Komputerowa analiza danych doświadczalnych
|
|
- Edyta Jankowska
- 6 lat temu
- Przeglądów:
Transkrypt
1 Komputerowa analiza danych doświadczalnych Wykład dr inż. Łukasz Graczykowski lgraczyk@if.pw.edu.pl Wykłady z poprzednich lat (dr inż. H. Zbroszczyk): s/kadd/ Semestr letni 2015/2016
2 Dwuwymiarowe rozkłady zmiennych losowych
3 Jednoczesne pomiary dwóch wielkości W przypadku znakomitej większości pomiarów jednocześnie mierzymy dwie i więcej wielkości fizycznych (np. napięcie I natężenie prądu w obwodzie) Analogicznie w badaniach społecznych, możemy badać jednocześnie kilka cech populacji (np. zamożność i długość życia) Kluczowe pytanie czy (i jeśli tak to jaka) jest zależność między tymi wielkościami? Jak jedna wielkość wpływa na drugą? Innymi słowy: jakie są korelacje między tymi zmiennymi? 3 / 29
4 Rozkład i dystrybuanta 2D W wyniku jednokrotnego pomiaru otrzymujemy dwie liczby: (x,y), które są wartościami zmiennej losowej X, oraz Y Rozkład prawdopodobieństwa: f ( x, y)=p( X =x,y = y) rozkład prawdopod. jest unormowany pij =P( X =x i, Y = y j ) f ( x, y) dxdy=1 rozkład dyskretny: p =1 ij rozkład ciągły: Dystrybuanta: i=1 j=1 x y F ( x, y )= P ( x X, y Y )= f ( x ', y ') dx ' dy ' F ( x)= i: x i X j : y j Y pij Jeżeli dystrybuanta jest funkcją ciągłą obu zmiennych, to: f ( x, y)= F ( x, y ) x y Prawdopodobieństwo: b d P(a X b, c Y d)= f ( x, y)dxdy =F (b, d) F (a, b) a c 4 / 29
5 Zmienna losowa 2D - przykład Dwuwymiarowy rozkład Gaussa: (( ( x x^ )2 ( y ^y )2 f ( x, y)= N exp σ x 2σy )) normalizacja 5 / 29
6 Rozkłady (gęstości) brzegowe Częsty problem doświadczalny: mamy wynik pomiaru zmienne losowe X, oraz Y, ale interesuje nas tylko zależność od X dla dowolnego Y przykład: gęstość prawdopodobieństwa zgonów wywołanych pewnymi chorobami zakaźnymi jest funkcją czasu i położenia geograficznego; w badaniach potrzebujemy zająć się tylko zależnością czasową Brzegowa gęstość prawdopodobieństwa: b P (a X b, <Y <)= a g( x)= f ( x, y )dy [ f ( x, y)dy ] dx= g( x )dx y a h( y )= f ( x, y )dx Dystrybuanty brzegowe: F X ( x)=lim F ( x, y) b F Y ( y)=lim F ( x, y ) x 6 / 29
7 Rozkłady (gęstości) brzegowe - przykład 7 / 29
8 Niezależnosć zmiennych Prawdopodobieństwo warunkowe: P (B A )= P( A B) P( A B )= P(B) P( B A) P (B) Dla zdarzeń niezależnych: P (B A )= P (B) P( A B)=P ( A ) P ( B) Analogicznie dla zmiennych losowych niezależnych: f ( x, y)=g ( x)h ( y ) Warunkowa gęstość prawdopodobieństwa: f ( x y )= f (x, y) g ( x) Prawdopodobieństwo warunkowe zmiennej losowej Y przy znanej wartości zmiennej losowej X: P ( y Y y +dy x X x +dx )=f ( y x)dy Rozkłady brzegowe: h ( y )= f ( x y) g ( x) dx g ( x)= f ( x y) g( y) dy 8 / 29
9 Niezależnosć zmiennych Dla zmiennych niezależnych otrzymamy: f ( x, y ) g ( x)h ( y ) f ( y x)= = =h ( y ) g ( x) g ( x) Wynik ten pokazuje łatwy do przewidzenia fakt jakikolwiek warunek narzucony na jedną zmienną nie może wpłynąć na rozkład drugiej zmiennej (jeśli są niezależne) 9 / 29
10 Niezależnosć zmiennych ZMIENNE NIEZALEŻNE ZMIENNE NIE NIEZALEŻNE ZMIENNE NIE NIEZALEŻNE ZMIENNE NIE NIEZALEŻNE 10 / 29
11 Wartość oczekiwana, wariancja, momenty Wartość oczekiwana E ( XY )= x i y j pij E ( XY )= xyf ( x, y )dxdy i=1 j=1 Jeżeli mamy funkcję H(x,y), to wartość oczekiwana: E ( H ( X, Y ))= H ( x, y ) f ( x, y)dxdy Wariancja: σ ( X,Y )=E ( [ E ( X,Y ) E ( X, Y ) ] 2 2 ) σ (H ( X, Y ))=E ( [ E ( H ( X,Y )) E( H ( X,Y )) ] 2 2 ) Jeżeli: H ( x, y )=a X +b Y wówczas: E (a X +b Y )=a E ( X )+b E (Y ) Moment zwykły rzędu l i m względem zmiennych X i Y: λ lm =E ( x l y m ) Ogólniej moment rzędu l i m względem punktów a i b: l m α lm =E (( x a) ( y b) ) Momenty centralne: μlm =E (( X λ 10 )l (Y λ 01 )m ) 11 / 29
12 Wartość oczekiwana, wariancja, momenty Momenty o specjalnym znaczeniu: μ00 =λ 00 =1 μ10 =μ 01=0 λ 10 = E ( x)= x^ λ 01 =E ( y )= ^y μ11=e (( X x^ )(Y ^y ))=cov ( X,Y ) μ20 = E (( X x^ )2 )=σ 2 ( X ) μ02 =E ( (Y ^y )2 )=σ 2 (Y ) Wariancja dla zmiennej ax+by: σ (a X +b Y )= E ( (a X +b Y ) E (a X +b Y ) ) =a σ ( X )+b σ (Y )+2 ab cov ( X,Y ) Jeżeli założymy funkcję H w postaci iloczynu: H ( X, Y )= X Y E ( X Y )=E ( X ) E (Y ) Wielkości E(X), E(Y), σ(x), σ(y) są podobne jak w 1D 12 / 29
