Sztuczna inteligencja: zbiory rozmyte

Wielkość: px
Rozpocząć pokaz od strony:

Download "Sztuczna inteligencja: zbiory rozmyte"

Transkrypt

1 Instytut Informatyki Uniwersytetu Śląskiego lab 1

2 1 Klasyczna teoria zbiorów 2 Teoria zbiorów rozmytych 3 Zmienne lingwistyczne i funkcje przynależności 4 System rozmyty 5 Preprocesing danych

3 Każdy element należy do zbioru / nie należy do zbioru. x X µ(x) = { 1 gdy x X, 0 Przeciwnie Ćwiczenia Suma dwóch zbiorów A i B Ilocznyn zbiorów A i B A - B B - A Ćwiczenia Zasada niesprzeczności (p AND p) - zapisać wartościowanie. prawo Dunsa Szkota (p AND p) q - wartościowanie. prawo wyłączonego środka p OR p - wartościowanie.

4 Aplikacje do przetestowania: Zapobieganie kołysania ładunkiem - za pomocą rozmytego kontrolera: loadsway/loadsway.htm Sterowanie dźwigiem przy transporcie: Sterowanie wentylatorem w zależności od temperatury i wilgotnosci powietrza: Sterowanie mocą silnika żurawia, w zależności od tego jaki jest dystans kontenera do żurawia, oraz jaki jest kąt kołysania się kontenera: DemoAppIets/CCCApplet/CCC.html Obliczenie poziomu tolerancji ryzyka inwestycji: DemoAppIets/IPApplet/IP.html

5 Teoria zbiorów rozmytych µ(x) = { f (x) gdy x X, 0 przeciwnie dowolna funkcja o wartościach z przedziału [0, 1] X uniwersum, zbiór uniwersalny, przestrzeń elementów µ(x) funkcja charakterystyczna (funkcja przynależności) - zamiennie m(x).

6 Rysunek: Przykład

7 Zmienna lingwistyczna - np. wzrost. Jaś ma 189 cm wzrostu - Jaś jest wysoki. Zbiór wartości lingwistycznych, które może przyjąć zmienna. Np: {niski,wysoki }. Ćwiczenia Zdefiniuj inną zmienną lingwistyczną. Określ jej przykładowe wartości, a następnie podaj dwa przykłady konwersji : wartość dokładna na wartość zmiennej lingwistycznej (według powyższego przykładu).

8 Funkcja charakterystyczna µ(x) - nazywana jest funkcją przynależności. Interpretuje się jej wartość dla danego x jako stopień, z jakim x należy do zbioru rozmytego. Każdy element x z obszaru rozważań X należy do zbioru rozmytego F zdefiniowanego na tym obszarze z pewnym stopniem przynależności (stopniem zaufania) określonym przez µ(x). Rysunek: Przykład

9 Rysunek: Inne funkcje przynależności

10 Rysunek: Przykład Ćwiczenia Na podstawie powyższego rysunku zdefiniować formalnie bazę, jądro i α-cięcie. (Wykorzystać symbole µ, x, X ). Zaznaczyć powyższe pojęcia na trapezowej,sigmoidalnej i trójkątnej funkcji przynależności. Zaznaczyć α-cięcie 0.2 i 0.9.

11 Zadanie 1 Dla wybranego pojęcia (np. pogoda, wzrost waga) określ wartości zmiennej lingwistycznej. Następnie zdefiniuj odpowiednie formuły w programie excel, które pozwolą określić wartość zmiennej lingwistycznej na podstawie konretnej wartości. Rysunek: Przykład Rysunek: Przykład

12 Funkcja trójkątna:

13 Funkcja trójkątna: Funkcja przynależności γ (gamma): Rysunek: Funkcja trójkątna

14 Funkcja trójkątna: Funkcja przynależności γ (gamma): Rysunek: Funkcja trójkątna Rysunek: Funkcja γ

15 Funkcja klasy L:

16 Funkcja klasy L: Rysunek: Funkcja L Funkcja trapezowa::

17 Funkcja klasy L: Rysunek: Funkcja L Funkcja trapezowa:: Rysunek: Funkcja trapezowa

18 Zadanie 2 Następująca funkcja rozmyta ma być użyta do obliczania funkcji przynależności dla zbioru osób zdrowych. 1 - zdrowy, 0 - nie zdrowy. Wartość pomiędzy 0 a 1 ma określać stopień przynależności do klasy zdrowych. BMI z przedziału między 20 a 25 to przesłanka do tego, by uznać kogoś za zdrowego. BMI większe niż 27 albo mniejsze niż 18 na pewno świadczy o stanie zdrowym. Wartości BMI bliskie zakresowi wartości dla osób zdrowych - a więc od 20 do 25, to wartości z przedziału 0 a 1. Np. BMI = 19.6 to 0.8. Narysuj graficznie reprezentację funkcji rozmytej health(x). Jaki jest stopień przynależności rozmytego zbioru dla osób zdrowych w przypadku Marka, którego BMI wynosi 26.2? Oblicz swój własny BMI BMI = waga wzrost wzrost Rysunek: Przykład

19 Zadanie 3 Zaproponuj funkcję przynależności dla wartości zmiennej lingwistycznej z zadania 1. Oblicz wartość funkcji przynależności dla 3 wybranych przez siebie wartości. Np. dla wskaźnika BMI 28, 23.2, Zadanie 4 Funkcję zdefiniowaną w poprzednim zadaniu zapisz w programie excel w postaci funkcji. W jednej kolumnie powinny znajdować się wartości, nastomiast w kolumnie drugiej wartość funkcji przynależności. Rysunek: Przykład Rysunek: Przykład

20 Suma logiczna (ang. union) zbiorow A oraz B, o funkcjach przynależności µ A (x), µ B (x), to zbior rozmyty C o funkcji przynależności stanowiącej maksimum: µ C (x) = µ A+B (x) = max(µ A (x), µ B (x)) Iloczyn logiczny (ang. intersection), to zbiór rozmyty C o funkcji przynależności równej minimum: µ C (x) = µ A B (x) = min(µ A (x), µ B (x))

21 Iloczyn algebraiczny dwóch zbiorów: C = {(, x, µ A (x) µ B (x)) x X } Rysunek: Iloczyn algebraiczny

22 Dopełnienie zbioru rozmytego: µá(x) = 1 µ A (x) Rysunek: Dopełnienie zbioru rozmytego

23 Koncentracja zbioru: Rozcieńczenie zbioru: µ CON(A) (x) = (µ A (x)) 2 µ DIL(A) (x) = (µ A (x)) 0.5 Rysunek: Koncentracja i rozcieńczenie zbioru

