. Obraz graficzny pola elektrycznego. Lekcja 40. Obraz graficzny pola elektrycznego. Polem elektrycznym nazywamy obszar, w którym na wprowadzony doń ładunek próbny q działa siła. Pole elektryczne występuje wokół ładunków elektrycznych i ciał

Bardziej szczegółowo

Prądem elektrycznym nazywamy uporządkowany ruch cząsteczek naładowanych.

Prądem elektrycznym nazywamy uporządkowany ruch cząsteczek naładowanych. Prąd elektryczny stały W poprzednim dziale (elektrostatyka) mówiliśmy o ładunkach umieszczonych na przewodnikach, ale na takich, które są odizolowane od otoczenia. W temacie o prądzie elektrycznym zajmiemy

Bardziej szczegółowo

Podstawy fizyki sezon 2 2. Elektrostatyka 2

Podstawy fizyki sezon 2 2. Elektrostatyka 2 Podstawy fizyki sezon 2 2. Elektrostatyka 2 Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Strumień wektora

Bardziej szczegółowo

Badanie rozkładu pola elektrycznego

Badanie rozkładu pola elektrycznego Ćwiczenie 8 Badanie rozkładu pola elektrycznego 8.1. Zasada ćwiczenia W wannie elektrolitycznej umieszcza się dwie metalowe elektrody, połączone ze źródłem zmiennego napięcia. Kształt przekrojów powierzchni

Bardziej szczegółowo

Czym jest prąd elektryczny

Czym jest prąd elektryczny Prąd elektryczny Ruch elektronów w przewodniku Wektor gęstości prądu Przewodność elektryczna Prawo Ohma Klasyczny model przewodnictwa w metalach Zależność przewodności/oporności od temperatury dla metali,

Bardziej szczegółowo

Fizyka 2 Wróbel Wojciech. w poprzednim odcinku

Fizyka 2 Wróbel Wojciech. w poprzednim odcinku w poprzednim odcinku 1 Model przewodnictwa metali Elektrony przewodnictwa dla metalu tworzą tzw. gaz elektronowy Elektrony poruszają się chaotycznie (ruchy termiczne), ulegają zderzeniom z atomami sieci

Bardziej szczegółowo

Potencjał pola elektrycznego

Potencjał pola elektrycznego Potencjał pola elektrycznego Pole elektryczne jest polem zachowawczym, czyli praca wykonana przy przesunięciu ładunku pomiędzy dwoma punktami nie zależy od tego po jakiej drodze przesuwamy ładunek. Spróbujemy

Bardziej szczegółowo

Elektrostatyczna energia potencjalna U

Elektrostatyczna energia potencjalna U Elektrostatyczna energia potencjalna U Żeby zbliżyć do siebie dwa ładunki jednoimienne trzeba wykonać pracę przeciwko siłom pola nadając ładunkowi energię potencjalną. Podobnie trzeba wykonać pracę przeciwko

Bardziej szczegółowo

Podstawy fizyki sezon 2 3. Prąd elektryczny

Podstawy fizyki sezon 2 3. Prąd elektryczny Podstawy fizyki sezon 2 3. Prąd elektryczny Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Prąd elektryczny

Bardziej szczegółowo

Ładunek elektryczny. Zastosowanie równania Laplace a w elektro- i magnetostatyce. Joanna Wojtal. Wprowadzenie. Podstawowe cechy pól siłowych

Ładunek elektryczny. Zastosowanie równania Laplace a w elektro- i magnetostatyce. Joanna Wojtal. Wprowadzenie. Podstawowe cechy pól siłowych 6 czerwca 2013 Ładunek elektryczny Ciała fizyczne mogą być obdarzone (i w znacznej większości faktycznie są) ładunkiem elektrycznym. Ładunek ten może być dodatni lub ujemny. Kiedy na jednym ciele zgromadzonych