13 Kowariancja Kowariancja cov(x,y) nie ma odpowiednika w przypadku rozkładów 1D Z definicji kowariancji wynika, że: jest dodatnia, gdy: x> x^ oraz y > ^y jest ujemna, gdy: x> x^ oraz y < ^y jeżeli nie ma zależności między x i y nie ma zależności, wówczas kowariancja wynosi 0 cov ( X,Y )=μ11= E (( X E ( X )) (Y E (Y )))= E ( X Y ) E ( X ) E (Y ) Interpretacja: jeżeli między zmiennymi X i Y nie istnieje żadna korelacja liniowa i istnieją ich wartości oczekiwane, to kowariancja przyjmuje wartość 0. Czyli: cov ( X,Y )=0 E ( X Y )=E ( X ) E (Y ) 13 / 29
14 Kowariancja cov(x,y)=0.0 cov(x,y)=-0.75 cov(x,y)=-0.5 cov(x,y)= / 29
15 Kowariancja cov(x,y)=0.0 mx = my = 0.0 σ x = σ y = 1.0 cov(x,y)=-0.5 mx = my = 0.0 σ x = σ y = 1.0 cov(x,y)=-0.75 mx = my = 0.0 σ x = σ y = 1.0 cov(x,y)=0.5 mx = my = 0.0 σ x = σ y = / 29
16 Współczynnik korelacji Współczynnik korelacji (Pearsona): ρ( X, Y )= Kowariancja i współczynnik korelacji to miary zależności liniowej X oraz Y: Można wykazać (patrz Brandt), że: 1 ρ( X, Y ) 1 cov ( X, Y ) σ ( X )σ (Y ) współczynnik korelacji jest zatem wielkością znormalizowaną Współczynnik korelacji ocenia jedynie liniową zależność (nie jest to zależność przyczyna-skutek!) Y zależność nieliniowa X 16 / 29
17 Kowariancja ρ( x, y)= 1 ρ( x, y)=1 Rozkłady o maksymalnej kowariancji (wsp. korelacji) y cov ( x, y)> 0 y y cov ( x, y) 0 y y x x cov (x, y)< 0 y x x x x 17 / 29
18 Korelacja a niezależność zmiennych f ( x, y)= gaus ( x) gaus ( y) cov (x, y)=0 f ( x, y)=1/(π R 2); x 2 + y 2< R cov (x, y)=0 f ( x, y)=1/[(a b) (c d )] ; a< x< b, c< y< d cov (x, y)=0 f ( x, y)=1/ a ; x y < a cov (x, y)=2.48 ρ( x, y)= / 29
19 Rozkład i dystrybuanta N-wymiarowa Mamy N zmiennych losowych: (X1,X2,,XN) Rozkład prawdopodobieństwa: f ( x 1, x 2..., x N )=P ( X 1= x 1, X 2= x 2,..., X N = x N ) rozkład prawdopod. jest unormowany... f ( x 1, x 2,..., x N )dx 1 dx 2... dx N =1 Dystrybuanta: F ( x 1, x 2,..., x N )= P ( x 1 X 1, x 2 X 2,..., x N X N )= x1 x2 x1 x N =... f ( x ' 1, x ' 2,..., x ' N )dx ' 1 dx ' 2... dx ' N Jeżeli dystrybuanta jest funkcją ciągłą, to: f ( x 1, x 2,..., x N )=... F ( x 1, x 2,..., x N ) x1 x 2 x N Gęstość brzegowa zmiennej xr: g r ( x r )=... f ( x 1, x 2,..., x N )dx 1 dx 2... d x d x... dx N r 1 r / 29
20 Wartość oczekiwana, wariancja, kowariancja Wartość oczekiwana zmiennej xr: E ( X r )=... x r f ( x 1, x 2,..., x N )dx 1 dx 2... dx N = x r g r ( x r )dx r Dla funkcji H(x1,x2,,xN): E ( H ( x 1, x 2,..., x N ) )=... H ( x 1, x 2,..., x N ) f ( x 1, x 2,..., x N )dx 1 dx 2... dx N Wariancja zmiennej Xr: σ 2 ( X r )=E ( ( X r x^r ) 2 ) Jeżeli zmienne losowe są niezależne: f ( x 1, x 2,..., x N )=g 1 ( x 1 ) g 2 ( x 2 )... g N ( x N ) Łączny rozkład brzegowy dla dowolnych l spośród N zmiennych: g ( x 1, x 2,..., x l )=... f ( x 1, x 2,..., x N ) dx l dx N Kowariancja pomiędzy zmiennymi xi i xj: cov ( X i, X j )= E ( ( X i x^ i )( X j x^ j ) ) 20 / 29
21 Momenty Przez analogię definiujemy również momenty (zwykłe): λl 1, l 2,..., l N l1 l2 ln = E ( X 1 X 2... X N ) W szczególności, wartości oczekiwane: λ =E ( X 1 )= x^ 1 λ =E ( X 2 )= x^ 2 λ N =E ( X N )= x^ N Momenty centralne: μl 1,l 2,...,l N l1 l2 ln =E (( X 1 x^ 1 ) ( X 2 x^ 2 )...( X N x^ N ) ) W szczególności, wariancje: μ =E ( ( X 1 x^ 1 )2 ) =σ 2 ( X 1 ) μ =E (( X 2 x^ 2 )2 ) =σ 2 ( X 2 ) μ N =E (( X N x^ N )2 ) =σ 2 ( X N ) Kowariancja: li=l j =1 ; l k =0(i k j) c ij =cov ( X i, X j )= E ( ( X i x^i )( X j x^ j ) ) 21 / 29
22 Zapis wektorowy N zmiennych losowych można przedstawić jako N-wymiarowy wektor (wektor losowy): X x () 1 Funkcja gęstości: X= X 2 XN () 1 x= x 2 xn f ( x)=p ( X= x) Dystrybuanta: Wektor wartości zmiennych losowych F ( x)=p( X x) Jeżeli istnieją pierwsze pochodne: N f ( x)= F(X) x 1 x 2... x N Wartość oczekiawana funkcji H(X): E ( H ( X ) ) = H ( x) f ( x )d x 22 / 29
