Statystyka Opisowa 2014 część 2. Katarzyna Lubnauer

Wielkość: px
Rozpocząć pokaz od strony:

Download "Statystyka Opisowa 2014 część 2. Katarzyna Lubnauer"

Transkrypt

1 Statystyka Opsowa 2014 część 2 Katarzyna Lubnauer

2 Lteratura: 1. Statystyka w Zarządzanu Admr D. Aczel 2. Statystyka Opsowa od Podstaw Ewa Waslewska 3. Statystyka, Lucjan Kowalsk. 4. Statystyka opsowa, Meczysław Sobczyk Są trzy rodzaje kłamstw: kłamstwa, przeklęte kłamstwa statystyk. Benjamn Dsrael - premer Welkej Brytan (w latach ) Katarzyna Lubnauer 2

3 Badane zależnośc mędzy dwema cecham analza korelacj. Badając różnego rodzaju zjawska, np. społeczne, ekonomczne, psychologczne, przyrodncze tp. stwerdzamy, ze często jedno z nch jest uwarunkowane dzałanem nnych zjawsk. Zastanawamy sę nad charakterystyką tej zależnośc. Np. Czy cena lodów ma wpływ na ch sprzedaż? Czy temperatura powetrza ma wpływ na sprzedaż lodów? Czy cena samochodów ma wpływ na cenę lodów? Naszym celem jest odpowedź na 4 pytana: Czy mędzy badanym cecham występuje współzależność. Jak jest kształt zależnośc (lnowa, nelnowa). Jaka jest jej sła. Jak jest jej kerunek. Katarzyna Lubnauer 3

4 Głup ludze, ne zawsze pozorna zależność oznacza przyczynę skutek. Katarzyna Lubnauer 4

5 Katarzyna Lubnauer 5

6 Szereg dwucechowe szczegółowe szereg korelacyjny Wek żony X, x Wek męża Y, y Otrzymujemy węc zbór par postac: ( x, y ) gdze: 1,..., n Katarzyna Lubnauer 6

7 Prezentacja grafczna szeregów dwucechowych, dagram korelacyjny: x y Katarzyna Lubnauer 7

8 Prezentacja grafczna szeregów dwucechowych, dagram korelacyjny: x y Katarzyna Lubnauer 8

9 Szereg dwucechowe rozdzelcze x 1 x 2 x 3 x 4 x 5 y1 y2 y3 y4 n n11 12 n 23 n21 n22 n23 n 31 n 32 n 33 n 41 n 42 n 43 n 51 n 52 n 14 n 24 n n n53 n54 Gdze x waranty cechy X, zaś y j waranty cechy Y oraz lczebność pary: x, y j n j Katarzyna Lubnauer 9

10 Przykład: Nech X czas nauk studentów do testu ze SO wyrażony w godznach, zaś Y ocena z testu. Przyjmujemy, że do testu podeszło 100 studentów x1 3 x2 5 x3 7 x4 9 x5 11 y1 2 y2 3 y3 4 y Katarzyna Lubnauer 10

11 Do dalszych analz potrzebne nam będą lczebnośc brzegowe: x 1 x 2 y1 y2 y3 y4 n11 n12 n 13 n21 n22 n23 n n 14 1 n 24 n2 x 3 n 31 n 32 n 33 n 34 n3 x 4 x 5 n 41 n 51 n 42 n 52 n 43 n 44 n53 n54 n4 n5 n 1 n 2 n 3 n 4 n n, n n j j j j Katarzyna Lubnauer 11

12 Przykład: Nech X czas nauk studentów do testu ze SO wyrażony w godznach, zaś Y ocena z testu. Przyjmujemy, że do testu podeszło 100 studentów, szukamy lczebnośc brzegowych. x1 3 x2 5 x3 7 x4 9 x5 11 n j y1 2 y2 3 y3 4 y4 5 n Katarzyna Lubnauer 12

13 Wyróżnamy dwa rodzaje zależnośc mędzy cecham są to: Zależność funkcyjna polegająca na tym, że zmana wartośc cechy X powoduje zmanę wartośc cechy Y Przykład: X podatek, Y cena, można sę spodzewać zależnośc Y = ax+a Zależność statystyczna polegająca na tym, że jednej wartośc cechy X przypada klka wartośc cechy Y Przykład: X wek dzecka w mesącach, Y waga dzec Wek w mesącach X Waga w kg Y 1 3,8 4,8 5,2 2 4, ,9 3 6, ,0 1 7,2 7, Katarzyna Lubnauer 13

