Ilustracja metody MONTE CARLO. obliczania całek podwójnych

Wielkość: px
Rozpocząć pokaz od strony:

Download "Ilustracja metody MONTE CARLO. obliczania całek podwójnych"

Transkrypt

1 Ilustracja metody MONTE CARLO obliczania całek podwójnych

2 Często jest tak, iż wiemy, że istnieje całka oznaczona z funkcji f jednak nie potrafimy jej analitycznie policzyć. Konieczne jest wtedy zastosowanie jakiejś metody numerycznej. Metody całkowania oparte o użycie liczb losowych pojawiły się w latach czterdziestych XX wieku. W Los Alamos w ramach "Projektu Manhattan" (nad budową bomby jądrowej pracowali wtedy m.in. John von Neumann, Stanisław Ulam, Richard Feynman) potrzebne było obliczenie całek dotyczących rozpraszania i absorpcji neutronów. Wykorzystana została do tego metoda Monte Carlo. Nazwa Monte Carlo, kasyna w Monaco, nawiązuje do losowości gier hazardowych.

3 Projekt prezentuje zastosowanie metody Monte Carlo do obliczania całek podwójnych. Zgodnie z Mocnym Prawem Wielkich Liczb Kołmogorowa, całka dana jest wzorem: b a n f ( X k ) n k=1 n b f ( x)dx a Przybliżenie całki dla całek podwójnych wygląda następująco: (b a ) f ( x, y )dxdy n n k=1 Gdzie xk i yk to odpowiednie losowe liczby xk = a + (b a )u k f ( xk, y k ) yk = a + (b a )vk

4 Przykłady całek

5 x 3 + y dxdy 3

6 x 3 + y dxdy 3 = {( x, y ) : x,0 y x }

7 x 3 + y dxdy 3

8 Obliczenia analityczne x dx 0 x 1 ( x + y )dy = y 3 dx = ( x ) dx = (16 8 x + x )dx = x x + x = 15

9 Metoda Monte Carlo ~obszar zawarty jest w kwadracie ' = [ ;] [ ;] ~n liczb ui i vi losujemy z rozkładu jednostajnego U (0;1) I przekształcamy według wzorów. ~wykorzystując wylosowane liczby możemy przybliżyć całkę: ( x + y )dxdy n 3 3 n k=1 3 3 ( xk + y k )

10 Stworzony został wykres przedstawiający rozkład wyników dla wykonanych 50 prób dla każdego n, wyskalowany został półlogarytmicznie, pominięto ukazanie rozrzutu wartości dla n=1 i n=10 ze względu na ich duże różnice Wyniki prób Monte Carlo Wartość całki Wartosci uzyskane 10 9 y = 8, Ilosc prób Monte Carlo n Wartość obliczona metodami standardowymi to 8,5(3). Metodą Monte Carlo, dla 50 prób przy n= uzyskujemy wartość średnią 8,535893, co stanowi bardzo dobre przybliżenie rzeczywistej wartości całki.

11 sin( y ) dxdy y

12 sin( y ) dxdy y = {( x, y ) : 0 x, x y }

13 sin( y ) dxdy y

14 Obliczenia analityczne sin(y) dxdy = y = y sin(y) 0 dy 0 y dx = sin( y)dy = 0 sin(y) 0 x y [cos( ) cos(0)] = x= y dy = x= 0

15 Metoda Monte Carlo ~obszar zawarty jest w kwadracie ' = [0; ] [0; ] ~n liczb ui i vi losujemy z rozkładu jednostajnego U (0;1) I przekształcamy według wzorów na xi i yi ~wykorzystując wylosowane liczby możemy przybliżyć całkę: sin( y ) dxdy y n n sin( yk ) k = 1 y k

16 Wyniki prób Monte Carlo Wartość całki Wartosci uzyskane 3,5 3,5 y= 1, Ilosc prób Monte Carlo n Wykres przedstawiający rozkład wyników dla wykonanych 100 prób dla każdego n. Wartość obliczona metodami standardowymi to. Metodą Monte Carlo, dla 100 prób przy n= uzyskujemy wartość średnią 1,99978.

17 (x + y )dxdy

18 ( x + y ) dxdy = {( x, y ) : y 0, y } x + y x

19 (x + y )dxdy

20 Obliczenia analityczne Aby obliczyć całkę analitycznie, konieczne jest przejście na współrzędne biegunowe. Obszar, po którym całkujemy, jest fragmentem koła y x + y x ρ sin ϕ ρ ρ cos ϕ sin ϕ ρ cos ϕ we współrzędnych biegunowych odpowiada on: = ( ρ, ϕ ) : 0 ϕ, sin ϕ ρ cos ϕ

21 cosϕ 0 sin ϕ ( x + y ) dxdy = ρ ρ dρ dϕ = dϕ ( ) 1 1 = cos ϕ sin ϕ dϕ = (cos ϕ sin ϕ 0 ρ ρ dρ = ) ϕ= ϕ =0 1 d ϕ 0 ρ 1 = 8 w obliczenia wykorzystane zostaly calki : 1 (1ϕ + 8 sin(ϕ ) + sin(ϕ ) ) cos ϕ d ϕ = 3 1 (1ϕ 8 sin(ϕ ) + sin(ϕ ) ) sin ϕ d ϕ = 3 ( cos ϕ sin ϕ )ϕ dϕ = 31 *16 sin(ϕ ) = sin ϕ cos ϕ ρ = cosϕ ρ = sin ϕ

22 Metoda Monte Carlo ~obszar zawarty jest w kwadracie ' = [0;1] [0;1] ~n liczb xi i yi losujemy bezpośrednio z rozkładu jednostajnego U (0;1) ~wykorzystując wylosowane liczby możemy przybliżyć całkę: n 1 ( x + y ) dxdy ( x + y ) k k n k=1

23 Wyniki prób Monte Carlo Wartość całki 0,5 Wartosci uzyskane 0, 0,15 y = 0,15 0,1 0, Ilosc prób Monte Carlo n

24 e (x + y ) dxdy

25 e (x + y ) dxdy = {( x, y ) : x 0, y x, x + y ln 3}

26 e (x + y ) dxdy

27 Obliczenia analityczne e (x + y ) dxdy = {( x, y ) : x 0, y x, x + y ln 3} we współrzędnych biegunowych odpowiada = {( f, p ) : e (x + y ) dxdy = = 1 p ( e ln 3 0 dfdp = e p df = 1 f 3 f,0 p ln 3 df = pe p ln 3} dp = * 0 z = p p * pe dp = z ' = p = dz = pdp 1 z 1 p e dz = e