23 Macierz kowariancji Macierz, której elementy to odpowiednie momenty odpowiadające wariancjom i kowariancjom nazywamy macierzą kowariancji: c 11 c 12 c 1 N C= c 21 c 22 c 2 N c N 1 c N 2 c NN ( ) elementy cij dane są wzorem na kowariancję: c ij =cov ( X i, X j )= E ( ( X i x^i )( X j x^ j ) ) elementy diagonalne cii to wariancje: c ii =σ 2 ( X i ) macierz kowariancji jest symetryczna: c ij =c ji wartość oczekiwana w zapisie wektorowym: E ( X )= x^ 23 / 29
24 Macierz kowariancji Każdy element cij T c ij = E ( ( X i x^ i ) ( X j x^ j ) ) macierzy kowariancji możemy interpretować jako wartość średnią elementu o wskaźnikach ij iloczynu diadycznego wektorów ( X x^ )T i ( X x^ ) x () 1 x= x 2 xn T x =( x 1, x 2,..., x N ) Wtedy macierz kowariancji możemy zapisać krótko: T C=E ( ( X x^ )( X x^ ) ) 24 / 29
25 Uwagi do interpretacji wsp. korelacji Zerknijmy na taką zależność: konsumpcja margaryny w czasie i liczba rozwodów w stanie Maine na 1000 osób współczynnik korelacji liniowej wynosi aż 0,99! wynika to z faktu, że obie zmienne są skorelowane ze wspólną zmienną czasem a nie same ze sobą 25 / 29
26 Uwagi do interpretacji wsp. korelacji Podobne przykłady: Korelację dwóch wielkości zależnych od czasu można symulować przez błądzenie losowe (random walk): im dłuższy przedział czasowy tym korelacja się zwiększa Wygooglaj spurious correlations 26 / 29
27 Uwagi do interpretacji wsp. korelacji 27 / 29
28 Uwagi do interpretacji wsp. korelacji Pion Przykłady rzeczywistych korelacji eksperymentalnych: góra zależność między średnim pędem cząstki (pionu) a nachyleniem rozkładu pędowego rozkładu pędu dół praktycznie brak korelacji pomiędzy żrednim pędem cząstki (pionu) a liczbą cząstek produkowanych w zderzeniu 5 cov( x, y)= σ ( x)= σ ( y)= ρ( x, y)=0.725 cov( x, y)=0.32 σ ( x)=45.0 σ ( y)= ρ( x, y)= / 29
29 Uwagi do interpretacji wsp. korelacji 29 / 29
Komputerowa analiza danych doświadczalnych. Wykład dr inż. Łukasz Graczykowski
Komputerowa analiza danych doświadczalnych Wykład 3 9.03.2018 dr inż. Łukasz Graczykowski lukasz.graczykowski@pw.edu.pl Semestr letni 2017/2018 Dwuwymiarowe rozkłady zmiennych losowych Jednoczesne pomiary
Bardziej szczegółowoRozkłady dwóch zmiennych losowych
Rozkłady dwóch zmiennych losowych Uogólnienie pojęć na rozkład dwóch zmiennych Dystrybuanta i gęstość prawdopodobieństwa Rozkład brzegowy Prawdopodobieństwo warunkowe Wartości średnie i odchylenia standardowe
Bardziej szczegółowoModelowanie zależności. Matematyczne podstawy teorii ryzyka i ich zastosowanie R. Łochowski
Modelowanie zależności pomiędzy zmiennymi losowymi Matematyczne podstawy teorii ryzyka i ich zastosowanie R. Łochowski P Zmienne losowe niezależne - przypomnienie Dwie rzeczywiste zmienne losowe X i Y
Bardziej szczegółowoRozkłady wielu zmiennych
Rozkłady wielu zmiennych Uogólnienie pojęć na rozkład wielu zmiennych Dystrybuanta, gęstość prawdopodobieństwa, rozkład brzegowy, wartości średnie i odchylenia standardowe, momenty Notacja macierzowa Macierz
Bardziej szczegółowoRozkład normalny Parametry rozkładu zmiennej losowej Zmienne losowe wielowymiarowe
Statystyka i opracowanie danych W4 Rozkład normalny Parametry rozkładu zmiennej losowej Zmienne losowe wielowymiarowe Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Rozkład normalny wykres funkcji gęstości
Bardziej szczegółowoKomputerowa Analiza Danych Doświadczalnych
Komputerowa Analiza Danych Doświadczalnych dr inż. Adam Kisiel kisiel@if.pw.edu.pl pokój 117b (12b) 1 Materiały do wykładu Transparencje do wykładów: http://www.if.pw.edu.pl/~kisiel/kadd/kadd.html Literatura
Bardziej szczegółowoRozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład
Rozdział 1 Wektory losowe 1.1 Wektor losowy i jego rozkład Definicja 1 Wektor X = (X 1,..., X n ), którego każda współrzędna jest zmienną losową, nazywamy n-wymiarowym wektorem losowym (krótko wektorem
Bardziej szczegółowoKomputerowa analiza danych doświadczalnych
Komputerowa analiza danych doświadczalnych Wykład 4.03.06 dr inż. Łukasz Graczykowski lgraczyk@if.pw.edu.pl Semestr letni 05/06 Zmienne losowe, jednowymiarowe rozkłady zmiennych losowych Pomiar jako zdarzenie
Bardziej szczegółowoWażne rozkłady i twierdzenia c.d.