14 Katarzyna Lubnauer 14

15 Potrzebujemy mary, która pomogłaby wyrazć słę zależnośc w sposób lczbowy. W celu badana zależnośc mędzy zmennym korzystamy ze współczynnka korelacj Pearsona zdefnowany wzorem: r cov XY, s s X Y cov(x,y) w zależnośc od postac w jakej mamy dane lczy sę z różnych wzorów. Katarzyna Lubnauer 15

16 Dla szeregu szczegółowego (zależność podejrzewana o charakter funkcyjny) na polczene kowarancj odchylena stosujemy wzory: X Y cov XY, n 1 x x y y 1 1 n n 1 sx x x n n 1 sy y y n Wg Excela 2 2, Katarzyna Lubnauer 16

17 X Y cov XY, 4 66 r s s X Y , Katarzyna Lubnauer 17

18 X Y cov XY, r s s X Y , Katarzyna Lubnauer 18

19 Wek w mesącach X Waga w kg Y 1 3,8 4,8 5,2 2 4,9 5,9 6,4 3 6,0 7,2 r cov XY, 8 7 7,4 s s X Y , Katarzyna Lubnauer 19

20 Dla szeregu rozdzelczego (zależność podejrzewana o charakter funkcyjny) na polczene kowarancj stosujemy wzór: cov XY, m k j1 1 n x x y y j j n k 1 s n x x X n 1 m 1 s n y y Y j j n 1 r 0, , x1 3 x2 5 x3 7 x4 9 x5 11 n j y1 2 y2 3 y3 4 y4 5 n Katarzyna Lubnauer 20

21 Interpretacja współczynnka korelacj: r - Współczynnk korelacj Pearsona jest marą symetryczną. Oznacza to, że jest tak sam nezależne, czy badamy zależność X od Y, czy odwrotne. 1 r 1 Odpowada na następujące pytana: Czy mędzy badanym cecham występuje współzależność Jeśl jest blsk, lub równy zero to przyjmuje sę, że mędzy zmennym ne ma zależnośc. Jak jest kształt zależnośc (lnowa, nelnowa) r 1 oznacza zależność lnową Katarzyna Lubnauer 21

22 Jaka jest jej sła r 0,0.2 bardzo słaby zwązek r 0.2,0.4 słaby zwązek r 0.4,0.6 umarkowany zwązek r 0.6,0.8 slny zwązek r 0.8,1.0 bardzo slny zwązek Jak jest jej kerunek r 0 r 0 korelacja ujemna, wzrost jednej zmennej powodował spadek drugej korelacja dodatna, wraz ze wzrostem jednej zmennej wzrasta druga Katarzyna Lubnauer 22

23 Przykładowe dagramy z podaną wartoścą korelacj Pearsona Katarzyna Lubnauer 23

24 Współczynnk korelacj rang Spearmana Współczynnk rang Spearmana jest marą statystyczną służącą do badana zależnośc, korelacj mędzy dwema cecham populacj, który stosujemy gdy: Mamy do czynena z sytuacją, gdy jedna z cech jest jakoścowa (nemerzalna), ale dająca sę uporządkować (porządkowa), a druga cecha jest merzalna. Gdy mamy dwe jakoścowe (nemerzalne), ale dające sę uporządkować Gdy mamy dwe cechy merzalne nedużą lczebność próby, zaś współczynnk korelacj Pearsona zakłócają wartośc odskakujące Musmy najperw zdefnować pojęce rangowana czyl przypsywana warantom cechy X, oraz cechy Y rang wynkających z kolejnośc w uporządkowanym szeregu szczegółowym. Katarzyna Lubnauer 24

25 Rangowane odbywa sę po uporządkowanu warantów cechy od najmnejszej do najwększej, następne przypsujemy każdemu warantow numer, który zajmuje w cągu. Jeśl klka warantów jest równe to rangą jest średną arytmetyczną kolejnych numerów przypadających na ten warant. Przykład: 2,4; 3,5; 3,5; 5; 2,4; 2,4; 3,5; 4; 5; 2,4 X x kolejność Rang r x 2, ,5 Uporządkowane kolejno z przypsanym rangam wyglądają tak, gdze : r x oznacza rangę warantu: 2, ,5 2, ,5 2, ,5 3, , , x , ,5 Katarzyna Lubnauer 25