Bardziej szczegółowo

Wykład FIZYKA II. 2. Prąd elektryczny. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA II. 2. Prąd elektryczny.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA II 2. Prąd elektryczny Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ UCH ŁADUNKÓW Elektrostatyka zajmowała się ładunkami

Bardziej szczegółowo

Pole elektromagnetyczne

Pole elektromagnetyczne Pole elektromagnetyczne Pole magnetyczne Strumień pola magnetycznego Jednostką strumienia magnetycznego w układzie SI jest 1 weber (1 Wb) = 1 N m A -1. Zatem, pole magnetyczne B jest czasem nazywane gęstością

Bardziej szczegółowo

Rozdział 22 Pole elektryczne

Rozdział 22 Pole elektryczne Rozdział 22 Pole elektryczne 1. NatęŜenie pola elektrycznego jest wprost proporcjonalne do A. momentu pędu ładunku próbnego B. energii kinetycznej ładunku próbnego C. energii potencjalnej ładunku próbnego

Bardziej szczegółowo

Prąd elektryczny - przepływ ładunku

Prąd elektryczny - przepływ ładunku Prąd elektryczny - przepływ ładunku I Q t Natężenie prądu jest to ilość ładunku Q przepływającego przez dowolny przekrój przewodnika w ciągu jednostki czasu t. Dla prądu stałego natężenie prądu I jest

Bardziej szczegółowo

FIZYKA 2. Janusz Andrzejewski

FIZYKA 2. Janusz Andrzejewski FIZYKA 2 wykład 3 Janusz Andrzejewski Prawo Coulomba a prawo Newtona Janusz Andrzejewski 2 Natężenie i potencjał pola elektrycznego A q A B q A D q A C q A q 0 D B C A E E E E r r r r 0 0 + + + + + + D

Bardziej szczegółowo

Prąd elektryczny 1/37

Prąd elektryczny 1/37 Prąd elektryczny 1/37 Prąd elektryczny Prądem elektrycznym w przewodniku metalowym nazywamy uporządkowany ruch elektronów swobodnych pod wpływem sił pola elektrycznego. Prąd elektryczny może również płynąć

Bardziej szczegółowo

POLE ELEKTRYCZNE PRAWO COULOMBA

POLE ELEKTRYCZNE PRAWO COULOMBA POLE ELEKTRYCZNE PRAWO COULOMBA gdzie: Q, q ładunki elektryczne wyrażone w kulombach [C] r - odległość między ładunkami Q i q wyrażona w [m] ε - przenikalność elektryczna bezwzględna środowiska, w jakim

Bardziej szczegółowo

Elektrostatyka. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Elektrostatyka. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Elektrostatyka Projekt współfinansowany przez Unię Europejską w ramach Europejskiego unduszu Społecznego Ładunek elektryczny Materia zbudowana jest z atomów. Atom składa się z dodatnie naładowanego jądra

Bardziej szczegółowo

MECHANIKA II. Praca i energia punktu materialnego

MECHANIKA II. Praca i energia punktu materialnego MECHANIKA II. Praca i energia punktu materialnego Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/ daniel.lewandowski@pwr.edu.pl

Bardziej szczegółowo

Linie sił pola elektrycznego

Linie sił pola elektrycznego Wykład 5 5.6. Linie sił pola elektrycznego Pamiętamy, że we wzorze (5.) określiliśmy natężenie pola elektrycznego przy pomocy ładunku próbnego q 0, którego wielkość dążyła do zera. Robiliśmy to po to,

Bardziej szczegółowo

POWTÓRKA PRZED KONKURSEM CZĘŚĆ 14 ZADANIA ZAMKNIĘTE

POWTÓRKA PRZED KONKURSEM CZĘŚĆ 14 ZADANIA ZAMKNIĘTE DO ZDOBYCIA PUNKTÓW 50 POWTÓRKA PRZED KONKURSEM CZĘŚĆ 14 Jest to powtórka przed etapem rejonowym (głównie elektrostatyka). ZADANIA ZAMKNIĘTE łącznie pkt. zamknięte otwarte SUMA zadanie 1 1 pkt Po włączeniu