Ważne rozkłady i twierdzenia c.d. Funkcja charakterystyczna rozkładu Wielowymiarowy rozkład normalny Elipsa kowariacji Sploty rozkładów Rozkłady jednostajne Sploty z rozkładem normalnym Pobieranie próby
Bardziej szczegółowoKomputerowa Analiza Danych Doświadczalnych
Komputerowa Analiza Danych Doświadczalnych Prowadząca: dr inż. Hanna Zbroszczyk e-mail: gos@if.pw.edu.pl tel: +48 22 234 58 51 konsultacje: poniedziałek, 10-11, środa: 11-12 www: http://www.if.pw.edu.pl/~gos/students/kadd
Bardziej szczegółowozadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych
zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych 1. [E.A 5.10.1996/zad.4] Funkcja gęstości dana jest wzorem { 3 x + 2xy + 1 y dla (x y) (0 1) (0 1) 4 4 P (X > 1 2 Y > 1 2 ) wynosi:
Bardziej szczegółowoPrawdopodobieństwo i statystyka
Wykład XV: Zagadnienia redukcji wymiaru danych 2 lutego 2015 r. Standaryzacja danych Standaryzacja danych Własności macierzy korelacji Definicja Niech X będzie zmienną losową o skończonym drugim momencie.
Bardziej szczegółowo1 Zmienne losowe wielowymiarowe.
1 Zmienne losowe wielowymiarowe. 1.1 Definicja i przykłady. Definicja1.1. Wektorem losowym n-wymiarowym(zmienna losowa n-wymiarowa )nazywamywektorn-wymiarowy,któregoskładowymisązmiennelosowex i dlai=1,,...,n,
Bardziej szczegółowoWykład 3 Jednowymiarowe zmienne losowe
Wykład 3 Jednowymiarowe zmienne losowe Niech (Ω, F, P ) będzie ustaloną przestrzenią probabilistyczną Definicja 1 Jednowymiarowa zmienna losowa (o wartościach rzeczywistych), określoną na przestrzeni probabilistycznej
Bardziej szczegółowoStatystyka i eksploracja danych
Wykład XII: Zagadnienia redukcji wymiaru danych 12 maja 2014 Definicja Niech X będzie zmienną losową o skończonym drugim momencie. Standaryzacją zmiennej X nazywamy zmienną losową Z = X EX Var (X ). Definicja
Bardziej szczegółowoKomputerowa analiza danych doświadczalnych
Komputerowa analiza danych doświadczalnych Wykład 3.03.07 dr inż. Łukasz Graczykowski lgraczyk@if.pw.edu.pl Semestr letni 06/07 Zmienne losowe, jednowymiarowe rozkłady zmiennych losowych Pomiar jako zdarzenie
Bardziej szczegółowoPrawdopodobieństwo i statystyka
Wykład IV: 27 października 2014 Współczynnik korelacji Brak korelacji a niezależność Definicja współczynnika korelacji Współczynnikiem korelacji całkowalnych z kwadratem zmiennych losowych X i Y nazywamy
Bardziej szczegółowoRachunek prawdopodobieństwa Rozdział 5. Rozkłady łączne
Rachunek prawdopodobieństwa Rozdział 5. Rozkłady łączne 5.2. Momenty rozkładów łącznych. Katarzyna Rybarczyk-Krzywdzińska rozkładów wielowymiarowych Przypomnienie Jeśli X jest zmienną losową o rozkładzie
Bardziej szczegółowoWykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe.
Rachunek prawdopodobieństwa MAP3040 WPPT FT, rok akad. 2010/11, sem. zimowy Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Warunkowa wartość oczekiwana.
Bardziej szczegółowoWykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów.
Rachunek prawdopodobieństwa MAP1181 Wydział PPT, MS, rok akad. 213/14, sem. zimowy Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów.
Bardziej szczegółowoWykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów.
Rachunek prawdopodobieństwa MAT1332 Wydział Matematyki, Matematyka Stosowana Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów. Warunkowa
Bardziej szczegółowoStatystyka. Wydział Zarządzania Uniwersytetu Łódzkiego
Statystyka Wydział Zarządzania Uniwersytetu Łódzkiego 2017 Zmienna losowa i jej rozkład Mając daną przestrzeń probabilistyczną, czyli parę (&, P) stanowiącą model pewnego doświadczenia losowego (gdzie
Bardziej szczegółowo12DRAP - parametry rozkładów wielowymiarowych
DRAP - parametry rozkładów wielowymiarowych Definicja.. Jeśli h : R R, a X, Y ) jest wektorem losowym o gęstości fx, y) to EhX, Y ) = hx, y)fx, y)dxdy. Jeśli natomiast X, Y ) ma rozkład dyskretny skupiony
Bardziej szczegółowoWykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe
Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Nierówność Czebyszewa Niech X będzie zmienną losową o skończonej wariancji V ar(x). Wtedy wartość oczekiwana E(X) też jest skończona i
Bardziej szczegółowoSIMR 2017/18, Statystyka, Przykładowe zadania do kolokwium - Rozwiązania
SIMR 7/8, Statystyka, Przykładowe zadania do kolokwium - Rozwiązania. Dana jest gęstość prawdopodobieństwa zmiennej losowej ciągłej X : { a( x) dla x [, ] f(x) = dla pozostałych x Znaleźć: i) Wartość parametru
Bardziej szczegółowoRachunek prawdopodobieństwa i statystyka
Rachunek prawdopodobieństwa i statystyka Momenty Zmienna losowa jest wystarczająco dokładnie opisana przez jej rozkład prawdopodobieństwa. Względy praktyczne dyktują jednak potrzebę znalezienia charakterystyk
Bardziej szczegółowoProcesy stochastyczne
Wykład I: Istnienie procesów stochastycznych 2 marca 2015 Forma zaliczenia przedmiotu Forma zaliczenia Literatura 1 Zaliczenie ćwiczeń rachunkowych. 2 Egzamin ustny z teorii 3 Do wykładu przygotowane są