28 Metoda Monte Carlo ~obszar zawarty jest w kwadracie ' = [ ln 3; ln 3] [ ln 3; ln 3] ~n liczb ui i vi losujemy z rozkładu jednostajnego U (0;1) i przekształcamy według wzorów. ~wykorzystując wylosowane liczby możemy przybliżyć całkę: e (x + y n ln 3 ( xk + y k ) ) dxdy e n k=1

29 Wyniki prób Monte Carlo Przewidywana wartość całki Wartosci uzyskane 1,75 1,5 y = / 0,75 0, Ilosc prób Monte Carlo n Wykres przedstawiający rozkład wyników dla wykonanych 80 prób dla każdego n

30 x sin( y ) 10 x dxdy

31 x sin( y ) 10 x dxdy = {( x, y ) : 0 x 1; 0 y x}

32 x sin( y ) 10 x dxdy

33 Obliczenia analityczne Całki tej nie da się wyrazić za pomocą funkcji elementarnych. Tutaj z pomocą przychodzi metoda Monte Carlo, dzięki której możemy poznać jej przybliżoną wartość.

34 Metoda Monte Carlo ~obszar zawarty jest w kwadracie ' = [0;1] [0;1] ~n liczb xi i yi losujemy bezpośrednio z rozkładu jednostajnego U (0;1) ~wykorzystując wylosowane liczby możemy przybliżyć całkę: n 10 xk sin( y k ) x sin( y ) 10 x dxdy n k = 1 xk

35 Wyniki prób Monte Carlo Przewidywana wartość całki Wartosci uzyskane 3 y = Ilosc prób Monte Carlo n

36 Autorzy projektu: orota Moskal Mateusz Sawicki Mariusz Orda Michał Piórek Mateusz Fuławka Miłosz Karolonek

Nie do końca zaawansowane elementy programowania w pakiecie R. Tomasz Suchocki

Nie do końca zaawansowane elementy programowania w pakiecie R. Tomasz Suchocki Nie do końca zaawansowane elementy programowania w pakiecie R Tomasz Suchocki Plan wykładu Metody Monte Carlo Jak bardzo można przybliżyć liczbę π? Całkowanie numeryczne R w Linuxie Tinn-R Metody Monte

Bardziej szczegółowo

Ilustracja metody Monte Carlo obliczania pola obszaru D zawartego w kwadracie [a,b]x[a,b]

Ilustracja metody Monte Carlo obliczania pola obszaru D zawartego w kwadracie [a,b]x[a,b] Ilustracja metody Monte Carlo obliczania pola obszaru D zawartego w kwadracie [a,b]x[a,b] Dagna Bieda, Piotr Jarecki, Tomasz Nachtigall, Jakub Ciesiółka, Marek Kubiczek Metoda Monte Carlo Metoda Monte

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład XIV: Metody Monte Carlo 19 stycznia 2016 Przybliżone obliczanie całki oznaczonej Rozważmy całkowalną funkcję f : [0, 1] R. Chcemy znaleźć przybliżoną wartość liczbową całki 1 f (x) dx. 0 Jeden ze

Bardziej szczegółowo

Metoda Monte Carlo i jej zastosowania

Metoda Monte Carlo i jej zastosowania i jej zastosowania Tomasz Mostowski Zajęcia 31.03.2008 Plan 1 PWL 2 3 Plan PWL 1 PWL 2 3 Przypomnienie PWL Istnieje wiele wariantów praw wielkich liczb. Wspólna ich cecha jest asymptotyczne zachowanie

Bardziej szczegółowo

Rachunek prawdopodobieństwa projekt Ilustracja metody Monte Carlo obliczania całek oznaczonych

Rachunek prawdopodobieństwa projekt Ilustracja metody Monte Carlo obliczania całek oznaczonych Rachunek prawdopodobieństwa projekt Ilustracja metody Monte Carlo obliczania całek oznaczonych Autorzy: Marta Rotkiel, Anna Konik, Bartłomiej Parowicz, Robert Rudak, Piotr Otręba Spis treści: Wstęp Cel

Bardziej szczegółowo

22. CAŁKA KRZYWOLINIOWA SKIEROWANA

22. CAŁKA KRZYWOLINIOWA SKIEROWANA CAŁA RZYWOLINIOWA SIEROWANA Niech łuk o równaniach parametrycznych: x x(t), y y(t), a < t < b, będzie łukiem regularnym skierowanym, tzn łukiem w którym przyjęto punkt A(x(a), y(a)) za początek łuku, zaś

Bardziej szczegółowo

Mikroekonometria 6. Mikołaj Czajkowski Wiktor Budziński

Mikroekonometria 6. Mikołaj Czajkowski Wiktor Budziński Mikroekonometria 6 Mikołaj Czajkowski Wiktor Budziński Metody symulacyjne Monte Carlo Metoda Monte-Carlo Wykorzystanie mocy obliczeniowej komputerów, aby poznać charakterystyki zmiennych losowych poprzez

Bardziej szczegółowo

Całki podwójne. Definicja całki podwójnej. Jacek Kłopotowski. 25 maja Katedra Matematyki i Ekonomii Matematycznej

Całki podwójne. Definicja całki podwójnej. Jacek Kłopotowski. 25 maja Katedra Matematyki i Ekonomii Matematycznej Definicja całki podwójnej Katedra Matematyki i Ekonomii Matematycznej 25 maja 2016 Definicja całki podwójnej Załóżmy, że f : K R, gdzie K = a, b c, d R 2, jest funkcją ograniczoną. Niech x 0, x 1,...,

Bardziej szczegółowo

Przykłady do zadania 1.1 : Obliczyć dane całki podwójne po wskazanych prostokątach. π 4. (a) sin(x + y) dxdy, R = π 4, π ] [ dy = sin(x + y)dy = dx =

Przykłady do zadania 1.1 : Obliczyć dane całki podwójne po wskazanych prostokątach. π 4. (a) sin(x + y) dxdy, R = π 4, π ] [ dy = sin(x + y)dy = dx = achunek prawdopodobieństwa MAP6 Wdział Elektroniki, rok akad. 8/9, sem. letni Wkładowca: dr hab. A. Jurlewicz Przkład do list : Całki podwójne Przkład do zadania. : Obliczć dane całki podwójne po wskazanch

Bardziej szczegółowo

Ilustracja metody Monte Carlo do obliczania pola obszaru D zawartego w kwadracie [a, b] [a, b].