26 Jeżel teraz mamy dwe cechy odpowedno X Y mające waranty: x przypsujemy m odpowedno rang:, y r x, r y To współczynnk rang Spearmana lczymy ze wzoru n 2 6 d r 1 gdze d r r nn ( 1) 1 s 2 x y Katarzyna Lubnauer 26

27 Uwaga, dla różnc rang zawsze zachodz zwązek: n 1 d 0 Ponadto współczynnk 1 r 1 s I co za tym dze: r s 1 Katarzyna Lubnauer 27

28 Przykład Badamy zależność mędzy wykształcenem, a dnam urlopu w czase roku: X Y podstawowe 24 średne 18 zasadncze zawodowe 17 wyższe magsterske 10 wyższe lcencjacke 9 podstawowe 22 zasadncze zawodowe 15 wyższe lcencjacke 8 podstawowe 23 wyższe magsterske 7 Katarzyna Lubnauer 28

29 Najperw wyznaczymy rang dla cechy jakoścowej, porządkowej jaką jest wykształcene. Musmy teraz przypsać rang, w tym celu najperw porządkujemy waranty: Teraz przypsujemy warantom rang, zgodne ze średną arytmetyczną numerów. Waranty Numery podstawowe 1-3 podstawowe 1-3 podstawowe 1-3 zasadncze zawodowe 4-5 zasadncze zawodowe 4-5 średne 6 wyższe lcencjacke 7-8 wyższe lcencjacke 7-8 wyższe magsterske 9-10 wyższe magsterske 9-10 Waranty Rang podstawowe 2 średne 6 zasadncze zawodowe 4,5 wyższe magsterske 9,5 wyższe lcencjacke 7,5 podstawowe 2 zasadncze zawodowe 4,5 wyższe lcencjacke 7,5 podstawowe 2 wyższe magsterske 9,5 Katarzyna Lubnauer 29

30 Teraz wyznaczymy rang dla cechy loścowej, jaką jest lczba dn wolnych. Musmy teraz przypsać rang, w tym celu najperw porządkujemy waranty: Teraz przypsujemy warantom rang, zgodne ze średną arytmetyczną numerów. Waranty Numery Waranty Rang Katarzyna Lubnauer 30

31 Cecha X Rang cechy X Cecha Y Rang cechy Y Różnca rang Kwadrat różncy rang x r x y ry d 2 d podstawowe średne zasadncze zawodowe 4, ,5 2,25 wyższe magsterske 9, ,5 30,25 wyższe lcencjacke 7, ,5 20,25 podstawowe zasadncze zawodowe 4, ,5 0,25 wyższe lcencjacke 7, ,5 30,25 podstawowe wyższe magsterske 9, ,5 72,25 suma 0 305,5 r s n 2 6 d 1 1 0, nn ( 1) Katarzyna Lubnauer 31

32 Japończycy jedzą bardzo mało tłuszczu cerpą na mnej ataków serca nż Brytyjczycy czy Amerykane. Z drugej strony, Francuz jedzą dużo tłuszczu, a także cerpą na mnej ataków serca nż Brytyjczycy czy Amerykane. Japończycy pją bardzo mało czerwonego wna cerpą na mnej ataków serca nż Brytyjczycy czy Amerykane. Włos pją nadmerne lośc czerwonego wna, a także cerpą na mnej ataków serca nż Brytyjczycy czy Amerykane. Wnosk: Jedz pj co chcesz. To mówene po angelsku, że cę zabje. Katarzyna Lubnauer 32

Badanie współzależności dwóch cech ilościowych X i Y. Analiza korelacji prostej

Badanie współzależności dwóch cech ilościowych X i Y. Analiza korelacji prostej Badane współzależnośc dwóch cech loścowych X Y. Analza korelacj prostej Kody znaków: żółte wyróżnene nowe pojęce czerwony uwaga kursywa komentarz 1 Zagadnena 1. Zwązek determnstyczny (funkcyjny) a korelacyjny.

Bardziej szczegółowo

W praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np.

W praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np. Wykład 7 Uwaga: W praktyce często zdarza sę, że wynk obu prób możemy traktować jako wynk pomarów na tym samym elemence populacj np. wynk x przed wynk y po operacj dla tego samego osobnka. Należy wówczas

Bardziej szczegółowo

Statystyka Opisowa 2014 część 1. Katarzyna Lubnauer

Statystyka Opisowa 2014 część 1. Katarzyna Lubnauer Statystyka Opsowa 2014 część 1 Katarzyna Lubnauer Lteratura: 1. Statystyka w Zarządzanu Admr D. Aczel 2. Statystyka Opsowa od Podstaw Ewa Waslewska 3. Statystyka, Lucjan Kowalsk. 4. Statystyka opsowa,

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH

STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH 1 Test zgodnośc χ 2 Hpoteza zerowa H 0 ( Cecha X populacj ma rozkład o dystrybuance F). Hpoteza alternatywna H1( Cecha X populacj

Bardziej szczegółowo

Nieparametryczne Testy Istotności

Nieparametryczne Testy Istotności Neparametryczne Testy Istotnośc Wzory Neparametryczne testy stotnośc schemat postępowana punkt po punkce Formułujemy hpotezę główną odnoszącą sę do: zgodnośc populacj generalnej z jakmś rozkładem, lub:

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1 KURS STATYSTYKA Lekcja 6 Regresja lne regresj ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowedź (tylko jedna jest prawdzwa). Pytane 1 Funkcja regresj I rodzaju cechy Y zależnej

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 7

Stanisław Cichocki. Natalia Nehrebecka. Wykład 7 Stansław Cchock Natala Nehrebecka Wykład 7 1 1. Zmenne cągłe a zmenne dyskretne 2. Interpretacja parametrów przy zmennych dyskretnych 1. Zmenne cągłe a zmenne dyskretne 2. Interpretacja parametrów przy

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6 Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Interpretacja parametrów przy zmennych objaśnających cągłych Semelastyczność 2. Zastosowane modelu potęgowego Model potęgowy 3. Zmenne cągłe za zmenne dyskretne

Bardziej szczegółowo

Procedura normalizacji

Procedura normalizacji Metody Badań w Geograf Społeczno Ekonomcznej Procedura normalzacj Budowane macerzy danych geografcznych mgr Marcn Semczuk Zakład Przedsęborczośc Gospodark Przestrzennej Instytut Geograf Unwersytet Pedagogczny

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 4

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 4 Stansław Cchock Natala Nehrebecka Zajęca 4 1. Interpretacja parametrów przy zmennych zerojedynkowych Zmenne 0-1 Interpretacja przy zmennej 0 1 w modelu lnowym względem zmennych objaśnających Interpretacja

Bardziej szczegółowo

Zjawiska masowe takie, które mogą wystąpid nieograniczoną ilośd razy. Wyrazów Obcych)

Zjawiska masowe takie, które mogą wystąpid nieograniczoną ilośd razy. Wyrazów Obcych) Statystyka - nauka zajmująca sę metodam badana przedmotów zjawsk w ch masowych przejawach ch loścową lub jakoścową analzą z punktu wdzena nauk, do której zakresu należą.

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6 Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Zastosowane modelu potęgowego Przekształcene Boxa-Coxa 2. Zmenne cągłe za zmenne dyskretne 3. Interpretacja parametrów przy zmennych dyskretnych 1. Zastosowane

Bardziej szczegółowo

Natalia Nehrebecka. Zajęcia 4

Natalia Nehrebecka. Zajęcia 4 St ł Cchock Stansław C h k Natala Nehrebecka Zajęca 4 1. Interpretacja parametrów przy zmennych zerojedynkowych Zmenne 0 1 Interpretacja przy zmennej 0 1 w modelu lnowym względem zmennych objaśnających

Bardziej szczegółowo

65120/ / / /200

65120/ / / /200 . W celu zbadana zależnośc pomędzy płcą klentów ch preferencjam, wylosowano kobet mężczyzn zadano m pytane: uważasz za lepszy produkt frmy A czy B? Wynk były następujące: Odpowedź Kobety Mężczyźn Wolę

Bardziej szczegółowo

Badanie współzaleŝności dwóch cech ilościowych X i Y. Analiza korelacji prostej. Badanie zaleŝności dwóch cech ilościowych. Analiza regresji prostej

Badanie współzaleŝności dwóch cech ilościowych X i Y. Analiza korelacji prostej. Badanie zaleŝności dwóch cech ilościowych. Analiza regresji prostej Badane współzaleŝnośc dwóch cech loścowych X Y. Analza korelacj prostej Badane zaleŝnośc dwóch cech loścowych. Analza regresj prostej Kody znaków: Ŝółte wyróŝnene nowe pojęce czerwony uwaga kursywa komentarz

