Belki na podłożu sprężystym
|
|
- Kazimierz Janicki
- 6 lat temu
- Przeglądów:
Transkrypt
1 Belki na podłożu sprężystym podłoże inkleroskie, rónanie różniczkoe ugięcia belki, linie płyoe M-Q-, belki półnieskończone, sposób Bleicha, przykład obliczenioy odłoże inkleroskie Założenia Winklera spółpracy podłoża z belką są następujące: - brak tarcia między belką a podłożem, - ięzy dustronne między podłożem i belką - odpór podłoża proporcjonalny do przemieszczenia: r( ( k( gdzie b jest szerokością belki, spółczynnik c określa podatność podłoża ( Ma/m). Ziązki różniczkoe dla belki na podłożu sprężystym będą analogiczne jak dla zykłej belki, za yjątkiem ciągłego oiążenia poprzecznego, które uzupełniamy członem ynikającym z odporu podłoża: d ( M (, dx EJ dm ( Q(, dx dq( ( r( dx skąd: d ( d M ( ( r( ( k( dx dx EJ EJ EJ odstaiając:, albo d ( ( (. dx EJ EJ, EJ m, x otrzymujemy rónanie różniczkoe ugięć belki na podłożu sprężystym: e spółrzędnych bezymiaroych.. d ( ) ( ) ( ) d Jest to niejednorodne rónanie Eulera. Roziązanie rónania (jego całka ogólna) jest sumą całki szczególnej rónania niejednorodnego i całki ogólnej rónania jednorodnego: s ( ) ( ) e ( Asin Bcos ) e ( Csin Dcos ) (całka ogólna może być też yrażona za pomocą funkcji hiperbolicznych - sinh( ) i cosh( ) ). Statyczne arunki brzegoe (jeśli ystępują) mają postać: M ( ) EJ''( ), Q( ) EJ'''( ). Jeśli () = 0 to s () = 0, jeśli zaś () = const to s () = belki pod jednorodnym oiążeniem ciągłym. = const. Jest to ugięcie Wyrażenie e bardzo szybko rośnie. Aby otrzymać skończone artości roziązania, stałe C i D muszą się zeroać. Zmuszeni jesteśmy do poszukiania roziązania osobno dla < 0, gdzie A = B = 0 i osobno dla > 0, gdzie C = D = 0.
2 Wyrażenie e - szybko maleje, człon zaierający to yrażenie przedstaia tz. drgania harmonicznie gasnące (tłumione). raktycznie można przyjąć że dla > 5 odpoiednie człony się zerują. Wproadźmy oznaczenia: ( ) e ( ) e ( ) e ( ) e (sin cos ), ( sin cos ), cos, sin, Linie płyoe M, Q, () Rozpatrzmy problem belki na podłożu sprężystym, oiążonej siłą skupioną. Roziązujemy problem osobno dla x > 0 oraz x < 0. Z symetrii ugięcia belki zględem przekroju oiążenia ynikają arunki: lim '( ) 0 oraz Q( 0) Q( 0), EJ ' ''( ). 0 r() Wyliczając stałe całkoania, osobno każdym z przedziałó, otrzymujemy zory, które łącznie zapiszemy: ( ) 8 EJ M ( ), Q( ). (Wykres dla Q( jest odrócony, z uagi na oś skieroaną dół.), ostępując podobnie dla belki oiążonej momentem skupionym, otrzymujemy zory (dla momentu działającego zegaroo): już exp(-.6) = 0.0
3 M 0 ( ) EJ M 0 M ( ), M 0 Q( )., (odobnie jak poprzednio, dla osi rzędnych skieroanej dół, ykres Q( jest narysoany po przecinej stronie niż zykle). oyższe zory można odczytyać dojako: - jako artość ugięcia (momentu zginającego, siły poprzecznej) przekroju ξ od oiążenia działającego początku układu spółrzędnych, albo - jako artość ugięcia (momentu zginającego, siły poprzecznej) przekroju oddalonym o - ξ od przekroju działania oiążenia. W tym drugim przypadku, dla jednostkoej artości oiążenia, otrzymamy tz. linie płyoe odpoiednich ielkości. osługując się poyższymi zorami oraz zasadą superpozycji, można prosty sposób obliczać artości ugięć, momentó zginających i sił poprzecznych yołanych doolnym układem oiążenia. rzykład liczboy MN/m m 500 Ma/m m m 50 Ma/m 500 Ma/m Dane dla belki E = 0 Ga, b h = 0.5 m Roziązanie Z uagi na zmieniający się spółczynnik odporu mamy przedziały charakterystyczne rónania na ugięcia. Zapisujemy rónanie różniczkoe ugięć dla każdego z przedziałó.