Bardziej szczegółowoElementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa
Spis treści Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa Romuald Kotowski Katedra Informatyki Stosowanej PJWSTK 2009 Spis treści Spis treści 1 Wstęp Bardzo często interesujący
Bardziej szczegółowoWartość oczekiwana Mediana i dominanta Wariancja Nierówności związane z momentami. Momenty zmiennych losowych Momenty wektorów losowych
Przykład(Wartość średnia) Otrzymaliśmy propozycję udziału w grze polegającej na jednokrotnym rzucie symetryczną kostką. Jeśli wypadnie 1 wygrywamy2zł,;jeśliwypadnie2,płacimy1zł;za3wygrywamy 4zł;za4płacimy5zł;za5wygrywamy3złiwreszcieza6
Bardziej szczegółowoSTATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA
STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA Zadanie 0.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 0 4 p k 1/3 1/6 1/ obliczyć EX, D X. (odp. 4/3;
Bardziej szczegółowoProcesy stochastyczne
Wykład I: Istnienie procesów stochastycznych 21 lutego 2017 Forma zaliczenia przedmiotu Forma zaliczenia Literatura 1 Zaliczenie ćwiczeń rachunkowych. 2 Egzamin ustny z teorii 3 Do wykładu przygotowane
Bardziej szczegółowoFunkcje charakterystyczne zmiennych losowych, linie regresji 1-go i 2-go rodzaju
Funkcje charakterystyczne zmiennych losowych, linie regresji -go i 2-go rodzaju Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki
Bardziej szczegółowoKomputerowa analiza danych doświadczalnych
Komputerowa analiza danych doświadczalnych Wykład.03.08 dr inż. Łukasz Graczykowski lukasz.graczykowski@pw.edu.pl Semestr letni 07/08 Zmienne losowe, jednowymiarowe rozkłady zmiennych losowych Pomiar jako
Bardziej szczegółowoWynik pomiaru jako zmienna losowa
Wynik pomiaru jako zmienna losowa Wynik pomiaru jako zmienna losowa Zmienne ciągłe i dyskretne Funkcja gęstości i dystrybuanta Wartość oczekiwana Momenty rozkładów Odchylenie standardowe Estymator zmiennej
Bardziej szczegółowoKomputerowa analiza danych doświadczalnych
Komputerowa analiza danych doświadczalnych Wykład 6 6.04.08 dr inż. Łukasz Graczykowski lgraczyk@if.pw.edu.pl Semestr letni 07/08 Własności rozkładu normalnego Centralne twierdzenie graniczne Funkcja charakterystyczna
Bardziej szczegółowoRozkład normalny Parametry rozkładu zmiennej losowej Zmienne losowe wielowymiarowe
Rachunek Prawdopodobieństwa istatystyka W4 Rozkład normalny Parametry rozkładu zmienne losowe Zmienne losowe wielowymiarowe Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Rozkład normalny - standaryzaca
Bardziej szczegółowoMetoda największej wiarygodności
Rozdział Metoda największej wiarygodności Ogólnie w procesie estymacji na podstawie prób x i (każde x i może być wektorem) wyznaczamy parametr λ (w ogólnym przypadku również wektor) opisujący domniemany
Bardziej szczegółowoMetody systemowe i decyzyjne w informatyce
Metody systemowe i decyzyjne w informatyce Ćwiczenia lista zadań nr 2 autorzy: A. Gonczarek, J.M. Tomczak Metody estymacji Zad. 1 Pojawianie się spamu opisane jest zmienną losową x o rozkładzie dwupunktowym
Bardziej szczegółowoSzkice do zajęć z Przedmiotu Wyrównawczego
Szkice do zajęć z Przedmiotu Wyrównawczego Matematyka Finansowa sem. letni 2011/2012 Spis treści Zajęcia 1 3 1.1 Przestrzeń probabilistyczna................................. 3 1.2 Prawdopodobieństwo warunkowe..............................
Bardziej szczegółowoKomputerowa analiza danych doświadczalnych
Komputerowa analiza danych doświadczalnych Wykład.03.09 dr inż. Łukasz Graczykowski lukasz.graczykowski@pw.edu.pl Semestr letni 08/09 Zmienne losowe, jednowymiarowe rozkłady zmiennych losowych Pomiar jako
Bardziej szczegółowoMetoda największej wiarygodności
Metoda największej wiarygodności Próbki w obecności tła Funkcja wiarygodności Iloraz wiarygodności Pomiary o różnej dokładności Obciążenie Informacja z próby i nierówność informacyjna Wariancja minimalna
Bardziej szczegółowoLista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie
Lista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Jarosław Kotowicz Instytut Matematyki Uniwersytet w
Bardziej szczegółowoWYKŁAD 6. Witold Bednorz, Paweł Wolff. Rachunek Prawdopodobieństwa, WNE, Uniwersytet Warszawski. 1 Instytut Matematyki
WYKŁAD 6 Witold Bednorz, Paweł Wolff 1 Instytut Matematyki Uniwersytet Warszawski Rachunek Prawdopodobieństwa, WNE, 2010-2011 Własności Wariancji Przypomnijmy, że VarX = E(X EX) 2 = EX 2 (EX) 2. Własności
Bardziej szczegółowoWstęp do Rachunku Prawdopodobieństwa, IIr. WMS
Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS przykładowe zadania na. kolokwium czerwca 6r. Poniżej podany jest przykładowy zestaw zadań. Podczas kolokwium na ich rozwiązanie przeznaczone będzie ok. 85
Bardziej szczegółowoStatystyka matematyczna dla kierunku Rolnictwo w SGGW. BADANIE WSPÓŁZALEśNOŚCI DWÓCH CECH. ANALIZA KORELACJI PROSTEJ.