24 Rysunek: Regułowy system wnioskowania rozmytego

25 Przetwarzanie wstępne (ang. preprocessing) polega na przekształceniu danych doprowadzonych do wejścia systemu do formatu akceptowanego przez moduł wnioskowania. Przetwarzanie końcowe (ang. postprocessing) służy do konwersji danych wyjściowych z tego modułu do postaci zgodnej z wymogami układów zewnętrznych. Procedura fuzyfikacji (z ang. fuzzification), polega na transformacji wartości z dziedziny liczb rzeczywistych na wartości z dziedziny zbiorów rozmytych. W tym celu dokonuje się wyznaczenia wartości funkcji przynależności dla kolejnych zmiennych lingwistycznych i dla danej rzeczywistej wartości wejściowej. Defuzyfikacja (ang. defuzzification), zwana również wyostrzaniem, jest przekształceniem odwrotnym do rozmywania, czyli transformacją informacji zawartej w zbiorze rozmytym do postaci pojedynczej wartości (crisp value)

26 Usuwanie danych odstających. Gdzie pewna wartość ze zbioru danych wejściowych znacznie odstaje od pozostałych. Może się tak zdarzyć min. na skutek błędnie odczytanych wejściowych, przekłamania w zapisie itp. Rysunek: Dane odstające na wykresie

27 Rysunek: Wartości obserwacji w tabeli

28 Skalowanie danych do zadanego przedziału. Np: Dane wejściowe należą do przedziału < x min : x max > Dane wyjściowe należą do przedziału < y min : y max > y = y min + (x x min) (y max y min ) x max x min Sieci neuronowe < 1, 1 > Rozmyte sieci kognitywne < 0, 1 > Normalizacja danych do przedziału < 0 : 1 > y = x/x max W przypadku danych ujemnych : przedział < x min, x max > na < 0, y max > Dyskretyzacja danych wejściowych podział zbioru początkowego na n równych części. podział zbioru w zależności od częstości występowania obiektów.

29 Projekt Przygotować aplikację - parser, gdzie: Wybór pliku z danymi format wejściowy dancych: chwila czasu tab nazwa pojęcia tab wartość pojęcia 1 Pojecie Pojecie Pojecie3 8 2 Pojecie1 7 2 Pojecie2 5 2 Pojecie Pojecie1 3 3 Pojecie Pojecie3 14 itd. Wybór pomiędzy normalizacją 0:1 oraz skalowaniem danych. W przypadku skalowania danych : wybór nowego zakresu zmiennych. Zapis znormalizowanych/przeskalowanych danych do pliku.

Sztuczna inteligencja : Zbiory rozmyte cz. 2

Sztuczna inteligencja : Zbiory rozmyte cz. 2 Sztuczna inteligencja : Zbiory rozmyte cz. 2 Przemysław Juszczuk Instytut Informatyki Uniwersytetu Śląskiego 1 marca 2012 Funkcja trójkątna: Funkcja trójkątna: Funkcja przynależności γ (gamma): Rysunek:

Bardziej szczegółowo

WYKŁAD 10 Rozmyta reprezentacja danych (modelowanie i wnioskowanie rozmyte)

WYKŁAD 10 Rozmyta reprezentacja danych (modelowanie i wnioskowanie rozmyte) WYKŁAD 10 Rozmyta reprezentacja danych (modelowanie i wnioskowanie rozmyte) Motywacje:! przezwyciężenie wad tradycyjnych algorytmów komputerowych, które zawodzą zwłaszcza w sytuacjach, w których człowiek

Bardziej szczegółowo

Systemy uczące się wykład 1

Systemy uczące się wykład 1 Systemy uczące się wykład 1 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 5 X 2018 e-mail: przemyslaw.juszczuk@ue.katowice.pl Konsultacje: na stronie katedry + na stronie domowej

Bardziej szczegółowo

Sztuczna inteligencja : Zbiory rozmyte cz. III

Sztuczna inteligencja : Zbiory rozmyte cz. III Instytut Informatyki Uniwersytetu Śląskiego lab 3 Notacja Zadeha: symboliczny zapis zbioru rozmytego dla przestrzeni dyskretnej. Dla X jest przestrzenią o skończonej liczbie elementów X = {x 1, x 2,...,

Bardziej szczegółowo

Jeśli X jest przestrzenią o nieskończonej liczbie elementów:

Jeśli X jest przestrzenią o nieskończonej liczbie elementów: Logika rozmyta 2 Zbiór rozmyty może być formalnie zapisany na dwa sposoby w zależności od tego z jakim typem przestrzeni elementów mamy do czynienia: Jeśli X jest przestrzenią o skończonej liczbie elementów

Bardziej szczegółowo

W narzędziu typu Excel, Calc czy Gnumeric napisz formułę logiczną która wyznaczy wartośd przynależności dla podanej temperatury do zbioru gorąco.

W narzędziu typu Excel, Calc czy Gnumeric napisz formułę logiczną która wyznaczy wartośd przynależności dla podanej temperatury do zbioru gorąco. Zadanie 0 Wyobraźmy sobie, że chcemy oceniad czy dana temperatura świadczy o tym, że jest gorąco czy raczej zimno. A więc znając wartośd liczbową temperatury chcemy oceniad wartośd funkcji przynależności

Bardziej szczegółowo

Zadanie 0 gdy nie mamy logiki rozmytej. Zadanie 1- gdy już mamy logikę rozmytą

Zadanie 0 gdy nie mamy logiki rozmytej. Zadanie 1- gdy już mamy logikę rozmytą Zadanie 0 gdy nie mamy logiki rozmytej Wyobraźmy sobie, że chcemy oceniad czy dana temperatura świadczy o tym, że jest gorąco czy raczej zimno. A więc znając wartośd liczbową temperatury chcemy oceniad

Bardziej szczegółowo

Inteligencja obliczeniowa

Inteligencja obliczeniowa Ćwiczenie nr 1 Zbiory rozmyte logika rozmyta Tworzenie: termów zmiennej lingwistycznej o różnych kształtach, modyfikatorów, zmiennych o wielu termach; operacje przecięcia, połączenia i dopełnienia 1. Wprowadzenie

