Natalia Nehrebecka. Dariusz Szymański

Wielkość: px
Rozpocząć pokaz od strony:

Download "Natalia Nehrebecka. Dariusz Szymański"

Transkrypt

1 Natala Nehrebecka Darusz Szymańsk

2 . Sprawy organzacyjne Zasady zalczena Ćwczena Lteratura. Czym zajmuje sę ekonometra? Model ekonometryczny 3. Model lnowy Postać modelu lnowego Zaps macerzowy modelu dl lnowego 4. Estymacja modelu Przykład Wartość teoretyczna (dopasowana) Reszty 5. MNK przypadek jednej zmennej

3 . Sprawy organzacyjne Zasady zalczena Ćwczena Lteratura. Czym zajmuje sę ekonometra? Model ekonometryczny 3. Model lnowy Postać modelu lnowego Zaps macerzowy modelu dl lnowego 4. Estymacja modelu Przykład Wartość teoretyczna (dopasowana) Reszty 5. MNK przypadek jednej zmennej 3

4 - adres malowy: - strona nternetowa: -dyżur: środa sala 30 lub 303 4

5 Egzamn psemny: Forma egzamnu: warunkem dopuszczena do egzamnu końcowego jest zalczene ćwczeń (zalczena kartkówek oraz modelu) egzamn trwa 90 mn. zawera: 4 pytana teoretyczne spośród lsty pytań ze skryptu (mogą a być zmodyfkowane) zadana podobne do zadań ze zboru zadań zadane spoza zboru konecznym warunkem zalczena egzamnu jest: rozwązane ą przynajmnej j zadana poprawna odpowedź na przynajmnej pytana teoretyczne Ocena końcowa: średna ważona (/3 ocena z egzamnu +/3 (30% kartkówk+70% model) 5

6 obecnośc na ćwczenach ustalana są a na podstawe, 0 mn. kartkówek ocena końcowa z ćwczeń: ocena z egzamnu najważnejszym elementem ćwczeń jest samodzelne opracowane własnego badana ekonometrycznego modelu. modele opracowywane w grupach co najwyżej osobowych Oprogramowane: akceptowane będą jedyne modele oszacowane w STAT ce. 6

7 - J.Mycelsk, Skrypt z ekonometr (I II sem.),dostępny na ksero wydzałowym - J.Mycelsk, Zbór zadań z ekonometr dostępny na ksero wydzałowym 7

8 . Sprawy organzacyjne Zasady zalczena Ćwczena Lteratura. Czym zajmuje sę ekonometra? Model ekonometryczny 3. Model lnowy Postać modelu lnowego Zaps macerzowy modelu dl lnowego 4. Estymacja modelu Przykład Wartość teoretyczna (dopasowana) Reszty 5. MNK przypadek jednej zmennej 8

9 - badanem zależnośc loścowych mędzy zmennym ekonomcznym - empryczną weryfkacją teor ekonomcznych Przykład: - teora: prawo popytu podaży wzrost ceny powoduje spadek popytu wzrost podaży - teora nc ne mów o le spadne popyt, wzrośne podaż 9

10 - ekonometryk może oszacować reakcję popytu na spadek ceny (cenowa elastyczność popytu) oraz zweryfkować hpotezę o jej ujemnym znaku - wykorzystuje do tego dane 0

11 - dane ne mówą,,same za sebe -narzędzem ekonometryka do analzy danych model ekonometryczny - model: a) pewen sposób opsu danych b) za pomocą newelkej lczby oszacowanych parametrów umożlwa uchwycene najważnejszych zależnośc medzy zmennym

12 c) ne opsuje dokładne rzeczywstośc (w sposób nedoskonały) Budowa modelu: a) cel badana hpoteza badawcza teora które zmenne stotne wpływają na analzowane zjawsko, kerunek przyczynowośc, jake formy funkcyjne wybrać b) dane c) oszacowane parametrów d) weryfkacja hpotezy

13 Keynesowska teora konsumpcj Zgodne z teorą Keynesa podstawowe prawo psychologczne głos, ł że ludze są skłonn do zwększana konsumpcj wraz ze wzrostem dochodów, ale w mnejszym stopnu nż wzrasta dochód. Matematyczny model dla tej teor może przyjąć postać: y = β + β 0 < β < gdze y wydatk konsumpcyjne, dochód, β, β parametry równana. β zwane jest stałą ą równana, zaś β jest parametrem nachylena lub współczynnkem kerunkowym. 3

14 y Wydatk kons. β =Krańcowa skłonność do konsumpcj (MPC) β 0 Dochody Rys.. Funkcja konsumpcj Keynesa, skrypt do ekonometr B. Góreck 4

15 Możemy oczekwać, że krańcowa skłonność do konsumpcj ne we wszystkch rodznach jest dokładne taka sama. Wpływają ł na ną nne zmenne oprócz dochodu, d take jak wek rodzny, lczba osób w rodzne, mejsce zameszkana, nawyk konsumpcyjne td. Dlatego też modyfkujemy funkcję konsumpcj dodając zaburzene losowe, dzęk ę któremu funkcja determnstyczna konsumpcj staje sę funkcją stochastyczną (losową). Taka postać funkcj jest modelem ekonometrycznym. Zapszmy ją: y = β + β + ε 5

16 Wydatk kons. ε Rys... Ekonometryczny model konsumpcj Keynesa, skrypt do ekonometr B. Góreckego Dochody 6

17 . Sprawy organzacyjne Zasady zalczena Ćwczena Lteratura. Czym zajmuje sę ekonometra? Model ekonometryczny 3. Model lnowy Postać modelu lnowego Zaps macerzowy modelu dl lnowego 4. Estymacja modelu Przykład Wartość teoretyczna (dopasowana) Reszty 5. MNK przypadek jednej zmennej 7

18 teora ekonomczna dane empryczne zależnośc loścowe mędzy zmennym badane ekonometryczne 8

19 y = β + β β + K K ε y - zmennaobjaśnana (zależna, endogenczna),,, K - zmenne objaśnające (nezależne, egzogenczne), ε - błąd losowy, odpowada za losową newyjaśnoną część zmennośc y β,,ββ K - neznane parametry, =,,N ndeks obserwacj, N - lczba obserwacj. 9

20 ε β + = K y M M M M M L M { { ε β ε β N K X KN N N y N y L ε β X y Stąd równane macerzowe ma postać: = Xβ + ε y β y 0

21 Model lnowy zakłada, że: zależność mędzy analzowanym zmennym jest lnowa (równane regresj lnowej wyznacza hperpłaszczyznę regresj) stneje zależność przyczynowo skutkowa mędzy zmennym ( korelacja) zmenne objaśnające są przyczyną zmennośc zmennej objaśnanej zależność zwykle wynka z teor (pownna) pewna część zmennośc zmennej objaśnanej pozostaje newyjaśnona, bo: neuwzględnene pewnych zmennych objaśnających losowy charakter czynnków wpływających na zmenną objaśnaną