Bardziej szczegółowo

Rozdział 1. Pole elektryczne i elektrostatyka

Rozdział 1. Pole elektryczne i elektrostatyka Rozdział 1. Pole elektryczne i elektrostatyka 2018 Spis treści Ładunek elektryczny Prawo Coulomba Pole elektryczne Prawo Gaussa Zastosowanie prawa Gaussa: Izolowany przewodnik Zastosowanie prawa Gaussa:

Bardziej szczegółowo

ŁADUNEK I MATERIA Ładunki elektryczne są ściśle związane z atomową budową materii. Materia składa się z trzech rodzajów cząstek elementarnych:

ŁADUNEK I MATERIA Ładunki elektryczne są ściśle związane z atomową budową materii. Materia składa się z trzech rodzajów cząstek elementarnych: POLE ELEKTRYCZNE Ładunek i materia Ładunek elementarny. Zasada zachowania ładunku Prawo Coulomba Elektryzowanie ciał Pole elektryczne i pole zachowawcze Natężenie i strumień pola elektrycznego Prawo Gaussa

Bardziej szczegółowo

Pole elektryczne. Zjawiska elektryczne często opisujemy za pomocą pojęcia pola elektrycznego wytwarzanego przez ładunek w otaczającej go przestrzeni.

Pole elektryczne. Zjawiska elektryczne często opisujemy za pomocą pojęcia pola elektrycznego wytwarzanego przez ładunek w otaczającej go przestrzeni. Pole elektryczne Zjawiska elektryczne często opisujemy za pomocą pojęcia pola elektrycznego wytwarzanego przez ładunek w otaczającej go przestrzeni. Załóżmy pewien rozkład nieruchomych ładunków 1,...,

Bardziej szczegółowo

RÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego?

RÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego? RÓWNANIA MAXWELLA Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego? Wykład 3 lato 2012 1 Doświadczenia Wykład 3 lato 2012 2 1

Bardziej szczegółowo

Przepływ prądu przez przewodnik. jest opisane przez natężenie prądu. Przez przewodnik nie płynie prąd.

Przepływ prądu przez przewodnik. jest opisane przez natężenie prądu. Przez przewodnik nie płynie prąd. PRĄD ELEKTRYCZNY - Przez przewodnik nie płynie prąd. Przepływ prądu przez przewodnik E Gdy E = 0. Elektrony poruszają się (dzięki energii cieplnej) przypadkowo we wszystkich kierunkach. Elektrony swobodne

Bardziej szczegółowo

Energia potencjalna pola elektrostatycznego ładunku punktowego

Energia potencjalna pola elektrostatycznego ładunku punktowego Energia potencjalna pola elektrostatycznego ładunku punktowego Wszystkie rysunki i animacje zaczerpnięto ze strony http://web.mit.edu/8.02t/www/802teal3d/visualizations/electrostatics/index.htm. Tekst

Bardziej szczegółowo

Podstawy elektrotechniki V1. Na potrzeby wykładu z Projektowania systemów pomiarowych

Podstawy elektrotechniki V1. Na potrzeby wykładu z Projektowania systemów pomiarowych Podstawy elektrotechniki V1 Na potrzeby wykładu z Projektowania systemów pomiarowych 1 Elektrotechnika jest działem nauki zajmującym się podstawami teoretycznymi i zastosowaniami zjawisk fizycznych z dziedziny

Bardziej szczegółowo

Wyznaczanie wielkości oporu elektrycznego różnymi metodami

Wyznaczanie wielkości oporu elektrycznego różnymi metodami Wyznaczanie wielkości oporu elektrycznego różnymi metodami Obowiązkowa znajomość zagadnień: Co to jest prąd elektryczny, napięcie i natężenie prądu? Co to jest opór elektryczny i od czego zależy? Prawo