Ilustracja metody Monte Carlo do obliczania pola obszaru D zawartego w kwadracie [a, b] [a, b]. Rachunek Prawdopodobienstwa MAEW104 Wydział Elektroniki, rok akad. 2008/09, sem. letni wykład: dr hab. Agnieszka Jurlewicz Temat projektu: Ilustracja metody Monte Carlo do obliczania pola obszaru D zawartego

Bardziej szczegółowo

Prawdopodobieństwo geometryczne

Prawdopodobieństwo geometryczne Prawdopodobieństwo geometryczne Krzysztof Jasiński Wydział Matematyki i Informatyki UMK, Toruń V Lieceum Ogólnokształące im. Jana Pawała II w Toruniu 13.03.2014 Krzysztof Jasiński (WMiI UMK) Prawdopodobieństwo

Bardziej szczegółowo

Wykłady z Matematyki stosowanej w inżynierii środowiska, II sem. 2. CAŁKA PODWÓJNA Całka podwójna po prostokącie

Wykłady z Matematyki stosowanej w inżynierii środowiska, II sem. 2. CAŁKA PODWÓJNA Całka podwójna po prostokącie Wykłady z Matematyki stosowanej w inżynierii środowiska, II sem..1. Całka podwójna po prostokącie.. CAŁKA POWÓJNA.. Całka podwójna po obszarach normalnych..3. Całka podwójna po obszarach regularnych..4.

Bardziej szczegółowo

Kilka słów o metodzie Monte Carlo

Kilka słów o metodzie Monte Carlo Rachunek Prawdopodobieństwa Grupa wykładowa: środa g. 15.15 Prezentuje: Grupa w składzie: 1. Wojciech Nawracała 2. Paweł Gancarz 3. Michał Frysztacki 4. Paweł Trajdos 5. Jakub Bubin Ilustracja metody Monte

Bardziej szczegółowo

Analiza matematyczna 2 zadania z odpowiedziami

Analiza matematyczna 2 zadania z odpowiedziami Analiza matematyczna zadania z odpowiedziami Maciej Burnecki strona główna Spis treści I Całki niewłaściwe pierwszego rodzaju II Całki niewłaściwe drugiego rodzaju 5 III Szeregi liczbowe 6 IV Szeregi potęgowe

Bardziej szczegółowo

ANALIZA MATEMATYCZNA 2 zadania z odpowiedziami

ANALIZA MATEMATYCZNA 2 zadania z odpowiedziami ANALIZA MATEMATYCZNA zadania z odpowiedziami Maciej Burnecki strona główna Spis treści Całki niewłaściwe pierwszego rodzaju Całki niewłaściwe drugiego rodzaju Szeregi liczbowe 4 4 Szeregi potęgowe 5 5

Bardziej szczegółowo

Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS

Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS przykładowe zadania na. kolokwium czerwca 6r. Poniżej podany jest przykładowy zestaw zadań. Podczas kolokwium na ich rozwiązanie przeznaczone będzie ok. 85

Bardziej szczegółowo

Wykłady z Matematyki stosowanej w inżynierii środowiska, II sem. 3. CAŁKA POTRÓJNA

Wykłady z Matematyki stosowanej w inżynierii środowiska, II sem. 3. CAŁKA POTRÓJNA Wykłady z Matematyki stosowanej w inżynierii środowiska, II sem 1 Całka potrójna po prostopadłościanie CAŁKA POTRÓJNA 2 Całka potrójna po obszarach normalnych Współrzędne walcowe 4 Współrzędne sferyczne

Bardziej szczegółowo

Lista 6. Kamil Matuszewski 13 kwietnia D n =

Lista 6. Kamil Matuszewski 13 kwietnia D n = Lista 6 Kamil Matuszewski 3 kwietnia 6 3 4 5 6 7 8 9 Zadanie Mamy Pokaż, że det(d n ) = n.... D n =.... Dowód. Okej. Dla n =, n = trywialne. Załóżmy, że dla n jest ok, sprawdzę dla n. Aby to zrobić skorzystam

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład VII: Metody specjalne Monte Carlo 24 listopada 2014 Transformacje specjalne Przykład - symulacja rozkładu geometrycznego Niech X Ex(λ). Rozważmy zmienną losową [X ], która przyjmuje wartości naturalne.

Bardziej szczegółowo

Lista zadań nr 2 z Matematyki II

Lista zadań nr 2 z Matematyki II Lista zadań nr 2 z Matematyki II dla studentów wydziału Architektury, kierunku Gospodarka Przestrzenna. Wyznaczyć dziedzinę funkcji f(x, y) = ln(4 x 2 y 2 ), f(x, y) = x 2 + y 2, f(x, y) = ln(4 x 2 y 2

Bardziej szczegółowo

Modelowanie rynków finansowych z wykorzystaniem pakietu R

Modelowanie rynków finansowych z wykorzystaniem pakietu R Modelowanie rynków finansowych z wykorzystaniem pakietu R Metody numeryczne i symulacje stochastyczne Mateusz Topolewski woland@mat.umk.pl Wydział Matematyki i Informatyki UMK Plan działania 1 Całkowanie

Bardziej szczegółowo

Całkowanie metodą Monte Carlo

Całkowanie metodą Monte Carlo Całkowanie metodą Monte Carlo Plan wykładu: 1. Podstawowa metoda Monte Carlo 2. Metody MC o zwiększonej efektywności a) losowania ważonego b) zmiennej kontrolnej c) losowania warstwowego d) obniżania krotności

Bardziej szczegółowo

Mikroekonometria 5. Mikołaj Czajkowski Wiktor Budziński

Mikroekonometria 5. Mikołaj Czajkowski Wiktor Budziński Mikroekonometria 5 Mikołaj Czajkowski Wiktor Budziński Zadanie 1. Wykorzystując dane me.medexp3.dta przygotuj model regresji kwantylowej 1. Przygotuj model regresji kwantylowej w którym logarytm wydatków

