WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 4 - zagadnienie estymacji, metody wyznaczania estymatorów

Wielkość: px
Rozpocząć pokaz od strony:

Download "WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 4 - zagadnienie estymacji, metody wyznaczania estymatorów"

Transkrypt

1 WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 4 - zagadnienie estymacji, metody wyznaczania estymatorów Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 4 1 / 23

2 ZAGADNIENIE ESTYMACJI Zagadnienie estymacji - szacowanie nieznanego parametru lub funkcji na podstawie wyników obserwacji; X 1, X 2,..., X n - niezależne zmienne losowe o tym samym rozkładzie (i.i.d.) P θ - próba losowa θ Θ - nieznany parametr, Θ R(R k ) Estymatorem parametru θ nazywamy dowolną funkcję ˆθ(X 1, X 2,..., X n ), której wartości należą do przestrzeni Θ, i której celem jest oszacowanie parametru θ. Estymator jest statystyką. Agata Boratyńska Statystyka matematyczna, wykład 4 2 / 23

3 Metody wyznaczania estymatorów Charakterystyki próbkowe - estymatory w oparciu o dystrybuantę empiryczną estymatory metodą momentów estymatory metodą kwantyli estymatory metodą największej wiarogodności Agata Boratyńska Statystyka matematyczna, wykład 4 3 / 23

4 Dystrybuanta empiryczna - estymator dystrybuanty, definicja Model: (R, F) n, gdzie F rodzina dystrybuant na prostej rzeczywistej X = (X 1, X 2,..., X n ) - próba losowa z rozkładu o dystrybuancie F Dystrybuanta empiryczna gdzie F n (X, t) = F n (t) = liczba X i, takich że X i t n 1 (,t] (X i ) = jest zmienną losową dwupunktową, { 1 gdy Xi (, t] 0 w przeciwnym przypadku P F (1 (,t] (X i ) = 1) = F (t) = 1 n Σ1 (,t](x i ) Agata Boratyńska Statystyka matematyczna, wykład 4 4 / 23

5 Dystrybuanta empiryczna, przykład Próba losowa: Agata Boratyńska Statystyka matematyczna, wykład 4 5 / 23

6 Dystrybuanta empiryczna, własności jest statystyką jako funkcja próby losowej jest średnią z n zmiennych losowych o rozkładzie dwupunktowym (zero-jedynkowym) jest dystrybuantą rozkładu jednostajnego skupionego w punktach x 1, x 2,..., x n (wartości próby losowej) jako funkcja zmiennej t jest estymatorem dystrybuanty rozkładu obserwowanej zmiennej losowej X Agata Boratyńska Statystyka matematyczna, wykład 4 6 / 23

7 Własności F n jako statystyki 1 Wartość oczekiwana dystrybuanty empirycznej w danym punkcie ( ) 1 E F F n (t) = E F n Σn i=11 (,t] (X i ) = 1 ( ) n n E F 1 (,t] (X i ) = F (t) 2 Wariancja dystrybuanty empirycznej w danym punkcie Var F F n (t) = 1 F (t)(1 F (t)) n 3 CTG F n (t) F (t) F (t)(1 F (t)) n N(0, 1) P F {x : F n (t) F (t) F (t)(1 F (t)) n z } Φ(z) dla każdego z. 4 Twierdzenie Gliwenki Cantellego. Dla prawie wszystkich wartości x 1, x 2,..., x n sup F n (t) F (t) 0 gdy n t Agata Boratyńska Statystyka matematyczna, wykład 4 7 / 23

8 Zbieżność dystrybuanty empirycznej Dystrybuanta empiryczna dla dwóch próbek i dystrybuanta teoretyczna N=10 N=10 N=100 Agata Boratyńska Statystyka matematyczna, wykład 4 8 / 23

9 Charakterystyki próbkowe jako estymatory Charakterystyki próbkowe w oparciu o próbę (X 1, X 2,..., X n ) są równe charakterystykom liczbowym rozkładu zmiennej losowej, której dystryuanta jest równa dystrybuancie empirycznej w oparciu o próbę (X 1, X 2,..., X n ) WNIOSEK: średnia z próby - estymator wartości oczekiwanej mediana próbkowa - estymator mediany kwantyl próbkowy - estymator kwantyla rozkładu wariancja z próby - estymator wariancji itd Agata Boratyńska Statystyka matematyczna, wykład 4 9 / 23

10 Estymacja metodą momentów EMM Model: X 1, X 2,..., X n i.i.d z rozkładu P θ, θ- nieznany parametr Postępowanie: Porównujemy momenty rozkładu teoretycznego (zależą od nieznanego(ych) parametru(ów)) do odpowiednich momentów empirycznych, z otrzymanego układu równań wyznaczamy nieznany parametr Agata Boratyńska Statystyka matematyczna, wykład 4 10 / 23

11 Estymacja metodą momentów EMM cd. θ R (jednowymiarowa przestrzeń parametrów), rozwiąż (niewiadomą jest θ) równanie: E θ X = X θ = (θ 1, θ 2 ) R 2, rozwiąż układ równań (niewiadomą jest θ): { Eθ X = X Var θ X = Ŝ 2 θ = (θ 1, θ 2,..., θ k ) (k-wymiarowa przestrzeń parametrów), rozwiąż układ (niewiadomą jest θ): E θ X = X Var θ X = Ŝ 2 E θ (X µ) 3 = 1 n (Xi X ) E θ (X µ) k = 1 n (Xi X ) k gdzie µ = E θ X. Agata Boratyńska Statystyka matematyczna, wykład 4 11 / 23

12 Estymacja metodą momentów - przykłady PRZYKŁAD 1. X = (X 1, X 2,..., X n ), X i Ex(θ) i są niezależne, θ > 0 EMM(θ) =? Rozwiązanie Mamy E θ X i = + 0 xθe θx dx = 1 θ Rozwiązujemy równanie: 1 θ = X stąd EMM(θ) = ˆθ = 1 X Agata Boratyńska Statystyka matematyczna, wykład 4 12 / 23

13 Estymacja metodą momentów - przykłady PRZYKŁAD 2. X = (X 1, X 2,..., X n ), X i Gamma(α, β) i są niezależne, α, β > 0 EMM(α) =? i EMM(β) =?. Rozwiązanie Gęstość p α,β (x) = βα Γ(α) x α 1 e βx gdy x > 0 Momenty: E α,β X i = α β Var α,β X i = α β 2 Otrzymujemy układ: Stąd: { α β = X α β 2 = Ŝ 2 ˆβ = X i ˆα = X 2 Ŝ 2 Ŝ 2 Agata Boratyńska Statystyka matematyczna, wykład 4 13 / 23