4 [m] Adam Zaborski belki na podłożu inkleroskim Ogólna postać całki szczególnej dla każdego z przedziałó jest taka sama, ale artości są różne dla różnych przedziałó: i ( ), ( ) 0.00, ( ) 0.0, ( ) 0.00, Rónania ugięć przedziałach mają postać (spółrzędna ξ dla każdego przedziału definioana lokalnie): ( ) e ( ) e ( ) e A sin( ) B cos( ) e C sin( ) D cos( ), A sin( ) B cos( ) e C sin( ) D cos( ), A sin( ) B cos( ) e C sin( ) D cos( ). Do yznaczenia stałych całkoania potrzebujemy arunkó brzegoych. Będą to: arunki brzegoe: M (0) 0 Q (0) 0 M e e (.85) A cos.85 B sin.85 e C cos.85 D sin.85 A Q (.85) 0 EJ EJ y y EJ EJ ''(0) '''(0) y y 0 0 ''(.85) '''(.85) A ( A 0 0 C cos.85 sin.85 B cos.85 sin e C cos.85 sin.85 D cos.85 sin.85 0 = 8 arunkó zszycia (zgodności): (.85) (0), ''(.85) (.79) (0), '(.85) ''(0), ''(.79) ''(0), '(0), 0 B ) ( C '''(.85) '(.79) '(0), '''(0), '''(.79) '''(0), D ) 0 o roziązaniu układu rónań (, otrzymujemy explicite funkcje, M, Q, r. ugięcia 0 0, ,005-0,0-0,05-0,0 0 0, 0, 0, 0, 0,5 0,6 0,7 0,8 0,9 x/l
5 r( Q( M( Adam Zaborski belki na podłożu inkleroskim moment zginający,00e+06,00e+06 0,00E+00 -,00E+06 -,00E+06 -,00E+06 -,00E , 0, 0, 0, 0,5 0,6 0,7 0,8 0,9 x/l siła poprzeczna,00e+07 5,00E+06 0,00E+00-5,00E+06 -,00E , 0, 0, 0, 0,5 0,6 0,7 0,8 0,9 x/l odpór podłoża , 0, 0, 0, 0,5 0,6 0,7 0,8 0,9 x/l Belki pół-nieskończone Jeżeli spółrzędna ξ jest z przedziału liczb (0, ), stałe całkoania C i D automatycznie się zerują (dla funkcja ykładnicza szybko zmierza do nieskończoności), i roziązanie się upraszcza do znalezienia całki szczególnej i dóch stałych całkoania z arunkó brzegoych. rzykład Mo całka szczególna ( ) 0, z arunkó brzegoych: M 0) M, Q(0 ) otrzymujemy: s ( ) e M 0 sin M 0 EJ ( 0 cos
6 rzykład całka szczególna otrzymujemy: s ( ), z arunkó brzegoych: ( 0) M(0) 0 ( ) e cos rzykład całka szczególna otrzymujemy: s ( ), z kinematycznych arunkó brzegoych: ( 0) '(0) 0 ( ) e cos sin.
7 rzykład Obliczyć ugięcia belki nieskończonej długości oiążonej stałym oiążeniem ciągłym i opartej na dóch niepodatnych podporach, których bezymiaroa odległość m: Całka szczególna s ( ). Nieiadome siły reakcji obliczamy z arunku zeroania się ugięcia na podporach. Zastosoanie linii płyoych daje: skąd mamy: 8 EJ (0) ( m) 0 e m cos m sin m Wykresy ugięć zależą od bezymiaroej odległości między podporami. Odległość ta jest nie tylko funkcją odległości fizycznej ale i spółczynnika, który z kolei jest stosunkiem spółczynnika podatności podłoża, c, i sztyności zginania belki, EJ., Sposób Bleicha Rónanie różniczkoe ugięć belki na podłożu sprężystym ymaga yznaczenia, każdym przedziale charakterystycznym dla (, całki szczególnej oraz stałych. Już dla paru przedziałó zadanie staje się rachunkoo uciążlie.
8 Sposób Bleicha polega na zastąpieniu belki o skończonej długości belką nieskończenie długą, oiążoną identycznie obszarze belki skończonej, a poza tym obszarem tak oiążoną, aby uzyskać zgodność statycznych arunkó brzegoych z belką rzeczyistą. Zgodność statycznych arunkó brzegoych zapeniamy przykładając z każdej strony belki po die siły takiej odległości, aby uprościć obliczenia poprzez zeroanie się przekrojach skrajnych niektórych funkcji płyu. R R R R / / / / Wykorzystując zasadę superpozycji oraz funkcje płyu, zapisujemy: rónanie momentó zginających: M ( ) rónanie sił poprzecznych: Q( ) j M i i j i j j rónanie odporu podłoża: j i M j i m i j j j r( ) i i M j m. i j j W poyższych rónaniach przyjęto, że dodatnia i jest skieroana dół a dodatni M j jest skieroany zgodnie ze skazókami zegara. Górne znaki oboiązują dla oiążenia znajdującego się z praej strony przekroju (tzn. gdy i > ). onadto, ( m ) oznaczają iększą (mniejszą) z odległości od przekroju do początku (końca) oiążenia ciągłego. Jeśli rozpatryany przekrój znajduje się enątrz przedziału działającego oiążenia ciągłego, oiążenie to należy obliczać osobno dla części po praej i leej stronie przekroju. Wszystkie funkcje mają argumenty dodatnie. Z arunkó brzegoych na końcach belki yznaczamy R,..., R. Jeśli długość belki (bezymiaroa) jest iększa od 5, to można przyjąć, że oddziałyanie sił z jednej strony belki na jej drugim końcu jest pomijalnie małe i układ rónań rozprzęga się (możemy poiedzieć, że belka jest długa, tzn. oiążenie na jednym jej końcu nie ma już płyu na roziązanie na przeciległym końcu). Jak idać, o tym, czy belka jest długa czy krótka decyduje nie tylko rzeczyista jej długość, lecz pośrednio i zajemny stosunek sztyności zginania belki i spółczynnika odporu podłoża. Belka o dużej sztyności jest krótsza niż o mniejszej sztyności. Belka jest też krótsza jeśli spółczynnik odporu jest mniejszy. rzykład obliczenioy m R R 0. MNm MN 0.08 MN/m R R 9 m 9 m
9 b h = m, E = Ga, c = 60 Ma/m. Obliczenia: 0.8, k 96 m EJ 0 6 a statyczne arunki brzegoe (zgodności): M A = M = 0. MNm, dla = 0 +, (alternatynie M A = 0 dla = 0 - ) Q A = - = - MN, dla = 0 +, (alternatynie Q A = 0 dla = 0 - ) M B = 0 dla = 7.88, Q B = 0 dla = Z roziązania układu rónań otrzymujemy: R =.806 MN, R =.76 MN, R = 0.8 MN, R = MN. Wykresy ugięć, momentó zginających oraz sił poprzecznych przedstaiają poniższa tabela i ykresy. x, m , mm M, MNm Q, MN [m] ugięcia 0,00 0, , ,00-0,006-0,008,00E+06 moment zginający 8,00E+05 6,00E+05,00E+05,00E+05 0,00E ,00E+05 -,00E+05
10 siła poprzeczna,00e+05,00e+05 0,00E ,00E+05 -,00E+05-6,00E+05-8,00E+05 -,00E+06 -,0E+06 Wykres odporu podłoża jest proporcjonalny do ykresu ugięć. Belka musi pozostaać rónoadze, tzn. że oiążenie zenętrzne musi być rónoażone odporem podłoża.