22 Który z model jest poprawny dlaczego? Co jest zmenną objaśnaną a co objaśnającą? wydatk β β dochód ε = + + dochód = β + β wydatk + ε

23 . Sprawy organzacyjne Zasady zalczena Ćwczena Lteratura. Czym zajmuje sę ekonometra? Model ekonometryczny 3. Model lnowy Postać modelu lnowego Zaps macerzowy modelu dl lnowego 4. Estymacja modelu Przykład Wartość teoretyczna (dopasowana) Reszty 5. MNK przypadek jednej zmennej 3

24 Teora zwykle ne dostarcza nformacj nt. welkośc parametrów modelu {(β,,β K ) nelosowe, ale neobserwowalne}. Welkość neznanych parametrów tó należy ż oszacować ć (estymować) na podstawe danych emprycznych (próby). Oszacowane welkośc lk ś parametrów tó (estymatory) t (b,,b K ) są nedokładne (losowe), zależą od próby. 4

25 = = 30 8, 4 7 y

26 Rysunek: Prosta regresj przykłady 6

27 Wartośc dopasowane: wartośc zmennej objaśnanej (y ) przewdywane na podstawe oszacowanego modelu regresj lnowej y na,, K : y ˆ = b + b K b K Różną sę od wartośc rzeczywstych, bo: zamast neznanych prawdzwych welkośc parametrów (β,, β K ) używamy ch estymatorów (b,,b K ) (β,, β K ) używamy ch estymatorów (b,,b K ) pomjamy błąd losowy (ε ) 7

28 Reszty: różnca mędzy wartoścą rzeczywstą a dopasowaną zmennej objaśnanej, są to oszacowana (ε ) : e = y yˆ = y b b... b K K Im mnejsza jest odległość wartośc rzeczywstych od teoretycznych tym lepszy model estymatory yparametrów modelu mnmalzują sumę ę odległośc y od : ŷ N N ( y yˆ ) = = = e 8

29 N N ( y yˆ ) = = = e Funkcja ta jest cągła różnczkowalna dla wszystkch e, dzęk czemu można znaleźć jej mnmumwzględem welkośc parametrów poprzez rozwązane standardowych warunków perwszego ego rzędu. 9

30 30

31 Jaką znasz nną funkcję odległośc? Dlaczego trudno jest ją stosować w procese estymacj? 3

32 . Sprawy organzacyjne Zasady zalczena Ćwczena Lteratura. Czym zajmuje sę ekonometra? Model ekonometryczny 3. Model lnowy Postać modelu lnowego Zaps macerzowy modelu dl lnowego 4. Estymacja modelu Przykład Wartość teoretyczna (dopasowana) Reszty 5. MNK przypadek jednej zmennej 3

33 Zapsz model teoretyczny, model wyestymowany, wartośc dopasowane oraz reszty dla modelu lnowego zawerającego jedną zmenną objaśnającą stałą 33

34 Model teoretyczny: y = β + β + ε yˆ = b + b Wartość dopasowana (teoretyczna): Reszta: e = y b b 34

35 Oszacowana b b pownny być dobrane tak by suma Oszacowana b b pownny być dobrane tak, by suma kwadratów reszt była jak najmnejsza. ( ) = = = N N b b y e b b S ), ( ( ) = = N y ), ( ( ) = b b b b y b y b y 35

36 Polcz pochodne cząstkowe względem parametrów b powyższego równana przyrównaj je do zera. b S S ( b, b b ( b b, b ) ) = = 0 0 Warunk perwszego rzędu 36

37 Lcząc pochodne dla poszczególnych równań uzyskujemy układ równań Lcząc pochodne dla poszczególnych równań uzyskujemy układ równań zwany układem równań normalnych. N [ ] = N b b y [ ] + + = 0 N b b y [ ] = + + = 0 b b y 37

38 b = y b N = y b = NN y = N 38

39 Przypomnj wzór na warancję (s ) kowarancję (s y ) empryczną. b = y b S b = y S 39

40 . Zapsać model lnowy. Podać nterpretację poszczególnych elementów tego modelu.. Podać wzajemne relacje mędzy wartoścam obserwowanym zmennej zależnej, ż oszacowanam parametrów, wartoścam ś dopasowanym resztam. 3. Wyjaśnj j różncę ę mędzy ę parametram oszacowanam parametrów oraz mędzy odchylenam losowym resztam. 4. Skąd berze sę nazwa Metoda Najmnejszych Kwadratów? 5. Wyprowadzć estymator t MNK dla modelu dl ze stałą ł jedną jd zmenną objaśnającą. 40

41 Dzękuję za uwagę 4

Natalia Nehrebecka. Wykład 2

Natalia Nehrebecka. Wykład 2 Natala Nehrebecka Wykład . Model lnowy Postad modelu lnowego Zaps macerzowy modelu lnowego. Estymacja modelu Wartośd teoretyczna (dopasowana) Reszty 3. MNK przypadek jednej zmennej . Model lnowy Postad

Bardziej szczegółowo

Natalia Nehrebecka. Zajęcia 3

Natalia Nehrebecka. Zajęcia 3 St ł Cchock Stansław C h k Natala Nehrebecka Zajęca 3 1. Dobroć dopasowana równana regresj. Współczynnk determnacj R Dk Dekompozycja warancj zmennej zależnej ż Współczynnk determnacj R. Zmenne cągłe a

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka Katarzyna Rosiak-Lada. Zajęcia 3

Stanisław Cichocki. Natalia Nehrebecka Katarzyna Rosiak-Lada. Zajęcia 3 Stansław Cchock Natala Nehrebecka Katarzyna Rosak-Lada Zajęca 3 1. Dobrod dopasowana równana regresj. Współczynnk determnacj R 2 Dekompozycja warancj zmennej zależnej Współczynnk determnacj R 2 2. Zmenne

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6 Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Interpretacja parametrów przy zmennych objaśnających cągłych Semelastyczność 2. Zastosowane modelu potęgowego Model potęgowy 3. Zmenne cągłe za zmenne dyskretne

Bardziej szczegółowo

) będą niezależnymi zmiennymi losowymi o tym samym rozkładzie normalnym z następującymi parametrami: nieznaną wartością 1 4

) będą niezależnymi zmiennymi losowymi o tym samym rozkładzie normalnym z następującymi parametrami: nieznaną wartością 1 4 Zadane. Nech ( X, Y ),( X, Y ), K,( X, Y n n ) będą nezależnym zmennym losowym o tym samym rozkładze normalnym z następującym parametram: neznaną wartoścą oczekwaną EX = EY = m, warancją VarX = VarY =

Bardziej szczegółowo

Natalia Nehrebecka. Zajęcia 4

Natalia Nehrebecka. Zajęcia 4 St ł Cchock Stansław C h k Natala Nehrebecka Zajęca 4 1. Interpretacja parametrów przy zmennych zerojedynkowych Zmenne 0 1 Interpretacja przy zmennej 0 1 w modelu lnowym względem zmennych objaśnających