Bardziej szczegółowo

Rozmyte systemy doradcze

Rozmyte systemy doradcze Systemy ekspertowe Rozmyte systemy doradcze Plan. Co to jest myślenie rozmyte? 2. Teoria zbiorów rozmytych. 3. Zmienne lingwistyczne. 4. Reguły rozmyte. 5. Wnioskowanie rozmyte (systemy doradcze). typu

Bardziej szczegółowo

INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE

INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Temat: Podstawowe pojęcia z logiki rozmytej Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1 Wprowadzenie Sterowanie

Bardziej szczegółowo

Inżynieria Wiedzy i Systemy Ekspertowe. Logika rozmyta. dr inż. Michał Bereta Politechnika Krakowska

Inżynieria Wiedzy i Systemy Ekspertowe. Logika rozmyta. dr inż. Michał Bereta Politechnika Krakowska Inżynieria Wiedzy i Systemy Ekspertowe Logika rozmyta dr inż. Michał Bereta Politechnika Krakowska http://torus.uck.pk.edu.pl/~beretam/ beretam@torus.uck.pk.edu.pl 1 Wyostrzanie Ostateczna, ostra wartość

Bardziej szczegółowo

Zadanie 0 gdy nie mamy logiki rozmytej

Zadanie 0 gdy nie mamy logiki rozmytej Zadanie 0 gdy nie mamy logiki rozmytej Wyobraźmy sobie, że chcemy oceniad czy dana temperatura świadczy o tym, że jest gorąco czy raczej zimno. A więc znając wartośd liczbową temperatury chcemy oceniad

Bardziej szczegółowo

Podstawy sztucznej inteligencji

Podstawy sztucznej inteligencji wykład 4 (Fuzzy logic) 23 listopad 2011 Plan wykładu 1 Systemy wnioskowania z danymi niepewnymi 2 3 Inteligentne systemy z wiedzą Systemy z wiedzą składają się z dwóch części: 1 Baza wiedzy (KB): zbioru

Bardziej szczegółowo

Piotr Sobolewski Krzysztof Skorupski

Piotr Sobolewski Krzysztof Skorupski Plan prezentacji Logika rodzaje Logika klasyczna Logika wielowartościowa Logika rozmyta Historia powstania Definicje Zbiory rozmyte Relacje rozmyte Systemy rozmyte Modele Zastosowanie w optymalizacji przykłady

Bardziej szczegółowo

ZBIORY ROZMYTE I WNIOSKOWANIE PRZYBLIŻONE

ZBIORY ROZMYTE I WNIOSKOWANIE PRZYBLIŻONE SYSTEMY ROZMYTE ZBIORY ROZMYTE I WNIOSKOWANIE PRZYBLIŻONE 2 965 Lotfi A. Zadeh: Fuzzy sets Metoda reprezentacji wiedzy wyrażonej w języku naturalnym: Temperatura wynosi 29 o C informacja liczbowa - naturalna

Bardziej szczegółowo

Wnioskowanie rozmyte. Krzysztof Patan

Wnioskowanie rozmyte. Krzysztof Patan Wnioskowanie rozmyte Krzysztof Patan Wprowadzenie Informacja precyzyjna jest to jedyna postać informacji akceptowanej przez konwencjonalne metody matematyczne, najczęściej dostarczana jest przez precyzyjne

Bardziej szczegółowo

STANDARDOWE FUNKCJE PRZYNALEŻNOŚCI. METODY HEURYSTYCZNE wykład 6. (alternatywa dla s) (zdef. poprzez klasę s) GAUSSOWSKA F.

STANDARDOWE FUNKCJE PRZYNALEŻNOŚCI. METODY HEURYSTYCZNE wykład 6. (alternatywa dla s) (zdef. poprzez klasę s) GAUSSOWSKA F. METODY HEURYSTYCZNE wykład 6 STANDARDOWE FUNKCJE PRZYNALEŻNOŚCI 2 GAUSSOWSKA F. PRZYNALEŻNOŚCI F. PRZYNALEŻNOŚCI KLASY s środek; a określa szerokość krzywej 3 4 F. PRZYNALEŻNOŚCI KLASY π F. PRZYNALEŻNOŚCI

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA SYSTEMY ROZMYTE Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki i Inżynierii Biomedycznej Laboratorium

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA WYKŁAD 10. WNIOSKOWANIE W LOGICE ROZMYTEJ Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska WNIOSKOWANIE W LOGICE DWUWARTOŚCIOWEJ W logice

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania MODELOWANIE I IDENTYFIKACJA Logika rozmyta podstawy wnioskowania w GUI Fuzzy. Materiały pomocnicze do laboratorium

Bardziej szczegółowo

Zasada rozszerzania. A U A jest zbiorem rozmytym, B jest obrazem zbioru A Przeniesienie rozmytości A w odwzorowaniu f na zbiór B. sup.

Zasada rozszerzania. A U A jest zbiorem rozmytym, B jest obrazem zbioru A Przeniesienie rozmytości A w odwzorowaniu f na zbiór B. sup. Zasada rozszerzania f U V U jest zbiorem rozmytym V = f( ), jest obrazem zbioru Przeniesienie rozmytości w odwzorowaniu f na zbiór v) = ( v)? ( f ( ) = sup ( u) gdy ( v) 0 1 = 1 u f ( v) f( ) ( v) 1 0

Bardziej szczegółowo

Temat: Projektowanie sterownika rozmytego. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE

Temat: Projektowanie sterownika rozmytego. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Temat: Projektowanie sterownika rozmytego Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1 Wprowadzenie System

Bardziej szczegółowo

Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych

Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych ELEMENTY SZTUCZNEJ INTELIGENCJI Laboratorium nr 6 SYSTEMY ROZMYTE TYPU MAMDANIEGO

Bardziej szczegółowo

Kurs logiki rozmytej - zadania. Wojciech Szybisty

Kurs logiki rozmytej - zadania. Wojciech Szybisty Kurs logiki rozmytej - zadania Wojciech Szybisty 2009 Spis treści 1 Zadania - zbiory rozmyte 3 2 Zadania - relacje rozmyte 6 3 Zadania - logika rozmyta 11 1 Zadania - zbiory rozmyte 3 Przykłady rozwiązywania

Bardziej szczegółowo

6. Zagadnienie parkowania ciężarówki.

6. Zagadnienie parkowania ciężarówki. 6. Zagadnienie parkowania ciężarówki. Sterowniki rozmyte Aby móc sterować przebiegiem pewnych procesów lub też pracą urządzeń niezbędne jest stworzenie odpowiedniego modelu, na podstawie którego można