Zginanie ze ściskaniem
Zginanie ze ściskaniem sformułoanie probemu przkład roziązań przkład obiczenioe Sformułoanie probemu W probemach tego tpu nie można stosoać zasad zesztnienia - konstrukcję naeż rozpatrać konfiguracji odkształconej
1.12. CAŁKA MOHRA Geometryczna postać całki MOHRA. Rys. 1
.. CAŁA OHRA Całka OHRA yraża ziązek między przemieszczeniem (ydłużeniem, ugięciem, obrotem) a obciążeniem (siłą, momentem, obciążeniem ciągłym). Służy ona do yznaczania przemieszczeń statycznie yznaczanych
Wykład 9. Stateczność prętów. Wyboczenie sprężyste
Wykład 9. Stateczność prętó. Wyoczenie sprężyste 1. Siła ytyczna pręta podpartego soodnie Dla pręta jak na rysunku 9.1 eźmiemy pod uagę możliość ygięcia się pręta z osi podczas ściskania. jest modułem
1.11. RÓWNANIE RÓŻNICZKOWE OSI UGIĘTEJ
.. RÓWNANIE RÓŻNICZKOWE OSI UGIĘTEJ od płem obciążenia prostolinioa oś podłużna belki staje się krzolinioa. Zakrzioną oś belki nazam linią ugięcia (osią ugiętą), przemieszczenie pionoe ( x) tej osi nazam
OBLICZANIE ŁAW SZEREGOWYCH NA PODŁOŻU SPRĘŻYSTYM ZA POMOCĄ METODY ANALITYCZNEJ (model Winklera, metoda Bleicha)
OICZNIE ŁW SZEREGOWYCH N ODŁOŻU SRĘŻYSTYM Z OMOCĄ METODY NITYCZNEJ (model Winklera, metoda leicha).. Oznaczenia sił wewnętrznych. Założenia i dane obciążenie q o (x) > 0 0 odpór podłoża r(x) > 0 y > 0
PRZYKŁAD: Wyznaczyć siłę krytyczną dla pręta obciążonego dwiema siłami, jak na rysunku. w k
ZYKŁAD: Wyznaczyć siłę rytyczną dla pręta ociążonego diema siłami, ja na rysunu. (c) A K c B, a m,. ónania rónoagi A c c / () Y () X H ( c ) (3). ónanie ugięć przedziale BK ( ) (4) ( ) () (6) (7) E I -
Linie wpływu w belce statycznie niewyznaczalnej
Prof. Mieczysław Kuczma Poznań, styczeń 215 Zakład Mechaniki Budowli, PP Linie wpływu w belce statycznie niewyznaczalnej (Przykład liczbowy) Zacznijmy od zdefiniowania pojęcia linii wpływu (używa się też
odległość przekroju od siły P. ξ 8
FUNDAMENTOWANIE II (W.Brząkała) przykłady do ykładu i 3 (praca łasna) C 0 M o y(ξ) ξ Przykład : Roziązać belkę nieskończenie długą na podłożu Winklera obciążoną momentem skupionym M o przekroju ξ o=0.
6. WYZNACZANIE LINII UGIĘCIA W UKŁADACH PRĘTOWYCH
Część 6. WYZNCZNIE LINII UGIĘCI W UKŁDCH PRĘTWYCH 6. 6. WYZNCZNIE LINII UGIĘCI W UKŁDCH PRĘTWYCH 6.. Wyznaczanie przemieszczeń z zastosowaniem równań pracy wirtualnej w układach prętowych W metodzie pracy
Treść ćwiczenia T6: Wyznaczanie sił wewnętrznych w belkach
Instrukcja przygotowania i realizacji scenariusza dotyczącego ćwiczenia 6 z przedmiotu "Wytrzymałość materiałów", przeznaczona dla studentów II roku studiów stacjonarnych I stopnia w kierunku Energetyka
Część ZADANIA - POWTÓRKA ZADANIA - POWTÓRKA. Zadanie 1
Część 6. ZADANIA - POWTÓRKA 6. 6. ZADANIA - POWTÓRKA Zadanie Wykorzystując metodę przemieszczeń znaleźć wykres momentów zginających dla ramy z rys. 6.. q = const. P [m] Rys. 6.. Rama statycznie niewyznaczalna
Wyznaczanie profilu prędkości płynu w rurociągu o przekroju kołowym
.Wproadzenie. Wyznaczanie profilu prędkości płynu rurociągu o przekroju kołoym Dla ustalonego, jednokierunkoego i uarstionego przepłyu przez rurę o przekroju kołoym rónanie aviera-stokesa upraszcza się
Z1/7. ANALIZA RAM PŁASKICH ZADANIE 3
Z1/7. NLIZ RM PŁSKIH ZNI 3 1 Z1/7. NLIZ RM PŁSKIH ZNI 3 Z1/7.1 Zadanie 3 Narysować wykresy sił przekrojowych w ramie wspornikowej przedstawionej na rysunku Z1/7.1. Następnie sprawdzić równowagę sił przekrojowych
Wyniki wymiarowania elementu żelbetowego wg PN-B-03264:2002
Wyniki ymiaroania elementu żelbetoego g PN-B-0364:00 RM_Zelb v. 6.3 Cechy przekroju: zadanie Żelbet, pręt nr, przekrój: x a=,5 m, x b=3,75 m Wymiary przekroju [cm]: h=78,8, b =35,0, b e=00,0, h =0,0, skosy:
{H B= 6 kn. Przykład 1. Dana jest belka: Podać wykresy NTM.