Bardziej szczegółowo

ELEKTROTECHNIKA Semestr 2 Rok akad / ZADANIA Z MATEMATYKI Zestaw Oblicz pochodne cząstkowe rzędu drugiego funkcji:

ELEKTROTECHNIKA Semestr 2 Rok akad / ZADANIA Z MATEMATYKI Zestaw Oblicz pochodne cząstkowe rzędu drugiego funkcji: ZADANIA Z MATEMATYKI Zestaw. Oblicz pochodne cząstkowe funkcji: a) f(x, y) = x sin y x b) f(x, y) = e y +x 2 c) f(x, y, z) = z cos x+y z 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: 3. Wyznacz

Bardziej szczegółowo

wykład V uzupełnienie notatek: dr Jerzy Białkowski Programowanie C/C++ Język C++ klasy i obiekty wykład V dr Jarosław Mederski Spis Język C++ - klasy

wykład V uzupełnienie notatek: dr Jerzy Białkowski Programowanie C/C++ Język C++ klasy i obiekty wykład V dr Jarosław Mederski Spis Język C++ - klasy i obiekty Programowanie i obiekty uzupełnienie notatek: dr Jerzy Białkowski i obiekty 1 2 3 4 i obiekty Obiektowość języka C++ Na tym wykładzie poznamy: ˆ Klasa (w języku C++ rozszerzenie struktury, typ

Bardziej szczegółowo

Całka podwójna po prostokącie

Całka podwójna po prostokącie Całka podwójna po prostokącie Rozważmy prostokąt = {(x, y) R : a x b, c y d}, gdzie a, b, c, d R, oraz funkcję dwóch zmiennych f : R ograniczoną w tym prostokącie. rostokąt dzielimy na n prostokątów i

Bardziej szczegółowo

Metody Obliczeniowe w Nauce i Technice

Metody Obliczeniowe w Nauce i Technice Metody Obliczeniowe w Nauce i Technice 15. Obliczanie całek metodami Monte Carlo Marian Bubak Department of Computer Science AGH University of Science and Technology Krakow, Poland bubak@agh.edu.pl dice.cyfronet.pl

Bardziej szczegółowo

5. Całka nieoznaczona

5. Całka nieoznaczona 5. Całka nieoznaczona Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2017/2018 rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Całka nieoznaczona zima 2017/2018 1 / 31 Całka nieoznaczona

Bardziej szczegółowo

Metoda Monte Carlo. Jerzy Mycielski. grudzien Jerzy Mycielski () Metoda Monte Carlo grudzien / 10

Metoda Monte Carlo. Jerzy Mycielski. grudzien Jerzy Mycielski () Metoda Monte Carlo grudzien / 10 Metoda Monte Carlo Jerzy Mycielski grudzien 2012 Jerzy Mycielski () Metoda Monte Carlo grudzien 2012 1 / 10 Przybliżanie całek Powiedzmy, że mamy do policzenia następującą całkę: b f (x) dx = I a Założmy,

Bardziej szczegółowo

ELEKTROTECHNIKA Semestr 2 Rok akad. 2015 / 2016. ZADANIA Z MATEMATYKI Zestaw 1. 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji:

ELEKTROTECHNIKA Semestr 2 Rok akad. 2015 / 2016. ZADANIA Z MATEMATYKI Zestaw 1. 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: ZADANIA Z MATEMATYKI Zestaw 1 1. Oblicz pochodne cząstkowe funkcji: a) f(x, y) = x sin y x b) f(x, y) = e y 1+x 2 c) f(x, y, z) = z cos x+y z 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: 3. Wyznacz

Bardziej szczegółowo

6. Całka nieoznaczona

6. Całka nieoznaczona 6. Całka nieoznaczona Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 6. Całka nieoznaczona 1 / 35 Całka nieoznaczona - motywacja Wiemy

Bardziej szczegółowo

Prawdopodobieństwo geometryczne

Prawdopodobieństwo geometryczne Prawdopodobieństwo geometryczne Bartosz Ziemkiewicz Wydział Matematyki i Informatyki UMK, Toruń Uniwersyteckie Koło Matematyczne 23 kwietnia 2009 r. Bartosz Ziemkiewicz (WMiI UMK) Prawdopodobieństwo geometryczne

Bardziej szczegółowo

CAŁKOWANIE NUMERYCZNE

CAŁKOWANIE NUMERYCZNE CAŁKOWANIE NUMEYCZNE Zad. ozumnie wybraną metodą numeryczną oblicz wartość całki Oraz błąd jej wyznaczenia. ln(cos x ) dx Podana jest funkcja i granice w jakic należy ją scałkować. Jak wiadomo wynikiem

Bardziej szczegółowo

Obliczanie całek. Instytut Fizyki Akademia Pomorska w Słupsku

Obliczanie całek. Instytut Fizyki Akademia Pomorska w Słupsku Obliczanie całek. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się ze sposobami i możliwościami przybliżonego obliczania całek w środowisku GNU octave. Wprowadzenie Kwadratury Zajmijmy się przybliżonym

Bardziej szczegółowo

Jednowymiarowa zmienna losowa

Jednowymiarowa zmienna losowa 1 Jednowymiarowa zmienna losowa Przykład Doświadczenie losowe - rzut kostką do gry. Obserwujemy ilość wyrzuconych oczek. Teoretyczny model eksperymentu losowego - przestrzeń probabilistyczna (Ω, S, P ),

Bardziej szczegółowo

Całka oznaczona zastosowania (wykład 9; ) Definicja całki oznaczonej dla funkcji ciagłej

Całka oznaczona zastosowania (wykład 9; ) Definicja całki oznaczonej dla funkcji ciagłej Całka oznaczona zastosowania (wykład 9;26.11.7) Definicja całki oznaczonej dla funkcji ciagłej Definicja 1 Załózmy, że funkcja f jest ciagła na przedziale [a, b]. Całkę oznaczona z funkcji ci b a f(x)dx

Bardziej szczegółowo

Wykłady 11 i 12: Całka oznaczona

Wykłady 11 i 12: Całka oznaczona Wykłady 11 i 12: Całka oznaczona dr Mariusz Grzadziel Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu semestr zimowy; rok akademicki 2016/2017 Pole trójkata parabolicznego Problem. Chcemy obliczyć