14 Estymacja metodą momentów - przykłady PRZYKŁAD 3. Wyznaczyć EMM parametrów w rozkładzie Pareto(θ, λ), θ > 2, λ > 0. Rozwiązanie X = (X 1, X 2,..., X n ), X i Pareto(θ, λ) i są niezależne. Gęstość Momenty: E θ,λ X 1 = Otrzymujemy układ: p θ,λ (x) = λ θ 1 θλ θ (λ + x) θ+1, x > 0 Var θ,λ X 1 = { λ θ 1 = X λ 2 θ (θ 1) 2 (θ 2) = S 2 Stąd: ˆθ = 2S2 S 2 X 2 ˆλ = X (ˆθ 1). λ 2 θ (θ 1) 2 (θ 2) Agata Boratyńska Statystyka matematyczna, wykład 4 14 / 23

15 EMK (estymacja metodą kwantyli) Model: X 1, X 2,..., X n i.i.d z rozkładu P θ, θ- nieznany parametr Postępowanie: Porównujemy kwantyle teoretyczne (są funkcjami nieznanych parametrów) z ich odpowiednikami z próby i z otrzymanych równań wyznaczamy parametry. Agata Boratyńska Statystyka matematyczna, wykład 4 15 / 23

16 EMK (estymacja metodą kwantyli) cd. θ R (jednowymiarowa przestrzeń parametrów), rozwiąż (niewiadomą jest θ): q 1 (θ) = Q F θ (Q 1 2 ) = 1 2 θ = (θ 1, θ 2 ), rozwiąż układ (niewiadomą jest θ): lub układ równoważny: q 1 (θ) = Q i q 3 (θ) = Q F θ (Q 1 4 ) = 1 4 θ = (θ 1, θ 2, θ 3 ). Otrzymujemy układ: i F θ (Q 3 4 ) = 3 4 F θ (Q 1 4 ) = 1 4 i F θ (Q 1 2 ) = 1 2 i F θ (Q 3 4 ) = 3 4 θ = (θ 1, θ 2, θ 3, θ 4 ). Rozważamy kwantyle rzędu 1 8, 3 8, 5 8 i 7 8. Agata Boratyńska Statystyka matematyczna, wykład 4 16 / 23

17 EMK (estymacja metodą kwantyli) - przykłady PRZYKŁAD 1. X 1, X 2,..., X n i.i.d, X i Ex(θ), θ > 0. Wyznaczyć EMK(θ) =? Rozwiązanie F θ (q 1 2 ) Rozwiązujemy równanie: ( ) = 1 exp θq 1 2 = 1 2 q 1 2 = 1 θ ln θ ln 1 2 = Q 1 2 stąd EMK(θ) = ˆθ(X ) = 1 Q 1 2 ln 1 2 Agata Boratyńska Statystyka matematyczna, wykład 4 17 / 23

18 EMK (estymacja metodą kwantyli) - przykłady PRZYKŁAD 2. Niech X 1, X 2,..., X n i.i.d z rozkładu Weibull(c, τ), wyznaczyć EMK(c) =? i EMK(τ) =? Rozwiązanie Dystrybuanta w rozkładzie Weibulla ma postać: Otrzymujemy układ: 1 e cqτ 1 4 = e cqτ 3 4 = 3 4 ( Q ) 14 τ ln 0.75 Stąd Q 34 = ln 0.25 F c,τ (x) = 1 exp ( cx τ ) x > 0 ˆτ = log Q 14 Estymatory mają postać: Q 34 ( ) ln 0.75 ln 0.25 ln 0.75 = cq τ 1 4 ln 0.25 = cq τ 3 4 ln 0.75 ĉ = Q ˆτ 1 4 Agata Boratyńska Statystyka matematyczna, wykład 4 18 / 23

19 ENW (estymacja metodą największej wiarogodności) Niech X 1, X 2,..., X n i.i.d. z rozkładu o gęstości f θ (x), gdzie θ jest nieznanym parametrem. Funkcją wiarogodności nazywamy funkcję zmiennej θ równą L(θ) = L(θ, x) = f θ (x 1 )f θ (x 2 )... f θ (x n ) gdzie x = (x 1, x 2,..., x n ) jest próbką zaobserwowanych wartości zmiennych X 1, X 2,..., X n Estymatorem największej wiarogodności parametru θ (ENW (θ)) nazywamy argument maksimum funkcji L ENW (θ) = arg max L(θ). θ Agata Boratyńska Statystyka matematyczna, wykład 4 19 / 23

20 ENW - przykłady PRZYKŁAD 1. X bin(n, θ), wyznacz ENW (θ). Rozwiązanie L(θ, x) θ ( ) n L(θ, x) = θ x (1 θ) n x x ( ) n = θ x 1 (1 θ) n x 1 (x nθ) = 0 x ENW (θ) = X n Agata Boratyńska Statystyka matematyczna, wykład 4 20 / 23

21 ENW, przydatne związki Zachodzi: 1 arg max θ L(θ, x) = arg max θ ln L(θ, x) (zamiast wyznaczać argument max funkcji L można wyznaczać argument max funkcji l(θ) = ln L(θ)) 2 ENW (g(θ)) = g(enw (θ)) 3 Jeżeli θ = (θ 1,..., θ k ) jest parametrem ciągłym i L jest funkcją różniczkowalną, to ENW wyznaczamy rozwiązując układ równań: lub równoważny układ: L(θ, x) θ j = 0, j = 1, 2,..., k ln L(θ, x) θ j = 0, j = 1, 2,..., k. Agata Boratyńska Statystyka matematyczna, wykład 4 21 / 23

22 ENW - przykłady, cd PRZYKŁAD 2. X 1, X 2,..., X n i.i.d Ex(θ), θ > 0. Wyznacz ENW (θ) Rozwiązanie Funkcja wiarogodności ( ) n L(θ, x) = θ n exp θ x i Pochodna ln L(θ,x) θ i=1 n ln L = n ln θ θ x i i=1 = n θ n i=1 x i Rozwiązujemy równanie n n θ x i = 0 i=1 ENW (θ) = 1 X Agata Boratyńska Statystyka matematyczna, wykład 4 22 / 23

23 ENW (estymacja metodą największej wiarogodności) - przykłady PRZYKŁAD 3. X 1, X 2,..., X n i.i.d N(µ, σ). Wyznacz ENW (µ) i ENW (σ 2 ). Rozwiązanie Niech v = σ 2. ( ) n 1 2 L(µ, v) = exp ( 1 ) n (x i µ) 2 2πv 2v ln L = n 2 ln(2π) n 2 ln v 1 2v i=1 n (x i µ) 2 i=1 Po obliczeniu pochodnych cząstkowych otrzymujemy układ { 2 1 ni=1 2v (x i µ) = 0 Stąd ENW (µ) = X n 2v + 1 2v 2 ni=1 (x i µ) 2 = 0 ENW (σ 2 ) = Ŝ 2 = 1 n ni=1 ( X i X ) 2. Agata Boratyńska Statystyka matematyczna, wykład 4 23 / 23