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 4

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 4 Stansław Cchock Natala Nehrebecka Zajęca 4 1. Interpretacja parametrów przy zmennych zerojedynkowych Zmenne 0-1 Interpretacja przy zmennej 0 1 w modelu lnowym względem zmennych objaśnających Interpretacja

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6 Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Zastosowane modelu potęgowego Przekształcene Boxa-Coxa 2. Zmenne cągłe za zmenne dyskretne 3. Interpretacja parametrów przy zmennych dyskretnych 1. Zastosowane

Bardziej szczegółowo

( ) ( ) 2. Zadanie 1. są niezależnymi zmiennymi losowymi o. oraz. rozkładach normalnych, przy czym EX. i σ są nieznane. 1 Niech X

( ) ( ) 2. Zadanie 1. są niezależnymi zmiennymi losowymi o. oraz. rozkładach normalnych, przy czym EX. i σ są nieznane. 1 Niech X Prawdopodobeństwo statystyka.. r. Zadane. Zakładamy, że,,,,, 5 są nezależnym zmennym losowym o rozkładach normalnych, przy czym E = μ Var = σ dla =,,, oraz E = μ Var = 3σ dla =,, 5. Parametry μ, μ σ są

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6 Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Zastosowane modelu potęgowego Model potęgowy Przekształcene Boxa-Coxa 2. Zmenne cągłe za zmenne dyskretne 3. Interpretacja parametrów przy zmennych dyskretnych

Bardziej szczegółowo

Badanie współzaleŝności dwóch cech ilościowych X i Y. Analiza korelacji prostej. Badanie zaleŝności dwóch cech ilościowych. Analiza regresji prostej

Badanie współzaleŝności dwóch cech ilościowych X i Y. Analiza korelacji prostej. Badanie zaleŝności dwóch cech ilościowych. Analiza regresji prostej Badane współzaleŝnośc dwóch cech loścowych X Y. Analza korelacj prostej Badane zaleŝnośc dwóch cech loścowych. Analza regresj prostej Kody znaków: Ŝółte wyróŝnene nowe pojęce czerwony uwaga kursywa komentarz

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA. Wkład wstępn. Teora prawdopodobeństwa element kombnatork. Zmenne losowe ch rozkład 3. Populacje prób danch, estmacja parametrów 4. Testowane hpotez statstcznch 5. Test parametrczne

Bardziej szczegółowo

dy dx stąd w przybliżeniu: y

dy dx stąd w przybliżeniu: y Przykłady do funkcj nelnowych funkcj Törnqusta Proszę sprawdzć uzasadnć, które z podanych zdań są prawdzwe, a które fałszywe: Przykład 1. Mesęczne wydatk na warzywa (y, w jednostkach penężnych, jp) w zależnośc

Bardziej szczegółowo

Weryfikacja hipotez dla wielu populacji

Weryfikacja hipotez dla wielu populacji Weryfkacja hpotez dla welu populacj Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Intelgencj Metod Matematycznych Wydzał Informatyk Poltechnk Szczecńskej 5. Parametryczne testy stotnośc w

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Wykład 1

Stanisław Cichocki Natalia Nehrebecka. Wykład 1 Stanisław Cichocki Natalia Nehrebecka Wykład 1 1 1. Sprawy organizacyjne Zasady zaliczenia Ćwiczenia Literatura 2. Formy danych statystycznych 3. Czym zajmuje się ekonometria? Model ekonometryczny 2 1.

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 7

Stanisław Cichocki. Natalia Nehrebecka. Wykład 7 Stansław Cchock Natala Nehrebecka Wykład 7 1 1. Zmenne cągłe a zmenne dyskretne 2. Interpretacja parametrów przy zmennych dyskretnych 1. Zmenne cągłe a zmenne dyskretne 2. Interpretacja parametrów przy

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka W 11: Analizy zależnościpomiędzy zmiennymi losowymi Model regresji wielokrotnej

Rachunek prawdopodobieństwa i statystyka W 11: Analizy zależnościpomiędzy zmiennymi losowymi Model regresji wielokrotnej Rachunek prawdopodobeństwa statstka W 11: Analz zależnoścpomędz zmennm losowm Model regresj welokrotnej Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.pl Model regresj lnowej Model regresj lnowej prostej

Bardziej szczegółowo

Mikroekonometria 13. Mikołaj Czajkowski Wiktor Budziński

Mikroekonometria 13. Mikołaj Czajkowski Wiktor Budziński Mkroekonometra 13 Mkołaj Czajkowsk Wktor Budzńsk Symulacje Analogczne jak w przypadku cągłej zmennej zależnej można wykorzystać metody Monte Carlo do analzy różnego rodzaju problemów w modelach gdze zmenna

Bardziej szczegółowo

Mikroekonometria 5. Mikołaj Czajkowski Wiktor Budziński

Mikroekonometria 5. Mikołaj Czajkowski Wiktor Budziński Mkroekonometra 5 Mkołaj Czajkowsk Wktor Budzńsk Uogólnone modele lnowe Uogólnone modele lnowe (ang. Generalzed Lnear Models GLM) Różną sę od standardowego MNK na dwa sposoby: Rozkład zmennej objaśnanej

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka

Stanisław Cichocki. Natalia Nehrebecka Stanisław Cichocki Natalia Nehrebecka - adres mailowy: nnehrebecka@wne.uw.edu.pl - strona internetowa: www.wne.uw.edu.pl/nnehrebecka - dyżur: wtorek 18.30-19.30 sala 302 lub 303 - 80% oceny: egzaminy -

Bardziej szczegółowo

Badanie współzależności dwóch cech ilościowych X i Y. Analiza korelacji prostej

Badanie współzależności dwóch cech ilościowych X i Y. Analiza korelacji prostej Badane współzależnośc dwóch cech loścowych X Y. Analza korelacj prostej Kody znaków: żółte wyróżnene nowe pojęce czerwony uwaga kursywa komentarz 1 Zagadnena 1. Zwązek determnstyczny (funkcyjny) a korelacyjny.