Przykład 1. Dana jest belka: Podać wykresy NTM. Niezależnie od sposobu rozwiązywania zadania, zacząć należy od zastąpienia podpór reakcjami. Na czas obliczania reakcji można zastąpić obciążenie ciągłe
Mechanika i Budowa Maszyn
Mechanika i Budowa Maszyn Materiały pomocnicze do ćwiczeń Wyznaczanie sił wewnętrznych w belkach statycznie wyznaczalnych Andrzej J. Zmysłowski Andrzej J. Zmysłowski Wyznaczanie sił wewnętrznych w belkach
Z1/1. ANALIZA BELEK ZADANIE 1
05/06 Z1/1. NLIZ LK ZNI 1 1 Z1/1. NLIZ LK ZNI 1 Z1/1.1 Zadanie 1 Udowodnić geometryczną niezmienność belki złożonej na rysunku Z1/1.1 a następnie wyznaczyć reakcje podporowe oraz wykresy siły poprzecznej
Mechanika teoretyczna
Siła skupiona Mechanika teoretyczna Wykłady nr 5 Obliczanie sił wewnętrznych w belkach przykłady 1 2 Moment skupiony Obciążenie ciągłe równomierne 3 4 Obciążenie ciągłe liniowo zmienne Obciążenie ciągłe
Stropy TERIVA - Projektowanie i wykonywanie
Stropy TERIVA obciążone równomiernie sprawdza się przez porównanie obciążeń działających na strop z podanymi w tablicy 4. Jeżeli na strop działa inny układ obciążeń lub jeżeli strop pracuje w innym układzie
ZałoŜenia przyjmowane przy obliczaniu obciąŝeń wewnętrznych belek
Wprowadzenie nr 2* do ćwiczeń z przedmiotu Wytrzymałość materiałów dla studentów II roku studiów dziennych I stopnia w kierunku Energetyka na wydz. Energetyki i Paliw w semestrze zimowym 2012/2013 1.Zakres
Podpory sprężyste (podatne), mogą ulegać skróceniu lub wydłużeniu pod wpływem działających sił. Przemieszczenia występujące w tych podporach są
PODPORY SPRĘŻYSTE Podpory sprężyste (podatne), mogą ulegać skróceniu lub wydłużeniu pod wpływem działających sił. Przemieszczenia występujące w tych podporach są wprost proporcjonalne do reakcji w nich
Zadanie 3. Belki statycznie wyznaczalne. Dla belek statycznie wyznaczalnych przedstawionych. na rysunkach rys.a, rys.b, wyznaczyć:
adanie 3. elki statycznie wyznaczalne. 15K la belek statycznie wyznaczalnych przedstawionych na rysunkach rys., rys., wyznaczyć: 18K 0.5m 1.5m 1. składowe reakcji podpór, 2. zapisać funkcje sił przekrojowych,
MECHANIKA I WYTRZYMAŁOŚĆ MATERIAŁÓW - OBLICZANIE SIŁ WEWNĘTRZNYCH W BELKACH
ECHANIKA I WYTRZYAŁOŚĆ ATERIAŁÓW - OBLICZANIE SIŁ WEWNĘTRZNYCH W BELKACH ZAD. 1. OBLICZYĆ SIŁY TNĄCE ORAZ OENTY ZGINAJĄCE W BELCE ORAZ NARYSOWAĆ WYKRESY TYCH SIŁ Wyznaczamy siły reakcji. Obciążenie ciągłe
ĆWICZENIE 2 WYKRESY sił przekrojowych dla belek prostych
ĆWICZENIE 2 WYKRESY sił przekrojowych dla belek prostych bez pisania funkcji Układ płaski - konwencja zwrotu osi układu domniemany globalny układ współrzędnych ze zwrotem osi jak na rysunku (nawet jeśli
ZADANIA - POWTÓRKA
Część 5. ZADANIA - POWTÓRKA 5. 5. ZADANIA - POWTÓRKA Zadanie W ramie przedstawionej na rys 5. obliczyć kąt obrotu przekroju w punkcie K oraz obrót cięciwy RS. W obliczeniach można pominąć wpływ sił normalnych
METODA SIŁ KRATOWNICA
Część. METDA SIŁ - RATWNICA.. METDA SIŁ RATWNICA Sposób rozwiązywania kratownic statycznie niewyznaczalnych metodą sił omówimy rozwiązują przykład liczbowy. Zadanie Dla kratownicy przedstawionej na rys..
Wytrzymałość Materiałów
Wytrzymałość Materiałów Zginanie Wyznaczanie sił wewnętrznych w belkach i ramach, analiza stanu naprężeń i odkształceń, warunek bezpieczeństwa Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości,
1. Projekt techniczny Podciągu
1. Projekt techniczny Podciągu Podciąg jako belka teowa stanowi bezpośrednie podparcie dla żeber. Jest to główny element stropu najczęściej ślinie bądź średnio obciążony ciężarem własnym oraz reakcjami
Spis treści. Wstęp Część I STATYKA
Spis treści Wstęp... 15 Część I STATYKA 1. WEKTORY. PODSTAWOWE DZIAŁANIA NA WEKTORACH... 17 1.1. Pojęcie wektora. Rodzaje wektorów... 19 1.2. Rzut wektora na oś. Współrzędne i składowe wektora... 22 1.3.
Dr inż. Janusz Dębiński
Wytrzymałość materiałów ćwiczenia projektowe 5. Projekt numer 5 przykład 5.. Temat projektu Na rysunku 5.a przedstawiono belkę swobodnie podpartą wykorzystywaną w projekcie numer 5 z wytrzymałości materiałów.