24 ENW, przykład 4, dane Agata Boratyńska Statystyka matematyczna, wykład 4 24 / 23

25 Przykład 4, wartości estymatorów ROZKŁAD WYKŁADNICZY EMM 0, ENW 0, ROZKŁAD PARETO EMM theta 2,48984 lambda 4458,24 ENW theta 1,90145 lambda 2691,39 ROZKŁAD WEIBULLA EMK tau 0, c 0, ENW tau 0, c 0, ROZKŁAD GAMMA EMM alpha 0, beta 0, ENW alpha 0, beta 0, ROZKŁAD LOGARYTMICZNO-NORMALNY ENW 7, , Agata Boratyńska Statystyka matematyczna, wykład 4 25 / 23

26 Przykład 4, wykresy gęstości 0,001 0,0008 0,0006 0,0004 histogram wykladniczy Pareto Weibulla Gamma Lognormal 0, Agata Boratyńska Statystyka matematyczna, wykład 4 26 / 23

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 11 i 12 - Weryfikacja hipotez statystycznych

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 11 i 12 - Weryfikacja hipotez statystycznych WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 11 i 12 - Weryfikacja hipotez statystycznych Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 11 i 12 1 / 41 TESTOWANIE HIPOTEZ - PORÓWNANIE

Bardziej szczegółowo

METODY ESTYMACJI PUNKTOWEJ. nieznanym parametrem (lub wektorem parametrów). Przez X będziemy też oznaczać zmienną losową o rozkładzie

METODY ESTYMACJI PUNKTOWEJ. nieznanym parametrem (lub wektorem parametrów). Przez X będziemy też oznaczać zmienną losową o rozkładzie METODY ESTYMACJI PUNKTOWEJ X 1,..., X n - próbka z rozkładu P θ, θ Θ, θ jest nieznanym parametrem (lub wektorem parametrów). Przez X będziemy też oznaczać zmienną losową o rozkładzie P θ. Definicja. Estymatorem

Bardziej szczegółowo

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 13 i 14 - Statystyka bayesowska

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 13 i 14 - Statystyka bayesowska WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 13 i 14 - Statystyka bayesowska Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 13 i 14 1 / 15 MODEL BAYESOWSKI, przykład wstępny Statystyka

Bardziej szczegółowo

Agata Boratyńska. WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ (II rok WNE) Warszawa 2017

Agata Boratyńska. WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ (II rok WNE) Warszawa 2017 1 Agata Boratyńska WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ (II rok WNE) Warszawa 017 Agata Boratyńska Wykłady ze statystyki matematycznej Literatura W. Niemiro Rachunek prawdopodobieństwa i statystyka matematyczna,

Bardziej szczegółowo

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 7 i 8 - Efektywność estymatorów, przedziały ufności

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 7 i 8 - Efektywność estymatorów, przedziały ufności WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 7 i 8 - Efektywność estymatorów, przedziały ufności Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 7 i 8 1 / 9 EFEKTYWNOŚĆ ESTYMATORÓW, próba

Bardziej szczegółowo

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 9 i 10 - Weryfikacja hipotez statystycznych

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 9 i 10 - Weryfikacja hipotez statystycznych WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 9 i 10 - Weryfikacja hipotez statystycznych Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 9 i 10 1 / 30 TESTOWANIE HIPOTEZ STATYSTYCZNYCH

Bardziej szczegółowo

Agata Boratyńska. WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ (II rok WNE) Warszawa 2014

Agata Boratyńska. WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ (II rok WNE) Warszawa 2014 1 Agata Boratyńska WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ (II rok WNE) Warszawa 2014 Agata Boratyńska Wykłady ze statystyki matematycznej 2 Literatura W. Niemiro Rachunek prawdopodobieństwa i statystyka matematyczna,

Bardziej szczegółowo

Metoda momentów i kwantyli próbkowych. Wrocław, 7 listopada 2014

Metoda momentów i kwantyli próbkowych. Wrocław, 7 listopada 2014 Metoda momentów i kwantyli próbkowych Wrocław, 7 listopada 2014 Metoda momentów Momenty zmiennych losowych X 1, X 2,..., X n - próba losowa. Momenty zmiennych losowych X 1, X 2,..., X n - próba losowa.

Bardziej szczegółowo

WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 4 Przekształcenia zmiennej losowej, momenty

WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 4 Przekształcenia zmiennej losowej, momenty WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 4 Przekształcenia zmiennej losowej, momenty Agata Boratyńska Agata Boratyńska Rachunek prawdopodobieństwa, wykład 4 / 9 Przekształcenia zmiennej losowej X

Bardziej szczegółowo

Statystyka aktuarialna i teoria ryzyka, rozkłady szkód

Statystyka aktuarialna i teoria ryzyka, rozkłady szkód Statystyka aktuarialna i teoria ryzyka, rozkłady szkód Agata Boratyńska SGH, Warszawa Agata Boratyńska (SGH) SAiTR wykład 7 1 / 16 ROZKŁADY WARTOŚCI SZKÓD Podstawowe własności: rozkłady skupione na dodatniej

Bardziej szczegółowo

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 3 - model statystyczny, podstawowe zadania statystyki matematycznej

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 3 - model statystyczny, podstawowe zadania statystyki matematycznej WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 3 - model statystyczny, podstawowe zadania statystyki matematycznej Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 3 1 / 8 ZADANIE z rachunku

Bardziej szczegółowo

Wykład 5 Estymatory nieobciążone z jednostajnie minimalną war

Wykład 5 Estymatory nieobciążone z jednostajnie minimalną war Wykład 5 Estymatory nieobciążone z jednostajnie minimalną wariancją Wrocław, 25 października 2017r Statystyki próbkowe - Przypomnienie Niech X = (X 1, X 2,... X n ) będzie n elementowym wektorem losowym.

Bardziej szczegółowo

WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 2 i 3 Zmienna losowa

WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 2 i 3 Zmienna losowa WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 2 i 3 Zmienna losowa Agata Boratyńska Agata Boratyńska Rachunek prawdopodobieństwa, wykład 2 i 3 1 / 19 Zmienna losowa Definicja Dana jest przestrzeń probabilistyczna

Bardziej szczegółowo

Statystyka. Wykład 2. Krzysztof Topolski. Wrocław, 11 października 2012

Statystyka. Wykład 2. Krzysztof Topolski. Wrocław, 11 października 2012 Wykład 2 Wrocław, 11 października 2012 Próba losowa Definicja. Zmienne losowe X 1, X 2,..., X n nazywamy próba losową rozmiaru n z rozkładu o gęstości f (x) (o dystrybuancie F (x)) jeśli X 1, X 2,...,

Bardziej szczegółowo

... i statystyka testowa przyjmuje wartość..., zatem ODRZUCAMY /NIE MA POD- STAW DO ODRZUCENIA HIPOTEZY H 0 (właściwe podkreślić).