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1 KURS STATYSTYKA Lekcja 6 Regresja lne regresj ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowedź (tylko jedna jest prawdzwa). Pytane 1 Funkcja regresj I rodzaju cechy Y zależnej

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka Katarzyna Rosiak-Lada

Stanisław Cichocki. Natalia Nehrebecka Katarzyna Rosiak-Lada Stanisław Cichocki Natalia Nehrebecka Katarzyna Rosiak-Lada 1. Sprawy organizacyjne Zasady zaliczenia 2. Czym zajmuje się ekonometria? 3. Formy danych statystycznych 4. Model ekonometryczny 2 1. Sprawy

Bardziej szczegółowo

Natalia Nehrebecka Stanisław Cichocki. Wykład 10

Natalia Nehrebecka Stanisław Cichocki. Wykład 10 Natala Nehrebecka Stansław Cchock Wykład 10 1 1. Testy dagnostyczne 2. Testowane prawdłowośc formy funkcyjnej modelu 3. Testowane normalnośc składnków losowych 4. Testowane stablnośc parametrów 5. Testowane

Bardziej szczegółowo

EKONOMETRIA I Spotkanie 1, dn. 05.10.2010

EKONOMETRIA I Spotkanie 1, dn. 05.10.2010 EKONOMETRIA I Spotkane, dn. 5..2 Dr Katarzyna Beń Program ramowy: http://www.sgh.waw.pl/nstytuty/e/oferta_dydaktyczna/ekonometra_stacjonarne_nest acjonarne/ Zadana, dane do zadań, ważne nformacje: http://www.e-sgh.pl/ben/ekonometra

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Prawdopodobeństwo statystya.05.00 r. Zadane Zmenna losowa X ma rozład wyładnczy o wartośc oczewanej, a zmenna losowa Y rozład wyładnczy o wartośc oczewanej. Obe zmenne są nezależne. Oblcz E( Y X + Y =

Bardziej szczegółowo

Ekonometria egzamin 01/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.

Ekonometria egzamin 01/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora. mę, nazwsko, nr ndeksu: Ekonometra egzamn 1//19 1. Egzamn trwa 9 mnut.. Rozwązywane zadań należy rozpocząć po ogłoszenu początku egzamnu a skończyć wraz z ogłoszenem końca egzamnu. Złamane tej zasady skutkuje

Bardziej szczegółowo

Analiza zależności zmiennych ilościowych korelacja i regresja

Analiza zależności zmiennych ilościowych korelacja i regresja Analza zależnośc zmennych loścowych korelacja regresja JERZY STEFANOWSKI Instytut Informatyk Poltechnka Poznańska Plan wykładu 1. Lnowa zależność mędzy dwoma zmennym: Prosta regresja Metoda najmnejszych

Bardziej szczegółowo

D. Ciołek EKONOMETRIA wykład 0 EKONOMETRIA. Wykład 0: Informacje o przedmiocie. dr Dorota Ciołek. Katedra Ekonometrii Wydział Zarządzania UG

D. Ciołek EKONOMETRIA wykład 0 EKONOMETRIA. Wykład 0: Informacje o przedmiocie. dr Dorota Ciołek. Katedra Ekonometrii Wydział Zarządzania UG D. Cołek EKONOMETRIA wykład 0 EKONOMETRIA Wykład 0: Informacje o przedmoce dr Dorota Cołek Katedra Ekonometr Wydzał Zarządzana UG http://wzr.pl/dc dorota.colek@ug.edu.pl D. Cołek EKONOMETRIA wykład 0 Informacje

Bardziej szczegółowo

W praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np.

W praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np. Wykład 7 Uwaga: W praktyce często zdarza sę, że wynk obu prób możemy traktować jako wynk pomarów na tym samym elemence populacj np. wynk x przed wynk y po operacj dla tego samego osobnka. Należy wówczas

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 7

Stanisław Cichocki. Natalia Nehrebecka. Wykład 7 Stansław Cchock Natala Nehrebecka Wykład 7 1 1. Interakcje 2. Przyblżane model nelnowych 3. Założena KMRL 1. Interakcje 2. Przyblżane model nelnowych 3. Założena KMRL W standardowym modelu lnowym zakładamy,

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Wykład 1

Stanisław Cichocki Natalia Nehrebecka. Wykład 1 Stanisław Cichocki Natalia Nehrebecka Wykład 1 1 1. Sprawy organizacyjne Zasady zaliczenia Ćwiczenia Literatura 2. Czym zajmuje się ekonometria? 3. Formy danych statystycznych 4. Model ekonometryczny 2

Bardziej szczegółowo

Egzamin ze statystyki/ Studia Licencjackie Stacjonarne/ Termin I /czerwiec 2010

Egzamin ze statystyki/ Studia Licencjackie Stacjonarne/ Termin I /czerwiec 2010 Egzamn ze statystyk/ Studa Lcencjacke Stacjonarne/ Termn /czerwec 2010 Uwaga: Przy rozwązywanu zadań, jeśl to koneczne, naleŝy przyjąć pozom stotnośc 0,01 współczynnk ufnośc 0,99 Zadane 1 PonŜsze zestawene

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka

Stanisław Cichocki. Natalia Nehrebecka Stanisław Cichocki Natalia Nehrebecka - adres mailowy: scichocki@o2.pl - strona internetowa: www.wne.uw.edu.pl/scichocki - dyżur: po zajęciach lub po umówieniu mailowo - 80% oceny: egzaminy - 20% oceny:

Bardziej szczegółowo

Zadane 1: Wyznacz średne ruchome 3-okresowe z następujących danych obrazujących zużyce energ elektrycznej [kwh] w pewnym zakładze w mesącach styczeń - lpec 1998 r.: 400; 410; 430; 40; 400; 380; 370. Zadane

Bardziej szczegółowo

ń Ą ń Ę ż ż Ę ż ń ż Ę ż ń ż Ę Ę Ę ń ń ż ż Ę ż Ś ż ź

ń Ą ń Ę ż ż Ę ż ń ż Ę ż ń ż Ę Ę Ę ń ń ż ż Ę ż Ś ż ź ń Ą ń Ę ż ż Ę ż ń ż Ę ż ń ż Ę Ę Ę ń ń ż ż Ę ż Ś ż ź ń ż ż ń ń ń ń Ę ż ż ż ż ż Ę ń Ę ż ż ż ńą ź ż ż ż Ę ń ż Ę ń ż ż ż ń ń ż ż ń Ę ź ż ż ż ż ń Ą ń Ę Ż ż ż ń Ł Ę ń ńń ż Ę ż ż ż ń Ę ż ż ńż ń ż ż Ś ż ń ż ż

Bardziej szczegółowo

MATEMATYKA POZIOM ROZSZERZONY Kryteria oceniania odpowiedzi. Arkusz A II. Strona 1 z 5

MATEMATYKA POZIOM ROZSZERZONY Kryteria oceniania odpowiedzi. Arkusz A II. Strona 1 z 5 MATEMATYKA POZIOM ROZSZERZONY Krytera ocenana odpowedz Arkusz A II Strona 1 z 5 Odpowedz Pytane 1 2 3 4 5 6 7 8 9 Odpowedź D C C A B 153 135 232 333 Zad. 10. (0-3) Dana jest funkcja postac. Korzystając

Bardziej szczegółowo

Analiza danych. Analiza danych wielowymiarowych. Regresja liniowa. Dyskryminacja liniowa. PARA ZMIENNYCH LOSOWYCH

Analiza danych. Analiza danych wielowymiarowych. Regresja liniowa. Dyskryminacja liniowa.   PARA ZMIENNYCH LOSOWYCH Analza danych Analza danych welowymarowych. Regresja lnowa. Dyskrymnacja lnowa. Jakub Wróblewsk jakubw@pjwstk.edu.pl http://zajeca.jakubw.pl/ PARA ZMIENNYCH LOSOWYCH Parę zmennych losowych X, Y możemy

Bardziej szczegółowo

Metody predykcji analiza regresji

Metody predykcji analiza regresji Metody predykcj analza regresj TPD 008/009 JERZY STEFANOWSKI Instytut Informatyk Poltechnka Poznańska Przebeg wykładu. Predykcja z wykorzystanem analzy regresj.. Przypomnene wadomośc z poprzednch przedmotów..