Przykład Łuk ze ściągiem, obciążenie styczne. D A
Przykład 1.4. Łuk ze ściągiem, obciążenie styczne. Rysunek przedstawia łuk trójprzegubowy, kołowy, ze ściągiem. Łuk obciążony jest obciążeniem stycznym do łuku, o stałej gęstości na jednostkę długości
Politechnika Białostocka
Politechnika Białostocka WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA Katedra Geotechniki i Mechaniki Konstrukcji Wytrzymałość Materiałów Instrukcja do ćwiczeń laboratoryjnych Ćwiczenie nr 6 Temat ćwiczenia:
MECHANIKA BUDOWLI LINIE WPŁYWU BELKI CIĄGŁEJ
Zadanie 6 1. Narysować linie wpływu wszystkich reakcji i momentów podporowych oraz momentu i siły tnącej w przekroju - dla belki. 2. Obliczyć rzędne na wszystkich liniach wpływu w czterech punktach: 1)
Zginanie proste belek
Zginanie belki występuje w przypadku obciążenia działającego prostopadle do osi belki Zginanie proste występuje w przypadku obciążenia działającego w płaszczyźnie głównej zx Siły przekrojowe w belkach
6. FUNKCJE. f: X Y, y = f(x).
6. FUNKCJE Niech dane będą dwa niepuste zbiory X i Y. Funkcją f odwzorowującą zbiór X w zbiór Y nazywamy przyporządkowanie każdemu elementowi X dokładnie jednego elementu y Y. Zapisujemy to następująco
Metoda Różnic Skończonych
Metody Oblczenoe, P.E.Srokosz Metoda Różnc Skończonych Część Belka na srężystym odłożu x L K SIŁY NĄCE Kontynuacja Zadana Wyznaczyć sły tnące belce na srężystym odłożu arunkach odarca jak na rysunku oyżej.
Liczba godzin Liczba tygodni w tygodniu w semestrze
15. Przedmiot: WYTRZYMAŁOŚĆ MATERIAŁÓW Kierunek: Mechatronika Specjalność: mechatronika systemów energetycznych Rozkład zajęć w czasie studiów Liczba godzin Liczba godzin Liczba tygodni w tygodniu w semestrze
ĆWICZENIE 3 Wykresy sił przekrojowych dla ram. Zasady graficzne sporządzania wykresów sił przekrojowych dla ram
ĆWICZENIE 3 Wykresy sił przekrojowych dla ram Zasady graficzne sporządzania wykresów sił przekrojowych dla ram Wykresy N i Q Wykres sił dodatnich może być narysowany zarówno po górnej jak i dolnej stronie
MATERIAŁY DYDAKTYCZNE
1/25 2/25 3/25 4/25 ARANŻACJA KONSTRUKCJI NOŚNEJ STROPU W przypadku prostokątnej siatki słupów można wyróżnić dwie konfiguracje belek stropowych: - Belki główne podpierają belki drugorzędne o mniejszej
1. Obciążenie statyczne
. Obciążenie statyczne.. Obliczenie stopnia kinematycznej niewyznaczalności n = Σ ϕ + Σ = + = p ( ) Σ = w p + d u = 5 + 5 + 0 0 =. Schemat podstawowy metody przemieszczeń . Schemat odkształceń łańcucha
Materiały pomocnicze do wykładów z wytrzymałości materiałów 1 i 2 (299 stron)
Jerzy Wyrwał Materiały pomocnicze do wykładów z wytrzymałości materiałów 1 i 2 (299 stron) Uwaga. Załączone materiały są pomyślane jako pomoc do zrozumienia informacji podawanych na wykładzie. Zatem ich
Z1/2 ANALIZA BELEK ZADANIE 2
05/06 Z1/. NLIZ LK ZNI 1 Z1/ NLIZ LK ZNI Z1/.1 Zadanie Udowodnić geometryczną niezmienność belki złożonej na rysunku Z1/.1 a następnie wyznaczyć reakcje podporowe oraz wykresy siły poprzecznej i momentu
Przykłady (twierdzenie A. Castigliano)
23 Przykłady (twierdzenie A. Castigiano) Zadanie 8.4.1 Obiczyć maksymane ugięcie beki przedstawionej na rysunku (8.2). Do obiczeń przyjąć następujące dane: q = 1 kn m, = 1 [m], E = 2 17 [Pa], d = 4 [cm],
instrukcja do ćwiczenia 3.4 Wyznaczanie metodą tensometrii oporowej modułu Younga i liczby Poissona
UT-H Radom Instytut Mechaniki Stosoanej i Energetyki Laboratorium Wytrzymałości Materiałó instrukcja do ćiczenia 3.4 Wyznaczanie metodą tensometrii oporoej modułu Younga i liczby Poissona I ) C E L Ć W
Sił Si y y w ewnętrzne (1)(1 Mamy my bry r łę y łę mate t r e iralną obc ob iążon ż ą u kła k de d m e si m ł si ł
echanika ogóna Wykład nr 5 Statyczna wyznaczaność układu. Siły wewnętrzne. 1 Stopień statycznej wyznaczaności Stopień zewnętrznej statycznej wyznaczaności n: Beka: n=rgrs; Rama: n=r3ogrs; rs; Kratownica:
Dr inż. Janusz Dębiński
r inż. Janusz ębiński Mechanika teoretyczna zastosowanie metody prac wirtualnych 1. Metoda prac wirtualnych zadanie 1 1.1. Zadanie 1 Na rysunku 1.1 przedstawiono belkę złożoną z pionowym prętem F, na którą
ZGINANIE PŁASKIE BELEK PROSTYCH
ZGINNIE PŁSKIE EEK PROSTYCH WYKRESY SIŁ POPRZECZNYCH I OENTÓW ZGINJĄCYCH Zginanie płaskie: wszystkie siły zewnętrzne czynne (obciążenia) i bierne (reakcje) leżą w jednej wspólnej płaszczyźnie przechodzącej
Siły wewnętrzne - związki różniczkowe
Siły wewnętrzne - związki różniczkowe Weźmy dowolny fragment belki obciążony wzdłuż osi obciążeniem n(x) oraz poprzecznie obciążeniem q(x). Na powyższym rysunku zwroty obciążeń są zgodne z dodatnimi zwrotami
Przykład 4.1. Ściag stalowy. L200x100x cm 10 cm I120. Obliczyć dopuszczalną siłę P rozciagającą ściąg stalowy o przekroju pokazanym na poniższym