Bardziej szczegółowo

Metody numeryczne. materiały do wykładu dla studentów. 7. Całkowanie numeryczne

Metody numeryczne. materiały do wykładu dla studentów. 7. Całkowanie numeryczne Metody numeryczne materiały do wykładu dla studentów 7. Całkowanie numeryczne 7.1. Całkowanie numeryczne 7.2. Metoda trapezów 7.3. Metoda Simpsona 7.4. Metoda 3/8 Newtona 7.5. Ogólna postać wzorów kwadratur

Bardziej szczegółowo

Generacja liczb pseudolosowych

Generacja liczb pseudolosowych Generacja liczb pseudolosowych Zapis liczb w komputerze Generatory liczb pseudolosowych Liniowe kongruentne Liniowe mutiplikatywne kongruentne Jakość generatorów Test widmowy Generowanie liczb losowych

Bardziej szczegółowo

1 Wykład 4. Proste Prawa wielkich liczb, CTG i metody Monte Carlo

1 Wykład 4. Proste Prawa wielkich liczb, CTG i metody Monte Carlo 1 Wykład 4. Proste Prawa wielkich liczb, CTG i metody Monte Carlo 1.1 Rodzaje zbieżności ciagów zmiennych losowych Niech (Ω, F, P ) będzie przestrzenia probabilistyczna na której określony jest ciag {X

Bardziej szczegółowo

Obliczanie indukcyjności cewek

Obliczanie indukcyjności cewek napisał Michał Wierzbicki Obliczanie indukcyjności cewek Indukcyjność dla cewek z prądem powierzchniowym Energia zgromadzona w polu magnetycznym dwóch cewek, przez uzwojenia których płyną prądy I 1 i I

Bardziej szczegółowo

Całkowanie numeryczne

Całkowanie numeryczne 16 kwiecień 2009 SciLab w obliczeniach numerycznych - część 4 Slajd 1 Całkowanie numeryczne 16 kwiecień 2009 SciLab w obliczeniach numerycznych - część 4 Slajd 2 Plan zajęć 1. Całkowanie przybliżone funkcji

Bardziej szczegółowo

Zagadnienia brzegowe dla równań eliptycznych

Zagadnienia brzegowe dla równań eliptycznych Temat 7 Zagadnienia brzegowe dla równań eliptycznych Rozważmy płaski obszar R 2 ograniczony krzywą. la równania Laplace a (Poissona) stawia się trzy podstawowe zagadnienia brzegowe. Zagadnienie irichleta

Bardziej szczegółowo

Uniwersytet Warmińsko-Mazurski w Olsztynie

Uniwersytet Warmińsko-Mazurski w Olsztynie Uniwersytet Warmińsko-Mazurski w Olsztynie ZETAW II Całka podwójna.. Obliczyć całki iterowane (a 4 4 2 ( (x + y ( 2 4 ( y x y dy dx y 3 x 2 + y 2 dx dy. 2. Zmienić kolejność całkowania (a (d 2 e ( 2x x

Bardziej szczegółowo

Dystrybucje. Marcin Orchel. 1 Wstęp Dystrybucje Pochodna dystrybucyjna Przestrzenie... 5

Dystrybucje. Marcin Orchel. 1 Wstęp Dystrybucje Pochodna dystrybucyjna Przestrzenie... 5 Dystrybucje Marcin Orchel Spis treści 1 Wstęp 1 1.1 Dystrybucje................................... 1 1.2 Pochodna dystrybucyjna............................ 3 1.3 Przestrzenie...................................

Bardziej szczegółowo

1 Równania różniczkowe drugiego rzędu

1 Równania różniczkowe drugiego rzędu Równania różniczkowe drugiego rzędu Najpierw zajmiemy się równaniami różniczkowymi rzędu drugiego, w których y nie występuje w sposób jawny, tzn. F (x, y, y ) = 0 (.) Równanie takie rozwiązujemy poprzez

Bardziej szczegółowo

Podstawy OpenCL część 2

Podstawy OpenCL część 2 Podstawy OpenCL część 2 1. Napisz program dokonujący mnożenia dwóch macierzy w wersji sekwencyjnej oraz OpenCL. Porównaj czasy działania obu wersji dla różnych wielkości macierzy, np. 16 16, 128 128, 1024

Bardziej szczegółowo

lim = 0, gdzie d n oznacza najdłuższą przekątną prostokątów

lim = 0, gdzie d n oznacza najdłuższą przekątną prostokątów 9. CAŁKA POWÓJNA 9.. Całka podwójna w prostokącie Niech P będzie prostokątem opisanm na płaszczźnie OXY nierównościami: a < < b, c < < d, a f(,) funkcją określoną i ograniczoną w tm prostokącie. Prostokąt

Bardziej szczegółowo

Zadania o numerze 4 z zestawów licencjat 2014.

Zadania o numerze 4 z zestawów licencjat 2014. Zadania o numerze 4 z zestawów licencjat 2014. W nawiasie przy zadaniu jego występowanie w numerze zestawu Spis treści (Z1, Z22, Z43) Definicja granicy ciągu. Obliczyć granicę:... 3 Definicja granicy ciągu...

Bardziej szczegółowo

Wykład 2 Zmienne losowe i ich rozkłady

Wykład 2 Zmienne losowe i ich rozkłady Wykład 2 Zmienne losowe i ich rozkłady Magdalena Frąszczak Wrocław, 11.10.2017r Zmienne losowe i ich rozkłady Doświadczenie losowe: Rzut monetą Rzut kostką Wybór losowy n kart z talii 52 Gry losowe Doświadczenie

Bardziej szczegółowo

Funkcje dwóch zmiennych

Funkcje dwóch zmiennych Funkcje dwóch zmiennych Andrzej Musielak Str Funkcje dwóch zmiennych Wstęp Funkcja rzeczywista dwóch zmiennych to funkcja, której argumentem jest para liczb rzeczywistych, a wartością liczba rzeczywista.