Bardziej szczegółowo

Rozdział 2. Prąd elektryczny

Rozdział 2. Prąd elektryczny Rozdział 2. Prąd elektryczny 2018 Spis treści Natężenie prądu elektrycznego Prawo Ohma Praca i moc prądu elektrycznego, straty cieplne Siła elektromotoryczna, prawo Ohma dla obwodu zamkniętego Prawa Kirchhoffa

Bardziej szczegółowo

4.1.1 Elektryzowanie ciał. Zasada zachowania ładunku

4.1.1 Elektryzowanie ciał. Zasada zachowania ładunku Rozdział 4 Pole elektryczne 4.1 Ładunki elektryczne 4.1.1 Elektryzowanie ciał. Zasada zachowania ładunku W niniejszym rozdziale zostaną przedstawione wybrane zagadnienia elektrostatyki. Elektrostatyka

Bardziej szczegółowo

Wyprowadzenie prawa Gaussa z prawa Coulomba

Wyprowadzenie prawa Gaussa z prawa Coulomba Wyprowadzenie prawa Gaussa z prawa Coulomba Natężenie pola elektrycznego ładunku punktowego q, umieszczonego w początku układu współrzędnych (czyli prawo Coulomba): E = Otoczmy ten ładunek dowolną powierzchnią

Bardziej szczegółowo

Pojęcie ładunku elektrycznego

Pojęcie ładunku elektrycznego Elektrostatyka Trochę historii Zjawisko elektryzowania się niektórych ciał było znane już w starożytności. O zjawisku przyciągania drobnych, lekkich ciał przez potarty suknem bursztyn wspomina Tales z

Bardziej szczegółowo

kondensatory Jednostkę pojemności [Q/V] przyjęto nazywać faradem i oznaczać literą F.

kondensatory Jednostkę pojemności [Q/V] przyjęto nazywać faradem i oznaczać literą F. Pojemność elektryczna i kondensatory Umieśćmy na przewodniku ładunek. Przyjmijmy zero potencjału w nieskończoności. Potencjał przewodnika jest proporcjonalny do ładunku (dlaczego?). Współczynnik proporcjonalności

Bardziej szczegółowo

Strumień pola elektrycznego

Strumień pola elektrycznego Powierzchnia Gaussa Właściwości : - jest to powierzchnia hipotetyczna matematyczna konstrukcja myślowa, - jest dowolną powierzchnią zamkniętą w praktyce powinna mieć kształt związany z symetrią pola, -

Bardziej szczegółowo

Natężenie prądu elektrycznego

Natężenie prądu elektrycznego Natężenie prądu elektrycznego Wymuszenie w przewodniku różnicy potencjałów powoduje przepływ ładunków elektrycznych. Powszechnie przyjmuje się, że przepływający prąd ma taki sam kierunek jak przepływ ładunków

Bardziej szczegółowo

Wykład 17 Izolatory i przewodniki

Wykład 17 Izolatory i przewodniki Wykład 7 Izolatory i przewodniki Wszystkie ciała możemy podzielić na przewodniki i izolatory albo dielektryki. Przewodnikami są wszystkie metale, roztwory kwasów i zasad, roztopione soli, nagrzane gazy

Bardziej szczegółowo

Pole przepływowe prądu stałego

Pole przepływowe prądu stałego Podstawy elektromagnetyzmu Wykład 5 Pole przepływowe prądu stałego Czym jest prąd elektryczny? Prąd elektryczny: uporządkowany ruch ładunku. Prąd elektryczny w metalach Lity metalowy przewodnik zawiera

Bardziej szczegółowo

POLE MAGNETYCZNE. Magnetyczna siła Lorentza Prawo Ampere a

POLE MAGNETYCZNE. Magnetyczna siła Lorentza Prawo Ampere a POLE MAGNETYCZNE Magnetyczna siła Lorentza Prawo Ampere a 1 Doświadczenie Oersteda W 18 r. Hans C. Oersted odkrywa niezwykle interesujące zjawisko. Przepuszczając prąd elektryczny nad igiełką magnetyczną,