Bardziej szczegółowo

Współczynnik korelacji liniowej oraz funkcja regresji liniowej dwóch zmiennych

Współczynnik korelacji liniowej oraz funkcja regresji liniowej dwóch zmiennych Współcznnk korelacj lnowej oraz funkcja regresj lnowej dwóch zmennch S S r, cov współcznnk determnacj R r Współcznnk ndetermnacj ϕ r Zarówno współcznnk determnacj jak ndetermnacj po przemnożenu przez 00

Bardziej szczegółowo

Mikroekonometria 10. Mikołaj Czajkowski Wiktor Budziński

Mikroekonometria 10. Mikołaj Czajkowski Wiktor Budziński Mkroekonometra 10 Mkołaj Czajkowsk Wktor Budzńsk Jak analzować dane o charakterze uporządkowanym? Dane o charakterze uporządkowanym Wybór jednej z welkośc na uporządkowanej skal Skala ne ma nterpretacj

Bardziej szczegółowo

WPROWADZENIE DO ANALIZY KORELACJI I REGRESJI

WPROWADZENIE DO ANALIZY KORELACJI I REGRESJI WPROWADZENIE DO ANALIZY KORELACJI I REGRESJI dr Janusz Wątroba, StatSoft Polska Sp. z o.o. Prezentowany artykuł pośwęcony jest wybranym zagadnenom analzy korelacj regresj. Po przedstawenu najważnejszych

Bardziej szczegółowo

Regresja liniowa i nieliniowa

Regresja liniowa i nieliniowa Metody prognozowana: Regresja lnowa nelnowa Dr nż. Sebastan Skoczypec Zmenna losowa Zmenna losowa X zmenna, która w wynku pewnego dośwadczena przyjmuje z pewnym prawdopodobeństwem wartość z określonego

Bardziej szczegółowo

PROSTO O DOPASOWANIU PROSTYCH, CZYLI ANALIZA REGRESJI LINIOWEJ W PRAKTYCE

PROSTO O DOPASOWANIU PROSTYCH, CZYLI ANALIZA REGRESJI LINIOWEJ W PRAKTYCE PROSTO O DOPASOWANIU PROSTYCH, CZYLI ANALIZA REGRESJI LINIOWEJ W PRAKTYCE Janusz Wątroba, StatSoft Polska Sp. z o.o. W nemal wszystkch dzedznach badań emprycznych mamy do czynena ze złożonoścą zjawsk procesów.

Bardziej szczegółowo

Hipotezy o istotności oszacowao parametrów zmiennych objaśniających ˆ ) ˆ

Hipotezy o istotności oszacowao parametrów zmiennych objaśniających ˆ ) ˆ WERYFIKACJA HIPOTEZY O ISTOTNOŚCI OCEN PARAMETRÓW STRUKTURALNYCH MODELU Hpoezy o sonośc oszacowao paramerów zmennych objaśnających Tesowane sonośc paramerów zmennych objaśnających sprowadza sę do nasępującego

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 11

Stanisław Cichocki. Natalia Nehrebecka. Wykład 11 Stansław Cchock Natala Nehrebecka Wykład 11 1 1. Testowane hpotez łącznych 2. Testy dagnostyczne Testowane prawdłowośc formy funkcyjnej: test RESET Testowane normalnośc składnków losowych: test Jarque-Berra

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH

STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH 1 Test zgodnośc χ 2 Hpoteza zerowa H 0 ( Cecha X populacj ma rozkład o dystrybuance F). Hpoteza alternatywna H1( Cecha X populacj

Bardziej szczegółowo

Badania sondażowe. Braki danych Konstrukcja wag. Agnieszka Zięba. Zakład Badań Marketingowych Instytut Statystyki i Demografii Szkoła Główna Handlowa

Badania sondażowe. Braki danych Konstrukcja wag. Agnieszka Zięba. Zakład Badań Marketingowych Instytut Statystyki i Demografii Szkoła Główna Handlowa Badana sondażowe Brak danych Konstrukcja wag Agneszka Zęba Zakład Badań Marketngowych Instytut Statystyk Demograf Szkoła Główna Handlowa 1 Błędy braku odpowedz Całkowty brak odpowedz (UNIT nonresponse)

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 7

Stanisław Cichocki. Natalia Nehrebecka. Wykład 7 Stansław Cchock Natala Nehrebecka Wykład 7 . Zmenne dyskretne Kontrasty: efekty progowe, kontrasty w odchylenach Interakcje. Przyblżane model nelnowych Stosowane do zmennych dyskretnych o uporządkowanych

Bardziej szczegółowo

Markowa. ZałoŜenia schematu Gaussa-

Markowa. ZałoŜenia schematu Gaussa- ZałoŜena scheatu Gaussa- Markowa I. Model jest nezennczy ze względu na obserwacje: f f f3... fl f, czyl y f (x, ε) II. Model jest lnowy względe paraetrów. y βo + β x +ε Funkcja a być lnowa względe paraetrów

Bardziej szczegółowo

IID = 2. i i i i. x nx nx nx

IID = 2. i i i i. x nx nx nx Zadane Analzujemy model z jedną zmenną objaśnającą bez wyrazu wolnego: y = β x + ε, ε ~ (0, σ ), gdze x jest nelosowe.. Wyznacz estymator MNK parametru β oraz oblcz jego warancję. (4 pkt) y. Zaproponowano

Bardziej szczegółowo

ż ć ż ń Ń Ż ń ń ć ż ż ć Ż

ż ć ż ń Ń Ż ń ń ć ż ż ć Ż Ś Ą Ą Ł Ś Ł ż ć ż ń Ń Ż ń ń ć ż ż ć Ż ń Ż Ł ż ń ń ń Ę Ł Ż Ł Ł ż ż ć ń Ę ń ż Ć ń ŁĄ Ą ń ń Ć ć Ż ż Ń Ż Ż Ł ć Ę ń Ł ż Ś ć Ż ńę ń ż ń Ł Ż Ą ń ż Ź ż ć ż ń ć Ś Ż ń Ą ż Ą ć ć ńż Ś ń Ś Ż Ś ń ń Ł Ż Ł ż ń Ż Ś Ś

Bardziej szczegółowo

Analiza regresji modele ekonometryczne

Analiza regresji modele ekonometryczne Analza regresj modele ekonometryczne Klasyczny model regresj lnowej - przypadek jednej zmennej objaśnającej. Rozpatrzmy klasyczne zagadnene zależnośc pomędzy konsumpcją a dochodam. Uważa sę, że: - zależność