BADANIE WSPÓŁZALEśNOŚCI DWÓCH CECH. ANALIZA KORELACJI PROSTEJ. IDEA OPISU WSPÓŁZALEśNOŚCI CECH X, Y cechy obserwowane w doświadczeniu, n liczba jednostek doświadczalnych, Wyniki doświadczenia: wartości
Bardziej szczegółowoWykład 12 Testowanie hipotez dla współczynnika korelacji
Wykład 12 Testowanie hipotez dla współczynnika korelacji Wrocław, 23 maja 2018 Współczynnik korelacji Niech będą dane dwie próby danych X = (X 1, X 2,..., X n ) oraz Y = (Y 1, Y 2,..., Y n ). Współczynnikiem
Bardziej szczegółowoPrawdopodobieństwo i statystyka
Wykład VII: Rozkład i jego charakterystyki 22 listopada 2016 Uprzednio wprowadzone pojęcia i ich własności Definicja zmiennej losowej Zmienna losowa na przestrzeni probabilistycznej (Ω, F, P) to funkcja
Bardziej szczegółowoWażne rozkłady i twierdzenia
Ważne rozkłady i twierdzenia Rozkład dwumianowy i wielomianowy Częstość. Prawo wielkich liczb Rozkład hipergeometryczny Rozkład Poissona Rozkład normalny i rozkład Gaussa Centralne twierdzenie graniczne
Bardziej szczegółowoWykład 12 Testowanie hipotez dla współczynnika korelacji
Wykład 12 Testowanie hipotez dla współczynnika korelacji Wrocław, 24 maja 2017 Współczynnik korelacji Niech będą dane dwie próby danych X = (X 1, X 2,..., X n ) oraz Y = (Y 1, Y 2,..., Y n ). Współczynnikiem
Bardziej szczegółowoPrawdopodobieństwo i statystyka
Wykład XIII: Prognoza. 26 stycznia 2015 Wykład XIII: Prognoza. Prognoza (predykcja) Przypuśćmy, że mamy dany ciąg liczb x 1, x 2,..., x n, stanowiących wyniki pomiaru pewnej zmiennej w czasie wielkości
Bardziej szczegółowoWYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 4 Przekształcenia zmiennej losowej, momenty
WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 4 Przekształcenia zmiennej losowej, momenty Agata Boratyńska Agata Boratyńska Rachunek prawdopodobieństwa, wykład 4 / 9 Przekształcenia zmiennej losowej X
Bardziej szczegółowoStatystyka i eksploracja danych
Wykład II: i charakterystyki ich rozkładów 24 lutego 2014 Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa,
Bardziej szczegółowoKORELACJE I REGRESJA LINIOWA
KORELACJE I REGRESJA LINIOWA Korelacje i regresja liniowa Analiza korelacji: Badanie, czy pomiędzy dwoma zmiennymi istnieje zależność Obie analizy się wzajemnie przeplatają Analiza regresji: Opisanie modelem
Bardziej szczegółowoL.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 4 ZADANIA - ZESTAW 4
ZADANIA - ZESTAW 4 Zadanie 4. 0-0,4 c 0 0, 0, Wznacz c. Wznacz rozkład brzegowe. Cz, są niezależne? (odp. c = 0,3 Zadanie 4.- 0-0,4 0,3 0 0, 0, Wznaczć macierz kowariancji i korelacji. Cz, są skorelowane?
Bardziej szczegółowoMetody systemowe i decyzyjne w informatyce
Metody systemowe i decyzyjne w informatyce Ćwiczenia lista zadań nr 2 autorzy: A. Gonczarek, J.M. Tomczak Metody estymacji ML Zad. 1 Pojawianie się spamu opisane jest zmienną losową x o rozkładzie dwupunktowym
Bardziej szczegółowoPodstawowe modele probabilistyczne
Wrocław University of Technology Podstawowe modele probabilistyczne Maciej Zięba maciej.zieba@pwr.edu.pl Rozpoznawanie Obrazów, Lato 2018/2019 Pojęcie prawdopodobieństwa Prawdopodobieństwo reprezentuje
Bardziej szczegółowoKomputerowa analiza danych doświadczalnych
Komputerowa analiza danych doświadczalnych Wykład 9 27.04.2018 dr inż. Łukasz Graczykowski lukasz.graczykowski@pw.edu.pl Semestr letni 2017/2018 Metoda największej wiarygodności ierównosć informacyjna
Bardziej szczegółowoZmienne losowe. Powtórzenie. Dariusz Uciński. Wykład 1. Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski
Powtórzenie Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 1 Podręcznik podstawowy Jacek Koronacki, Jan Mielniczuk: Statystyka dla studentów kierunków technicznych i przyrodnicznych,
Bardziej szczegółowoPOSTULATY MECHANIKI KWANTOWEJ cd i formalizm matematyczny
POSTULATY MECHANIKI KWANTOWEJ cd i formalizm matematyczny Funkcja Falowa Postulat 1 Dla każdego układu istnieje funkcja falowa (funkcja współrzędnych i czasu), która jest ciągła, całkowalna w kwadracie,
Bardziej szczegółowoJeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna.
Wykład 4 Rozkłady i ich dystrybuanty Dwa typy zmiennych losowych Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x, x 2,...}, to mówimy, że jest to zmienna dyskretna.
Bardziej szczegółowoPrzykład 1 W przypadku jednokrotnego rzutu kostką przestrzeń zdarzeń elementarnych
Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Niech Ω będzie przestrzenią zdarzeń elementarnych. Definicja 1 Rodzinę S zdarzeń losowych (zbiór S podzbiorów zbioru
Bardziej szczegółowoZmienne losowe ciągłe i ich rozkłady
Rachunek Prawdopodobieństwa i Statystyka - W3 Zmienne losowe ciągłe i ich rozkłady Dr Anna ADRIAN Paw B5, pok47 adan@agh.edu.pl Plan wykładu Zmienna losowa ciągła Dystrybuanta i unkcja gęstości rozkładu
Bardziej szczegółowoPDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com
Analiza korelacji i regresji KORELACJA zależność liniowa Obserwujemy parę cech ilościowych (X,Y). Doświadczenie jest tak pomyślane, aby obserwowane pary cech X i Y (tzn i ta para x i i y i dla różnych