... i statystyka testowa przyjmuje wartość..., zatem ODRZUCAMY /NIE MA POD- STAW DO ODRZUCENIA HIPOTEZY H 0 (właściwe podkreślić). Egzamin ze Statystyki Matematycznej, WNE UW, wrzesień 016, zestaw B Odpowiedzi i szkice rozwiązań 1. Zbadano koszt 7 noclegów dla 4-osobowej rodziny (kwatery) nad morzem w sezonie letnim 014 i 015. Wylosowano

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Statystyka Wykład 10 Wrocław, 22 grudnia 2011 Testowanie hipotez statystycznych Definicja. Hipotezą statystyczną nazywamy stwierdzenie dotyczące parametrów populacji. Definicja. Dwie komplementarne w problemie

Bardziej szczegółowo

Definicja 1 Statystyką nazywamy (mierzalną) funkcję obserwowalnego wektora losowego

Definicja 1 Statystyką nazywamy (mierzalną) funkcję obserwowalnego wektora losowego Rozdział 1 Statystyki Definicja 1 Statystyką nazywamy (mierzalną) funkcję obserwowalnego wektora losowego X = (X 1,..., X n ). Uwaga 1 Statystyka jako funkcja wektora zmiennych losowych jest zmienną losową

Bardziej szczegółowo

Wykład 6 Estymatory efektywne. Własności asymptotyczne estym. estymatorów

Wykład 6 Estymatory efektywne. Własności asymptotyczne estym. estymatorów Wykład 6 Estymatory efektywne. Własności asymptotyczne estymatorów Wrocław, 30 listopada 2016r Powtórzenie z rachunku prawdopodobieństwa Zbieżność Definicja 6.1 Niech ciąg {X } n ma rozkład o dystrybuancie

Bardziej szczegółowo

Estymacja parametrów rozkładu cechy

Estymacja parametrów rozkładu cechy Estymacja parametrów rozkładu cechy Estymujemy parametr θ rozkładu cechy X Próba: X 1, X 2,..., X n Estymator punktowy jest funkcją próby ˆθ = ˆθX 1, X 2,..., X n przybliżającą wartość parametru θ Przedział

Bardziej szczegółowo

STATYSTYKA

STATYSTYKA Wykład 1 20.02.2008r. 1. ROZKŁADY PRAWDOPODOBIEŃSTWA 1.1 Rozkład dwumianowy Rozkład dwumianowy, 0 1 Uwaga: 1, rozkład zero jedynkowy. 1 ; 1,2,, Fakt: Niech,, będą niezależnymi zmiennymi losowymi o jednakowym

Bardziej szczegółowo

Statystyka aktuarialna i teoria ryzyka, model indywidualny i zespołowy, rozkłady złożone

Statystyka aktuarialna i teoria ryzyka, model indywidualny i zespołowy, rozkłady złożone Statystyka aktuarialna i teoria ryzyka, model indywidualny i zespołowy, rozkłady złożone Agata Boratyńska SGH, Warszawa Agata Boratyńska (SGH) SAiTR wykład 3 i 4 1 / 25 MODEL RYZYKA INDYWIDUALNEGO X wielkość

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład II: Zmienne losowe i charakterystyki ich rozkładów 13 października 2014 Zmienne losowe Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Definicja zmiennej losowej i jej

Bardziej szczegółowo

Metoda największej wiarogodności

Metoda największej wiarogodności Wprowadzenie Założenia Logarytm funkcji wiarogodności Metoda Największej Wiarogodności (MNW) jest bardziej uniwersalną niż MNK metodą szacowania wartości nieznanych parametrów Wprowadzenie Założenia Logarytm

Bardziej szczegółowo

Wykład 1 Próba i populacja. Estymacja parametrów z wykorzystaniem metody bootstrap

Wykład 1 Próba i populacja. Estymacja parametrów z wykorzystaniem metody bootstrap Wykład 1 Próba i populacja. Estymacja parametrów z wykorzystaniem metody bootstrap Magdalena Frąszczak Wrocław, 21.02.2018r Tematyka Wykładów: Próba i populacja. Estymacja parametrów z wykorzystaniem metody

Bardziej szczegółowo

Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX = 4 i EY = 6. Rozważamy zmienną losową Z =.

Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX = 4 i EY = 6. Rozważamy zmienną losową Z =. Prawdopodobieństwo i statystyka 3..00 r. Zadanie Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX 4 i EY 6. Rozważamy zmienną losową Z. X + Y Wtedy (A) EZ 0,

Bardziej szczegółowo

Agata Boratyńska Statystyka aktuarialna... 1

Agata Boratyńska Statystyka aktuarialna... 1 Agata Boratyńska Statystyka aktuarialna... 1 ZADANIA NA ĆWICZENIA Z TEORII WIAROGODNOŚCI Zad. 1. Niech X 1, X 2,..., X n będą niezależnymi zmiennymi losowymi z rozkładu wykładniczego o wartości oczekiwanej

Bardziej szczegółowo

Statystyka matematyczna. Wykład III. Estymacja przedziałowa

Statystyka matematyczna. Wykład III. Estymacja przedziałowa Statystyka matematyczna. Wykład III. e-mail:e.kozlovski@pollub.pl Spis treści Rozkłady zmiennych losowych 1 Rozkłady zmiennych losowych Rozkład χ 2 Rozkład t-studenta Rozkład Fischera 2 Przedziały ufności

Bardziej szczegółowo

Idea. θ = θ 0, Hipoteza statystyczna Obszary krytyczne Błąd pierwszego i drugiego rodzaju p-wartość

Idea. θ = θ 0, Hipoteza statystyczna Obszary krytyczne Błąd pierwszego i drugiego rodzaju p-wartość Idea Niech θ oznacza parametr modelu statystycznego. Dotychczasowe rozważania dotyczyły metod estymacji tego parametru. Teraz zamiast szacować nieznaną wartość parametru będziemy weryfikowali hipotezę

Bardziej szczegółowo

Statystyka i eksploracja danych

Statystyka i eksploracja danych Wykład II: i charakterystyki ich rozkładów 24 lutego 2014 Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa,

Bardziej szczegółowo

Uogolnione modele liniowe

Uogolnione modele liniowe Uogolnione modele liniowe Jerzy Mycielski Uniwersytet Warszawski grudzien 2013 Jerzy Mycielski (Uniwersytet Warszawski) Uogolnione modele liniowe grudzien 2013 1 / 17 (generalized linear model - glm) Zakładamy,

Bardziej szczegółowo

Wykład 3 Momenty zmiennych losowych.

Wykład 3 Momenty zmiennych losowych. Wykład 3 Momenty zmiennych losowych. Wrocław, 19 października 2016r Momenty zmiennych losowych Wartość oczekiwana - przypomnienie Definicja 3.1: 1 Niech X będzie daną zmienną losową. Jeżeli X jest zmienną

Bardziej szczegółowo

Wykład 3 Momenty zmiennych losowych.