Bardziej szczegółowo

Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 wykład 13 (27 maja)

Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 wykład 13 (27 maja) Matematyka II Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 208/209 wykład 3 (27 maja) Całki niewłaściwe przedział nieograniczony Rozpatrujemy funkcje ciągłe określone na zbiorach < a, ),

Bardziej szczegółowo

Przykład Łuk ze ściągiem, obciążenie styczne. D A

Przykład Łuk ze ściągiem, obciążenie styczne. D A Przykład 1.4. Łuk ze ściągiem, obciążenie styczne. Rysunek przedstawia łuk trójprzegubowy, kołowy, ze ściągiem. Łuk obciążony jest obciążeniem stycznym do łuku, o stałej gęstości na jednostkę długości

Bardziej szczegółowo

6. Zmienne losowe typu ciagłego ( ) Pole trapezu krzywoliniowego

6. Zmienne losowe typu ciagłego ( ) Pole trapezu krzywoliniowego 6. Zmienne losowe typu ciagłego (2.04.2007) Pole trapezu krzywoliniowego Przypomnienie: figurę ograniczoną przez: wykres funkcji y = f(x), gdzie f jest funkcją ciągłą; proste x = a, x = b, a < b, oś OX

Bardziej szczegółowo

Wykład 10: Całka nieoznaczona

Wykład 10: Całka nieoznaczona Wykład 10: Całka nieoznaczona dr Mariusz Grzadziel Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu semestr zimowy, rok akademicki 2016/2017 Motywacja Problem 1 Kropla wody o średnicy 0,07 mm

Bardziej szczegółowo

Rachunek całkowy funkcji wielu zmiennych

Rachunek całkowy funkcji wielu zmiennych Rachunek całkowy funkcji wielu zmiennych Całki potrójne wykład z MATEMATYKI Budownictwo studia niestacjonarne sem. II, rok ak. 2008/2009 Katedra Matematyki Wydział Informatyki olitechnika Białostocka 1

Bardziej szczegółowo

Wykład VI. Badanie przebiegu funkcji. 2. A - przedział otwarty, f D 2 (A) 3. Ekstrema lokalne: 4. Punkty przegięcia. Uwaga!

Wykład VI. Badanie przebiegu funkcji. 2. A - przedział otwarty, f D 2 (A) 3. Ekstrema lokalne: 4. Punkty przegięcia. Uwaga! Wykład VI Badanie przebiegu funkcji 1. A - przedział otwarty, f D A x A f x > 0 f na A x A f x < 0 f na A 2. A - przedział otwarty, f D 2 (A) x A f x > 0 fwypukła ku górze na A x A f x < 0 fwypukła ku

Bardziej szczegółowo

Matematyka I. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 12

Matematyka I. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 12 Matematyka I Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 12 Egzamin Termin: 28.01, godz. 10.15-11.45, sala 309 3 pytania teoretyczne 2 zadania wybór pytań i wybór zadań

Bardziej szczegółowo

Całka nieoznaczona wykład 7 ( ) Motywacja

Całka nieoznaczona wykład 7 ( ) Motywacja Całka nieoznaczona wykład 7 (12.11.07) Motywacja Problem 1 Kropla wody o średnicy 0,07 mm porusza się z prędkościa v(t) = g c (1 e ct ), gdzie g oznacza przyśpieszenie ziemskie, a stałac c = 52,6 1 s została

Bardziej szczegółowo

Algorytmy zrandomizowane

Algorytmy zrandomizowane Algorytmy zrandomizowane http://zajecia.jakubw.pl/nai ALGORYTMY ZRANDOMIZOWANE Algorytmy, których działanie uzależnione jest od czynników losowych. Algorytmy typu Monte Carlo: dają (po pewnym czasie) wynik

Bardziej szczegółowo

Wykład VI Dalekie pole

Wykład VI Dalekie pole Wykład VI Dalekie pole Schemat przypomnienie Musimy znać rozkład fali padającej u pad (x,y) w płaszczyźnie układu optycznego Musimy znać funkcję transmitancji układu optycznego t(x,y) Określamy falę właśnie

Bardziej szczegółowo

Równania różniczkowe zwyczajne

Równania różniczkowe zwyczajne Równania różniczkowe zwyczajne zadań dla sudenów kierunku Auomayka i roboyka WEAIiIB AGH Michał Góra Wydział Maemayki Sosowanej AGH I. Równania o zmiennych rozdzielonych: y = f (y)f () Zadanie. Rozwiąż

Bardziej szczegółowo

Zawansowane modele wyborów dyskretnych

Zawansowane modele wyborów dyskretnych Zawansowane modele wyborów dyskretnych Jerzy Mycielski Uniwersytet Warszawski grudzien 2013 Jerzy Mycielski (Uniwersytet Warszawski) Zawansowane modele wyborów dyskretnych grudzien 2013 1 / 16 Model efektów

Bardziej szczegółowo

Funkcje charakterystyczne zmiennych losowych, linie regresji 1-go i 2-go rodzaju

Funkcje charakterystyczne zmiennych losowych, linie regresji 1-go i 2-go rodzaju Funkcje charakterystyczne zmiennych losowych, linie regresji -go i 2-go rodzaju Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

24. CAŁKA POWIERZCHNIOWA ZORIENTOWANA

24. CAŁKA POWIERZCHNIOWA ZORIENTOWANA 4. CAŁA POWIERZCHNIOWA ZORIENTOWANA Płat powierzchniowy gładki o równaniach parametrycznych: x = x( u, v ), y = y( u, v ), z = z( u, v ),, (u,v) w którym rozróżniamy dwie jego stron dodatnią i ujemną.

Bardziej szczegółowo

Ważne rozkłady i twierdzenia c.d.

Ważne rozkłady i twierdzenia c.d. Ważne rozkłady i twierdzenia c.d. Funkcja charakterystyczna rozkładu Wielowymiarowy rozkład normalny Elipsa kowariacji Sploty rozkładów Rozkłady jednostajne Sploty z rozkładem normalnym Pobieranie próby

Bardziej szczegółowo

Wykłady 14 i 15. Zmienne losowe typu ciągłego

Wykłady 14 i 15. Zmienne losowe typu ciągłego Wykłady 14 i 15. Zmienne losowe typu ciągłego dr Mariusz Grządziel r. akad. 14 15 Pole trapezu krzywoliniowego Przypomnienie: figurę ograniczoną przez: wykres funkcji y = f(x, gdzie f jest funkcją ciągłą

Bardziej szczegółowo

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną?