Bardziej szczegółowoRachunek prawdopodobieństwa i statystyka
Rachunek prawdopodobieństwa i statystyka Współczynnik zmienności Klasycznym współczynnikiem (wskaźnikiem) zmienności zmiennej losowej X nazywamy wyrażenie gdzie E(X) 0. v k z (X) = D(X) E(X), Klasyczny
Bardziej szczegółowoWykład 1 Zmienne losowe, statystyki próbkowe - powtórzenie materiału
Wykład 1 Zmienne losowe, statystyki próbkowe - powtórzenie materiału Magdalena Frąszczak Wrocław, 22.02.2017r Zasady oceniania Ćwiczenia 2 kolokwia (20 punktów każde) 05.04.2017 oraz 31.05.2017 2 kartkówki
Bardziej szczegółowoAKADEMIA GÓRNICZO-HUTNICZA Wydział Matematyki Stosowanej ROZKŁAD NORMALNY ROZKŁAD GAUSSA
AKADEMIA GÓRNICZO-HUTNICZA Wydział Matematyki Stosowanej KATEDRA MATEMATYKI TEMAT PRACY: ROZKŁAD NORMALNY ROZKŁAD GAUSSA AUTOR: BARBARA MARDOSZ Kraków, styczeń 2008 Spis treści 1 Wprowadzenie 2 2 Definicja
Bardziej szczegółowoWYKŁAD 2. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady
WYKŁAD 2 Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady Metody statystyczne metody opisu metody wnioskowania statystycznego syntetyczny liczbowy opis właściwości zbioru danych ocena
Bardziej szczegółowoRozpoznawanie obrazów
Rozpoznawanie obrazów Ćwiczenia lista zadań nr 5 autorzy: A. Gonczarek, J.M. Tomczak Przykładowe problemy Klasyfikacja binarna Dla obrazu x zaproponowano dwie cechy φ(x) = (φ 1 (x) φ 2 (x)) T. Na obrazie
Bardziej szczegółowoPrawdopodobieństwo i statystyka
Wykład II: Zmienne losowe i charakterystyki ich rozkładów 13 października 2014 Zmienne losowe Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Definicja zmiennej losowej i jej
Bardziej szczegółowoZmienne losowe ciągłe i ich rozkłady
Statystyka i opracowanie danych W3 Zmienne losowe ciągłe i ich rozkłady Dr Anna ADRIAN Paw B5, pok47 adan@agh.edu.pl Plan wykładu Rozkład Poissona. Zmienna losowa ciągła Dystrybuanta i funkcja gęstości
Bardziej szczegółowoProcesy Stochastyczne - Zestaw 1
Procesy Stochastyczne - Zestaw 1 Zadanie 1 Niech ξ i η bed a niezależnymi zmiennymi losowymi o rozk ladach N (0, 1). Niech X = ξ +η i Y = ξ η. Znaleźć rozk lad (X, Y ) i rozk lad warunkowy L X ( Y ). Zadanie
Bardziej szczegółowoKomputerowa analiza danych doświadczalnych
Komputerowa analiza danych doświadczalnych Wykład 10 8.04.017 dr inż. Łukasz Graczykowski lgraczyk@if.pw.edu.pl Semestr letni 016/017 Metoda największej wiarygodności - przykład ierównosć informacyjna
Bardziej szczegółowoZestaw 2: Zmienne losowe. 0, x < 1, 2, 2 x, 1 1 x, 1 x, F 9 (x) =
Zestaw : Zmienne losowe. Które z poniższych funkcji są dystrybuantami? Odpowiedź uzasadnij. Wskazówka: naszkicuj wykres. 0, x 0,, x 0, F (x) = x, F (x) = x, 0 x
Bardziej szczegółowoBiostatystyka, # 3 /Weterynaria I/
Biostatystyka, # 3 /Weterynaria I/ dr n. mat. Zdzisław Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Głęboka 28, p. 221 bud. CIW, e-mail: zdzislaw.otachel@up.lublin.pl
Bardziej szczegółowoELEKTROTECHNIKA Semestr 2 Rok akad / ZADANIA Z MATEMATYKI Zestaw Oblicz pochodne cząstkowe rzędu drugiego funkcji:
ZADANIA Z MATEMATYKI Zestaw. Oblicz pochodne cząstkowe funkcji: a) f(x, y) = x sin y x b) f(x, y) = e y +x 2 c) f(x, y, z) = z cos x+y z 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: 3. Wyznacz
Bardziej szczegółowoKomputerowa analiza danych doświadczalnych
Komputerowa analiza danych doświadczalnych Wykład 9 7.04.09 dr inż. Łukasz Graczykowski lukasz.graczykowski@pw.edu.pl Semestr letni 08/09 Metoda największej wiarygodności ierównosć informacyjna Metoda
Bardziej szczegółowoKomputerowa analiza danych doświadczalnych
Komputerowa analiza danych doświadczalnych Wykład 4 6.03.08 dr inż. Łukasz Graczykowski lukasz.graczykowski@pw.edu.pl Semestr letni 07/08 Zamiana zmiennych Transformacje liniowe Propagacja niepewności
Bardziej szczegółowoRachunek prawdopodobieństwa Rozdział 5. Rozkłady łączne
Rachunek prawdopodobieństwa Rozdział 5. Rozkłady łączne 5.3 Rozkłady warunkowe i warunkowa wartość oczekiwana Katarzyna Rybarczyk-Krzywdzińska semestr zimowy 2015/2016 Prawdopodobieństwo wyraża postawę
Bardziej szczegółowoStatystyka. Magdalena Jakubek. kwiecień 2017
Statystyka Magdalena Jakubek kwiecień 2017 1 Nauka nie stara się wyjaśniać, a nawet niemal nie stara się interpretować, zajmuje się ona głównie budową modeli. Model rozumiany jest jako matematyczny twór,
Bardziej szczegółowoZmienne losowe, statystyki próbkowe. Wrocław, 2 marca 2015
Zmienne losowe, statystyki próbkowe Wrocław, 2 marca 2015 Zasady zaliczenia 2 kolokwia (każde po 20 punktów) projekt (20 punktów) aktywność Zasady zaliczenia 2 kolokwia (każde po 20 punktów) projekt (20
Bardziej szczegółowoWykład 3 Momenty zmiennych losowych.
Wykład 3 Momenty zmiennych losowych. Wrocław, 19 października 2016r Momenty zmiennych losowych Wartość oczekiwana - przypomnienie Definicja 3.1: 1 Niech X będzie daną zmienną losową. Jeżeli X jest zmienną
Bardziej szczegółowoWykład 3 Momenty zmiennych losowych.
