Metody predykcji analiza regresji

Wielkość: px
Rozpocząć pokaz od strony:

Download "Metody predykcji analiza regresji"

Transkrypt

1 Metody predykcj analza regresj TPD 008/009 JERZY STEFANOWSKI Instytut Informatyk Poltechnka Poznańska Przebeg wykładu. Predykcja z wykorzystanem analzy regresj.. Przypomnene wadomośc z poprzednch przedmotów.. Ocena poprawnośc modelu regresj lnowej.. Regresja welowymarowa. 4. Regresja nelnowa.. Selekcja zmennych. Uwag: proszę odwołać sę do przedmotu Statystyka analza danych studa nżynerske.

2 Modelowane regresj Metoda szacowana wartośc lczbowej zmennej zależnej (objaśnanej, wynkowej) y na podstawe wartośc zmennych nezależnych x. Badamy zależność warunkową Formalne poszukujemy modelu y = f ( x, β ) y x Modele lokalne locally weghted regresson p y = α + j = f j ( x, β ) Przykład ceny domów przykład z R W zborze danych homedata (z paketu R) ceny 684 domów Maplewood (New Jersey) z lat: Interesuje nas zależność pomędzy cenam domów z tych lat.

3 Regresja model lnowy Analtyczny sposób przyporządkowana wartośc zmennej zależnej konkretnym wartoścom zmennych nezależnych. Lnowa regresja prosta najprostszy rodzaj regresj, w których zależność zmennych można opsać za pomocą ln prostej. yˆ β x + β + ε = 0 gdze β jest współczynnkem kerunkowym, β 0 wyraz wolny (punkt przecęca z osą rzędnych); x zmenna nezależna, y zmenna zależna (objaśnana, przewdywana), ε -błąd losowy. Intucja poszukwana regresj lnowej Przykład z wykładu z Ekonometr (UCI Berkley): Do hgh ncome households consume more or less electrcty than lower ncome households? Take a sample of households. Observe the energy consumpton and ncome of each household. Która lna podsumowująca ogólny trend w danych jest najlepsza?

4 Lnowa prosta regresj - MNK Rzeczywste dane ( x, y ),...,( x n, y n). Wartość teoretyczna funkcj regresj y ˆ = f ( x) Błąd oszacowana y yˆ tzw. wartość resztowa lub rezyduum. Lnowa regresja prosta wartośc rezyduów pownny być jak najmnejsze dla wszystkch =,,n. Wskaźnk rozproszena suma kwadratów rezyduów. S = n = ( y yˆ ) Dla lnowego wykresu dużych rezyduów ne ma być zbyt wele metoda najmnejszych kwadratów! daje ona najlepsze lnowe neobcążone estymatory parametrów regresj Przykład MNK Które resdua (suma kwadratów) są najmnejsza? Proste sumowane: I -++=0; II -+-=0; III -++0 MNK: I +4+9=8; II: +4+=6; III 4+4=8

5 Własnośc oszacowana MNK Lna przechodz przez wartośc średne: ˆ 0 β y = β x + β = β x + ( y x) = y Wartość oczekwana resduów jest zerowa n = = e n e = ( y yˆ ) = ( + 0) = ( + 0) = 0 = y x y x y β β β β n n n n y = Dobra własność: lna jest średno właścwa. Przykład lustracyjny (samochody) W frme produkującej samochody przeprowadzono analzę sprzedaży samochodów z ostatnego mesąca. Zebrano dane od dealerów zajmujących sę sprzedażą samochodów tej frmy o welkośc sprzedaży za ostatn mesąc (zmenna zależna Y) oraz czase wykuponej reklamy w ostatnm mesęcy (zmenna nezależna X). Nr dealera y x

6 Samochody Wykres XY Oblczene współczynnka korelacj: r xy = (statyst st.) Model lnowy z oszacowanym parametram: y = x Wartość a oznacza, że wzrost (spadek) czasu wykuponej reklamy radowej o jedną mnutę spowoduje wzrost (spadek) sprzedaży w przyblżenu o sztuk samochodów. Samochody Model y^ = x 8 Wykres rozrzutu (samochody.sta 0v*c) y= *x+eps 7 6 Y X Nr dealera x y y^=f(x) 8 9,0 9 8, , , 7 7, , , , , , ,48 6,8

7 Równane stochastyczne vs. determnstyczne Statystyczny model opsuje lczbowo zależność pomędzy zmenną nezależną (x) oraz zmenną zależną (y) y = β 0 + βx + ε gdze β0, β neznane parametry f.regresj, które należy oszacować; ε -składnk losowy. Parametry funkcj regresj ne są znane (obserwowane), podobne jak składnk losowy, dlatego jest to równane stochastyczne. Równane determnstyczne po zastosowanu MNK ˆ + y = b0 b x Gdze b0, b oceny estymatorów parametrów funkcj regresj numer obserwacj. Defncje zadana analzy regresj Wyjaśnene w sposób analtyczny kształtowana sę wartośc jednej zmennej losowej (zmennej zależnej lub objaśnanej) pod wpływam nnej zmennej (nezależnej lub objaśnającej) lub nnych zmennych. Jeżel zmenna losowa Y składa sę z dwóch składowych: pewnej zmennej losowej ε oraz elementu systematycznego f(x) zależnego od zmennej X, to regresją zmennej losowej Y względem X jest równane E(Y X) = f(x), przy czym zakłada sę, że E(ε)=0 Defncja [Słownk statystyczny. Kendall, Buckland] Regresja prosta Y = Yˆ + ε gdze Y ˆ = f ( X ) oznacza teoretyczne pozomy zmennej odczytane z funkcj regresj Funkcje kształt lnowy lub nelnowy

8 Zaps wektorowy Ogólna postać Rozwązane MNK X b y = ˆ y X X X b T T ) ( = = = = = = = = = n n n n n n n y x y n x x x x x n b b 0 ) ( Przykład W celu zbadana zależnośc mędzy zyskam pewnej frmy a wydatkam na szkolena handlowców, dokonano porównana wynków dla kwartałów (x - wydatk na szkolena handlowców w tys. zł, y zysk frmy w tys. zł): x 4 y

9 400 0 y = 6x + R = 0, y= X= 4 X T = 4 X T X= detx T X= 0 (X T X) - =, -0, -0, 0, X T y= b= 6 y = + 6x

10 y= e T e= 70 S e = 97 (X T X) - = S( b 0 ) S( b ) = =,7 9,8 e= e T =, -0, -0, 0, S = 0, S y = 9,74 9 e S y = R 70 = * 9000 = 0, 06 = 0, 94 = 94% Co zrobmy w Excelu? Funkcje stat. REGLINP lub dodatek Analza Danych X Y 4 4 Tak przy okazj jak nterpretować wynk?

11 Przykład wzrost = f(wek) / Statstca (Statsoft) Weryfkacja modelu regresj Ocena dopasowana funkcj regresj do danych emprycznych. Składnk resztowy e = y yˆ tym wększy, m wększy jest składnk losowy ε, może także wynkać z błędnego przyjęca danej funkcj regresj. Rozkład całkowtej zmennośc zmennej objaśnanej Ocenamy za pomocą warancj S y lub całkowtej sumy kwadratów różnc SST SST = n = ( y y)

12 Ocena modelu regresj Całkowtą sumę kwadratów odchyleń (SST) w analze regresj dzel sę na dwe częśc: SST = SSR + SSE ( y y) = ( yˆ y) + ( y yˆ) gdze SSR regresyjna suma kwadratów odchyleń (część wyjaśnona przez zbudowany model), SSE resztowa suma kwadratów odchyleń (część ne wyjaśnona przez zbudowany model). Na le dobra jest regresja? Współczynnk determnacj jest opsową marą sły lnowego zwązku mędzy zmennym, czyl marą dopasowana ln regresj do danych. współczynnk determnacj --- przyjmuje wartośc z przedzału [0,] wskazuje jaka część zmennośc zmennej y jest wyjaśnana przez znalezony model. Na przykład dla R =0.69 znalezony model wyjaśna około 6% zmennośc y. Przy okazj: pomyśl o zwązku współczynnka R oraz współczynnka korelacj r.