Przykład 4.1. Ściag stalowy Obliczyć dopuszczalną siłę P rozciagającą ściąg stalowy o przekroju pokazanym na poniższym rysunku jeśli naprężenie dopuszczalne wynosi 15 MPa. Szukana siła P przyłożona jest
Wykład FIZYKA I. 10. Ruch drgający tłumiony i wymuszony. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA I 1. Ruch drgający tłumiony i wymuszony Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html Siły oporu (tarcia)
Wykład FIZYKA I. Dr hab. inż. Władysław Artur Woźniak. Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska
Wykład FIZYKA I 1. Ruch drgający tłumiony i wymuszony Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html DRGANIA HARMONICZNE
Wewnętrzny stan bryły
Stany graniczne Wewnętrzny stan bryły Bryła (konstrukcja) jest w równowadze, jeżeli oddziaływania zewnętrzne i reakcje się równoważą. P α q P P Jednak drugim warunkiem równowagi jest przeniesienie przez
1) 2) 3) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15) 16) 17) 18) 19) 20) 21) 22) 23) 24) 25)
1) Wykresem funkcji kwadratowej f jest parabola o wierzchołku w początku układu współrzędnych i przechodząca przez punkt. Wobec tego funkcja f określona wzorem 2) Punkt należy do paraboli o równaniu. Wobec
2kN/m Zgodnie z wyznaczonym zadaniem przed rozpoczęciem obliczeń dobieram wstępne przekroje prętów.
2kN/m -20 C D 5kN 0,006m A B 0,004m +0 +20 0,005rad E 4 2 4 [m] Układ prętów ma dwie tarcze i osiem reakcji w podporach. Stopień statycznej niewyznaczalności SSN= 2, ponieważ, przy dwóch tarczach powinno
Metoda Różnic Skończonych (MRS)
Metoda Różnic Skończonych (MRS) METODY OBLICZENIOWE Budownictwo, studia I stopnia, semestr 6 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek () Równania różniczkowe zwyczajne
Uwaga: Linie wpływu w trzech prętach.
Zestaw nr 1 Imię i nazwisko zadanie 1 2 3 4 5 6 7 Razem punkty Zad.1 (5p.). Narysować wykresy linii wpływu sił wewnętrznych w przekrojach K i L oraz reakcji w podporze R. Zad.2 (5p.). Narysować i napisać
NOŚNOŚĆ GRANICZNA
4. NOŚNOŚĆ GRANICZNA 4. 4. NOŚNOŚĆ GRANICZNA 4.. Wstęp Nośność graniczna wartość obciążenia, przy którym konstrukcja traci zdoność do jego przenoszenia i staje się układem geometrycznie zmiennym. Zastosowanie
Zbigniew Mikulski - zginanie belek z uwzględnieniem ściskania
Przykład. Wyznaczyć linię ugięcia osi belki z uwzględnieniem wpływu ściskania. Przedstawić wykresy sił przekrojowych, wyznaczyć reakcje podpór oraz ekstremalne naprężenia normalne w belce. Obliczenia wykonać
Przykład 9.2. Wyboczenie słupa o dwóch przęsłach utwierdzonego w fundamencie
rzykład 9.. Wyboczenie słupa o dwóch przęsłach utwierdzonego w undamencie Wyznaczyć wartość krytyczną siły obciążającej głowicę słupa, dla słupa przebiegającego w sposób ciągły przez dwie kondygnacje budynku.
Metoda rozdzielania zmiennych
Rozdział 12 Metoda rozdzielania zmiennych W tym rozdziale zajmiemy się metodą rozdzielania zmiennych, którą można zastosować, aby wyrazić jawnymi wzorami rozwiązania pewnych konkretnych równań różniczkowych
WYZNACZANIE MODUŁU YOUNGA PRZEZ ZGINANIE
ĆWICZENIE 4 WYZNACZANIE MODUŁU YOUNGA PRZEZ ZGINANIE Wprowadzenie Pręt umocowany na końcach pod wpływem obciążeniem ulega wygięciu. własnego ciężaru lub pod Rys. 4.1. W górnej warstwie pręta następuje
Drgania i fale II rok Fizyk BC
00--07 5:34 00\FIN00\Drgzlo00.doc Drgania złożone Zasada superpozycji: wychylenie jest sumą wychyleń wywołanych przez poszczególne czynniki osobno. Zasada wynika z liniowości związku między wychyleniem
ĆWICZENIE 7 Wykresy sił przekrojowych w ustrojach złożonych USTROJE ZŁOŻONE. A) o trzech reakcjach podporowych N=3
ĆWICZENIE 7 Wykresy sił przekrojowych w ustrojach złożonych USTROJE ZŁOŻONE A) o trzech reakcjach podporowych N=3 B) o liczbie większej niż 3 - reakcjach podporowych N>3 A) wyznaczanie reakcji z równań
Mechanika teoretyczna
Inne rodzaje obciążeń Mechanika teoretyczna Obciążenie osiowe rozłożone wzdłuż pręta. Obciążenie pionowe na pręcie ukośnym: intensywność na jednostkę rzutu; intensywność na jednostkę długości pręta. Wykład
Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH. Doświadczalne sprawdzenie zasady superpozycji
Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Doświadczalne sprawdzenie zasady superpozycji Numer ćwiczenia: 8 Laboratorium
2P 2P 5P. 2 l 2 l 2 2l 2l
Przykład 10.. Obiczenie obciażenia granicznego Obiczyć obciążenie graniczne P gr da poniższej beki. Przekrój poprzeczny i granica pastyczności są stałe. Graniczny moment pastyczny, przy którym następuje
Obliczanie sił wewnętrznych w powłokach zbiorników osiowo symetrycznych
Zakład Mechaniki Budowli Prowadzący: dr hab. inż. Przemysław Litewka Ćwiczenie projektowe 3 Obliczanie sił wewnętrznych w powłokach zbiorników osiowo symetrycznych Daniel Sworek gr. KB2 Rok akademicki
MODEL ODPOWIEDZI I SCHEMAT OCENIANIA ARKUSZA II. Zdający może rozwiązać zadania każdą poprawną metodą. Otrzymuje wtedy maksymalną liczbę punktów.