Bardziej szczegółowo

średnia droga swobodna L

średnia droga swobodna L PĄD STAŁY. Na czym polega przepływ prądu elektrycznego. Natężenie prądu i opór; źródła oporu elektrycznego 3. Prawo Ohma; temperaturowa zależność oporu elektrycznego 4. Siła elektromotoryczna 5. Prawa

Bardziej szczegółowo

Pole magnetyczne magnesu w kształcie kuli

Pole magnetyczne magnesu w kształcie kuli napisał Michał Wierzbicki Pole magnetyczne magnesu w kształcie kuli Rozważmy kulę o promieniu R, wykonaną z materiału ferromagnetycznego o stałej magnetyzacji M = const, skierowanej wzdłuż osi z. Gęstość

Bardziej szczegółowo

ĆWICZENIE 31 MOSTEK WHEATSTONE A

ĆWICZENIE 31 MOSTEK WHEATSTONE A 1 Maria Nowotny-Różańska Zakład Fizyki, Uniwersytet Rolniczy do użytku wewnętrznego ĆWICZENIE 31 MOSTEK WHEATSTONE A Kraków, 2016 Spis Treści: I. CZĘŚĆ TEORETYCZNA... 2 ŁADUNEK ELEKTRYCZNY... 2 PRAWO COULOMBA...

Bardziej szczegółowo

Powtórzenie wiadomości z klasy II. Przepływ prądu elektrycznego. Obliczenia.

Powtórzenie wiadomości z klasy II. Przepływ prądu elektrycznego. Obliczenia. Powtórzenie wiadomości z klasy II Przepływ prądu elektrycznego. Obliczenia. Prąd elektryczny 1. Prąd elektryczny uporządkowany (ukierunkowany) ruch cząstek obdarzonych ładunkiem elektrycznym, nazywanych

Bardziej szczegółowo

Strumień pola elektrycznego i prawo Gaussa

Strumień pola elektrycznego i prawo Gaussa Strumień pola elektrycznego i prawo Gaussa Ryszard J. Barczyński, 2010 2015 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Strumień pola

Bardziej szczegółowo

Odp.: F e /F g = 1 2,

Odp.: F e /F g = 1 2, Segment B.IX Pole elektrostatyczne Przygotował: mgr Adam Urbanowicz Zad. 1 W atomie wodoru odległość między elektronem i protonem wynosi około r = 5,3 10 11 m. Obliczyć siłę przyciągania elektrostatycznego

Bardziej szczegółowo

Podstawowe własności elektrostatyczne przewodników: Pole E na zewnątrz przewodnika jest prostopadłe do jego powierzchni

Podstawowe własności elektrostatyczne przewodników: Pole E na zewnątrz przewodnika jest prostopadłe do jego powierzchni KONDENSATORY Podstawowe własności elektrostatyczne przewodników: Natężenie pola wewnątrz przewodnika E = 0 Pole E na zewnątrz przewodnika jest prostopadłe do jego powierzchni Potencjał elektryczny wewnątrz

Bardziej szczegółowo

Podstawy fizyki sezon 2 2. Elektrostatyka 2

Podstawy fizyki sezon 2 2. Elektrostatyka 2 Podstawy fizyki sezon 2 2. Elektrostatyka 2 Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Zebranie faktów

Bardziej szczegółowo

Pole magnetyczne. Magnes wytwarza wektorowe pole magnetyczne we wszystkich punktach otaczającego go przestrzeni.