13 Mary dopasowana modelu regresj do danych Współczynnk determnacj: R SSR = = SST SSE SST Najważnejsza mara dopasowana funkcj regresj do danych emprycznych; Jest to stosunek zmennośc wyjaśnanej przez model do zmennośc całkowtej. Średn błąd kwadratowy: SSE MSE = n Warancja resztowa (k lczba zmennych) S = e n k + e ( ) Błędy standardowe parametrów b : S( b ) T ( ) T j = Se X X jj = Se ( X X) jj S( b ) = S( b ) = S 0 n = ( x x) + n odchylene standardowe składnka resztowego standardowy błąd oszacowana SSE S = n S x n = ( x x) Samochody 4 R = 0.898, S = 6.8 R ozn., że 89.8% zmennośc zmennej y zostało wyjaśnone przez zbudowany model. S przecętne odchylene wartośc emprycznych od wartośc teoretycznych (wynkających ze zbudowanego modelu) wynos 6.8 sztuk samochodów.

14 Założena modelu regresj Zwązek mędzy x y jest lnowy. Wartośc zmennej nezależnej ne są losowe. Losowość wartośc y pochodz wyłączne ze składnka losowego. Składnk (błędy) losowe mają rozkład normalny o średnej 0 o stałej warancj σ Cekawa dyskusja założeń w A.Aczel Statystyka w zarządzanu. Weryfkacja uwag ogólne Statystyczna dotyczy przede wszystkm weryfkacj przyjętych założeń o stochastycznej strukturze modelu oraz założeń o stotnym wpływe zmennych objaśnających na zmenną objaśnaną za pomocą znanych testów statystycznych. Merytoryczna wąże sę z odpowedzą na pytane, czy oszacowane oceny parametrów równana zgodne są z przyjętym założenam, a także czy stneje możlwość "sensownej" nterpretacj otrzymanych wartośc ocen parametrów.

15 Weryfkacja modelu regresj Zbadaj czy stneje zwązek mędzy średną wydajnoścą (merzoną lczbą wykonanych detal określonego typu) a stażem pracy (merzonym w mesącach). n Wydajność y Staż pr. X Załóżmy model lnowy: y = β 0 + β x + ε Wynk oblczeń (Statstca) Hpotezy dotyczące poszczególnych parametrów modelu Ocena poszczególnych parametrów β w modelu (ocena zachodzena zwązku lnowego mędzy zmenną x a y). Test statystyczny Statystyka testowa: Intucja H H 0 : : β = 0 β 0 β t = S β ) ( Badamy dla każdego parametru strukturalnego osobno, czy stotne różn sę on od zera. Jeśl ne uda nam sę odrzucć hpotezy zerowej, będze to oznaczało, że zmenna objaśnająca przy której sto dany parametr ne wpływa na zmenną objaśnaną, węc można ją usunąć z modelu (jednakże to wymaga powtórnego oszacowana modelu, z już z aktualnym zestawem zmennych objaśnających).

16 Testy stotnośc Istotność modelu regresj dla przykładu samochodowego. Model y = x Źródło zmennośc Model (część wyjaśnona) Błąd (część newyjaśnona) Lczba stopn swobody (k=) (n k = n-) 0 Suma kwadratów odchyleń SSR 7.4 SSE 7. Całkowta (n-) SST Przecętna suma kwadratów odchyleń (MSR=SSR/) 7.4 (MSE=SSE/(n-)) 7. R = 0.898, S = 6.8, F = Wartość krytyczna statystyk z tablc rozkładu F przy pozome stotnośc α = 0.0 wynos 4.96 Podsumujmy wynk: Model jest statystyczne stotny.

17 Przykład Amercan Express Rozważmy przykład posadaczy kart kredytowych Amercan Express frma jest przekonana, że posadacze jej kart podróżują węcej nż nn ludze. W badanach marketngowych podjęto próbę ustalene zwązków mędzy długoścą tras podróży a obcążenem karty kredytowej jej posadacza w danym okrese czasu. Węcej w Aczel: Statystyka w zarządzanu, str Analza regresj Amercan Express

18 Weryfkacja równana regresj SSE=86, MME=SSE/(n-) = 04,4 Standardowy błąd s = MSE = 8,8 Błędy estymacj S(b 0 ) = 70,8 S(b ) = Współczynnk determnacj R = 0.96 Prognoza punktowa w regresj Łatwa na podstawe równana regresj. Np. oceń obcążene kart wśród posadaczy kart, których trasa podróży osągne 4000 ml, w okrese o takej długośc jak okres badany: yˆ = 74,8 +,66 x = 74,8 +, = 96,0

19 Przedzały predykcj (-α) 00% przedzał predykcj zmennej Y yˆ ± tα / s + + n ( x x) ( x ) n = x Rozpętość przedzału predykcj zależy od odległośc wartośc x od średnej x! Przykład: posadacz, który przebył 4000 ml 9% przedzał ufnośc. Z analzy danych hstorycznych: x = 79448/=77,9; SSx = ,84 a s = 8,6 Ponadto t przy stopnach swobody wynos,069 Stąd przedzał 96,0±676,6 = [469,4; 97,67] Oznacza to, że w oparcu o wynk badań można meć 9% zaufana do prognozy, że posadacz karty, który przebył trasę 4000 ml w okrese o danej długośc obcąży swoją kartę kredytową sumą od do 97,67$. Przedzały predykcj Ogranczene prognoz punktowych błędu pochodzące zarówno z nepewnośc szacunków, jak losowej zmennośc położena punktów w stosunku do ln regresj. Stosuj wtedy tzw. przedzały predykcj (tzw. prognozy przedzałowe).

20 Przewdywane w regresj Wartośc prognozowane ne pownny wykraczać poza zakres wartośc wykorzystywanych w procedurze szacowana parametrów równana regresj. Rozkłady reszt Sposób szybkej oceny (jakość reszt). Założena modelu lnowego: Składnk (błędy) losowe mają rozkład normalny o średnej 0 o stałej warancj czyl reszty pownny meć charakterystyczny rozrzut; najlepej obserwować to na wykresach rozrzutu reszt.

21 Wykresy rozkładu reszt (przykład zależnośc cen wna od weku wna) = dane za A.Snarska: Statystyka, ekonometra, prognozowane.

22 Wykres rozkładu reszt Wna / Składnk resztowe w zależnośc od weku Wek Rozkład reszt Składnk resztowe Wek Reszty przypuszczalne spełnają założena modelu regresj. Rozproszene neregularne ale w pase o pewnej szerokośc. Brak korelacj wzajemnej kolejnych składnków. Wykres rozkładu reszt zestaw Inny przykład wykresu składnków resztowych. t Rozkład reszt Układ ln wykresu wskazuje, że reszty następne zależą od poprzednch rozbegają sę poza ogranczony pas.

23 Wykresy reszt różne nterpretacje Oceń ponższe sytuacje Sprawdzene wykresu kwantylowego Datamner 7 (Normalty Probablty Plot of Resduals)

24 Inny przykład nny baseball Amercan League 00 Zależność mędzy średną uderzeń gracza a lczba uderzeń, które pozwolły na zalczene baz zdobyce punktu. [larose 08,.0 Naruszone założena Punkty oddalone - outlers Przykład płatk śnadanowe [Larose 08] dwe obserwacje są zdecydowane bardzej odlegle od ln regresj nż pozostałe analza reszt

25 Punkty oddalone (reszty standaryzowane) Raw Resduals Case -s s.....* * * * * * * * * * * *..... * * * * * * * * * Raw Resdual (Baseball.sta) Dependent varable: WIN Observed Predcted Resdual Standard Standard S Value Value Pred. v. Resdual P 0, ,406 0,0867 0,7804,7 0 0, ,6848 0,074,784 0,96 0 0,6000 0,9486 0,064 0,7044 0,70 0 0, ,708-0,08,99-0, ,000 0, ,044-0,0466 0, ,8000 0,487-0,007 0,8698-0,46 0 0, ,489-0,0789 0,649-0, , , , ,966-0, , ,480-0,080-0,9 -, , ,06-0,007 -,9796-0,74 0 0, ,8908-0,0008,8876-0, , ,6489 0,04,94 0,6 0 0, ,64-0,04740,08 -, ,7000 0,706-0, ,998-0, ,000 0,06 0, ,8 0, ,000 0, ,0690-0,6 0, , ,766-0,0666 0,6689 -, , ,09-0,0769 0,68 -, , , ,09 -, , , ,4780-0,0880-0,488 -, Regresja welokrotna (welowymarowa, weloraka) Zmenna objaśnana zależy od węcej nż jednej zmennej (sytuacja częsta w praktyce). Model regresj zmennej y względem zboru m- zmennych nezależnych x, x, K, x m jest określony równanem: y b + b x + b x + K + b m x = 0 m Analza welowymarowa x x = X K xn x = x x K x n K L K K xm x m K xnm [ x x K x ] T m