Wykład 3 Momenty zmiennych losowych. Wrocław, 18 października 2017r Momenty zmiennych losowych Wartość oczekiwana - przypomnienie Definicja 3.1: 1 Niech X będzie daną zmienną losową. Jeżeli X jest zmienną
Bardziej szczegółowoKomputerowa Analiza Danych Doświadczalnych
Komputerowa Analiza Danych Doświadczalnych Prowadząca: dr inż. Hanna Zbroszczyk e-mail: gos@if.pw.edu.pl tel: +48 22 234 58 51 konsultacje: poniedziałek, 10-11; środa: 11-12 www: http://www.if.pw.edu.pl/~gos/students/kadd
Bardziej szczegółowoRozkłady łaczne wielu zmiennych losowych
Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 3 Motywacje Przykłady sytuacji z kilkoma zmiennymi losowymi: Antropometria: wzrost, waga ciała i grubość skóry przedramienia
Bardziej szczegółowoZadania z Rachunku Prawdopodobieństwa III - 1
Zadania z Rachunku Prawdopodobieństwa III - 1 Funkcją tworzącą momenty (transformatą Laplace a) zmiennej losowej X nazywamy funkcję M X (t) := Ee tx, t R. 1. Oblicz funkcję tworzącą momenty zmiennych o
Bardziej szczegółowoZałóżmy, że obserwujemy nie jedną lecz dwie cechy, które oznaczymy symbolami X i Y. Wyniki obserwacji obu cech w i-tym obiekcie oznaczymy parą liczb
Współzależność Załóżmy, że obserwujemy nie jedną lecz dwie cechy, które oznaczymy symbolami X i Y. Wyniki obserwacji obu cech w i-tym obiekcie oznaczymy parą liczb (x i, y i ). Geometrycznie taką parę
Bardziej szczegółowoElektrotechnika II [ Laboratorium Grupa 1 ] 2016/2017 Zimowy. [ Laboratorium Grupa 2 ] 2016/2017 Zimowy
Elektrotechnika II [ Laboratorium Grupa ] 206/207 Zimowy Lp Numer indeksu Pkt Kol Suma Popr Ocena Data Uwagi 97574 6 7 Db + 2 9758 ++0,9 5 7,9 Db + 3 99555 0,9+0,9 2,8 Dst + 4 97595 0,8++ 0 2,8 Dst + 5
Bardziej szczegółowo1 Warunkowe wartości oczekiwane
Warunkowe wartości oczekiwane W tej serii zadań rozwiążemy różne zadania związane z problemem warunkowania.. (Eg 48/) Załóżmy, że X, X, X 3, X 4 są niezależnymi zmiennymi losowymi o jednakowym rozkładzie
Bardziej szczegółowoTablica Wzorów Rachunek Prawdopodobieństwa i Statystyki
Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Spis treści I. Wzory ogólne... 2 1. Średnia arytmetyczna:... 2 2. Rozstęp:... 2 3. Kwantyle:... 2 4. Wariancja:... 2 5. Odchylenie standardowe:...
Bardziej szczegółowoMetody systemowe i decyzyjne w informatyce
Metody systemowe i decyzyjne w informatyce Ćwiczenia lista zadań nr 3 Metody estymacji. Estymator największej wiarygodności Zad. 1 Pojawianie się spamu opisane jest zmienną losową y o rozkładzie zero-jedynkowym
Bardziej szczegółowoStatystyczna analiza danych w programie STATISTICA 7.1 PL (wykład 3) Dariusz Gozdowski
Statystyczna analiza danych w programie STATISTICA 7.1 PL (wykład 3) Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Dwuczynnikowa analiza wariancji (2-way
Bardziej szczegółowoSTATYSTYKA I DOŚWIADCZALNICTWO Wykład 7
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7 Analiza korelacji - współczynnik korelacji Pearsona Cel: ocena współzależności między dwiema zmiennymi ilościowymi Ocenia jedynie zależność liniową. r = cov(x,y
Bardziej szczegółowoPrawdopodobieństwo i statystyka
Wykład VIII: Przestrzenie statystyczne. Estymatory 1 grudnia 2014 Wprowadzenie Przykład: pomiar z błędem Współczynnik korelacji r(x, Z) = 0, 986 Wprowadzenie Przykład: pomiar z błędem Współczynnik korelacji
Bardziej szczegółowoZawansowane modele wyborów dyskretnych
Zawansowane modele wyborów dyskretnych Jerzy Mycielski Uniwersytet Warszawski grudzien 2013 Jerzy Mycielski (Uniwersytet Warszawski) Zawansowane modele wyborów dyskretnych grudzien 2013 1 / 16 Model efektów
Bardziej szczegółowoRozdział 1. Zmienne losowe, ich rozkłady i charakterystyki. 1.1 Definicja zmiennej losowej
Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Zbiór możliwych wyników eksperymentu będziemy nazywać przestrzenią zdarzeń elementarnych i oznaczać Ω, natomiast
Bardziej szczegółowoKwantyle. Kwantyl rzędu p rozkładu prawdopodobieństwa to taka liczba x p. , że. Możemy go obliczyć z dystrybuanty: P(X x p.
Kwantyle Kwantyl rzędu p rozkładu prawdopodobieństwa to taka liczba x p, że P(X x p ) p P(X x p ) 1 p Możemy go obliczyć z dystrybuanty: Jeżeli F(x p ) = p, to x p jest kwantylem rzędu p Jeżeli F(x p )
Bardziej szczegółowo5 Przegląd najważniejszych rozkładów
5 Przegląd najważniejszych rozkładów 5. Rozkład Bernoulliego W niezmieniających się warunkach wykonujemy n razy pewne doświadczenie. W wyniku każdego doświadczenia może nastąpić zdarzenie A lub A. Zakładamy,
Bardziej szczegółowoPrawdopodobieństwo i statystyka r.
Zadanie. Niech (X, Y) ) będzie dwuwymiarową zmienną losową, o wartości oczekiwanej (μ, μ, wariancji każdej ze współrzędnych równej σ oraz kowariancji równej X Y ρσ. Staramy się obserwować niezależne realizacje
Bardziej szczegółowoKomputerowa analiza danych doświadczalnych
Komputerowa analiza danych doświadczalnych Wykład 4 8.03.06 dr inż. Łukasz Graczykowski lgraczyk@if.pw.edu.pl Semestr letni 05/06 Zamiana zmiennych Transformacje liniowe Propagacja niepewności Metody Monte
Bardziej szczegółowoRozkłady prawdopodobieństwa zmiennych losowych
Rozkłady prawdopodobieństwa zmiennych losowych Rozkład dwumianowy Rozkład normalny Marta Zalewska Zmienna losowa dyskretna (skokowa) jest to zmienna, której zbór wartości jest skończony lub przeliczalny.
Bardziej szczegółowo