Pole magnetyczne. Magnes wytwarza wektorowe pole magnetyczne we wszystkich punktach otaczającego go przestrzeni. Pole magnetyczne Magnes wytwarza wektorowe pole magnetyczne we wszystkich punktach otaczającego go przestrzeni. naładowane elektrycznie cząstki, poruszające się w przewodniku w postaci prądu elektrycznego,

Bardziej szczegółowo

cz. 2. dr inż. Zbigniew Szklarski

cz. 2. dr inż. Zbigniew Szklarski Wykład 14: Pole magnetyczne cz.. dr inż. Zbigniew zklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.zklarski/ Prąd elektryczny jako źródło pola magnetycznego - doświadczenie Oersteda Kiedy przez

Bardziej szczegółowo

Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne

Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne W3. Zjawiska transportu Zjawiska transportu zachodzą gdy układ dąży do stanu równowagi. W zjawiskach

Bardziej szczegółowo

Wykład 18 Dielektryk w polu elektrycznym

Wykład 18 Dielektryk w polu elektrycznym Wykład 8 Dielektryk w polu elektrycznym Polaryzacja dielektryka Dielektryk (izolator), w odróżnieniu od przewodnika, nie posiada ładunków swobodnych zdolnych do przemieszczenia się na duże odległości.

Bardziej szczegółowo

Praca. Siły zachowawcze i niezachowawcze. Pole Grawitacyjne.

Praca. Siły zachowawcze i niezachowawcze. Pole Grawitacyjne. PRACA Praca. Siły zachowawcze i niezachowawcze. Pole Grawitacyjne. Rozważmy sytuację, gdy w krótkim czasie działająca siła spowodowała przemieszczenie ciała o bardzo małą wielkość Δs Wtedy praca wykonana

Bardziej szczegółowo

Oddziaływania. Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze.

Oddziaływania. Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze. Siły w przyrodzie Oddziaływania Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze. Występujące w przyrodzie rodzaje oddziaływań dzielimy na:

Bardziej szczegółowo

Elektrostatyka, cz. 1

Elektrostatyka, cz. 1 Podstawy elektromagnetyzmu Wykład 3 Elektrostatyka, cz. 1 Prawo Coulomba F=k q 1 q 2 r 2 1 q1 q 2 Notka historyczna: 1767: John Priestley - sugestia 1771: Henry Cavendish - eksperyment 1785: Charles Augustin

Bardziej szczegółowo

Fizyka współczesna. Zmienne pole magnetyczne a prąd. Zjawisko indukcji elektromagnetycznej Powstawanie prądu w wyniku zmian pola magnetycznego

Fizyka współczesna. Zmienne pole magnetyczne a prąd. Zjawisko indukcji elektromagnetycznej Powstawanie prądu w wyniku zmian pola magnetycznego Zmienne pole magnetyczne a prąd Zjawisko indukcji elektromagnetycznej Powstawanie prądu w wyniku zmian pola magnetycznego Zmienne pole magnetyczne a prąd Wnioski (które wyciągnęlibyśmy, wykonując doświadczenia

Bardziej szczegółowo

Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący:

Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący: Dynamika Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący: mamy ciało (zachowujące się jak punkt materialny) o znanych właściwościach (masa, ładunek itd.),

Bardziej szczegółowo

ELEKTROSTATYKA. Ze względu na właściwości elektryczne ciała dzielimy na przewodniki, izolatory i półprzewodniki.

ELEKTROSTATYKA. Ze względu na właściwości elektryczne ciała dzielimy na przewodniki, izolatory i półprzewodniki. ELEKTROSTATYKA Ładunkiem elektrycznym nazywamy porcję elektryczności. Ładunkiem elementarnym e nazywamy najmniejszą wartość ładunku zaobserwowaną w przyrodzie. Jego wartość jest równa wartości ładunku

Bardziej szczegółowo

Elektrostatyka. Już starożytni Grecy wiedzieli, że potarty o tkaninę bursztyn przyciąga drobne lekkie przedmioty.