Bardziej szczegółowo

Metoda najmniejszych kwadratów

Metoda najmniejszych kwadratów Model ekonometryczny Wykształcenie a zarobki Hipoteza badawcza: Istnieje zależność między poziomem wykształcenia a wysokością zarobków Wykształcenie a zarobki Hipoteza badawcza: Istnieje zależność między

Bardziej szczegółowo

Statystyka opisowa. Wykład V. Regresja liniowa wieloraka

Statystyka opisowa. Wykład V. Regresja liniowa wieloraka Statystyka opisowa. Wykład V. e-mail:e.kozlovski@pollub.pl Spis treści 1 Prosta regresji cechy Y względem cech X 1,..., X k. 2 3 Wyznaczamy zależność cechy Y od cech X 1, X 2,..., X k postaci Y = α 0 +

Bardziej szczegółowo

0 0,2 0, p 0,1 0,2 0,5 0, p 0,3 0,1 0,2 0,4

0 0,2 0, p 0,1 0,2 0,5 0, p 0,3 0,1 0,2 0,4 Zad. 1. Dana jest unkcja prawdopodobeństwa zmennej losowej X -5-1 3 8 p 1 1 c 1 Wyznaczyć: a. stałą c b. wykres unkcj prawdopodobeństwa jej hstogram c. dystrybuantę jej wykres d. prawdopodobeństwa: P (

Bardziej szczegółowo

Analiza korelacji i regresji

Analiza korelacji i regresji Analza korelacj regresj Zad. Pewen zakład produkcyjny zatrudna pracownków fzycznych. Ich wydajność pracy (Y w szt./h) oraz mesęczne wynagrodzene (X w tys. zł) przedstawa ponższa tabela: Pracownk y x A

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Wykład 1

Stanisław Cichocki Natalia Nehrebecka. Wykład 1 Stanisław Cichocki Natalia Nehrebecka Wykład 1 1 1. Sprawy organizacyjne Zasady zaliczenia Ćwiczenia Literatura 2. Czym zajmuje się ekonometria? 3. Formy danych statystycznych 4. Model ekonometryczny 2

Bardziej szczegółowo

ź ń ń

ź ń ń ń ź ń ń Ś Ł ń ń ż ź Ść ż Ść ż ż Ł ż ń ń Ę Ś Ś Ś Ę ń ż Ł Ś Ł ń Ś Ś ń ć Ść ż Ę ż Ć Ę ż ź ń Ł Ę Ę ź ż Ę Ś Ę ż ż ż Ę Ś ż ż ż Ść Ą ż ż ż Ę Ś Ę ż ż Ś ż ż ż Ś Ł ż ż ż Ę ż ż ż Ą Ę Ę ć ż ż ć ń Ą Ą ź Ę ńź ż Ę Ę

Bardziej szczegółowo

Zestaw zadań 4: Przestrzenie wektorowe i podprzestrzenie. Liniowa niezależność. Sumy i sumy proste podprzestrzeni.

Zestaw zadań 4: Przestrzenie wektorowe i podprzestrzenie. Liniowa niezależność. Sumy i sumy proste podprzestrzeni. Zestaw zadań : Przestrzene wektorowe podprzestrzene. Lnowa nezależność. Sumy sumy proste podprzestrzen. () Wykazać, że V = C ze zwykłym dodawanem jako dodawanem wektorów operacją mnożena przez skalar :

Bardziej szczegółowo

Natalia Nehrebecka. Wykład 1

Natalia Nehrebecka. Wykład 1 Natalia Nehrebecka Wykład 1 1 1. Sprawy organizacyjne Zasady zaliczenia Dwiczenia Literatura 2. Czym zajmuje się ekonometria? 3. Formy danych statystycznych 4. Model ekonometryczny 2 1. Sprawy organizacyjne

Bardziej szczegółowo

Ą ŚĆ Ś Ś Ę ć

Ą ŚĆ Ś Ś Ę ć Ą Ę Ą Ą ŚĆ Ś Ś Ę ć ć ć ć ź ć ć ć ć ć ć ć ć Ą ć ć ć Ą Ś ć Ś ć ć Ą ć Ś Ś Ą Ś Ą ć ć Ą ź ź ć ć Ą ć ź ć Ą ć Ą ć ć ć ć ć ć ć ć ć ć ć ć ć ź ć ć Ś ć ć ć Ę Ą ć Ą ć ć ć ć ć ć Ł ź ź ź Ł Ł ć Ą ć ć ć ć ć Ą ć Ą ć Ą

Bardziej szczegółowo

ź Ź Ź ć ć ć ź ć ć ć ć ć Ź

ź Ź Ź ć ć ć ź ć ć ć ć ć Ź ź Ź Ź ć ć ć ź ć ć ć ć ć Ź ć ć ć ć ć ć ć ć Ż ć ć ć ć ć ć ć ć ć ć ć Ż Ż ć ć ć ć ć ć ć ć Ż ć ć ć ź ć Ź ć ć ć ć ć ć ć ć ć ź ć ć ć ć ć ć ć ć ć ć ć ć ć ć Ż ć ć ć ć Ż ć ć ć ć ć ć ć ć Ż ć Ł Ś Ś ć Ą Ę ć Ę ć Ż ć

Bardziej szczegółowo

ś ść ść ś ść ść ś ś ś ś ść ś ś ś ść ść

ś ść ść ś ść ść ś ś ś ś ść ś ś ś ść ść Ą Ł Ł Ł Ę Ł ś ś ś ś ść ść ść ść Ś ść ŚĆ ś ŚĆ ś ś ść ść ś ść ść ś ś ś ś ść ś ś ś ść ść ś ś ś Ż ś Ś ś Ś ść ś ś ś ś ś ś ś ś Ś ś ś ś ś Ł Ś ś ś ś Ś ś ś ź Ś ŚĆ ś ś ś ś ś ś Ś ś Ś ś ś ś ś ś ś ś Ś Ś ść ś ś ś ś

Bardziej szczegółowo

Statystyka Opisowa 2014 część 2. Katarzyna Lubnauer

Statystyka Opisowa 2014 część 2. Katarzyna Lubnauer Statystyka Opsowa 2014 część 2 Katarzyna Lubnauer Lteratura: 1. Statystyka w Zarządzanu Admr D. Aczel 2. Statystyka Opsowa od Podstaw Ewa Waslewska 3. Statystyka, Lucjan Kowalsk. 4. Statystyka opsowa,