Bardziej szczegółowo

PODSTAWY BAZ DANYCH. 19. Perspektywy baz danych. 2009/2010 Notatki do wykładu "Podstawy baz danych"

PODSTAWY BAZ DANYCH. 19. Perspektywy baz danych. 2009/2010 Notatki do wykładu Podstawy baz danych PODSTAWY BAZ DANYCH 19. Perspektywy baz danych 1 Perspektywy baz danych Temporalna baza danych Temporalna baza danych - baza danych posiadająca informację o czasie wprowadzenia lub czasie ważności zawartych

Bardziej szczegółowo

METODY INTELIGENCJI OBLICZENIOWEJ wykład 6

METODY INTELIGENCJI OBLICZENIOWEJ wykład 6 METODY INTELIGENCJI OBLICZENIOWEJ wykład 6 2 ZBIORY ROZMYTE I WNIOSKOWANIE PRZYBLIŻONE 965 Lotfi A. Zadeh: : Fuzzy sets In almost every case you can build the same product without fuzzy logic, but fuzzy

Bardziej szczegółowo

Podstawy Automatyki. Wykład 9 - Podstawy matematyczne automatyki procesów dyskretnych. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 9 - Podstawy matematyczne automatyki procesów dyskretnych. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki Wykład 9 - Podstawy matematyczne automatyki procesów dyskretnych Instytut Automatyki i Robotyki Warszawa, 2015 Kody liczb całkowitych nieujemnych Kody liczbowe dzielimy na analityczne nieanalityczne (symboliczne)

Bardziej szczegółowo

Logika Stosowana. Wykład 5 - Zbiory i logiki rozmyte Część 1. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017

Logika Stosowana. Wykład 5 - Zbiory i logiki rozmyte Część 1. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017 Logika Stosowana Wykład 5 - Zbiory i logiki rozmyte Część 1 Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2016/2017 Marcin Szczuka (MIMUW) Logika Stosowana 2017 1 / 36 Plan

Bardziej szczegółowo

7. Zagadnienie parkowania ciężarówki.

7. Zagadnienie parkowania ciężarówki. 7. Zagadnienie parkowania ciężarówki. Sterowniki rozmyte Aby móc sterować przebiegiem pewnych procesów lub też pracą urządzeń niezbędne jest stworzenie odpowiedniego modelu, na podstawie którego można

Bardziej szczegółowo

Tworzenie gier na urządzenia mobilne

Tworzenie gier na urządzenia mobilne Katedra Inżynierii Wiedzy Wykład 8 Przekształcenia wiedzy generalizacja/specjalizacja; abstrakcja/konkretyzacja; podobieństwo/kontrastowanie; wyjaśnianie/predykcja. Przetwarzanie danych Przetwarzanie wstępne

Bardziej szczegółowo

Problemy złożone trudno jest analizować precyzyjnie Wiedza eksperta w złożonych przypadkach daje się opisać tylko w sposób nieprecyzyjny, np.

Problemy złożone trudno jest analizować precyzyjnie Wiedza eksperta w złożonych przypadkach daje się opisać tylko w sposób nieprecyzyjny, np. ZBIORY ROZMYTE Problemy złożone trudno jest analizować precyzyjnie Wiedza eksperta w złożonyc przypadkac daje się opisać tylko w sposób nieprecyzyjny, np. W dużym mieście, powinien istnieć regionalny port

Bardziej szczegółowo

Temat: ANFIS + TS w zadaniach. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE

Temat: ANFIS + TS w zadaniach. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Temat: ANFIS + TS w zadaniach Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1. Systemy neuronowo - rozmyte Systemy

Bardziej szczegółowo

Kurs logiki rozmytej - pomoc. Wojciech Szybisty

Kurs logiki rozmytej - pomoc. Wojciech Szybisty Kurs logiki rozmytej - pomoc Wojciech Szybisty 2009 Spis treści 1 Wymagania 3 2 Zawartość strony internetowej 3 3 Obsługa apletów 6 3.1 Aplet Rodzaje funkcji przynależności...................... 6 3.2

Bardziej szczegółowo

Temat: Model SUGENO. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE

Temat: Model SUGENO. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Temat: Model SUGENO Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1 Wprowadzenie Pierwszym rodzajem modelowania

Bardziej szczegółowo

Sterowanie z wykorzystaniem logiki rozmytej

Sterowanie z wykorzystaniem logiki rozmytej Sterowanie z wykorzystaniem logiki rozmytej konspekt seminarium Paweł Szołtysek 24 stycznia 2009 1 Wstęp 1.1 Podstawy logiki rozmytej Logika rozmyta jest rodzajem logiki wielowartościowej, stanowi uogólnienie

Bardziej szczegółowo

ALGORYTM PROJEKTOWANIA ROZMYTYCH SYSTEMÓW EKSPERCKICH TYPU MAMDANI ZADEH OCENIAJĄCYCH EFEKTYWNOŚĆ WYKONANIA ZADANIA BOJOWEGO

ALGORYTM PROJEKTOWANIA ROZMYTYCH SYSTEMÓW EKSPERCKICH TYPU MAMDANI ZADEH OCENIAJĄCYCH EFEKTYWNOŚĆ WYKONANIA ZADANIA BOJOWEGO Szybkobieżne Pojazdy Gąsienicowe (2) Nr 2, 24 Mirosław ADAMSKI Norbert GRZESIK ALGORYTM PROJEKTOWANIA CH SYSTEMÓW EKSPERCKICH TYPU MAMDANI ZADEH OCENIAJĄCYCH EFEKTYWNOŚĆ WYKONANIA ZADANIA BOJOWEGO. WSTĘP

Bardziej szczegółowo

Systemy uczące się Lab 4

Systemy uczące się Lab 4 Systemy uczące się Lab 4 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 26 X 2018 Projekt zaliczeniowy Podstawą zaliczenia ćwiczeń jest indywidualne wykonanie projektu uwzględniającego

Bardziej szczegółowo

Jeśli przeszkoda jest blisko to przyhamuj

Jeśli przeszkoda jest blisko to przyhamuj Rozmyte systemy regułowe Informacja, którą przetwarzają ludzie często (prawie zawsze) jest nieprecyzyjna, a mimo to potrafimy poprawnie wnioskować i podejmować decyzję, czego klasyczne komputery nie potrafią.