26 Analza welowymarowa Wybrane wskaźnk x = [ x x K ] x m Mara rozproszena macerz kowarancj c c = C K cn c c K c n K L K K cm c m K cnm Model lnowy regresj welokrotnej Założene: wpływ każdej rozpatrywanej zmennej objaśnającej na zmenną y jest lnowy ne zależy od wartośc nnych zmennych y = 0 m m β + β x + β x + K+ β x + ε Zaps macerzowy: xm odpowada y; wyraz wolny dodatkowa zmenna x 0 = Y Rozwązane MNK b = = X β + ε ' ' ( X X ) X Y

27 Regresja welokrotna Dane są nformacje o budżece reklamowym pewnego produktu, jego cena jednostkowa oraz fnalna sprzedaż jednostkowa. BUDŻET CENA SPRZEDAZ Założena poprawnośc stosowana modelu regresj Zmenne nezależne x ne są ze sobą slne skorelowane. Żadna ze zmennych nezależnych ne pownna być kombnacją lnową nnych zmennych nezależnych. Lczba obserwacj n mus być wększa od lczby parametrów do oszacowana Zakłada sę stnene modelu lnowego względem parametrów. Jeśl wele z założeń jest nespełnony ne korzystaj z przedstawonych metod weryfkacj Bardzej adekwatny skorygowany współczynnk determnacj (także stosowalny gdy ne ma wyrazu wolnego).

28 Regresja nelnowa transformacje do modelu lnowego Mędzy zmenną objaśnaną a zmennym objaśnającym mogą zachodzć zwązk nelnowe. W welu przypadkach można dokonać transformacj do modelu lnowego poprzez odpowedne przekształcena zmennych. Model Y = f(x,b) jest lnowy względem parametrów, jeśl można go przedstawć jako lnową funkcję jednoznacznych przekształceń X, przy czym współczynnk tych przekształceń musza być znane. Y = k = b k z k Z k = h k (X ) Przykład regresj nelnowej Punkty żywenowe w latach Rok Punkty t

29 Punkty żywenowe c.d Rok y Z Z Zakładamy, że kształt równana jest y = a0 + a t + a t Wprowadzamy zmenne zastępcze z = t z = t Rozwązane a0=88 a=,0 a=-0,84 Weryfkacja R=0.996 s=,7 Obe wartośc statystyk t < 0.0 y = t 0.84 t Przykład regresj nelnowej cz.a Opsać kształtowana sę depozytów złotowych w oddzale banku w kolejnych kwartałach lat Kwartał DEP t I 94 4 DEP / t II 94 III 94 IV 94 I 9 II 9 III 9 IV 9 I 96 II 96 III Hpoteza wykładnczy przebeg b t DEP = a e

30 Przykład regresj nelnowej cz.b Opsać kształtowana sę depozytów złotowych w oddzale banku w kolejnych kwartałach lat t DEP Ln(DEP) ,87 ln(dep) / t ,977,0, ,47,88, ,47, ,74,768 4, ,94 Rozpatrujemy formę ln( DEP) = (ln a) + b t Depozyty - rozwązane Rozwązane modelu przekształconego ln(dep)= t, R=0.989, współczynnk stotne. Przekształcene odwrotne t DEP = e 0. t = 06.6 e

31 Metody doboru zmennych do modelu Zmenne wybera sę na podstawe wedzy dzedznowej. Wymagana nt. własnośc zmennych nezależnych: Są slne skorelowanych ze zmenną, którą objaśnają. Są neskorelowane lub co najwyżej słabo skorelowane ze sobą. Charakteryzują sę dużą zmennoścą. Jak wykorzystać współczynnk korelacj? r = tα, n n + tα, n Ocena zmennych objaśnających Przykład doboru zmennych do modelu opsującego mesęczne spożyce ryb (w kg na osobę) w zależnośc od: spożyca męsa x, warzyw x, owoców x, tłuszczów x 4 oraz wydatków na lekarstwa x. nr y X X X X4 x 0,6 0,6 0, 4,,07,07 0,4,77 0,44 0,44 0, 4 0,6 0,6 0, ,0 0,0 0, ,0 0,0 0, ,0 0,0 0, ,09 0,09 0, ,6 0,6 0,9 0 0, 0, 0,0 7 7,46,46 0,4,, 0.4 0,, 0, , 0, 0,0 9 0,4 0,9 0,0 6

32 Dobór zmennych do modelu Współczynnk zmennośc y x x x x4 X 0,6 0,74 0,97,0 0,944 0,6 Macerz współczynnków korelacj y x x x x4 X y x 0,90 x 0,70 0,84 x 0,748 0,8 0,99 x4 0,8 0,860 0,946 0,9 x -0,44-0,9-0,477-0,0-0,9 Trochę oblczeń Wartość krytyczna Słaba korelacja? r = 4, ,666 = = 0.9 r(y,x) =-0.44 odrzucamy x Wyberamy najslnejszą zmenną r(y,x)=r=0.90 wyberamy x Co z pozostałym zmennym?

33 Regresja krokowa Postępująca (forward) Zakłada kolejne dołączane do lsty zmennych objaśnających tych zmennych, które mają najstotnejszy wpływ na zmenną zależną. Wsteczna (backward) Usuwamy ze zboru zmennych, ta które mają najmnejszy wpływ na zmenną zależną. Stosując R lub testy stotnośc współczynnków modelu (F). Regresja welokrotna - Statstca

34 Regresja krokowa

35 Lteratura Statystyka dla studentów kerunków techncznych przyrodnczych, Koronack Jacek, Melnczuk Jan, WNT, 00. Statystyka w zarządzanu, A.Aczel, PWN 000. Statystyka praktyczna. W.Starzyńska, Statystyka. Ekonometra. Prognozowane. Ćwczena z Excelem. A. Snarska, Wydawnctwo Placet 00. Przystępny kurs statystyk, Stansz A., 997. Tom pośwęcony wyłączne analze regresj! I wele nnych

Analiza zależności zmiennych ilościowych korelacja i regresja

Analiza zależności zmiennych ilościowych korelacja i regresja Analza zależnośc zmennych loścowych korelacja regresja JERZY STEFANOWSKI Instytut Informatyk Poltechnka Poznańska Plan wykładu 1. Lnowa zależność mędzy dwoma zmennym: Prosta regresja Metoda najmnejszych

Bardziej szczegółowo

Badanie współzależności dwóch cech ilościowych X i Y. Analiza korelacji prostej

Badanie współzależności dwóch cech ilościowych X i Y. Analiza korelacji prostej Badane współzależnośc dwóch cech loścowych X Y. Analza korelacj prostej Kody znaków: żółte wyróżnene nowe pojęce czerwony uwaga kursywa komentarz 1 Zagadnena 1. Zwązek determnstyczny (funkcyjny) a korelacyjny.