Elektrostatyka. Już starożytni Grecy wiedzieli, że potarty o tkaninę bursztyn przyciąga drobne lekkie przedmioty. Elektrostatyka Już starożytni Grecy wiedzieli, że potarty o tkaninę bursztyn przyciąga drobne lekkie przedmioty. Pozostawało to odosobnioną ciekawostką aż do XVIw., kiedy Wlliam Gilbert wykazał, że podobną

Bardziej szczegółowo

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude Podstawy Elektrotechniki i Elektroniki Opracował: Mgr inż. Marek Staude Część 1 Podstawowe prawa obwodów elektrycznych Prąd elektryczny definicja fizyczna Prąd elektryczny powstaje jako uporządkowany ruch

Bardziej szczegółowo

MECHANIKA 2. Wykład Nr 3 KINEMATYKA. Temat RUCH PŁASKI BRYŁY MATERIALNEJ. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Wykład Nr 3 KINEMATYKA. Temat RUCH PŁASKI BRYŁY MATERIALNEJ. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 3 KINEMATYKA Temat RUCH PŁASKI BRYŁY MATERIALNEJ Prowadzący: dr Krzysztof Polko Pojęcie Ruchu Płaskiego Rys.1 Ruchem płaskim ciała sztywnego nazywamy taki ruch, w którym wszystkie

Bardziej szczegółowo

KONKURS FIZYCZNY CZĘŚĆ 3. Opracowanie Agnieszka Janusz-Szczytyńska

KONKURS FIZYCZNY CZĘŚĆ 3. Opracowanie Agnieszka Janusz-Szczytyńska KONKURS FIZYCZNY CZĘŚĆ 3 Opracowanie Agnieszka Janusz-Szczytyńska ZAGADNIENIA DO KONKURSU ETAP II Kolorem czerwonym zaznaczone są zagadnienia wykraczające poza program nauczania, na zielono zagadnienia,

Bardziej szczegółowo

cz.3 dr inż. Zbigniew Szklarski

cz.3 dr inż. Zbigniew Szklarski Wykład : lektrostatyka cz.3 dr inż. Zbigniew zklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.zklarski/ Przykłady Jaka musiałaby być powierzchnia okładki kondensatora płaskiego, aby, przy odległości

Bardziej szczegółowo

Indukcja magnetyczna pola wokół przewodnika z prądem. dr inż. Romuald Kędzierski

Indukcja magnetyczna pola wokół przewodnika z prądem. dr inż. Romuald Kędzierski Indukcja magnetyczna pola wokół przewodnika z prądem dr inż. Romuald Kędzierski Pole magnetyczne wokół pojedynczego przewodnika prostoliniowego Założenia wyjściowe: przez nieskończenie długi prostoliniowy

Bardziej szczegółowo

I. PROMIENIOWANIE CIEPLNE

I. PROMIENIOWANIE CIEPLNE I. PROMIENIOWANIE CIEPLNE - lata '90 XIX wieku WSTĘP Widmo promieniowania elektromagnetycznego zakres "pokrycia" różnymi rodzajami fal elektromagnetycznych promieniowania zawartego w danej wiązce. rys.i.1.

Bardziej szczegółowo

MAGNETYZM. PRĄD PRZEMIENNY

MAGNETYZM. PRĄD PRZEMIENNY Włodzimierz Wolczyński 47 POWTÓRKA 9 MAGNETYZM. PRĄD PRZEMIENNY Zadanie 1 W dwóch przewodnikach prostoliniowych nieskończenie długich umieszczonych w próżni, oddalonych od siebie o r = cm, płynie prąd.

Bardziej szczegółowo

Rozkład materiału i wymagania edukacyjne na poszczególne oceny z fizyki i astronomii dla klasy II TE, IITI, II TM w roku szkolnym 2012/2013

Rozkład materiału i wymagania edukacyjne na poszczególne oceny z fizyki i astronomii dla klasy II TE, IITI, II TM w roku szkolnym 2012/2013 Rozkład materiału i wymagania edukacyjne na poszczególne oceny z fizyki i astronomii dla klasy II TE, IITI, II TM w roku szkolnym 2012/2013 Lp. Temat lekcji Uszczegółowienie treści Wymagania na ocenę dopuszczającą

Bardziej szczegółowo

Wykład 4 i 5 Prawo Gaussa i pole elektryczne w materii. Pojemność.