Bardziej szczegółowo

Technologie i systemy oparte na logice rozmytej

Technologie i systemy oparte na logice rozmytej Zagadnienia I Technologie i systemy oparte na logice rozmytej Mają zastosowania w sytuacjach kiedy nie posiadamy wystarczającej wiedzy o modelu matematycznym rządzącym danym zjawiskiem oraz tam gdzie zbudowanie

Bardziej szczegółowo

Zakres materiału obowiązujący do egzaminu poprawkowego z matematyki klasa 1 d LO

Zakres materiału obowiązujący do egzaminu poprawkowego z matematyki klasa 1 d LO Zakres materiału obowiązujący do egzaminu poprawkowego z matematyki klasa 1 d LO Dział programowy. Zakres realizacji 1. Liczby, działania i procenty Liczby wymierne i liczby niewymierne-działania, kolejność

Bardziej szczegółowo

Temat: Projektowanie sterownika rozmytego. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE

Temat: Projektowanie sterownika rozmytego. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Temat: Projektowanie sterownika rozmytego Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1 Wprowadzenie Sterowanie

Bardziej szczegółowo

1 Macierze i wyznaczniki

1 Macierze i wyznaczniki 1 Macierze i wyznaczniki 11 Definicje, twierdzenia, wzory 1 Macierzą rzeczywistą (zespoloną) wymiaru m n, gdzie m N oraz n N, nazywamy prostokątną tablicę złożoną z mn liczb rzeczywistych (zespolonych)

Bardziej szczegółowo

Temat: Model TS + ANFIS. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE

Temat: Model TS + ANFIS. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Temat: Model TS + ANFIS Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1 Wprowadzenie Pierwszym rodzajem modelowania

Bardziej szczegółowo

LOGIKA I TEORIA ZBIORÓW

LOGIKA I TEORIA ZBIORÓW LOGIKA I TEORIA ZBIORÓW Logika Logika jest nauką zajmującą się zdaniami Z punktu widzenia logiki istotne jest, czy dane zdanie jest prawdziwe, czy nie Nie jest natomiast istotne o czym to zdanie mówi Definicja

Bardziej szczegółowo

Temat: Sterowanie mobilnością robota z wykorzystaniem algorytmu logiki rozmytej

Temat: Sterowanie mobilnością robota z wykorzystaniem algorytmu logiki rozmytej Wrocław, 13.01.2016 Metody sztucznej inteligencji Prowadzący: Dr hab. inż. Ireneusz Jabłoński Temat: Sterowanie mobilnością robota z wykorzystaniem algorytmu logiki rozmytej Wykonał: Jakub Uliarczyk, 195639

Bardziej szczegółowo

Met Me ody numer yczne Wykład ykład Dr inż. Mic hał ha Łanc Łan zon Instyt Ins ut Elektr Elektr echn iki echn i Elektrot Elektr echn olo echn

Met Me ody numer yczne Wykład ykład Dr inż. Mic hał ha Łanc Łan zon Instyt Ins ut Elektr Elektr echn iki echn i Elektrot Elektr echn olo echn Metody numeryczne Wykład 3 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Pojęcia podstawowe Algebra

Bardziej szczegółowo

Definicja i własności wartości bezwzględnej.

Definicja i własności wartości bezwzględnej. Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności

Bardziej szczegółowo

Układy logiki rozmytej. Co to jest?

Układy logiki rozmytej. Co to jest? PUAV Wykład 14 Co to jest? Co to jest? Logika rozmyta (fuzzy logic) jest to dział matematyki precyzyjnie formalizujący nieprecyzyjne, nieformalne ludzkie rozumowanie. Co to jest? Logika rozmyta (fuzzy

Bardziej szczegółowo

Metody sterowania sterowanie rozmyte System rozmyty (patrz MiPI) użyty jako sterownik/regulator nazywamy sterownikiem/regulatorem rozmytym

Metody sterowania sterowanie rozmyte System rozmyty (patrz MiPI) użyty jako sterownik/regulator nazywamy sterownikiem/regulatorem rozmytym System rozmyty (patrz MiPI) użyty jako sterownik/regulator nazywamy sterownikiem/regulatorem rozmytym Sterowanie rozmyte jest sterowaniem za pomocą reguł Sterowanie rozmyte można sklasyfikować jako: -

Bardziej szczegółowo

Systemy rozmyte i ich zastosowania. Krzysztof Rykaczewski

Systemy rozmyte i ich zastosowania. Krzysztof Rykaczewski Systemy rozmyte i ich zastosowania Krzysztof Rykaczewski 21 czerwca 2006 SPIS TREŚCI Spis treści 1 Wstęp 1 2 Podstawowe pojęcia i definicje logiki rozmytej 1 2.1 Przykłady funkcji przynależności..................

Bardziej szczegółowo

SID Wykład 7 Zbiory rozmyte

SID Wykład 7 Zbiory rozmyte SID Wykład 7 Zbiory rozmyte Wydział Matematyki, Informatyki i Mechaniki UW slezak@mimuw.edu.pl Wstęp Language Ontological Commitment Epistemological Commitment (What exists in the world) (What an agent

Bardziej szczegółowo

Sieci Neuronowe - Rok III - kierunek IS w IFAiIS UJ 2008/2009. Sieci Neuronowe. Wykład 11 Algorytmy genetyczne; Systemy rozmyte

Sieci Neuronowe - Rok III - kierunek IS w IFAiIS UJ 2008/2009. Sieci Neuronowe. Wykład 11 Algorytmy genetyczne; Systemy rozmyte Sieci Neuronowe Wykład 11 Algorytmy genetyczne; Systemy rozmyte wykład przygotowany na podstawie. S. Osowski, Sieci Neuronowe w ujęciu algorytmicznym, Rozdz. 4, PWNT, Warszawa 1996. W. Duch, J. Korbicz,

Bardziej szczegółowo

1. Logika, funkcje logiczne, preceptron.

1. Logika, funkcje logiczne, preceptron. Sieci neuronowe 1. Logika, funkcje logiczne, preceptron. 1. (Logika) Udowodnij prawa de Morgana, prawo pochłaniania p (p q), prawo wyłączonego środka p p oraz prawo sprzeczności (p p). 2. Wyraź funkcję

Bardziej szczegółowo

Inteligencja obliczeniowa

Inteligencja obliczeniowa Ćwiczenie nr 3 Zbiory rozmyte logika rozmyta Sterowniki wielowejściowe i wielowyjściowe, relacje rozmyte, sposoby zapisu reguł, aproksymacja funkcji przy użyciu reguł rozmytych, charakterystyki przejściowe