Bardziej szczegółowo

Zadane 1: Wyznacz średne ruchome 3-okresowe z następujących danych obrazujących zużyce energ elektrycznej [kwh] w pewnym zakładze w mesącach styczeń - lpec 1998 r.: 400; 410; 430; 40; 400; 380; 370. Zadane

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH

STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH 1 Test zgodnośc χ 2 Hpoteza zerowa H 0 ( Cecha X populacj ma rozkład o dystrybuance F). Hpoteza alternatywna H1( Cecha X populacj

Bardziej szczegółowo

Weryfikacja hipotez dla wielu populacji

Weryfikacja hipotez dla wielu populacji Weryfkacja hpotez dla welu populacj Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Intelgencj Metod Matematycznych Wydzał Informatyk Poltechnk Szczecńskej 5. Parametryczne testy stotnośc w

Bardziej szczegółowo

Natalia Nehrebecka. Zajęcia 3

Natalia Nehrebecka. Zajęcia 3 St ł Cchock Stansław C h k Natala Nehrebecka Zajęca 3 1. Dobroć dopasowana równana regresj. Współczynnk determnacj R Dk Dekompozycja warancj zmennej zależnej ż Współczynnk determnacj R. Zmenne cągłe a

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 4

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 4 Stansław Cchock Natala Nehrebecka Zajęca 4 1. Interpretacja parametrów przy zmennych zerojedynkowych Zmenne 0-1 Interpretacja przy zmennej 0 1 w modelu lnowym względem zmennych objaśnających Interpretacja

Bardziej szczegółowo

) będą niezależnymi zmiennymi losowymi o tym samym rozkładzie normalnym z następującymi parametrami: nieznaną wartością 1 4

) będą niezależnymi zmiennymi losowymi o tym samym rozkładzie normalnym z następującymi parametrami: nieznaną wartością 1 4 Zadane. Nech ( X, Y ),( X, Y ), K,( X, Y n n ) będą nezależnym zmennym losowym o tym samym rozkładze normalnym z następującym parametram: neznaną wartoścą oczekwaną EX = EY = m, warancją VarX = VarY =

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka Katarzyna Rosiak-Lada. Zajęcia 3

Stanisław Cichocki. Natalia Nehrebecka Katarzyna Rosiak-Lada. Zajęcia 3 Stansław Cchock Natala Nehrebecka Katarzyna Rosak-Lada Zajęca 3 1. Dobrod dopasowana równana regresj. Współczynnk determnacj R 2 Dekompozycja warancj zmennej zależnej Współczynnk determnacj R 2 2. Zmenne

Bardziej szczegółowo

Dobór zmiennych objaśniających

Dobór zmiennych objaśniających Dobór zmennych objaśnających Metoda grafowa: Należy tak rozpąć graf na werzchołkach opsujących poszczególne zmenne, aby występowały w nm wyłączne łuk symbolzujące stotne korelacje pomędzy zmennym opsującym.

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1 KURS STATYSTYKA Lekcja 6 Regresja lne regresj ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowedź (tylko jedna jest prawdzwa). Pytane 1 Funkcja regresj I rodzaju cechy Y zależnej

Bardziej szczegółowo

W praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np.

W praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np. Wykład 7 Uwaga: W praktyce często zdarza sę, że wynk obu prób możemy traktować jako wynk pomarów na tym samym elemence populacj np. wynk x przed wynk y po operacj dla tego samego osobnka. Należy wówczas

Bardziej szczegółowo

Natalia Nehrebecka. Wykład 2

Natalia Nehrebecka. Wykład 2 Natala Nehrebecka Wykład . Model lnowy Postad modelu lnowego Zaps macerzowy modelu lnowego. Estymacja modelu Wartośd teoretyczna (dopasowana) Reszty 3. MNK przypadek jednej zmennej . Model lnowy Postad

Bardziej szczegółowo

Plan wykładu: Typowe dane. Jednoczynnikowa Analiza wariancji. Zasada: porównać zmienność pomiędzy i wewnątrz grup

Plan wykładu: Typowe dane. Jednoczynnikowa Analiza wariancji. Zasada: porównać zmienność pomiędzy i wewnątrz grup Jednoczynnkowa Analza Waranc (ANOVA) Wykład 11 Przypomnene: wykłady zadana kursu były zaczerpnęte z podręcznków: Statystyka dla studentów kerunków techncznych przyrodnczych, J. Koronack, J. Melnczuk, WNT

Bardziej szczegółowo

Natalia Nehrebecka. Zajęcia 4

Natalia Nehrebecka. Zajęcia 4 St ł Cchock Stansław C h k Natala Nehrebecka Zajęca 4 1. Interpretacja parametrów przy zmennych zerojedynkowych Zmenne 0 1 Interpretacja przy zmennej 0 1 w modelu lnowym względem zmennych objaśnających

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 11

Stanisław Cichocki. Natalia Nehrebecka. Wykład 11 Stansław Cchock Natala Nehrebecka Wykład 11 1 1. Testowane hpotez łącznych 2. Testy dagnostyczne Testowane prawdłowośc formy funkcyjnej: test RESET Testowane normalnośc składnków losowych: test Jarque-Berra

Bardziej szczegółowo

Badanie współzaleŝności dwóch cech ilościowych X i Y. Analiza korelacji prostej. Badanie zaleŝności dwóch cech ilościowych. Analiza regresji prostej

Badanie współzaleŝności dwóch cech ilościowych X i Y. Analiza korelacji prostej. Badanie zaleŝności dwóch cech ilościowych. Analiza regresji prostej Badane współzaleŝnośc dwóch cech loścowych X Y. Analza korelacj prostej Badane zaleŝnośc dwóch cech loścowych. Analza regresj prostej Kody znaków: Ŝółte wyróŝnene nowe pojęce czerwony uwaga kursywa komentarz

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 1 Statystyka opisowa ZADANIE DOMOWE. www.etrapez.pl Strona 1

KURS STATYSTYKA. Lekcja 1 Statystyka opisowa ZADANIE DOMOWE. www.etrapez.pl Strona 1 KURS STATYSTYKA Lekcja 1 Statystyka opsowa ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowedź (tylko jedna jest prawdzwa). Pytane 1 W statystyce opsowej mamy pełne nformacje

Bardziej szczegółowo

Natalia Nehrebecka Stanisław Cichocki. Wykład 10

Natalia Nehrebecka Stanisław Cichocki. Wykład 10 Natala Nehrebecka Stansław Cchock Wykład 10 1 1. Testy dagnostyczne 2. Testowane prawdłowośc formy funkcyjnej modelu 3. Testowane normalnośc składnków losowych 4. Testowane stablnośc parametrów 5. Testowane

Bardziej szczegółowo

Hipotezy o istotności oszacowao parametrów zmiennych objaśniających ˆ ) ˆ

Hipotezy o istotności oszacowao parametrów zmiennych objaśniających ˆ ) ˆ WERYFIKACJA HIPOTEZY O ISTOTNOŚCI OCEN PARAMETRÓW STRUKTURALNYCH MODELU Hpoezy o sonośc oszacowao paramerów zmennych objaśnających Tesowane sonośc paramerów zmennych objaśnających sprowadza sę do nasępującego

Bardziej szczegółowo

Analiza regresji modele ekonometryczne

Analiza regresji modele ekonometryczne Analza regresj modele ekonometryczne Klasyczny model regresj lnowej - przypadek jednej zmennej objaśnającej. Rozpatrzmy klasyczne zagadnene zależnośc pomędzy konsumpcją a dochodam. Uważa sę, że: - zależność

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 7

Stanisław Cichocki. Natalia Nehrebecka. Wykład 7 Stansław Cchock Natala Nehrebecka Wykład 7 1 1. Interakcje 2. Przyblżane model nelnowych 3. Założena KMRL 1. Interakcje 2. Przyblżane model nelnowych 3. Założena KMRL W standardowym modelu lnowym zakładamy,

Bardziej szczegółowo

Statystyka Opisowa 2014 część 2. Katarzyna Lubnauer

Statystyka Opisowa 2014 część 2. Katarzyna Lubnauer Statystyka Opsowa 2014 część 2 Katarzyna Lubnauer Lteratura: 1. Statystyka w Zarządzanu Admr D. Aczel 2. Statystyka Opsowa od Podstaw Ewa Waslewska 3. Statystyka, Lucjan Kowalsk. 4. Statystyka opsowa,

Bardziej szczegółowo

Analiza korelacji i regresji

Analiza korelacji i regresji Analza korelacj regresj Zad. Pewen zakład produkcyjny zatrudna pracownków fzycznych. Ich wydajność pracy (Y w szt./h) oraz mesęczne wynagrodzene (X w tys. zł) przedstawa ponższa tabela: Pracownk y x A

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka W 11: Analizy zależnościpomiędzy zmiennymi losowymi Model regresji wielokrotnej