Wykład 3 Momenty zmiennych losowych. Wykład 3 Momenty zmiennych losowych. Wrocław, 18 października 2017r Momenty zmiennych losowych Wartość oczekiwana - przypomnienie Definicja 3.1: 1 Niech X będzie daną zmienną losową. Jeżeli X jest zmienną

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Bioinformatyka Wykład 6 Wrocław, 7 listopada 2011 Temat. Weryfikacja hipotez statystycznych dotyczących proporcji. Test dla proporcji. Niech X 1,..., X n będzie próbą statystyczną z 0-1. Oznaczmy odpowiednio

Bardziej szczegółowo

Większość zadań zamieszczonych na tej liście pochodzi z książki Modele i metody statystyki matematycznej w zadaniach, autorstwa Alicji Jokiel-Rokity

Większość zadań zamieszczonych na tej liście pochodzi z książki Modele i metody statystyki matematycznej w zadaniach, autorstwa Alicji Jokiel-Rokity Większość zadań zamieszczonych na tej liście pochodzi z książki Modele i metody statystyki matematycznej w zadaniach, autorstwa Alicji Jokiel-Rokity i Ryszarda Magiery. W tym zbiorze można również znaleźć

Bardziej szczegółowo

Statystyka Matematyczna Anna Janicka

Statystyka Matematyczna Anna Janicka Statystyka Matematyczna Anna Janicka wykład X, 9.05.206 TESTOWANIE HIPOTEZ STATYSTYCZNYCH II: PORÓWNYWANIE TESTÓW Plan na dzisiaj 0. Przypomnienie potrzebnych definicji. Porównywanie testów 2. Test jednostajnie

Bardziej szczegółowo

1.1 Statystyka matematyczna Literatura Model statystyczny Preliminaria... 3

1.1 Statystyka matematyczna Literatura Model statystyczny Preliminaria... 3 Spis treści Spis treści 1 Wstęp 1 1.1 Statystyka matematyczna...................... 1 1.2 Literatura.............................. 1 1.3 Model statystyczny......................... 2 1.4 Preliminaria.............................

Bardziej szczegółowo

Estymatory nieobciążone

Estymatory nieobciążone Estymatory nieobciążone Zadanie 1. Pobieramy próbkę X 1,..., X n niezależnych obserwacji z rozkładu Poissona o nieznanym parametrze λ. Szacujemy p 0 = e λ za pomocą estymatora ˆp 0 = e X, gdzie X jest

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Zadanie. Niech (X, Y) ) będzie dwuwymiarową zmienną losową, o wartości oczekiwanej (μ, μ, wariancji każdej ze współrzędnych równej σ oraz kowariancji równej X Y ρσ. Staramy się obserwować niezależne realizacje

Bardziej szczegółowo

Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna.

Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna. Wykład 4 Rozkłady i ich dystrybuanty Dwa typy zmiennych losowych Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x, x 2,...}, to mówimy, że jest to zmienna dyskretna.

Bardziej szczegółowo

Testowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4.

Testowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4. Testowanie hipotez Niech X = (X 1... X n ) będzie próbą losową na przestrzeni X zaś P = {P θ θ Θ} rodziną rozkładów prawdopodobieństwa określonych na przestrzeni próby X. Definicja 1. Hipotezą zerową Θ

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD października 2009

STATYSTYKA MATEMATYCZNA WYKŁAD października 2009 STATYSTYKA MATEMATYCZNA WYKŁAD 4 26 października 2009 Rozkład N(µ, σ). Estymacja σ σ 2 = 1 σ 2π + = E µ,σ (X µ) 2 { (x µ) 2 exp 1 ( ) } x µ 2 dx 2 σ Rozkład N(µ, σ). Estymacja σ σ 2 = 1 σ 2π + = E µ,σ

Bardziej szczegółowo

Na A (n) rozważamy rozkład P (n) , który na zbiorach postaci A 1... A n określa się jako P (n) (X n, A (n), P (n)

Na A (n) rozważamy rozkład P (n) , który na zbiorach postaci A 1... A n określa się jako P (n) (X n, A (n), P (n) MODELE STATYSTYCZNE Punktem wyjścia w rozumowaniu statystycznym jest zmienna losowa (cecha) X i jej obserwacje opisujące wyniki doświadczeń bądź pomiarów. Zbiór wartości zmiennej losowej X (zbiór wartości

Bardziej szczegółowo

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl

Bardziej szczegółowo

Matematyka z el. statystyki, # 6 /Geodezja i kartografia II/

Matematyka z el. statystyki, # 6 /Geodezja i kartografia II/ Matematyka z el. statystyki, # 6 /Geodezja i kartografia II/ Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Głęboka 28, bud. CIW, p. 221 e-mail: zdzislaw.otachel@up.lublin.pl

Bardziej szczegółowo

1.1 Wstęp Literatura... 1

1.1 Wstęp Literatura... 1 Spis treści Spis treści 1 Wstęp 1 1.1 Wstęp................................ 1 1.2 Literatura.............................. 1 2 Elementy rachunku prawdopodobieństwa 2 2.1 Podstawy..............................

Bardziej szczegółowo

Na podstawie dokonanych obserwacji:

Na podstawie dokonanych obserwacji: PODSTAWOWE PROBLEMY STATYSTYKI MATEMATYCZNEJ Niech mamy próbkę X 1,..., X n oraz przestrzeń prób X n, i niech {X i } to niezależne zmienne losowe o tym samym rozkładzie P θ P. Na podstawie obserwacji chcemy

Bardziej szczegółowo

Zmienne losowe ciągłe i ich rozkłady

Zmienne losowe ciągłe i ich rozkłady Rachunek Prawdopodobieństwa i Statystyka - W3 Zmienne losowe ciągłe i ich rozkłady Dr Anna ADRIAN Paw B5, pok47 adan@agh.edu.pl Plan wykładu Zmienna losowa ciągła Dystrybuanta i unkcja gęstości rozkładu

Bardziej szczegółowo

Spis treści 3 SPIS TREŚCI

Spis treści 3 SPIS TREŚCI Spis treści 3 SPIS TREŚCI PRZEDMOWA... 1. WNIOSKOWANIE STATYSTYCZNE JAKO DYSCYPLINA MATEMATYCZNA... Metody statystyczne w analizie i prognozowaniu zjawisk ekonomicznych... Badania statystyczne podstawowe

Bardziej szczegółowo

Ważne rozkłady prawdopodobieństwa

Ważne rozkłady prawdopodobieństwa Część V Dodatki 59 Dodatek A Ważne rozkłady prawdopodobieństwa Rozkład DWUMIANOWY X Bin(n, p) Funkcja prawdopodobieństwa: f(k) = P(X = k) = ( ) n p k ( p) n k, k (k = 0,,..., n). Momenty: EX = np, VarX

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład VII: Rozkład i jego charakterystyki 22 listopada 2016 Uprzednio wprowadzone pojęcia i ich własności Definicja zmiennej losowej Zmienna losowa na przestrzeni probabilistycznej (Ω, F, P) to funkcja