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1. Liczby zespolone 1.1. Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1.2. Doprowadzić do postaci a + ib liczby zespolone (i) (1 13i)/(1 3i),

Bardziej szczegółowo

Całkowanie metodami Monte Carlo

Całkowanie metodami Monte Carlo 1 Całkowanie metodami Monte Carlo,,Od igły Buffona do metod redukcji wariancji Igła Buffona i metoda Monte Carlo typu,,orzeł reszka. Metoda podstawowa całkowania Monte Carlo. Klasyczne metody redukcji

Bardziej szczegółowo

Wersja testu A 18 czerwca 2012 r. x 2 +x dx

Wersja testu A 18 czerwca 2012 r. x 2 +x dx 1. Funkcja f : R R jest różniczkowalna na całej prostej, a ponadto dla każdej liczby rzeczywistej x zachodzi nierówność f x

Bardziej szczegółowo

Całki nieoznaczone. 1 Własności. 2 Wzory podstawowe. Adam Gregosiewicz 27 maja a) Jeżeli F (x) = f(x), to f(x)dx = F (x) + C,

Całki nieoznaczone. 1 Własności. 2 Wzory podstawowe. Adam Gregosiewicz 27 maja a) Jeżeli F (x) = f(x), to f(x)dx = F (x) + C, Całki nieoznaczone Adam Gregosiewicz 7 maja 00 Własności a) Jeżeli F () = f(), to f()d = F () + C, dla dowolnej stałej C R. b) Jeżeli a R, to af()d = a f()d. c) Jeżeli f i g są funkcjami całkowalnymi,

Bardziej szczegółowo

Analiza Matematyczna. Zastosowania Całek

Analiza Matematyczna. Zastosowania Całek Analiza Matematyczna. Zastosowania Całek Aleksander Denisiuk denisiuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 8-45 Gdańsk 9 maja 217

Bardziej szczegółowo

Komputerowa analiza danych doświadczalnych

Komputerowa analiza danych doświadczalnych Komputerowa analiza danych doświadczalnych Wykład 4 6.03.08 dr inż. Łukasz Graczykowski lukasz.graczykowski@pw.edu.pl Semestr letni 07/08 Zamiana zmiennych Transformacje liniowe Propagacja niepewności

Bardziej szczegółowo

f x f x(x, y) (1.1) f(x, y, z) = xyz (1.5)

f x f x(x, y) (1.1) f(x, y, z) = xyz (1.5) 1 Pochodne cząstkowo Pochodną cząstkową funkcji dwóch zmiennych z = f(x, y) względem zmiennej x oznaczamy i definiujemy jako granicę f(x + h, y) f(x, y) lim h 0 h natomiast pochodną cząstkową względem

Bardziej szczegółowo

Równania miłości. autor: Tomasz Grębski

Równania miłości. autor: Tomasz Grębski Równania miłości autor: Tomasz Grębski Tytuł pewnie trochę dziwnie brzmi, bo czy miłość da się opisać równaniem? Symbolem miłości jest niewątpliwie Serce, a zatem spróbujmy opisać kształt serca równaniem

Bardziej szczegółowo

7 Twierdzenie Fubiniego

7 Twierdzenie Fubiniego M. Beśka, Wstęp do teorii miary, wykład 7 19 7 Twierdzenie Fubiniego 7.1 Miary produktowe Niech i będą niepustymi zbiorami. Przez oznaczmy produkt kartezjański i tj. zbiór = { (x, y : x y }. Niech E oraz

Bardziej szczegółowo

Komputerowa analiza danych doświadczalnych

Komputerowa analiza danych doświadczalnych Komputerowa analiza danych doświadczalnych Wykład 4 8.03.06 dr inż. Łukasz Graczykowski lgraczyk@if.pw.edu.pl Semestr letni 05/06 Zamiana zmiennych Transformacje liniowe Propagacja niepewności Metody Monte

Bardziej szczegółowo

Równanie przewodnictwa cieplnego (I)

Równanie przewodnictwa cieplnego (I) Wykład 4 Równanie przewodnictwa cieplnego (I) 4.1 Zagadnienie Cauchy ego dla pręta nieograniczonego Rozkład temperatury w jednowymiarowym nieograniczonym pręcie opisuje funkcja u = u(x, t), spełniająca

Bardziej szczegółowo

Czym jest całka? Całkowanie numeryczne

Czym jest całka? Całkowanie numeryczne Całkowanie numeryczne jest to zagadnienie z metod elementów skończonych (MES). Korzystając z całkowania numerycznego możemy obliczyć wartość dowolnej całki jednowymiarowej oznaczonej. Wynik jest zawsze

Bardziej szczegółowo

Paul Erdős i Dowody z Księgi

Paul Erdős i Dowody z Księgi Paul Erdős i Dowody z Księgi Antoni Kijowski, Michał Król, Krzysztof Kwiatkowski Faculty of Mathematics and Information Science Warsaw University of Technology Warsaw, 9 January 013 (Krótki kurs historii

Bardziej szczegółowo

opracował Maciej Grzesiak Całki krzywoliniowe

opracował Maciej Grzesiak Całki krzywoliniowe opracował Maciej Grzesiak Całki krzywoliniowe 1. Definicja całki krzywoliniowej nieskierowanej Rozważmy następujący problem. Dany jest przewód elektryczny na którym rozmieszczone są ładunki. Przypuśćmy,

Bardziej szczegółowo

Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe

Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe 4.4. Momenty zmiennych losowych Katarzyna Rybarczyk-Krzywdzińska Wprowadzenie Przykład 1 Rzucamy raz kostką Ile wynosi średnia liczba oczek, jaka

Bardziej szczegółowo

Aby przygotować się do kolokwiów oraz do egzaminów należy ponownie przeanalizować zadania

Aby przygotować się do kolokwiów oraz do egzaminów należy ponownie przeanalizować zadania Chemia Budowlana - Wydział Chemiczny - 1 Aby przygotować się do kolokwiów oraz do egzaminów należy ponownie przeanalizować zadania rozwiązywane na wykładzie, rozwiązywane na ćwiczeniach, oraz samodzielnie

Bardziej szczegółowo

Ćwiczenia 4 / 5 rachunek różniczkowy

Ćwiczenia 4 / 5 rachunek różniczkowy Matematyka dla Ciekawych Świata, 2012/2013 13 listopada 2012 Ćwiczenia 4 / 5 rachunek różniczkowy 0. Kangur powraca Przypomnij sobie, że nasz kangur porusza się z prędkością 4 km/h. Zamodeluj ruch kangura