Rachunek prawdopodobieństwa i statystyka W 11: Analizy zależnościpomiędzy zmiennymi losowymi Model regresji wielokrotnej Rachunek prawdopodobeństwa statstka W 11: Analz zależnoścpomędz zmennm losowm Model regresj welokrotnej Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.pl Model regresj lnowej Model regresj lnowej prostej

Bardziej szczegółowo

dy dx stąd w przybliżeniu: y

dy dx stąd w przybliżeniu: y Przykłady do funkcj nelnowych funkcj Törnqusta Proszę sprawdzć uzasadnć, które z podanych zdań są prawdzwe, a które fałszywe: Przykład 1. Mesęczne wydatk na warzywa (y, w jednostkach penężnych, jp) w zależnośc

Bardziej szczegółowo

Natalia Nehrebecka. Dariusz Szymański

Natalia Nehrebecka. Dariusz Szymański Natala Nehrebecka Darusz Szymańsk . Sprawy organzacyjne Zasady zalczena Ćwczena Lteratura. Czym zajmuje sę ekonometra? Model ekonometryczny 3. Model lnowy Postać modelu lnowego Zaps macerzowy modelu dl

Bardziej szczegółowo

Analiza zależności cech ilościowych regresja liniowa (Wykład 13)

Analiza zależności cech ilościowych regresja liniowa (Wykład 13) Analiza zależności cech ilościowych regresja liniowa (Wykład 13) dr Mariusz Grządziel semestr letni 2012 Przykład wprowadzajacy W zbiorze danych homedata (z pakietu R-owskiego UsingR) można znaleźć ceny

Bardziej szczegółowo

EKONOMETRIA I Spotkanie 1, dn. 05.10.2010

EKONOMETRIA I Spotkanie 1, dn. 05.10.2010 EKONOMETRIA I Spotkane, dn. 5..2 Dr Katarzyna Beń Program ramowy: http://www.sgh.waw.pl/nstytuty/e/oferta_dydaktyczna/ekonometra_stacjonarne_nest acjonarne/ Zadana, dane do zadań, ważne nformacje: http://www.e-sgh.pl/ben/ekonometra

Bardziej szczegółowo

65120/ / / /200

65120/ / / /200 . W celu zbadana zależnośc pomędzy płcą klentów ch preferencjam, wylosowano kobet mężczyzn zadano m pytane: uważasz za lepszy produkt frmy A czy B? Wynk były następujące: Odpowedź Kobety Mężczyźn Wolę

Bardziej szczegółowo

Egzamin ze statystyki/ Studia Licencjackie Stacjonarne/ Termin I /czerwiec 2010

Egzamin ze statystyki/ Studia Licencjackie Stacjonarne/ Termin I /czerwiec 2010 Egzamn ze statystyk/ Studa Lcencjacke Stacjonarne/ Termn /czerwec 2010 Uwaga: Przy rozwązywanu zadań, jeśl to koneczne, naleŝy przyjąć pozom stotnośc 0,01 współczynnk ufnośc 0,99 Zadane 1 PonŜsze zestawene

Bardziej szczegółowo

Analiza zależności zmiennych ilościowych regresja

Analiza zależności zmiennych ilościowych regresja Analiza zależności zmiennych ilościowych regresja JERZY STEFANOWSKI Instytut Informatyki Politechnika Poznańska Wersja dla stud. niestacj 2010 / akt. 2017 Plan wykładu 1. Wykrywanie zależności między zmiennymi

Bardziej szczegółowo

Analiza danych. Analiza danych wielowymiarowych. Regresja liniowa. Dyskryminacja liniowa. PARA ZMIENNYCH LOSOWYCH

Analiza danych. Analiza danych wielowymiarowych. Regresja liniowa. Dyskryminacja liniowa.   PARA ZMIENNYCH LOSOWYCH Analza danych Analza danych welowymarowych. Regresja lnowa. Dyskrymnacja lnowa. Jakub Wróblewsk jakubw@pjwstk.edu.pl http://zajeca.jakubw.pl/ PARA ZMIENNYCH LOSOWYCH Parę zmennych losowych X, Y możemy

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6 Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Zastosowane modelu potęgowego Przekształcene Boxa-Coxa 2. Zmenne cągłe za zmenne dyskretne 3. Interpretacja parametrów przy zmennych dyskretnych 1. Zastosowane

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6 Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Interpretacja parametrów przy zmennych objaśnających cągłych Semelastyczność 2. Zastosowane modelu potęgowego Model potęgowy 3. Zmenne cągłe za zmenne dyskretne

Bardziej szczegółowo

Modele wieloczynnikowe. Modele wieloczynnikowe. Modele wieloczynnikowe ogólne. α β β β ε. Analiza i Zarządzanie Portfelem cz. 4.

Modele wieloczynnikowe. Modele wieloczynnikowe. Modele wieloczynnikowe ogólne. α β β β ε. Analiza i Zarządzanie Portfelem cz. 4. Modele weloczynnkowe Analza Zarządzane Portfelem cz. 4 Ogólne model weloczynnkowy można zapsać jako: (,...,,..., ) P f F F F = n Dr Katarzyna Kuzak lub (,...,,..., ) f F F F = n Modele weloczynnkowe Można

Bardziej szczegółowo

Statystyka. Zmienne losowe

Statystyka. Zmienne losowe Statystyka Zmenne losowe Zmenna losowa Zmenna losowa jest funkcją, w której każdej wartośc R odpowada pewen podzbór zboru będący zdarzenem losowym. Zmenna losowa powstaje poprzez przyporządkowane każdemu

Bardziej szczegółowo

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych Zaawansowane metody numeryczne Komputerowa analza zagadneń różnczkowych 1. Układy równań lnowych P. F. Góra http://th-www.f.uj.edu.pl/zfs/gora/ semestr letn 2006/07 Podstawowe fakty Równane Ax = b, x,

Bardziej szczegółowo

2012-10-11. Definicje ogólne

2012-10-11. Definicje ogólne 0-0- Defncje ogólne Logstyka nauka o przepływe surowców produktów gotowych rodowód wojskowy Utrzyywane zapasów koszty zwązane.n. z zarożene kaptału Brak w dostawach koszty zwązane.n. z przestoje w produkcj

Bardziej szczegółowo

( ) ( ) 2. Zadanie 1. są niezależnymi zmiennymi losowymi o. oraz. rozkładach normalnych, przy czym EX. i σ są nieznane. 1 Niech X

( ) ( ) 2. Zadanie 1. są niezależnymi zmiennymi losowymi o. oraz. rozkładach normalnych, przy czym EX. i σ są nieznane. 1 Niech X Prawdopodobeństwo statystyka.. r. Zadane. Zakładamy, że,,,,, 5 są nezależnym zmennym losowym o rozkładach normalnych, przy czym E = μ Var = σ dla =,,, oraz E = μ Var = 3σ dla =,, 5. Parametry μ, μ σ są

Bardziej szczegółowo

Badania sondażowe. Braki danych Konstrukcja wag. Agnieszka Zięba. Zakład Badań Marketingowych Instytut Statystyki i Demografii Szkoła Główna Handlowa

Badania sondażowe. Braki danych Konstrukcja wag. Agnieszka Zięba. Zakład Badań Marketingowych Instytut Statystyki i Demografii Szkoła Główna Handlowa Badana sondażowe Brak danych Konstrukcja wag Agneszka Zęba Zakład Badań Marketngowych Instytut Statystyk Demograf Szkoła Główna Handlowa 1 Błędy braku odpowedz Całkowty brak odpowedz (UNIT nonresponse)

Bardziej szczegółowo

Rozdział 8. Regresja. Definiowanie modelu

Rozdział 8. Regresja. Definiowanie modelu Rozdział 8 Regresja Definiowanie modelu Analizę korelacji można traktować jako wstęp do analizy regresji. Jeżeli wykresy rozrzutu oraz wartości współczynników korelacji wskazują na istniejąca współzmienność

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6 Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Zastosowane modelu potęgowego Model potęgowy Przekształcene Boxa-Coxa 2. Zmenne cągłe za zmenne dyskretne 3. Interpretacja parametrów przy zmennych dyskretnych

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA. Wkład wstępn. Teora prawdopodobeństwa element kombnatork. Zmenne losowe ch rozkład 3. Populacje prób danch, estmacja parametrów 4. Testowane hpotez statstcznch 5. Test parametrczne

Bardziej szczegółowo

Proces narodzin i śmierci

Proces narodzin i śmierci Proces narodzn śmerc Jeżel w ewnej oulacj nowe osobnk ojawają sę w sosób losowy, rzy czym gęstość zdarzeń na jednostkę czasu jest stała w czase wynos λ, oraz lczba osobnków n, które ojawły sę od chwl do

Bardziej szczegółowo

PROSTO O DOPASOWANIU PROSTYCH, CZYLI ANALIZA REGRESJI LINIOWEJ W PRAKTYCE

PROSTO O DOPASOWANIU PROSTYCH, CZYLI ANALIZA REGRESJI LINIOWEJ W PRAKTYCE PROSTO O DOPASOWANIU PROSTYCH, CZYLI ANALIZA REGRESJI LINIOWEJ W PRAKTYCE Janusz Wątroba, StatSoft Polska Sp. z o.o. W nemal wszystkch dzedznach badań emprycznych mamy do czynena ze złożonoścą zjawsk procesów.