Bardziej szczegółowo

Ł ń Ż Ł ż Ą Ó Ś Ż ń ż ż ń ż Ń Ł Ą Ł Ą Ą Ą Ą ż

Ł ń Ż Ł ż Ą Ó Ś Ż ń ż ż ń ż Ń Ł Ą Ł Ą Ą Ą Ą ż Ł Ł Ń Ń Ł ń Ż Ł ż Ą Ó Ś Ż ń ż ż ń ż Ń Ł Ą Ł Ą Ą Ą Ą ż Ł ń ż ż ż Ś Ż ŚĆ ż ń ź ż ć ń ż ż ż ć ż Ńż ń ż ć ż ć ż ż ż ć Ż Ś Ó ń ż ź ć ń ż ń ń ź Ą ż ż ń ż ć Ł ż ż ż ć ń ż Ż ż ż ć ń Ł Ś Ś Ł ź ć ż ń ż ż ć ń ń ż

Bardziej szczegółowo

65120/ / / /200

65120/ / / /200 . W celu zbadana zależnośc pomędzy płcą klentów ch preferencjam, wylosowano kobet mężczyzn zadano m pytane: uważasz za lepszy produkt frmy A czy B? Wynk były następujące: Odpowedź Kobety Mężczyźn Wolę

Bardziej szczegółowo

Mikroekonometria 10. Mikołaj Czajkowski Wiktor Budziński

Mikroekonometria 10. Mikołaj Czajkowski Wiktor Budziński Mkroekonometra 10 Mkołaj Czajkowsk Wktor Budzńsk Wybór uporządkowany Wybór uporządkowany (ang. ordered choce) Wybór jednej z welkośc na podanej skal Skala wartośc są uporządkowane Przykłady: Oceny konsumencke

Bardziej szczegółowo

Zapis informacji, systemy pozycyjne 1. Literatura Jerzy Grębosz, Symfonia C++ standard. Harvey M. Deitl, Paul J. Deitl, Arkana C++. Programowanie.

Zapis informacji, systemy pozycyjne 1. Literatura Jerzy Grębosz, Symfonia C++ standard. Harvey M. Deitl, Paul J. Deitl, Arkana C++. Programowanie. Zaps nformacj, systemy pozycyjne 1 Lteratura Jerzy Grębosz, Symfona C++ standard. Harvey M. Detl, Paul J. Detl, Arkana C++. Programowane. Zaps nformacj w komputerach Wszystke elementy danych przetwarzane

Bardziej szczegółowo

ż ż ż ż ż ż ż Ś ż ń ż ż Ę ż ż ż ż ń ż ż Ś ż ż ż ż ń Ł

ż ż ż ż ż ż ż Ś ż ń ż ż Ę ż ż ż ż ń ż ż Ś ż ż ż ż ń Ł Ś ż Ś Ą ż ż Ą ńż ń ż ż ż ż ż ż Ą ż żń ź Ś ż Ę ż ń ź ń ż Ę ź ń ż ż Ś ż ń ż ż ż ż ż ż ż Ś ż ń ż ż Ę ż ż ż ż ń ż ż Ś ż ż ż ż ń Ł Ś ż ż ż ż ż ż ż ń ń żń ż ż Ę ż Ś ż ż ż ż ć ń Ą ż ż ń ż ż ż ń ż ż ż ż ć Ł ż

Bardziej szczegółowo

Ekonometria ćwiczenia Kolokwium 1 semestr 20/12/08. / 5 pkt. / 5 pkt. / 5 pkt. / 5 pkt. /20 pkt. Regulamin i informacje dodatkowe

Ekonometria ćwiczenia Kolokwium 1 semestr 20/12/08. / 5 pkt. / 5 pkt. / 5 pkt. / 5 pkt. /20 pkt. Regulamin i informacje dodatkowe Ekonometra IE Kolokwum 0/1/08 mę, nazwsko, nr ndeksu: Ekonometra ćwczena Kolokwum 1 semestr 0/1/08 Zadane 1 Zadane Zadane 3 Zadane 4 Razem / 5 pkt / 5 pkt / 5 pkt / 5 pkt /0 pkt Skala ocen: do 8,00 punktów

Bardziej szczegółowo

Ntli Natalia Nehrebecka. Dariusz Szymański. Zajęcia 4

Ntli Natalia Nehrebecka. Dariusz Szymański. Zajęcia 4 Ntl Natala Nehrebecka Darusz Szymańsk Zajęca 4 1 1. Zmenne dyskretne 3. Modele z nterakcjam 2. Przyblżane model dlnelnowych 2 Zmenne dyskretne Zmenne nomnalne Zmenne uporządkowane 3 Neco bardzej skomplkowana

Bardziej szczegółowo

Analiza danych OGÓLNY SCHEMAT. http://zajecia.jakubw.pl/ Dane treningowe (znana decyzja) Klasyfikator. Dane testowe (znana decyzja)

Analiza danych OGÓLNY SCHEMAT. http://zajecia.jakubw.pl/ Dane treningowe (znana decyzja) Klasyfikator. Dane testowe (znana decyzja) Analza danych Dane trenngowe testowe. Algorytm k najblższych sąsadów. Jakub Wróblewsk jakubw@pjwstk.edu.pl http://zajeca.jakubw.pl/ OGÓLNY SCHEMAT Mamy dany zbór danych podzelony na klasy decyzyjne, oraz

Bardziej szczegółowo

Statystyka. Zmienne losowe

Statystyka. Zmienne losowe Statystyka Zmenne losowe Zmenna losowa Zmenna losowa jest funkcją, w której każdej wartośc R odpowada pewen podzbór zboru będący zdarzenem losowym. Zmenna losowa powstaje poprzez przyporządkowane każdemu

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Zajęcia 1-2

Stanisław Cichocki. Natalia Nehrebecka. Zajęcia 1-2 Stanisław Cichocki Natalia Nehreecka Zajęcia - . Model liniow Postać modelu liniowego Zapis macierzow modelu liniowego. Estmacja modelu Przkład Wartość teoretczna (dopasowana) Reszt 3. MNK - przpadek wielu

Bardziej szczegółowo

Procedura normalizacji

Procedura normalizacji Metody Badań w Geograf Społeczno Ekonomcznej Procedura normalzacj Budowane macerzy danych geografcznych mgr Marcn Semczuk Zakład Przedsęborczośc Gospodark Przestrzennej Instytut Geograf Unwersytet Pedagogczny

Bardziej szczegółowo

ść ś ń ś ś ź ś ć Ą ś Ą ś ń ś ń ń ń ń Ń ć ź ń ś ń ń Ń ć ń ś ś

ść ś ń ś ś ź ś ć Ą ś Ą ś ń ś ń ń ń ń Ń ć ź ń ś ń ń Ń ć ń ś ś Ł Ś ś Ą ś ć Ń ść ź ń ś ś ń Ę ńź ź ś ść ś ń ś ś ź ś ć Ą ś Ą ś ń ś ń ń ń ń Ń ć ź ń ś ń ń Ń ć ń ś ś ś ń ś Ń ź ź ś ć ź Ę ś ść ś ść ś Ń ń ń ś ść ć ś ń Ę ś Ń ś ść ś ś ś ś ś ś ń ś ć ś ś Ń ń ś ń Ą ń ś ń Ń Ę ś