Bardziej szczegółowo

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ Teoria maszyn i podstawy automatyki semestr zimowy 2017/2018

Bardziej szczegółowo

Systemy uczące się wykład 2

Systemy uczące się wykład 2 Systemy uczące się wykład 2 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 19 X 2018 Podstawowe definicje Fakt; Przesłanka; Konkluzja; Reguła; Wnioskowanie. Typy wnioskowania

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Matematyka ubezpieczeń majątkowych 3..007 r. Zadanie. Każde z ryzyk pochodzących z pewnej populacji charakteryzuje się tym że przy danej wartości λ parametru ryzyka Λ rozkład wartości szkód z tego ryzyka

Bardziej szczegółowo

Tworzenie rozmytego systemu wnioskowania

Tworzenie rozmytego systemu wnioskowania Tworzenie rozmytego systemu wnioskowania Wstęp W odróżnieniu od klasycznych systemów regałowych modele rozmyte pozwalają budowad modele wnioskujące oparte o język naturalny, dzieki czemu inżynierom wiedzy

Bardziej szczegółowo

zaznaczymy na osi liczbowej w ten sposób:

zaznaczymy na osi liczbowej w ten sposób: 1. Zagadnienia teoretyczne. 1.1. Przedział domknięty Przykład 1. Pisząc mamy na myśli wszystkie liczby rzeczywiste od -4 do 7, razem z -4 i 7. Jeśli napiszemy, będziemy mówić o zbiorze wszystkich liczb

Bardziej szczegółowo

Lista tematów na kolokwium z wykładu z Techniki Cyfrowej w roku ak. 2013/2014

Lista tematów na kolokwium z wykładu z Techniki Cyfrowej w roku ak. 2013/2014 Lista tematów na kolokwium z wykładu z Techniki Cyfrowej w roku ak. 2013/2014 Temat 1. Algebra Boole a i bramki 1). Podać przykład dowolnego prawa lub tożsamości, które jest spełnione w algebrze Boole

Bardziej szczegółowo

Inżynieria Wiedzy i Systemy Ekspertowe. Niepewność wiedzy. dr inż. Michał Bereta Politechnika Krakowska

Inżynieria Wiedzy i Systemy Ekspertowe. Niepewność wiedzy. dr inż. Michał Bereta Politechnika Krakowska Inżynieria Wiedzy i Systemy Ekspertowe Niepewność wiedzy dr inż. Michał Bereta Politechnika Krakowska http://torus.uck.pk.edu.pl/~beretam/ beretam@torus.uck.pk.edu.pl 1 Logika Rozmyta (Fuzzy Logic) Mimo

Bardziej szczegółowo

Logika rozmyta. Agnieszka Nowak - Brzezińska

Logika rozmyta. Agnieszka Nowak - Brzezińska Logika rozmyta Agnieszka Nowak - Brzezińska Geneza Logiki rozmytej Za twórcę teorii zbiorów rozmytych i logiki rozmytej uważa się Lotfiego A. Zadeha, który w 1965 roku opublikował artykuł Fuzzy Sets (Information

Bardziej szczegółowo

ELEMENTY SZTUCZNEJ INTELIGENCJI. Wstęp do logiki rozmytej

ELEMENTY SZTUCZNEJ INTELIGENCJI. Wstęp do logiki rozmytej ELEMENTY SZTUCZNEJ INTELIGENCJI 1 Wstęp do logiki rozmytej PLN 1. Co to jest myślenie rozmyte? 2. Teoria zbiorów rozmytych. 3. Zmienne lingwistyczne. 4. Reguły rozmyte. 5. Wnioskowanie rozmyte: 1. typu

Bardziej szczegółowo

Implementacja rozmytych systemów wnioskujących w zdaniach regulacji

Implementacja rozmytych systemów wnioskujących w zdaniach regulacji Metody Sztucznej Inteligencji w Sterowaniu Ćwiczenie 5 Implementacja rozmytych systemów wnioskujących w zdaniach regulacji Przygotował: mgr inż. Marcin Pelic Instytut Technologii Mechanicznej Politechnika

Bardziej szczegółowo

Logika Stosowana Ćwiczenia

Logika Stosowana Ćwiczenia Logika Stosowana Ćwiczenia Systemy sterowania wykorzystujące zbiory rozmyte Marcin Szczuka Instytut Matematyki, Uniwersytet Warszawski Semestr letni 2014/15 Marcin Szczuka (MIMUW) Logika Stosowana 2014/15

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ 2018 poziom podstawowy

LUBELSKA PRÓBA PRZED MATURĄ 2018 poziom podstawowy LUELSK PRÓ PRZED MTURĄ 08 poziom podstawowy Schemat oceniania Zadania zamknięte (Podajemy kartotekę zadań, która ułatwi Państwu przeprowadzenie jakościowej analizy wyników). Zadanie. (0 ). Liczby rzeczywiste.

Bardziej szczegółowo

Mechatronika i inteligentne systemy produkcyjne. Modelowanie systemów mechatronicznych Platformy przetwarzania danych

Mechatronika i inteligentne systemy produkcyjne. Modelowanie systemów mechatronicznych Platformy przetwarzania danych Mechatronika i inteligentne systemy produkcyjne Modelowanie systemów mechatronicznych Platformy przetwarzania danych 1 Sterowanie procesem oparte na jego modelu u 1 (t) System rzeczywisty x(t) y(t) Tworzenie

Bardziej szczegółowo

Cel projektu: Wymogi dotyczące sprawozdania:

Cel projektu: Wymogi dotyczące sprawozdania: W ramach zajęć proszę wykonać sprawozdanie z logiki rozmytej. Sprawozdanie powinno realizować zadanie wnioskowania rozmytego. Cel projektu: Student projektuje bazę wiedzy wnioskowania rozmytego (kilka,

Bardziej szczegółowo

Systemy ekspertowe - wiedza niepewna

Systemy ekspertowe - wiedza niepewna Instytut Informatyki Uniwersytetu Śląskiego lab 8 Rozpatrzmy następujący przykład: Miażdżyca powoduje często zwężenie tętnic wieńcowych. Prowadzi to zazwyczaj do zmniejszenia przepływu krwi w tych naczyniach,

Bardziej szczegółowo

Analiza składowych głównych

Analiza składowych głównych Analiza składowych głównych Wprowadzenie (1) W przypadku regresji naszym celem jest predykcja wartości zmiennej wyjściowej za pomocą zmiennych wejściowych, wykrycie związku między wielkościami wejściowymi