Bardziej szczegółowo

SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW

SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW Stefan WÓJTOWICZ, Katarzyna BIERNAT ZAKŁAD METROLOGII I BADAŃ NIENISZCZĄCYCH INSTYTUT ELEKTROTECHNIKI ul. Pożaryskego 8, 04-703 Warszawa tel.

Bardziej szczegółowo

ANALIZA KORELACJI WYDATKÓW NA KULTURĘ Z BUDŻETU GMIN ORAZ WYKSZTAŁCENIA RADNYCH

ANALIZA KORELACJI WYDATKÓW NA KULTURĘ Z BUDŻETU GMIN ORAZ WYKSZTAŁCENIA RADNYCH Potr Mchalsk Węzeł Centralny OŻK-SB 25.12.2013 rok ANALIZA KORELACJI WYDATKÓW NA KULTURĘ Z BUDŻETU GMIN ORAZ WYKSZTAŁCENIA RADNYCH Celem ponższej analzy jest odpowedź na pytane: czy wykształcene radnych

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący

Bardziej szczegółowo

Problemy jednoczesnego testowania wielu hipotez statystycznych i ich zastosowania w analizie mikromacierzy DNA

Problemy jednoczesnego testowania wielu hipotez statystycznych i ich zastosowania w analizie mikromacierzy DNA Problemy jednoczesnego testowana welu hpotez statystycznych ch zastosowana w analze mkromacerzy DNA Konrad Furmańczyk Katedra Zastosowań Matematyk SGGW Plan referatu Testowane w analze mkromacerzy DNA

Bardziej szczegółowo

Stosowana Analiza Regresji

Stosowana Analiza Regresji prostej Stosowana Wykład I 5 Października 2011 1 / 29 prostej Przykład Dane trees - wyniki pomiarów objętości (Volume), średnicy (Girth) i wysokości (Height) pni drzew. Interesuje nas zależność (o ile

Bardziej szczegółowo

Współczynnik korelacji. Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ

Współczynnik korelacji. Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ Współczynnik korelacji Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ Własności współczynnika korelacji 1. Współczynnik korelacji jest liczbą niemianowaną 2. ϱ 1,

Bardziej szczegółowo

Analiza regresji elementy zaawansowane (cz. 2)

Analiza regresji elementy zaawansowane (cz. 2) Analiza regresji elementy zaawansowane (cz. 2) zmien. wersja 2015 JERZY STEFANOWSKI Instytut Informatyki Politechnika Poznańska Plan wykładu 1. Podsumowanie statystycznej weryfikacja regresji Podstawowe

Bardziej szczegółowo

± Δ. Podstawowe pojęcia procesu pomiarowego. x rzeczywiste. Określenie jakości poznania rzeczywistości

± Δ. Podstawowe pojęcia procesu pomiarowego. x rzeczywiste. Określenie jakości poznania rzeczywistości Podstawowe pojęca procesu pomarowego kreślene jakośc poznana rzeczywstośc Δ zmerzone rzeczywste 17 9 Zalety stosowana elektrycznych przyrządów 1/ 1. możlwość budowy czujnków zamenających werne każdą welkość

Bardziej szczegółowo

Krzywa wieża w Pizie. SAS Data Step. Przykład (2) Wykład 13 Regresja liniowa

Krzywa wieża w Pizie. SAS Data Step. Przykład (2) Wykład 13 Regresja liniowa Bonformatyka - rozwój oferty edukacyjnej Unwersytetu Przyrodnczego we Wrocławu projekt realzowany w ramac Programu Operacyjnego Kaptał Ludzk współfnansowanego ze środków Europejskego Funduszu Społecznego

Bardziej szczegółowo

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1.

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1. tel. 44 683 1 55 tel. kom. 64 566 811 e-mail: biuro@wszechwiedza.pl Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: gdzie: y t X t y t = 1 X 1

Bardziej szczegółowo

Wykłady Jacka Osiewalskiego. z Ekonometrii. CZĘŚĆ PIERWSZA: Modele Regresji. zebrane ku pouczeniu i przestrodze

Wykłady Jacka Osiewalskiego. z Ekonometrii. CZĘŚĆ PIERWSZA: Modele Regresji. zebrane ku pouczeniu i przestrodze Wykłady Jacka Osewalskego z Ekonometr zebrane ku pouczenu przestrodze UWAGA!! (lstopad 003) to jest wersja neautoryzowana, spsana przeze mne dawno temu od tego czasu ne przejrzana; ma status wersj roboczej,

Bardziej szczegółowo

MATEMATYKA POZIOM ROZSZERZONY Kryteria oceniania odpowiedzi. Arkusz A II. Strona 1 z 5

MATEMATYKA POZIOM ROZSZERZONY Kryteria oceniania odpowiedzi. Arkusz A II. Strona 1 z 5 MATEMATYKA POZIOM ROZSZERZONY Krytera ocenana odpowedz Arkusz A II Strona 1 z 5 Odpowedz Pytane 1 2 3 4 5 6 7 8 9 Odpowedź D C C A B 153 135 232 333 Zad. 10. (0-3) Dana jest funkcja postac. Korzystając

Bardziej szczegółowo

Procedura normalizacji

Procedura normalizacji Metody Badań w Geograf Społeczno Ekonomcznej Procedura normalzacj Budowane macerzy danych geografcznych mgr Marcn Semczuk Zakład Przedsęborczośc Gospodark Przestrzennej Instytut Geograf Unwersytet Pedagogczny

Bardziej szczegółowo

Sprawozdanie powinno zawierać:

Sprawozdanie powinno zawierać: Sprawozdane pownno zawerać: 1. wypełnoną stronę tytułową (gotowa do ćw. nr 0 na strone drugej, do pozostałych ćwczeń zameszczona na strone 3), 2. krótk ops celu dośwadczena, 3. krótk ops metody pomaru,

Bardziej szczegółowo

Klasyfkator lnowy Wstęp Klasyfkator lnowy jest najprostszym możlwym klasyfkatorem. Zakłada on lnową separację lnowy podzał dwóch klas mędzy sobą. Przedstawa to ponższy rysunek: 5 4 3 1 0-1 - -3-4 -5-5

Bardziej szczegółowo

System Przeciwdziałania Powstawaniu Bezrobocia na Terenach Słabo Zurbanizowanych SPRAWOZDANIE Z BADAŃ Autor: Joanna Wójcik

System Przeciwdziałania Powstawaniu Bezrobocia na Terenach Słabo Zurbanizowanych SPRAWOZDANIE Z BADAŃ   Autor: Joanna Wójcik Opracowane w ramach projektu System Przecwdzałana Powstawanu Bezroboca na Terenach Słabo Zurbanzowanych ze środków Europejskego Funduszu Społecznego w ramach Incjatywy Wspólnotowej EQUAL PARTNERSTWO NA

Bardziej szczegółowo

Regresja liniowa i nieliniowa

Regresja liniowa i nieliniowa Metody prognozowana: Regresja lnowa nelnowa Dr nż. Sebastan Skoczypec Zmenna losowa Zmenna losowa X zmenna, która w wynku pewnego dośwadczena przyjmuje z pewnym prawdopodobeństwem wartość z określonego

Bardziej szczegółowo

Zestaw zadań 4: Przestrzenie wektorowe i podprzestrzenie. Liniowa niezależność. Sumy i sumy proste podprzestrzeni.