Bardziej szczegółowo

Komputerowa Analiza Danych Doświadczalnych

Komputerowa Analiza Danych Doświadczalnych Komputerowa Analiza Danych Doświadczalnych Prowadząca: dr inż. Hanna Zbroszczyk e-mail: gos@if.pw.edu.pl tel: +48 22 234 58 51 konsultacje: poniedziałek: 10-11, środa: 11-12 www: http://www.if.pw.edu.pl/~gos/students/kadd

Bardziej szczegółowo

v = v i e i v 1 ] T v = = v 1 v n v n ] a r +q = a a r 3q =

v = v i e i v 1 ] T v = = v 1 v n v n ] a r +q = a a r 3q = v U = e i,..., e n ) v = n v i e i i= e i i v T v = = v v n v v v v n 3q q q q r q = r 3q = E = E q E 3q E q = k q rq 3 k 3q r 3q 3 r q = k q rq 3 = kq 4 3 ) 4 q d b d c d d X d ± = d r = x y T d ± r ±

Bardziej szczegółowo

1 x + 1 dxdy, gdzie obszar D jest ograniczo-

1 x + 1 dxdy, gdzie obszar D jest ograniczo- Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1 Zad.1 Całkę podwójną przez: a) y =, y =, = 1; b) y =, y =, y = 1; c) y =, y = 1, y = 5; d) y = ln, y = + 1, y = 1; e) y = ln, = e, y = 1;

Bardziej szczegółowo

Przykładowe zadania na egzamin z matematyki - dr Anita Tlałka - 1

Przykładowe zadania na egzamin z matematyki - dr Anita Tlałka - 1 Przykładowe zadania na egzamin z matematyki - dr Anita Tlałka - 1 Zadania rozwiązywane na wykładzie Zadania rozwiązywane na ćwiczeniach Przy rozwiązywaniu zadań najistotniejsze jest wykazanie się rozumieniem

Bardziej szczegółowo

Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014

Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014 Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014 Zmienne losowe i ich rozkłady Doświadczenie losowe: Rzut monetą Rzut kostką Wybór losowy n kart z talii 52 Gry losowe

Bardziej szczegółowo

ZASTOSOWANIA CAŁEK OZNACZONYCH

ZASTOSOWANIA CAŁEK OZNACZONYCH YH JJ, MiF UP 13 D BL PÓL FGUR PYŹ e wszystkich wzorach zakładamy, że funkcje: f (x), g(x), r(ϕ), x(t), y(t) sa cia głe w odpowiednich przedziałach oraz że r(ϕ). D BL PÓL FGUR PYŹ Pole obszaru D = {(x,

Bardziej szczegółowo

1 Relacje i odwzorowania

1 Relacje i odwzorowania Relacje i odwzorowania Relacje Jacek Kłopotowski Zadania z analizy matematycznej I Wykazać, że jeśli relacja ρ X X jest przeciwzwrotna i przechodnia, to jest przeciwsymetryczna Zbadać czy relacja ρ X X

Bardziej szczegółowo

Metoda elementów brzegowych

Metoda elementów brzegowych Metoda elementów brzegowych Tomasz Chwiej, Alina Mreńca-Kolasińska 9 listopada 8 Wstęp Rysunek : a) Geometria układu z zaznaczonymi: elementami brzegu (czerwony), węzłami (niebieski). b) Numeracja: elementów

Bardziej szczegółowo

II.2 Położenie i prędkość cd. Wektory styczny i normalny do toru. II.3 Przyspieszenie

II.2 Położenie i prędkość cd. Wektory styczny i normalny do toru. II.3 Przyspieszenie II. Położenie i prędkość cd. Wekory syczny i normalny do oru. II.3 Przyspieszenie Wersory cylindrycznego i sferycznego układu współrzędnych krzywoliniowych Wyrażenia na prędkość w układach cylindrycznym

Bardziej szczegółowo

Wynik pomiaru jako zmienna losowa

Wynik pomiaru jako zmienna losowa Wynik pomiaru jako zmienna losowa Wynik pomiaru jako zmienna losowa Zmienne ciągłe i dyskretne Funkcja gęstości i dystrybuanta Wartość oczekiwana Momenty rozkładów Odchylenie standardowe Estymator zmiennej

Bardziej szczegółowo

Metody probabilistyczne

Metody probabilistyczne Metody probabilistyczne. Twierdzenia graniczne Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 20.2.208 / 26 Motywacja Rzucamy wielokrotnie uczciwą monetą i zliczamy

Bardziej szczegółowo

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną?

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1. Liczby zespolone 1.1. Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1.2. Doprowadzić do postaci a + ib liczby zespolone (i) (1 13i)/(1 3i),

Bardziej szczegółowo

Kubatury Gaussa (całka podwójna po trójkącie)

Kubatury Gaussa (całka podwójna po trójkącie) Kubatury Gaussa (całka podwójna po trójkącie) Całka podwójna po trójkącie Dana jest funkcja dwóch zmiennych f (x, y) ciągła i ograniczona w obszarze trójkątnym D. Wierzchołki trójkąta wyznaczają punkty

Bardziej szczegółowo

Całki podwójne. Małgorzata Wyrwas. Katedra Matematyki Wydział Informatyki Politechnika Białostocka

Całki podwójne. Małgorzata Wyrwas. Katedra Matematyki Wydział Informatyki Politechnika Białostocka Całki podwójne Całki podwójne po prostokacie. Całki podwójne po obszarach normalnych. Zamiana zmiennych w całkach podwójnych. Zastosowania całek podwójnych. Małgorzata Wyrwas Katedra Matematyki Wydział

Bardziej szczegółowo

Zadania z analizy matematycznej - sem. II Całki nieoznaczone

Zadania z analizy matematycznej - sem. II Całki nieoznaczone Zadania z analizy matematycznej - sem. II Całki nieoznaczone Definicja 1 (funkcja pierwotna i całka nieoznaczona). Niech f : I R. Mówimy, że F : I R jest funkcją pierwotną funkcji f, jeśli F jest różniczkowalna

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 2, lato 2016/17

Jarosław Wróblewski Analiza Matematyczna 2, lato 2016/17 41. Niech z = 5 + 4i. Dla podanych liczb m, n podać taką liczbę całkowitą k, aby 5 zachodziła równość z m z n =z k. Uwaga na sprzężenie w drugim czynniku po lewej stronie. a) m = 1, n = 1, k = 9 ; b) m

Bardziej szczegółowo