Bardziej szczegółowo

Wykład 10 Testy jednorodności rozkładów

Wykład 10 Testy jednorodności rozkładów Wykład 10 Testy jednorodności rozkładów Wrocław, 16 maja 2018 Test Znaków test jednorodności rozkładów nieparametryczny odpowiednik testu t-studenta dla prób zależnych brak normalności rozkładów Test Znaków

Bardziej szczegółowo

Detekcja rozkładów o ciężkich ogonach

Detekcja rozkładów o ciężkich ogonach Detekcja rozkładów o ciężkich ogonach J. Śmiarowska, P. Jamer Wydział Matematyki i Nauk Informacyjnych Politechnika Warszawska 24 kwietnia 2012 J. Śmiarowska, P. Jamer (Politechnika Warszawska) Detekcja

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD stycznia 2010

STATYSTYKA MATEMATYCZNA WYKŁAD stycznia 2010 STATYSTYKA MATEMATYCZNA WYKŁAD 14 18 stycznia 2010 Model statystyczny ROZKŁAD DWUMIANOWY ( ) {0, 1,, n}, {P θ, θ (0, 1)}, n ustalone P θ {K = k} = ( ) n θ k (1 θ) n k, k k = 0, 1,, n Geneza: Rozkład Bernoulliego

Bardziej szczegółowo

Hipotezy proste. (1 + a)x a, dla 0 < x < 1, 0, poza tym.

Hipotezy proste. (1 + a)x a, dla 0 < x < 1, 0, poza tym. Hipotezy proste Zadanie 1. Niech X ma funkcję gęstości f a (x) = (1 + a)x a, dla 0 < x < 1, Testujemy H 0 : a = 1 przeciwko H 1 : a = 2. Dysponujemy pojedynczą obserwacją X. Wyznaczyć obszar krytyczny

Bardziej szczegółowo

Rozkłady i ich dystrybuanty 16 marca F X (t) = P (X < t) 0, gdy t 0, F X (t) = 1, gdy t > c, 0, gdy t x 1, 1, gdy t > x 2,

Rozkłady i ich dystrybuanty 16 marca F X (t) = P (X < t) 0, gdy t 0, F X (t) = 1, gdy t > c, 0, gdy t x 1, 1, gdy t > x 2, Wykład 4. Rozkłady i ich dystrybuanty 6 marca 2007 Jak opisać cały rozkład jedną funkcją? Aby znać rozkład zmiennej X, musimy umieć obliczyć P (a < X < b) dla dowolnych a < b. W tym celu wystarczy znać

Bardziej szczegółowo

Próbkowe odpowiedniki wielkości populacyjnych

Próbkowe odpowiedniki wielkości populacyjnych Część I Podstawy 11 Rozdział 1 Próbkowe odpowiedniki wielkości populacyjnych 1.1 Rozkład empiryczny Statystyka matematyczna opiera się na założeniu, że dane są wynikiem pewnego doświadczenia losowego.

Bardziej szczegółowo

Wykład 1 Zmienne losowe, statystyki próbkowe - powtórzenie materiału

Wykład 1 Zmienne losowe, statystyki próbkowe - powtórzenie materiału Wykład 1 Zmienne losowe, statystyki próbkowe - powtórzenie materiału Magdalena Frąszczak Wrocław, 22.02.2017r Zasady oceniania Ćwiczenia 2 kolokwia (20 punktów każde) 05.04.2017 oraz 31.05.2017 2 kartkówki

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD grudnia 2009

STATYSTYKA MATEMATYCZNA WYKŁAD grudnia 2009 STATYSTYKA MATEMATYCZNA WYKŁAD 10 14 grudnia 2009 PARAMETRY POŁOŻENIA Przypomnienie: Model statystyczny pomiaru: wynik pomiaru X = µ + ε 1. ε jest zmienną losową 2. E(ε) = 0 pomiar nieobciążony, pomiar

Bardziej szczegółowo

WSTĘP. Tematy: Regresja liniowa: model regresji liniowej, estymacja nieznanych parametrów. Wykład:30godz., ćwiczenia:15godz., laboratorium:30godz.

WSTĘP. Tematy: Regresja liniowa: model regresji liniowej, estymacja nieznanych parametrów. Wykład:30godz., ćwiczenia:15godz., laboratorium:30godz. Tematy: WSTĘP 1. Wprowadzenie do przedmiotu. Próbkowe odpowiedniki wielkości populacyjnych. Modele statystyczne i przykładowe zadania wnioskowania statystycznego. Statystyki i ich rozkłady. 2. Estymacja

Bardziej szczegółowo

Zmienne losowe ciągłe i ich rozkłady

Zmienne losowe ciągłe i ich rozkłady Statystyka i opracowanie danych W3 Zmienne losowe ciągłe i ich rozkłady Dr Anna ADRIAN Paw B5, pok47 adan@agh.edu.pl Plan wykładu Rozkład Poissona. Zmienna losowa ciągła Dystrybuanta i funkcja gęstości

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka

Rachunek prawdopodobieństwa i statystyka Rachunek prawdopodobieństwa i statystyka Momenty Zmienna losowa jest wystarczająco dokładnie opisana przez jej rozkład prawdopodobieństwa. Względy praktyczne dyktują jednak potrzebę znalezienia charakterystyk

Bardziej szczegółowo

Ważne rozkłady i twierdzenia c.d.

Ważne rozkłady i twierdzenia c.d. Ważne rozkłady i twierdzenia c.d. Funkcja charakterystyczna rozkładu Wielowymiarowy rozkład normalny Elipsa kowariacji Sploty rozkładów Rozkłady jednostajne Sploty z rozkładem normalnym Pobieranie próby

Bardziej szczegółowo

Statystyka matematyczna. Wykład VI. Zesty zgodności

Statystyka matematyczna. Wykład VI. Zesty zgodności Statystyka matematyczna. Wykład VI. e-mail:e.kozlovski@pollub.pl Spis treści 1 Testy zgodności 2 Test Shapiro-Wilka Test Kołmogorowa - Smirnowa Test Lillieforsa Test Jarque-Bera Testy zgodności Niech x

Bardziej szczegółowo

Kolokwium ze statystyki matematycznej

Kolokwium ze statystyki matematycznej Kolokwium ze statystyki matematycznej 28.05.2011 Zadanie 1 Niech X będzie zmienną losową z rozkładu o gęstości dla, gdzie 0 jest nieznanym parametrem. Na podstawie pojedynczej obserwacji weryfikujemy hipotezę

Bardziej szczegółowo

Zmienne losowe, statystyki próbkowe. Wrocław, 2 marca 2015

Zmienne losowe, statystyki próbkowe. Wrocław, 2 marca 2015 Zmienne losowe, statystyki próbkowe Wrocław, 2 marca 2015 Zasady zaliczenia 2 kolokwia (każde po 20 punktów) projekt (20 punktów) aktywność Zasady zaliczenia 2 kolokwia (każde po 20 punktów) projekt (20