Wykład 4 i 5 Prawo Gaussa i pole elektryczne w materii. Pojemność. Wykład 4 i 5 Prawo Gaussa i pole elektryczne w materii. Pojemność. Maciej J. Mrowiński mrow@if.pw.edu.pl Wydział Fizyki Politechnika Warszawska 21 marca 2016 Maciej J. Mrowiński (IF PW) Wykład 4 i 5 21

Bardziej szczegółowo

5) W czterech rogach kwadratu o boku a umieszczono ładunki o tej samej wartości q jak pokazano na rysunku. k=1/(4πε 0 )

5) W czterech rogach kwadratu o boku a umieszczono ładunki o tej samej wartości q jak pokazano na rysunku. k=1/(4πε 0 ) Zadania zamknięte 1 1) Ciało zostało wyrzucono z prędkością V 0 skierowną pod kątem α względem poziomu (x). Wiedząc iż porusza się ono w polu grawitacyjnym o przyspieszeniu g skierowanym pionowo w dół

Bardziej szczegółowo

Momentem dipolowym ładunków +q i q oddalonych o 2a (dipola) nazwamy wektor skierowany od q do +q i o wartości:

Momentem dipolowym ładunków +q i q oddalonych o 2a (dipola) nazwamy wektor skierowany od q do +q i o wartości: 1 W stanie równowagi elektrostatycznej (nośniki ładunku są w spoczynku) wewnątrz przewodnika natężenie pola wynosi zero. Cały ładunek jest zgromadzony na powierzchni przewodnika. Tuż przy powierzchni przewodnika

Bardziej szczegółowo

Dielektryki. właściwości makroskopowe. Ryszard J. Barczyński, 2016 Materiały dydaktyczne do użytku wewnętrznego

Dielektryki. właściwości makroskopowe. Ryszard J. Barczyński, 2016 Materiały dydaktyczne do użytku wewnętrznego Dielektryki właściwości makroskopowe Ryszard J. Barczyński, 2016 Materiały dydaktyczne do użytku wewnętrznego Przewodniki i izolatory Przewodniki i izolatory Pojemność i kondensatory Podatność dielektryczna

Bardziej szczegółowo

Efekt Halla. Cel ćwiczenia. Wstęp. Celem ćwiczenia jest zbadanie efektu Halla. Siła Loretza

Efekt Halla. Cel ćwiczenia. Wstęp. Celem ćwiczenia jest zbadanie efektu Halla. Siła Loretza Efekt Halla Cel ćwiczenia Celem ćwiczenia jest zbadanie efektu Halla. Wstęp Siła Loretza Na ładunek elektryczny poruszający się w polu magnetycznym w kierunku prostopadłym do linii pola magnetycznego działa

Bardziej szczegółowo

Wykład 8: Elektrostatyka Katarzyna Weron

Wykład 8: Elektrostatyka Katarzyna Weron Wykład 8: Elektrostatyka Katarzyna Weron Matematyka Stosowana Przewodniki i izolatory Przewodniki - niektóre ładunki ujemne mogą się dość swobodnie poruszać: metalach, wodzie, ciele ludzkim, Izolatory

Bardziej szczegółowo

POLE MAGNETYCZNE Magnetyzm. Pole magnetyczne. Indukcja magnetyczna. Siła Lorentza. Prawo Biota-Savarta. Prawo Ampère a. Prawo Gaussa dla pola

POLE MAGNETYCZNE Magnetyzm. Pole magnetyczne. Indukcja magnetyczna. Siła Lorentza. Prawo Biota-Savarta. Prawo Ampère a. Prawo Gaussa dla pola POLE MAGNETYCZNE Magnetyzm. Pole magnetyczne. Indukcja magnetyczna. Siła Lorentza. Prawo iota-savarta. Prawo Ampère a. Prawo Gaussa a pola magnetycznego. Prawo indukcji Faradaya. Reguła Lenza. Równania

Bardziej szczegółowo