MODEL ODPOWIEDZI I SCHEMAT OCENIANIA ARKUSZA II Zdający może roziązać każdą popraną metodą. Otrzymuje tedy maksymalną liczbę punktó. Numer Wykonanie rysunku T R Q Zadanie. Samochód....4.6 Narysoanie sił
Rysunek Łuk trójprzegubowy, kołowy, obciążony ciężarem własnym na prawym odcinku łuku..
rzykład 10.. Łuk obciążony ciężarem przęsła. Rysunek przedstawia łuk trójprzegubowy, którego oś ma kształt części półokręgu. Łuk obciążony jest ciężarem własnym. Zakładamy, że prawe przęsło łuku jest nieporównanie
OBJASNIENIA DO TABELI
DOPUSZCZALNE OBCIAZENIA BELEK SIN OBJASNIENIA DO TABELI W tablicy podano maksymalne dopuszczalne wartości sumy obciążeń charakterystycznych stałych I użytkowych, które może przenieść belka nie przekraczając
J. Szantyr Wykład 27bis Podstawy jednowymiarowej teorii wirnikowych maszyn przepływowych
J. Szantyr Wykład 7bis Podstay jednoymiaroej teorii irnikoych maszyn przepłyoych a) Wentylator lub pompa osioa b) Wentylator lub pompa diagonalna c) Sprężarka lub pompa odśrodkoa d) Turbina odna promienioo-
CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE
CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE Do opisu członów i układów automatyki stosuje się, oprócz transmitancji operatorowej (), tzw. transmitancję widmową. Transmitancję widmową () wyznaczyć można na podstawie
E, J H 2 E, J H 1. Rysunek 9.1. Schemat statyczny słupa. 1. Kinematycznie dopuszczalna (zgodna z więzami) postać odkształcona analizowanej struktury:
Przykład 9.. Wyboczenie słupa o dwóch przęsłach Wyznaczyć wartość krytyczną siły P obciążającej głowicę słupa przebiegającego w sposób ciągły przez dwie kondygnacje budynku. Słup jest zamocowany w undamencie.
Przykład 7.3. Belka jednoprzęsłowa z dwoma wspornikami
Przykład.. eka jednoprzęsłowa z dwoma wspornikami Narysować wykresy sił przekrojowych da poniższej beki. α Rozwiązanie Rozwiązywanie zadania rozpocząć naeży od oznaczenia punktów charakterystycznych, składowych
Laboratorium Dynamiki Maszyn
Laboratorium Dynamiki Maszyn Laboratorium nr 5 Temat: Badania eksperymentane drgań wzdłużnych i giętnych układów mechanicznych Ce ćwiczenia:. Zbudować mode o jednym stopniu swobody da zadanego układu mechanicznego.
LABORATORIUM INŻYNIERII CHEMICZNEJ, PROCESOWEJ I BIOPROCESOWEJ. Ćwiczenie nr 7
KAEDRA INŻYNIERII CHEMICZNEJ I PROCESOWEJ INSRUKCJE DO ĆWICZEŃ LABORAORYJNYCH LABORAORIUM INŻYNIERII CHEMICZNEJ, PROCESOWEJ I BIOPROCESOWEJ Skaloanie zężki Osoba odpoiedzialna: Piotr Rybarczyk Gdańsk,
(1.1) (1.2) (1.3) (1.4) (1.5) (1.6) Przy opisie zjawisk złożonych wartości wszystkich stałych podobieństwa nie mogą być przyjmowane dowolnie.
1. Teoria podobieństa Figury podobne geometrycznie mają odpoiadające sobie kąty róne, a odpoiadające sobie boki są proporcjonane 1 n (1.1) 1 n Zjaiska fizyczne mogą być podobne pod arunkiem, że zachodzą
PROJEKT NR 1 METODA PRZEMIESZCZEŃ
POLITECHNIKA POZNAŃSKA WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MECHANIKI BUDOWLI PROJEKT NR 1 METODA PRZEMIESZCZEŃ Jakub Kałużny Ryszard Klauza Grupa B3 Semestr
1. Projekt techniczny żebra
1. Projekt techniczny żebra Żebro stropowe jako belka teowa stanowi bezpośrednie podparcie dla płyty. Jest to element słabo bądź średnio obciążony siłą równomiernie obciążoną składającą się z obciążenia
ĆWICZENIE NR 7 SKALOWANIE ZWĘśKI
ĆWICZENIE NR SKALOWANIE ZWĘśKI. Cel ćiczenia: Celem ćiczenia jest ykonanie cechoania kryzy pomiaroej /yznaczenie zaleŝności objętościoego natęŝenia przepłyu poietrza przez zęŝkę od róŝnicy ciśnienia na
Nieskończona jednowymiarowa studnia potencjału
Nieskończona jednowymiarowa studnia potencjału Zagadnienie dane jest następująco: znaleźć funkcje własne i wartości własne operatora energii dla cząstki umieszczonej w nieskończonej studni potencjału,
Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2014/15
Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2014/15 1. Warunkiem koniecznym i wystarczającym równowagi układu sił zbieżnych jest, aby a) wszystkie
2ql [cm] Przykład Obliczenie wartości obciażenia granicznego układu belkowo-słupowego
Przykład 10.. Obiczenie wartości obciażenia granicznego układu bekowo-słupowego Obiczyć wartość obciążenia granicznego gr działającego na poniższy układ. 1 1 σ p = 00 MPa = m 1-1 - - 1 8 1 [cm] Do obiczeń
Bilans cieplny suszarni teoretycznej Termodynamika Techniczna materiały dla studentów
Bilans cieplny suszarni teoretycznej Termodynamika Techniczna materiały dla studentó K. Kyzioł, J. Szczerba Bilans cieplny suszarni teoretycznej Na rysunku 1 przedstaiono przykładoy schemat suszarni jednostopnioej