Bardziej szczegółowo

Rozdział 2: Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów

Rozdział 2: Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów Rozdział : Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów W tym rozdziale omówione zostaną dwie najpopularniejsze metody estymacji parametrów w ekonometrycznych modelach nieliniowych,

Bardziej szczegółowo

Agata Boratyńska Statystyka aktuarialna... 1

Agata Boratyńska Statystyka aktuarialna... 1 Agata Boratyńska Statystyka aktuarialna... 1 Statystyka aktuarialna i teoria ryzyka LITERATURA Bowers N. i in. (1986 lub 1997) Actuarial mathematics, Hossak J.B., Pollard J.H. (1983 lub 1990), Introductory

Bardziej szczegółowo

PEWNE FAKTY Z RACHUNKU PRAWDOPODOBIEŃSTWA

PEWNE FAKTY Z RACHUNKU PRAWDOPODOBIEŃSTWA PEWNE FAKTY Z RACHUNKU PRAWDOPODOBIEŃSTWA 1. Trójkę (Ω, F, P ), gdzie Ω, F jest σ-ciałem podzbiorów Ω, a P jest prawdopodobieństwem określonym na F, nazywamy przestrzenią probabilistyczną. 2. Rodzinę F

Bardziej szczegółowo

O ŚREDNIEJ STATYSTYCZNEJ

O ŚREDNIEJ STATYSTYCZNEJ Od średniej w modelu gaussowskim do kwantyli w podstawowym modelu nieparametrycznym IMPAN 1.X.2009 Rozszerzona wersja wykładu: O ŚREDNIEJ STATYSTYCZNEJ Ryszard Zieliński XII Międzynarodowe Warsztaty dla

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład VIII: Przestrzenie statystyczne. Estymatory 1 grudnia 2014 Wprowadzenie Przykład: pomiar z błędem Współczynnik korelacji r(x, Z) = 0, 986 Wprowadzenie Przykład: pomiar z błędem Współczynnik korelacji

Bardziej szczegółowo

Wykład 3 Równania rózniczkowe cd

Wykład 3 Równania rózniczkowe cd 7 grudnia 2010 Definicja Równanie różniczkowe dy dx + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to równanie (1) czyli równanie dy dx + p (x) y = 0 nazywamy

Bardziej szczegółowo

2.1 Przykład wstępny Określenie i konstrukcja Model dwupunktowy Model gaussowski... 7

2.1 Przykład wstępny Określenie i konstrukcja Model dwupunktowy Model gaussowski... 7 Spis treści Spis treści 1 Przedziały ufności 1 1.1 Przykład wstępny.......................... 1 1.2 Określenie i konstrukcja...................... 3 1.3 Model dwupunktowy........................ 5 1.4

Bardziej szczegółowo

Matematyka z el. statystyki, # 3 /Geodezja i kartografia II/

Matematyka z el. statystyki, # 3 /Geodezja i kartografia II/ Matematyka z el. statystyki, # 3 /Geodezja i kartografia II/ Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Akademicka 15, p.211a bud. Agro II, e-mail: zdzislaw.otachel@up.lublin.pl

Bardziej szczegółowo

Statystyka. Magdalena Jakubek. kwiecień 2017

Statystyka. Magdalena Jakubek. kwiecień 2017 Statystyka Magdalena Jakubek kwiecień 2017 1 Nauka nie stara się wyjaśniać, a nawet niemal nie stara się interpretować, zajmuje się ona głównie budową modeli. Model rozumiany jest jako matematyczny twór,

Bardziej szczegółowo

WYKŁAD 6. Witold Bednorz, Paweł Wolff. Rachunek Prawdopodobieństwa, WNE, Uniwersytet Warszawski. 1 Instytut Matematyki

WYKŁAD 6. Witold Bednorz, Paweł Wolff. Rachunek Prawdopodobieństwa, WNE, Uniwersytet Warszawski. 1 Instytut Matematyki WYKŁAD 6 Witold Bednorz, Paweł Wolff 1 Instytut Matematyki Uniwersytet Warszawski Rachunek Prawdopodobieństwa, WNE, 2010-2011 Własności Wariancji Przypomnijmy, że VarX = E(X EX) 2 = EX 2 (EX) 2. Własności

Bardziej szczegółowo

Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn

Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn Wykład 10 Estymacja przedziałowa - przedziały ufności dla średniej Wrocław, 21 grudnia 2016r Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja 10.1 Przedziałem

Bardziej szczegółowo

Metoda najmniejszych kwadratów

Metoda najmniejszych kwadratów Metoda najmniejszych kwadratów Przykład wstępny. W ekonomicznej teorii produkcji rozważa się funkcję produkcji Cobba Douglasa: z = AL α K β gdzie z oznacza wielkość produkcji, L jest nakładem pracy, K

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Bioinformatyka Wykład 9 Wrocław, 5 grudnia 2011 Temat. Test zgodności χ 2 Pearsona. Statystyka χ 2 Pearsona Rozpatrzmy ciąg niezależnych zmiennych losowych X 1,..., X n o jednakowym dyskretnym rozkładzie

Bardziej szczegółowo

Estymacja punktowa i przedziałowa

Estymacja punktowa i przedziałowa Temat: Estymacja punktowa i przedziałowa Kody znaków: żółte wyróżnienie nowe pojęcie czerwony uwaga kursywa komentarz 1 Zagadnienia 1. Statystyczny opis próby. Idea estymacji punktowej pojęcie estymatora

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Bioinformatyka Wykład 4 Wrocław, 17 października 2011 Temat. Weryfikacja hipotez statystycznych dotyczących wartości oczekiwanej w dwóch populacjach o rozkładach normalnych. Model 3. Porównanie średnich

Bardziej szczegółowo

Wykład 7 Testowanie zgodności z rozkładem normalnym

Wykład 7 Testowanie zgodności z rozkładem normalnym Wykład 7 Testowanie zgodności z rozkładem normalnym Wrocław, 05 kwietnia 2017 Rozkład normalny Niech X = (X 1, X 2,..., X n ) będzie próbą z populacji o rozkładzie normalnym określonym przez dystrybuantę

Bardziej szczegółowo

Estymatory nieobciążone o minimalnej wariancji

Estymatory nieobciążone o minimalnej wariancji Estymatory ieobciążoe o miimalej wariacji Model statystyczy (X, {P θ, θ Θ}); g : Θ R 1 Zadaie: oszacować iezaą wartość g(θ) Wybrać takie δ(x 1, X 2,, X ) by ( θ Θ) ieobciążoość E θ δ(x 1, X 2,, X ) = g(θ)

Bardziej szczegółowo

Metody probabilistyczne

Metody probabilistyczne Metody probabilistyczne 13. Elementy statystki matematycznej I Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 17.01.2019 1 / 30 Zagadnienia statystki Przeprowadzamy