Bardziej szczegółowo

Definicja macierzy Typy i właściwości macierzy Działania na macierzach Wyznacznik macierzy Macierz odwrotna Normy macierzy RACHUNEK MACIERZOWY

Definicja macierzy Typy i właściwości macierzy Działania na macierzach Wyznacznik macierzy Macierz odwrotna Normy macierzy RACHUNEK MACIERZOWY Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Czym jest macierz? Definicja Macierzą A nazywamy funkcję

Bardziej szczegółowo

RACHUNEK MACIERZOWY. METODY OBLICZENIOWE Budownictwo, studia I stopnia, semestr 6. Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska

RACHUNEK MACIERZOWY. METODY OBLICZENIOWE Budownictwo, studia I stopnia, semestr 6. Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska RACHUNEK MACIERZOWY METODY OBLICZENIOWE Budownictwo, studia I stopnia, semestr 6 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Czym jest macierz? Definicja Macierzą A nazywamy

Bardziej szczegółowo

ALGORYTMY. 1. Podstawowe definicje Schemat blokowy

ALGORYTMY. 1. Podstawowe definicje Schemat blokowy ALGORYTMY 1. Podstawowe definicje Algorytm (definicja nieformalna) to sposób postępowania (przepis) umożliwiający rozwiązanie określonego zadania (klasy zadań), podany w postaci skończonego zestawu czynności

Bardziej szczegółowo

Reprezentacja rozmyta - zastosowania logiki rozmytej

Reprezentacja rozmyta - zastosowania logiki rozmytej 17.06.2009 Wrocław Bartosz Chabasinski 148384 Reprezentacja rozmyta - zastosowania logiki rozmytej 1. Wstęp Celem wprowadzenia pojęcia teorii zbiorów rozmytych była potrzeba matematycznego opisania tych

Bardziej szczegółowo

ĆWICZENIE 4 ZASTOSOWANIE METOD I NARZĘDZI LOGIKI ROZMYTEJ DO KLASYFIKACJI DANYCH I APROKSYMACJI ODWZOROWAŃ STATYCZNYCH

ĆWICZENIE 4 ZASTOSOWANIE METOD I NARZĘDZI LOGIKI ROZMYTEJ DO KLASYFIKACJI DANYCH I APROKSYMACJI ODWZOROWAŃ STATYCZNYCH Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki ĆWICZENIE 4 ZASTOSOWANIE METOD I NARZĘDZI LOGIKI ROZMYTEJ DO KLASYFIKACJI DANYCH I APROKSYMACJI ODWZOROWAŃ STATYCZNYCH Pracownia

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Biotechnologia w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era inżyniera

Bardziej szczegółowo

Sztuczna Inteligencja Projekt

Sztuczna Inteligencja Projekt Sztuczna Inteligencja Projekt Temat: Algorytm F-LEM1 Liczba osób realizujących projekt: 2 1. Zaimplementować algorytm F LEM 1. 2. Zaimplementować klasyfikator Classif ier. 3. Za pomocą algorytmu F LEM1

Bardziej szczegółowo

O LICZBACH NIEOBLICZALNYCH I ICH ZWIĄZKACH Z INFORMATYKĄ

O LICZBACH NIEOBLICZALNYCH I ICH ZWIĄZKACH Z INFORMATYKĄ O LICZBACH NIEOBLICZALNYCH I ICH ZWIĄZKACH Z INFORMATYKĄ Jakie obiekty matematyczne nazywa się nieobliczalnymi? Jakie obiekty matematyczne nazywa się nieobliczalnymi? Najczęściej: a) liczby b) funkcje

Bardziej szczegółowo

1.8. PRZEDZIAŁY LICZBOWE

1.8. PRZEDZIAŁY LICZBOWE .8. PRZEDZIAŁY LICZBOWE Przedziały liczbowe Nazwa zbioru Oznaczenie Warunek, które spełniają liczby naleŝące do zbioru Ilustracja graficzna Przedział otwarty ( b) a, a < x < b Przedział domknięty a, b

Bardziej szczegółowo

2. LICZBY RZECZYWISTE Własności liczb całkowitych Liczby rzeczywiste Procenty... 24

2. LICZBY RZECZYWISTE Własności liczb całkowitych Liczby rzeczywiste Procenty... 24 SPIS TREŚCI WYRAŻENIA ALGEBRAICZNE RÓWNANIA I NIERÓWNOŚCI ALGEBRAICZNE 7 Wyrażenia algebraiczne 0 Równania i nierówności algebraiczne LICZBY RZECZYWISTE 4 Własności liczb całkowitych 8 Liczby rzeczywiste

Bardziej szczegółowo

Pracownia Informatyczna Instytut Technologii Mechanicznej Wydział Inżynierii Mechanicznej i Mechatroniki. Podstawy Informatyki i algorytmizacji

Pracownia Informatyczna Instytut Technologii Mechanicznej Wydział Inżynierii Mechanicznej i Mechatroniki. Podstawy Informatyki i algorytmizacji Pracownia Informatyczna Instytut Technologii Mechanicznej Wydział Inżynierii Mechanicznej i Mechatroniki Podstawy Informatyki i algorytmizacji wykład 1 dr inż. Maria Lachowicz Wprowadzenie Dlaczego arkusz

Bardziej szczegółowo

METODY INŻYNIERII WIEDZY ASOCJACYJNA REPREZENTACJA POWIĄZANYCH TABEL I WNIOSKOWANIE IGOR CZAJKOWSKI

METODY INŻYNIERII WIEDZY ASOCJACYJNA REPREZENTACJA POWIĄZANYCH TABEL I WNIOSKOWANIE IGOR CZAJKOWSKI METODY INŻYNIERII WIEDZY ASOCJACYJNA REPREZENTACJA POWIĄZANYCH TABEL I WNIOSKOWANIE IGOR CZAJKOWSKI CELE PROJEKTU Transformacja dowolnej bazy danych w min. 3 postaci normalnej do postaci Asocjacyjnej Grafowej

Bardziej szczegółowo

0.1. Logika podstawowe pojęcia: zdania i funktory, reguły wnioskowania, zmienne zdaniowe, rachunek zdań.

0.1. Logika podstawowe pojęcia: zdania i funktory, reguły wnioskowania, zmienne zdaniowe, rachunek zdań. Wykłady z Analizy rzeczywistej i zespolonej w Matematyce stosowanej Wykład ELEMENTY LOGIKI ALGEBRA BOOLE A Logika podstawowe pojęcia: zdania i funktory, reguły wnioskowania, zmienne zdaniowe, rachunek