Zestaw zadań 4: Przestrzenie wektorowe i podprzestrzenie. Liniowa niezależność. Sumy i sumy proste podprzestrzeni. Zestaw zadań : Przestrzene wektorowe podprzestrzene. Lnowa nezależność. Sumy sumy proste podprzestrzen. () Wykazać, że V = C ze zwykłym dodawanem jako dodawanem wektorów operacją mnożena przez skalar :

Bardziej szczegółowo

Parametry zmiennej losowej

Parametry zmiennej losowej Eonometra Ćwczena Powtórzene wadomośc ze statysty SS EK Defncja Zmenną losową X nazywamy funcję odwzorowującą przestrzeń zdarzeń elementarnych w zbór lczb rzeczywstych, taą że przecwobraz dowolnego zboru

Bardziej szczegółowo

Wprowadzenie do analizy korelacji i regresji

Wprowadzenie do analizy korelacji i regresji Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących

Bardziej szczegółowo

WPROWADZENIE DO ANALIZY KORELACJI I REGRESJI

WPROWADZENIE DO ANALIZY KORELACJI I REGRESJI WPROWADZENIE DO ANALIZY KORELACJI I REGRESJI dr Janusz Wątroba, StatSoft Polska Sp. z o.o. Prezentowany artykuł pośwęcony jest wybranym zagadnenom analzy korelacj regresj. Po przedstawenu najważnejszych

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 7

Stanisław Cichocki. Natalia Nehrebecka. Wykład 7 Stansław Cchock Natala Nehrebecka Wykład 7 1 1. Zmenne cągłe a zmenne dyskretne 2. Interpretacja parametrów przy zmennych dyskretnych 1. Zmenne cągłe a zmenne dyskretne 2. Interpretacja parametrów przy

Bardziej szczegółowo

Markowa. ZałoŜenia schematu Gaussa-

Markowa. ZałoŜenia schematu Gaussa- ZałoŜena scheatu Gaussa- Markowa I. Model jest nezennczy ze względu na obserwacje: f f f3... fl f, czyl y f (x, ε) II. Model jest lnowy względe paraetrów. y βo + β x +ε Funkcja a być lnowa względe paraetrów

Bardziej szczegółowo

Analiza rodzajów skutków i krytyczności uszkodzeń FMECA/FMEA według MIL STD - 1629A

Analiza rodzajów skutków i krytyczności uszkodzeń FMECA/FMEA według MIL STD - 1629A Analza rodzajów skutków krytycznośc uszkodzeń FMECA/FMEA według MIL STD - 629A Celem analzy krytycznośc jest szeregowane potencjalnych rodzajów uszkodzeń zdentyfkowanych zgodne z zasadam FMEA na podstawe

Bardziej szczegółowo

L.Kowalski zadania ze statystyki opisowej-zestaw 5. ZADANIA Zestaw 5

L.Kowalski zadania ze statystyki opisowej-zestaw 5. ZADANIA Zestaw 5 L.Kowalsk zadaa ze statystyk opsowej-zestaw 5 Zadae 5. X cea (zł, Y popyt (tys. szt.. Mając dae ZADANIA Zestaw 5 x,5,5 3 3,5 4 4,5 5 y 44 43 43 37 36 34 35 35 Oblcz współczyk korelacj Pearsoa. Oblcz współczyk

Bardziej szczegółowo

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 7

Stanisław Cichocki. Natalia Nehrebecka. Wykład 7 Stansław Cchock Natala Nehrebecka Wykład 7 . Zmenne dyskretne Kontrasty: efekty progowe, kontrasty w odchylenach Interakcje. Przyblżane model nelnowych Stosowane do zmennych dyskretnych o uporządkowanych

Bardziej szczegółowo

IID = 2. i i i i. x nx nx nx

IID = 2. i i i i. x nx nx nx Zadane Analzujemy model z jedną zmenną objaśnającą bez wyrazu wolnego: y = β x + ε, ε ~ (0, σ ), gdze x jest nelosowe.. Wyznacz estymator MNK parametru β oraz oblcz jego warancję. (4 pkt) y. Zaproponowano

Bardziej szczegółowo

Rozwiązywanie zadań optymalizacji w środowisku programu MATLAB

Rozwiązywanie zadań optymalizacji w środowisku programu MATLAB Rozwązywane zadań optymalzacj w środowsku programu MATLAB Zagadnene optymalzacj polega na znajdowanu najlepszego, względem ustalonego kryterum, rozwązana należącego do zboru rozwązań dopuszczalnych. Standardowe

Bardziej szczegółowo

Statystyka Inżynierska

Statystyka Inżynierska Statystyka Inżynerska dr hab. nż. Jacek Tarasuk AGH, WFIS 013 Wykład DYSKRETNE I CIĄGŁE ROZKŁADY JEDNOWYMIAROWE Zmenna losowa, Funkcja rozkładu, Funkcja gęstośc, Dystrybuanta, Charakterystyk zmennej, Funkcje

Bardziej szczegółowo

MATERIAŁY I STUDIA. Zeszyt nr 286. Analiza dyskryminacyjna i regresja logistyczna w procesie oceny zdolności kredytowej przedsiębiorstw

MATERIAŁY I STUDIA. Zeszyt nr 286. Analiza dyskryminacyjna i regresja logistyczna w procesie oceny zdolności kredytowej przedsiębiorstw MATERIAŁY I STUDIA Zeszyt nr 86 Analza dyskrymnacyjna regresja logstyczna w procese oceny zdolnośc kredytowej przedsęborstw Robert Jagełło Warszawa, 0 r. Wstęp Robert Jagełło Narodowy Bank Polsk. Składam

Bardziej szczegółowo

3. Modele tendencji czasowej w prognozowaniu

3. Modele tendencji czasowej w prognozowaniu II Modele tendencji czasowej w prognozowaniu 1 Składniki szeregu czasowego W teorii szeregów czasowych wyróżnia się zwykle następujące składowe szeregu czasowego: a) składowa systematyczna; b) składowa

Bardziej szczegółowo

Mikroekonometria 13. Mikołaj Czajkowski Wiktor Budziński

Mikroekonometria 13. Mikołaj Czajkowski Wiktor Budziński Mkroekonometra 13 Mkołaj Czajkowsk Wktor Budzńsk Symulacje Analogczne jak w przypadku cągłej zmennej zależnej można wykorzystać metody Monte Carlo do analzy różnego rodzaju problemów w modelach gdze zmenna

Bardziej szczegółowo

0 0,2 0, p 0,1 0,2 0,5 0, p 0,3 0,1 0,2 0,4

0 0,2 0, p 0,1 0,2 0,5 0, p 0,3 0,1 0,2 0,4 Zad. 1. Dana jest unkcja prawdopodobeństwa zmennej losowej X -5-1 3 8 p 1 1 c 1 Wyznaczyć: a. stałą c b. wykres unkcj prawdopodobeństwa jej hstogram c. dystrybuantę jej wykres d. prawdopodobeństwa: P (

Bardziej szczegółowo

PROGNOZOWANIE SPRZEDAŻY Z ZASTOSOWANIEM ROZKŁADU GAMMA Z KOREKCJĄ ZE WZGLĘDU NA WAHANIA SEZONOWE

PROGNOZOWANIE SPRZEDAŻY Z ZASTOSOWANIEM ROZKŁADU GAMMA Z KOREKCJĄ ZE WZGLĘDU NA WAHANIA SEZONOWE STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 36 Krzysztof Dmytrów * Marusz Doszyń ** Unwersytet Szczecńsk PROGNOZOWANIE SPRZEDAŻY Z ZASTOSOWANIEM ROZKŁADU GAMMA Z KOREKCJĄ ZE WZGLĘDU NA