Bardziej szczegółowo

Statystyka matematyczna. Wykład IV. Weryfikacja hipotez statystycznych

Statystyka matematyczna. Wykład IV. Weryfikacja hipotez statystycznych Statystyka matematyczna. Wykład IV. e-mail:e.kozlovski@pollub.pl Spis treści 1 2 3 Definicja 1 Hipoteza statystyczna jest to przypuszczenie dotyczące rozkładu (wielkości parametru lub rodzaju) zmiennej

Bardziej szczegółowo

Estymacja parametrów w modelu normalnym

Estymacja parametrów w modelu normalnym Estymacja parametrów w modelu normalnym dr Mariusz Grządziel 6 kwietnia 2009 Model normalny Przez model normalny będziemy rozumieć rodzine rozkładów normalnych N(µ, σ), µ R, σ > 0. Z Centralnego Twierdzenia

Bardziej szczegółowo

Prawa wielkich liczb, centralne twierdzenia graniczne

Prawa wielkich liczb, centralne twierdzenia graniczne , centralne twierdzenia graniczne Katedra matematyki i ekonomii matematycznej 17 maja 2012, centralne twierdzenia graniczne Rodzaje zbieżności ciągów zmiennych losowych, centralne twierdzenia graniczne

Bardziej szczegółowo

Wykład Centralne twierdzenie graniczne. Statystyka matematyczna: Estymacja parametrów rozkładu

Wykład Centralne twierdzenie graniczne. Statystyka matematyczna: Estymacja parametrów rozkładu Wykład 11-12 Centralne twierdzenie graniczne Statystyka matematyczna: Estymacja parametrów rozkładu Centralne twierdzenie graniczne (CTG) (Central Limit Theorem - CLT) Centralne twierdzenie graniczne (Lindenberga-Levy'ego)

Bardziej szczegółowo

Oznacza to, że chcemy znaleźć minimum, a właściwie wartość najmniejszą funkcji

Oznacza to, że chcemy znaleźć minimum, a właściwie wartość najmniejszą funkcji Wykład 11. Metoda najmniejszych kwadratów Szukamy zależności Dane są wyniki pomiarów dwóch wielkości x i y: (x 1, y 1 ), (x 2, y 2 ),..., (x n, y n ). Przypuśćmy, że nanieśliśmy je na wykres w układzie

Bardziej szczegółowo

O ŚREDNIEJ ARYTMETYCZNEJ I MEDIANIE

O ŚREDNIEJ ARYTMETYCZNEJ I MEDIANIE Ryszard Zieliński, IMPAN Warszawa O ŚREDNIEJ ARYTMETYCZNEJ I MEDIANIE XXXIX Ogólnopolska Konferencja Zastosowań Matematyki Zakopane-Kościelisko 7-14 września 2010 r Model statystyczny pomiaru: wynik pomiaru

Bardziej szczegółowo

Excel: niektóre rozkłady ciągłe (1)

Excel: niektóre rozkłady ciągłe (1) MS Ecel niektóre rozkłady ciągłe (1) Ecel: niektóre rozkłady ciągłe (1) 1. ROZKŁAD.BETA (tylko dystrybuanta)...1 2. ROZKŁAD.BETA.ODW (kwantyl w rozkładzie beta)...3 3. ROZKŁAD.LIN.GAMMA (to nie jest żaden

Bardziej szczegółowo

Statystyka matematyczna dla leśników

Statystyka matematyczna dla leśników Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 2013/2014 Wykład 3 Zmienna losowa i jej rozkłady Zdarzenia losowe Pojęcie prawdopodobieństwa

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Wykład 7

Stanisław Cichocki Natalia Nehrebecka. Wykład 7 Stanisław Cichocki Natalia Nehrebecka Wykład 7 1 1. Metoda Największej Wiarygodności MNW 2. Założenia MNW 3. Własności estymatorów MNW 4. Testowanie hipotez w MNW 2 1. Metoda Największej Wiarygodności

Bardziej szczegółowo

Zmienne losowe. dr Mariusz Grzadziel. rok akademicki 2016/2017 semestr letni. Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu

Zmienne losowe. dr Mariusz Grzadziel. rok akademicki 2016/2017 semestr letni. Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu Zmienne losowe dr Mariusz Grzadziel Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu rok akademicki 2016/2017 semestr letni Definicja 1 Zmienna losowa nazywamy dyskretna (skokowa), jeśli zbiór

Bardziej szczegółowo

Rozkłady prawdopodobieństwa

Rozkłady prawdopodobieństwa Tytuł Spis treści Wersje dokumentu Instytut Matematyki Politechniki Łódzkiej 10 grudnia 2011 Spis treści Tytuł Spis treści Wersje dokumentu 1 Wartość oczekiwana Wariancja i odchylenie standardowe Rozkład

Bardziej szczegółowo

Statystyka w przykładach

Statystyka w przykładach w przykładach Tomasz Mostowski Zajęcia 10.04.2008 Plan Estymatory 1 Estymatory 2 Plan Estymatory 1 Estymatory 2 Własności estymatorów Zazwyczaj w badaniach potrzebujemy oszacować pewne parametry na podstawie

Bardziej szczegółowo

1 Podstawy rachunku prawdopodobieństwa

1 Podstawy rachunku prawdopodobieństwa 1 Podstawy rachunku prawdopodobieństwa Dystrybuantą zmiennej losowej X nazywamy prawdopodobieństwo przyjęcia przez zmienną losową X wartości mniejszej od x, tzn. F (x) = P [X < x]. 1. dla zmiennej losowej

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka

Rachunek prawdopodobieństwa i statystyka Rachunek prawdopodobieństwa i statystyka Przestrzeń probabilistyczna Niech Ω będzie dowolnym zbiorem, zwanym przestrzenią zdarzeń elementarnych. Elementy ω tej przestrzeni nazywamy zdarzeniami elementarnymi.

Bardziej szczegółowo

RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 3.

RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 3. RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 3. ZMIENNA LOSOWA JEDNOWYMIAROWA. Zmienną losową X nazywamy funkcję (praktycznie każdą) przyporządkowującą zdarzeniom elementarnym liczby rzeczywiste. X : Ω R (dokładniej:

Bardziej szczegółowo

W4 Eksperyment niezawodnościowy

W4 Eksperyment niezawodnościowy W4 Eksperyment niezawodnościowy Henryk Maciejewski Jacek Jarnicki Jarosław Sugier www.zsk.iiar.pwr.edu.pl Badania niezawodnościowe i analiza statystyczna wyników 1. Co to są badania niezawodnościowe i

Bardziej szczegółowo

Statystyka matematyczna

Statystyka matematyczna Statystyka matematyczna Wykład 6 Magdalena Alama-Bućko 8 kwietnia 019 Magdalena Alama-Bućko Statystyka matematyczna 8 kwietnia 019 1 / 1 Rozkłady ciagłe Magdalena Alama-Bućko Statystyka matematyczna 8

Bardziej szczegółowo