Bardziej szczegółowo

ROK LIV NR 3 (194) 2013

ROK LIV NR 3 (194) 2013 ZESZYTY NAUKOWE AKADEMII MARYNARKI WOJENNEJ ROK LIV NR 3 (194) 2013 Krzysztof Ficoń Akademia Marynarki Wojennej Wydział Dowodzenia i Operacji Morskich 81-103 Gdynia, ul. J. Śmidowicza 69 e-mail: F.Ficon@amw.gdynia.pl

Bardziej szczegółowo

Arytmetyka liczb binarnych

Arytmetyka liczb binarnych Wartość dwójkowej liczby stałoprzecinkowej Wartość dziesiętna stałoprzecinkowej liczby binarnej Arytmetyka liczb binarnych b n-1...b 1 b 0,b -1 b -2...b -m = b n-1 2 n-1 +... + b 1 2 1 + b 0 2 0 + b -1

Bardziej szczegółowo

UWAGA. Wszystkie wyniki zapisywać na dysku Dane E: Program i przebieg ćwiczenia:

UWAGA. Wszystkie wyniki zapisywać na dysku Dane E: Program i przebieg ćwiczenia: Cel ćwiczenia: Zapoznanie się z. metodami badania i analitycznego wyznaczania parametrów dynamicznych obiektów rzeczywistych na przykładzie mikrotermostatu oraz z metodami symulacyjnymi umożliwiającymi

Bardziej szczegółowo

1 Moduł Modbus ASCII/RTU 3

1 Moduł Modbus ASCII/RTU 3 Spis treści 1 Moduł Modbus ASCII/RTU 3 1.1 Konfigurowanie Modułu Modbus ASCII/RTU............. 3 1.1.1 Lista elementów Modułu Modbus ASCII/RTU......... 3 1.1.2 Konfiguracja Modułu Modbus ASCII/RTU...........

Bardziej szczegółowo

Metalogika (1) Jerzy Pogonowski. Uniwersytet Opolski. Zakład Logiki Stosowanej UAM

Metalogika (1) Jerzy Pogonowski. Uniwersytet Opolski. Zakład Logiki Stosowanej UAM Metalogika (1) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Uniwersytet Opolski Jerzy Pogonowski (MEG) Metalogika (1) Uniwersytet Opolski 1 / 21 Wstęp Cel: wprowadzenie

Bardziej szczegółowo

Analiza matematyczna i algebra liniowa Macierze

Analiza matematyczna i algebra liniowa Macierze Analiza matematyczna i algebra liniowa Macierze Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje: poniedziałek

Bardziej szczegółowo

ZASTOSOWANIE LOGIKI ROZMYTEJ W BUDOWIE SYSTEMÓW ZARZĄDZANIA WIEDZĄ PRODUKCYJNĄ

ZASTOSOWANIE LOGIKI ROZMYTEJ W BUDOWIE SYSTEMÓW ZARZĄDZANIA WIEDZĄ PRODUKCYJNĄ ZASTOSOWANIE LOGIKI ROZMYTEJ W BUDOWIE SYSTEMÓW ZARZĄDZANIA WIEDZĄ PRODUKCYJNĄ Alfred PASZEK Streszczenie: W artykule przedstawiono przykłady zastosowania elementów logiki rozmytej w opracowaniu reprezentacji

Bardziej szczegółowo

Układy kombinacyjne Y X 4 X 5. Rys. 1 Kombinacyjna funkcja logiczna.

Układy kombinacyjne Y X 4 X 5. Rys. 1 Kombinacyjna funkcja logiczna. Układy kombinacyjne. Czas trwania: 6h. Cele ćwiczenia Przypomnienie podstawowych praw Algebry Boole a. Zaprojektowanie, montaż i sprawdzenie działania zadanych układów kombinacyjnych.. Wymagana znajomość

Bardziej szczegółowo

Schematy blokowe I. 1. Dostępne bloki: 2. Prosty program drukujący tekst.

Schematy blokowe I. 1. Dostępne bloki: 2. Prosty program drukujący tekst. Schematy blokowe I Jeżeli po schematach blokowych będzie używany język C, to należy używać operatorów: '&&', ' ', '!=', '%' natomiast jeśli Ruby to 'and', 'or', '%', '!='. 1. Dostępne bloki: a) początek:

Bardziej szczegółowo

SCENARIUSZ LEKCJI. TEMAT LEKCJI: Zastosowanie średnich w statystyce i matematyce. Podstawowe pojęcia statystyczne. Streszczenie.

SCENARIUSZ LEKCJI. TEMAT LEKCJI: Zastosowanie średnich w statystyce i matematyce. Podstawowe pojęcia statystyczne. Streszczenie. SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Autorzy scenariusza:

Bardziej szczegółowo

Wprowadzenie do informatyki - ć wiczenia

Wprowadzenie do informatyki - ć wiczenia Kod uzupełnień do 2 (U2) dr inż. Izabela Szczęch WSNHiD Ćwiczenia z wprowadzenia do informatyki Reprezentacja liczb całkowitych Jak kodowany jest znak liczby? Omó wimy dwa sposoby kodowania liczb ze znakiem:

Bardziej szczegółowo

PODEJMOWANIE DECYZJI W WARUNKACH NIEPEŁNEJ INFORMACJI

PODEJMOWANIE DECYZJI W WARUNKACH NIEPEŁNEJ INFORMACJI Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 5 PODEJMOWANIE DECYZJI W WARUNKACH NIEPEŁNEJ INFORMACJI 5.2. Ćwiczenia komputerowe

Bardziej szczegółowo

Zagadnienia AI wykład 1

Zagadnienia AI wykład 1 Zagadnienia AI wykład Podręcznik do wykładu: Leszek Rutkowski Metody i techniki sztucznej inteligencji Wydawnictwo Naukowe PWN Prezentacje do wykładu będą sukcesywnie umieszczane na stronie: http://merlin.fic.uni.lodz.pl/mskulimowski/

Bardziej szczegółowo

Macierze. Rozdział Działania na macierzach

Macierze. Rozdział Działania na macierzach Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i, j) (i 1,..., n; j 1,..., m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F R lub F C, nazywamy macierzą (rzeczywistą, gdy

Bardziej szczegółowo