4. Czyste zginanie. 4.1 Podstawowe definicje M P. Rys. 4.1. Moment statyczny siły względem punktu.
4. CZYSTE ZGINNIE 1 4. 4. Czyste zginanie 4.1 odstawowe definicje Momentem M siły względem punktu O nazywamy iloczyn wektorowy wektora wodzącego r oraz wektora siły. M= r. (4.1) Wektor r jest promieniem
Zgodnie z wyznaczonym zadaniem przed rozpoczęciem obliczeo dobieram wstępne przekroje prętów.
2kN/m -20 C D 5kN 0,006m A B 0,004m +0 +20 3 0,005rad E 4 2 4 [m] Układ prętów ma dwie tarcze i osiem reakcji w podporach. Stopieo statycznej niewyznaczalności SSN= 2, ponieważ, przy dwóch tarczach powinno
POMIAR MOCY BIERNEJ W OBWODACH TRÓJFAZOWYCH
ĆWICZEIE R 9 POMIAR MOCY BIEREJ W OBWODACH TRÓJFAZOWYCH 9.. Cel ćiczenia Celem ćiczenia jest poznanie metod pomiaru mocy biernej odbiornika niesymetrycznego obodach trójfazoych. 9.. Pomiar mocy biernej
Pale fundamentowe wprowadzenie
Poradnik Inżyniera Nr 12 Aktualizacja: 09/2016 Pale fundamentowe wprowadzenie Celem niniejszego przewodnika jest przedstawienie problematyki stosowania oprogramowania pakietu GEO5 do obliczania fundamentów
Przykład 4.2. Sprawdzenie naprężeń normalnych
Przykład 4.. Sprawdzenie naprężeń normalnych Sprawdzić warunki nośności przekroju ze względu na naprężenia normalne jeśli naprężenia dopuszczalne są równe: k c = 0 MPa k r = 80 MPa 0, kn 0 kn m 0,5 kn/m
Rys. 1. Elementy zginane. KONSTRUKCJE BUDOWLANE PROJEKTOWANIE BELEK DREWNIANYCH 2013 2BA-DI s.1 WIADOMOŚCI OGÓLNE
WIADOMOŚCI OGÓLNE O zginaniu mówimy wówczas, gdy prosta początkowo oś pręta ulega pod wpływem obciążenia zakrzywieniu, przy czym włókna pręta od strony wypukłej ulegają wydłużeniu, a od strony wklęsłej
Mechanika ogólna Wydział Budownictwa Politechniki Wrocławskiej Strona 1. MECHANIKA OGÓLNA - lista zadań 2016/17
Mechanika ogólna Wydział Budownictwa Politechniki Wrocławskiej Strona 1 MECHANIKA OGÓLNA - lista zadań 2016/17 Część 1 analiza kinematyczna układów płaskich Przeprowadzić analizę kinematyczną układu. Odpowiednią
KURS SZEREGI. Lekcja 10 Szeregi Fouriera ZADANIE DOMOWE. Strona 1
KURS SZEREGI Lekcja 1 Szeregi Fouriera ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Zaznacz poprawną odpowiedź: a) Szereg Fouriera
PRZEZNACZENIE I OPIS PROGRAMU
PROGRAM WALL1 (10.92) Autor programu: Zbigniew Marek Michniowski Program do wyznaczania głębokości posadowienia ścianek szczelnych. PRZEZNACZENIE I OPIS PROGRAMU Program służy do wyznaczanie minimalnej
3 Podstawy teorii drgań układów o skupionych masach
3 Podstawy teorii drgań układów o skupionych masach 3.1 Drgania układu o jednym stopniu swobody Rozpatrzmy elementarny układ drgający, nazywany też oscylatorem harmonicznym, składający się ze sprężyny
Ćwiczenie nr 3: Wyznaczanie nośności granicznej belek Teoria spręŝystości i plastyczności. Magdalena Krokowska KBI III 2010/2011
Ćwiczenie nr 3: Wyznaczanie nośności granicznej belek Teoria spręŝystości i plastyczności Magdalena Krokowska KBI III 010/011 Wyznaczyć zakres strefy spręŝystej dla belki o zadanym przekroju poprzecznym
Drgania układu o wielu stopniach swobody
Drgania układu o wielu stopniach swobody Rozpatrzmy układ składający się z n ciał o masach m i (i =,,..., n, połączonych między sobą i z nieruchomym podłożem za pomocą elementów sprężystych o współczynnikach
MECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 8 Drgania punktu materialnego Prowadzący: dr Krzysztof Polko Wstęp Drgania Okresowe i nieokresowe Swobodne i wymuszone Tłumione i nietłumione Wstęp Drgania okresowe ruch powtarzający
Moduł. Belka stalowa
Moduł Belka stalowa 410-1 Spis treści 410. BELKA STALOWA...3 410.1. WIADOMOŚCI OGÓLNE...3 410.1.1. Opis programu...3 410.1.2. Zakres programu...3 410.1.3. O pis podstawowych funkcji programu...3 410.1.3.1.
LABORATORIUM ELEKTROAKUSTYKI. ĆWICZENIE NR 1 Drgania układów mechanicznych
LABORATORIUM ELEKTROAKUSTYKI ĆWICZENIE NR Drgania układów mechanicznych Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z właściwościami układów drgających oraz metodami pomiaru i analizy drgań. W ramach