Bardziej szczegółowo

CZĘŚĆ 6. MODEL REGRESJI, TREND LINIOWY ESTYMACJA, WNIOSKOWANIE

CZĘŚĆ 6. MODEL REGRESJI, TREND LINIOWY ESTYMACJA, WNIOSKOWANIE CZĘŚĆ 6. MODEL REGRESJI, TREND LINIOWY ESTYMACJA, WNIOSKOWANIE Zadane 1. Na podstawe obserwacj dotczącch welkośc powerzchn ekspozcjnej (cecha X w m kw.) oraz welkośc dzennego obrotu punktu sprzedaż płtek

Bardziej szczegółowo

Weryfikacja hipotez statystycznych testy dla dwóch zbiorowości

Weryfikacja hipotez statystycznych testy dla dwóch zbiorowości Weryfikacja hipotez statystycznych testy dla dwóch zbiorowości Informatyka 007 009 aktualizacja dla 00 JERZY STEFANOWSKI Instytut Informatyki Politechnika Poznańska Plan wykładu. Przypomnienie testu dla

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Prawdopodobeństwo statystya.05.00 r. Zadane Zmenna losowa X ma rozład wyładnczy o wartośc oczewanej, a zmenna losowa Y rozład wyładnczy o wartośc oczewanej. Obe zmenne są nezależne. Oblcz E( Y X + Y =

Bardziej szczegółowo

MECHANIKA 2 MOMENT BEZWŁADNOŚCI. Wykład Nr 10. Prowadzący: dr Krzysztof Polko

MECHANIKA 2 MOMENT BEZWŁADNOŚCI. Wykład Nr 10. Prowadzący: dr Krzysztof Polko MECHANIKA Wykład Nr 10 MOMENT BEZWŁADNOŚCI Prowadzący: dr Krzysztof Polko Defncja momentu bezwładnośc Momentem bezwładnośc punktu materalnego względem płaszczyzny, os lub beguna nazywamy loczyn masy punktu

Bardziej szczegółowo

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie:

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie: ma postać y = ax + b Równanie regresji liniowej By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : xy b = a = b lub x Gdzie: xy = też a = x = ( b ) i to dane empiryczne, a ilość

Bardziej szczegółowo

Analiza danych OGÓLNY SCHEMAT. http://zajecia.jakubw.pl/ Dane treningowe (znana decyzja) Klasyfikator. Dane testowe (znana decyzja)

Analiza danych OGÓLNY SCHEMAT. http://zajecia.jakubw.pl/ Dane treningowe (znana decyzja) Klasyfikator. Dane testowe (znana decyzja) Analza danych Dane trenngowe testowe. Algorytm k najblższych sąsadów. Jakub Wróblewsk jakubw@pjwstk.edu.pl http://zajeca.jakubw.pl/ OGÓLNY SCHEMAT Mamy dany zbór danych podzelony na klasy decyzyjne, oraz

Bardziej szczegółowo

parametrów strukturalnych modelu = Y zmienna objaśniana, X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających,

parametrów strukturalnych modelu = Y zmienna objaśniana, X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających, 诲 瞴瞶 瞶 ƭ0 ƭ 瞰 parametrów strukturalnych modelu Y zmienna objaśniana, = + + + + + X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających, α 0, α 1, α 2,,α k parametry strukturalne modelu, k+1 parametrów

Bardziej szczegółowo

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego

Bardziej szczegółowo

Teoria niepewności pomiaru (Rachunek niepewności pomiaru) Rodzaje błędów pomiaru

Teoria niepewności pomiaru (Rachunek niepewności pomiaru) Rodzaje błędów pomiaru Pomary fzyczne - dokonywane tylko ze skończoną dokładnoścą. Powodem - nedoskonałość przyrządów pomarowych neprecyzyjność naszych zmysłów borących udzał w obserwacjach. Podawane samego tylko wynku pomaru

Bardziej szczegółowo

Ekonometria. Zajęcia

Ekonometria. Zajęcia Ekonometria Zajęcia 16.05.2018 Wstęp hipoteza itp. Model gęstości zaludnienia ( model gradientu gęstości ) zakłada, że gęstość zaludnienia zależy od odległości od okręgu centralnego: y t = Ae βx t (1)

Bardziej szczegółowo

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA Powtórka Powtórki Kowiariancja cov xy lub c xy - kierunek zależności Współczynnik korelacji liniowej Pearsona r siła liniowej zależności Istotność

Bardziej szczegółowo

Rozkład dwupunktowy. Rozkład dwupunktowy. Rozkład dwupunktowy x i p i 0 1-p 1 p suma 1

Rozkład dwupunktowy. Rozkład dwupunktowy. Rozkład dwupunktowy x i p i 0 1-p 1 p suma 1 Rozkład dwupunktowy Zmenna losowa przyjmuje tylko dwe wartośc: wartość 1 z prawdopodobeństwem p wartość 0 z prawdopodobeństwem 1- p x p 0 1-p 1 p suma 1 Rozkład dwupunktowy Funkcja rozkładu prawdopodobeństwa

Bardziej szczegółowo

MODELE LINIOWE. Dr Wioleta Drobik

MODELE LINIOWE. Dr Wioleta Drobik MODELE LINIOWE Dr Wioleta Drobik MODELE LINIOWE Jedna z najstarszych i najpopularniejszych metod modelowania Zależność między zbiorem zmiennych objaśniających, a zmienną ilościową nazywaną zmienną objaśnianą

Bardziej szczegółowo

Mikroekonometria 5. Mikołaj Czajkowski Wiktor Budziński

Mikroekonometria 5. Mikołaj Czajkowski Wiktor Budziński Mkroekonometra 5 Mkołaj Czajkowsk Wktor Budzńsk Uogólnone modele lnowe Uogólnone modele lnowe (ang. Generalzed Lnear Models GLM) Różną sę od standardowego MNK na dwa sposoby: Rozkład zmennej objaśnanej

Bardziej szczegółowo

I. Elementy analizy matematycznej

I. Elementy analizy matematycznej WSTAWKA MATEMATYCZNA I. Elementy analzy matematycznej Pochodna funkcj f(x) Pochodna funkcj podaje nam prędkość zman funkcj: df f (x + x) f (x) f '(x) = = lm x 0 (1) dx x Pochodna funkcj podaje nam zarazem

Bardziej szczegółowo

Zaawansowane metody numeryczne

Zaawansowane metody numeryczne Wykład 9. jej modyfkacje. Oznaczena Będzemy rozpatrywać zagadnene rozwązana następującego układu n równań lnowych z n newadomym x 1... x n : a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x

Bardziej szczegółowo

SYSTEMY UCZĄCE SIĘ WYKŁAD 7. KLASYFIKATORY BAYESA. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska.

SYSTEMY UCZĄCE SIĘ WYKŁAD 7. KLASYFIKATORY BAYESA. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska. SYSTEMY UCZĄCE SIĘ WYKŁAD 7. KLASYFIKATORY BAYESA Częstochowa 4 Dr hab. nż. Grzegorz Dudek Wydzał Elektryczny Poltechnka Częstochowska TWIERDZENIE BAYESA Wedza pozyskwana przez metody probablstyczne ma

Bardziej szczegółowo

= σ σ. 5. CML Capital Market Line, Rynkowa Linia Kapitału

= σ σ. 5. CML Capital Market Line, Rynkowa Linia Kapitału 5 CML Catal Market Lne, ynkowa Lna Katału Zbór ortolo o nalny odchylenu standardowy zbór eektywny ozważy ortolo złożone ze wszystkch aktywów stnejących na rynku Załóży, że jest ch N A * P H P Q P 3 * B

Bardziej szczegółowo

Zapis informacji, systemy pozycyjne 1. Literatura Jerzy Grębosz, Symfonia C++ standard. Harvey M. Deitl, Paul J. Deitl, Arkana C++. Programowanie.

Zapis informacji, systemy pozycyjne 1. Literatura Jerzy Grębosz, Symfonia C++ standard. Harvey M. Deitl, Paul J. Deitl, Arkana C++. Programowanie. Zaps nformacj, systemy pozycyjne 1 Lteratura Jerzy Grębosz, Symfona C++ standard. Harvey M. Detl, Paul J. Detl, Arkana C++. Programowane. Zaps nformacj w komputerach Wszystke elementy danych przetwarzane

Bardziej szczegółowo