Bardziej szczegółowo

Ó Ą Ł Ń ń ć ń ń ć Ń Ń ń Ń ń Ń ć ć ć Ń ź ź

Ó Ą Ł Ń ń ć ń ń ć Ń Ń ń Ń ń Ń ć ć ć Ń ź ź Ł Ą ń ń Ń ź Ą Ń Ń ź ń ń ń ń ź Ń ń Ń Ó Ą Ł Ń ń ć ń ń ć Ń Ń ń Ń ń Ń ć ć ć Ń ź ź ń ć ń Ń Ń ń ź ć ń Ń Ę ń Ń Ż Ń ń Ń ń Ń Ą Ń ć Ń Ń ź Ę ź ź ć ź ć ń ń ń ń ć ć ć Ń Ą ć Ą Ż Ó ć ń ć ń ć ć ź ź ć ć Ń Ń ć ń ń Ę ń ń

Bardziej szczegółowo

EKONOMETRIA Wykład 4: Model ekonometryczny - dodatkowe zagadnienia

EKONOMETRIA Wykład 4: Model ekonometryczny - dodatkowe zagadnienia EKONOMETRIA Wykład 4: Model ekonometryczny - dodatkowe zagadnena dr Dorota Cołek Katedra Ekonometr Wydzał Zarządzana UG http://wzr.pl/dorota-colek/ dorota.colek@ug.edu.pl 1 Wpływ skalowana danych na MNK

Bardziej szczegółowo

Funkcje i charakterystyki zmiennych losowych

Funkcje i charakterystyki zmiennych losowych Funkcje charakterystyk zmennych losowych Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Intelgencj Metod Matematycznych Wydzał Informatyk Poltechnk Szczecńskej 5. Funkcje zmennych losowych

Bardziej szczegółowo

Natalia Neherbecka. 11 czerwca 2010

Natalia Neherbecka. 11 czerwca 2010 Natalia Neherbecka 11 czerwca 2010 1 1. Konsekwencje heteroskedastyczności i autokorelacji 2. Uogólniona MNK 3. Stosowalna Uogólniona MNK 4. Odporne macierze wariancji i kowariancji b 2 1. Konsekwencje

Bardziej szczegółowo

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych Zaawansowane metody numeryczne Komputerowa analza zagadneń różnczkowych 1. Układy równań lnowych P. F. Góra http://th-www.f.uj.edu.pl/zfs/gora/ semestr letn 2006/07 Podstawowe fakty Równane Ax = b, x,

Bardziej szczegółowo

ZASTOSOWANIE METOD EKONOMETRYCZNYCH DO BADANIA HETEROGENICZNOŚCI OBIEKTÓW

ZASTOSOWANIE METOD EKONOMETRYCZNYCH DO BADANIA HETEROGENICZNOŚCI OBIEKTÓW STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 31 Marusz Doszyń Unwersytet Szczecńsk ZASTOSOWANIE METOD EKONOMETRYCZNYCH DO BADANIA HETEROGENICZNOŚCI OBIEKTÓW Streszczene W artykule scharakteryzowano

Bardziej szczegółowo

Ś Ę Ą Ł Ś Ł Ł Ł Ł Ł Ś Ś Ł Ł Ł Ą Ł Ł Ł Ł Ł Ą Ą Ł

Ś Ę Ą Ł Ś Ł Ł Ł Ł Ł Ś Ś Ł Ł Ł Ą Ł Ł Ł Ł Ł Ą Ą Ł ę Ą Ł Ł Ś Ę Ą Ł Ś Ł Ł Ł Ł Ł Ś Ś Ł Ł Ł Ą Ł Ł Ł Ł Ł Ą Ą Ł Ł ś ś ś ś ę ś ę ę ś ść ść ść ę ę ę ść ę ś Ą Ą ś Ż ść Ź Ś Ą ę ść ść ść Ą ś Ż ę Ż Ń Ą Ł ś ę ś ę ś ś ę ś ś ść Ę Ś ś Ś ś Ś ś Ś ź ę ź ę ść ś ę Ę ś Ł ść

Bardziej szczegółowo

ć ć Ł ć Ź ć Ł ź ć Ś ć ć Ż Ł Ż ć ż ć

ć ć Ł ć Ź ć Ł ź ć Ś ć ć Ż Ł Ż ć ż ć Ł Ź Ł Ł ź ź Ż Ż ż Ż ć Ś ż ć ć Ę ć ć Ł ć Ź ć Ł ź ć Ś ć ć Ż Ł Ż ć ż ć Ł ć ć ć ć Ł Ż ć Ł ź ć Ś Ż Ż Ż ż Ż Ż ż Ż Ś Ż Ą Ł Ż ź Ż Ż Ż Ż Ż Ż Ś Ż Ż ż Ż Ż ż ż Ł Ż Ś Ż Ż Ż Ż Ż Ż Ś Ż Ę Ł Ź Ó ż Ę Ł ź Ł Ź Ż ż Ł Ż Ż ż

Bardziej szczegółowo

Plan wykładu: Typowe dane. Jednoczynnikowa Analiza wariancji. Zasada: porównać zmienność pomiędzy i wewnątrz grup

Plan wykładu: Typowe dane. Jednoczynnikowa Analiza wariancji. Zasada: porównać zmienność pomiędzy i wewnątrz grup Jednoczynnkowa Analza Waranc (ANOVA) Wykład 11 Przypomnene: wykłady zadana kursu były zaczerpnęte z podręcznków: Statystyka dla studentów kerunków techncznych przyrodnczych, J. Koronack, J. Melnczuk, WNT

Bardziej szczegółowo

ć Ą Ą Ł Ą

ć Ą Ą Ł Ą ź ź ź ć ć Ą Ą Ł Ą ź ź Ę Ą ź Ą ć Ł Ł Ą Ś Ę ź ź Ą Ą ź ć ć Ł Ę ć ź ć ć Ą Ć ź ź ź ć ć ć ć ć ź ź ć ć ź ć Ś Ę ć ć ć ć Ł ź ź ź ź ć Ę Ż ć ć ć ć Ę Ę ć Ę Ę ć ć Ę ć ć Ł ć Ć ć Ł Ł Ę Ę ć Ę ć ź ć Ń Ł Ł Ł Ś ć ć ć Ę Ś

Bardziej szczegółowo

Ę Ż Ż Ż ś ż Ż

Ę Ż Ż Ż ś ż Ż Ż ż ż ś ś ż ż ż ś ż Ż Ź ś Ź Ź ś ś ż ż ś ś ś ś Ż ś Ż Ę Ż Ż Ż ś ż Ż ś ś ś Ż Ą ż ś ś ź Ż ż ż ś ś ż Ł Ż ź ż ż ś ś Ę ż ż ż ż Ę ś ż ć ś Ę ż ś ż ś Ż ż ś ż ś ść ść Ę ż ż ż ś ż Ą Ż Ś ś Ą Ż ż ż ś Ę ś Ż ś Ń ś ż Ą

Bardziej szczegółowo