Bardziej szczegółowo

Analiza danych. Analiza danych wielowymiarowych. Regresja liniowa. Dyskryminacja liniowa. PARA ZMIENNYCH LOSOWYCH

Analiza danych. Analiza danych wielowymiarowych. Regresja liniowa. Dyskryminacja liniowa.   PARA ZMIENNYCH LOSOWYCH Analza danych Analza danych welowymarowych. Regresja lnowa. Dyskrymnacja lnowa. Jakub Wróblewsk jakubw@pjwstk.edu.pl http://zajeca.jakubw.pl/ PARA ZMIENNYCH LOSOWYCH Parę zmennych losowych X, Y możemy

Bardziej szczegółowo

STATYSTYKA OPISOWA. Dr Alina Gleska. 12 listopada Instytut Matematyki WE PP

STATYSTYKA OPISOWA. Dr Alina Gleska. 12 listopada Instytut Matematyki WE PP STATYSTYKA OPISOWA Dr Alina Gleska Instytut Matematyki WE PP 12 listopada 2017 1 Analiza współzależności dwóch cech 2 Jednostka zbiorowości - para (X,Y ). Przy badaniu korelacji nie ma znaczenia, która

Bardziej szczegółowo

Zadane 1: Wyznacz średne ruchome 3-okresowe z następujących danych obrazujących zużyce energ elektrycznej [kwh] w pewnym zakładze w mesącach styczeń - lpec 1998 r.: 400; 410; 430; 40; 400; 380; 370. Zadane

Bardziej szczegółowo

Analiza współzależności zjawisk. dr Marta Kuc-Czarnecka

Analiza współzależności zjawisk. dr Marta Kuc-Czarnecka Analiza współzależności zjawisk dr Marta Kuc-Czarnecka Wprowadzenie Prawidłowości statystyczne mają swoje przyczyny, w związku z tym dla poznania całokształtu badanego zjawiska potrzebna jest analiza z

Bardziej szczegółowo

Współczynnik korelacji liniowej oraz funkcja regresji liniowej dwóch zmiennych

Współczynnik korelacji liniowej oraz funkcja regresji liniowej dwóch zmiennych Współcznnk korelacj lnowej oraz funkcja regresj lnowej dwóch zmennch S S r, cov współcznnk determnacj R r Współcznnk ndetermnacj ϕ r Zarówno współcznnk determnacj jak ndetermnacj po przemnożenu przez 00

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6 Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Zastosowane modelu potęgowego Model potęgowy Przekształcene Boxa-Coxa 2. Zmenne cągłe za zmenne dyskretne 3. Interpretacja parametrów przy zmennych dyskretnych

Bardziej szczegółowo

ANALIZA KORELACJI WYDATKÓW NA KULTURĘ Z BUDŻETU GMIN ORAZ WYKSZTAŁCENIA RADNYCH

ANALIZA KORELACJI WYDATKÓW NA KULTURĘ Z BUDŻETU GMIN ORAZ WYKSZTAŁCENIA RADNYCH Potr Mchalsk Węzeł Centralny OŻK-SB 25.12.2013 rok ANALIZA KORELACJI WYDATKÓW NA KULTURĘ Z BUDŻETU GMIN ORAZ WYKSZTAŁCENIA RADNYCH Celem ponższej analzy jest odpowedź na pytane: czy wykształcene radnych

Bardziej szczegółowo

Analiza korelacji i regresji

Analiza korelacji i regresji Analza korelacj regresj Zad. Pewen zakład produkcyjny zatrudna pracownków fzycznych. Ich wydajność pracy (Y w szt./h) oraz mesęczne wynagrodzene (X w tys. zł) przedstawa ponższa tabela: Pracownk y x A

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA WYKŁAD 15. ALGORYTMY GENETYCZNE Częstochowa 014 Dr hab. nż. Grzegorz Dudek Wydzał Elektryczny Poltechnka Częstochowska TERMINOLOGIA allele wartośc, waranty genów, chromosom - (naczej

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 1 Statystyka opisowa ZADANIE DOMOWE. www.etrapez.pl Strona 1

KURS STATYSTYKA. Lekcja 1 Statystyka opisowa ZADANIE DOMOWE. www.etrapez.pl Strona 1 KURS STATYSTYKA Lekcja 1 Statystyka opsowa ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowedź (tylko jedna jest prawdzwa). Pytane 1 W statystyce opsowej mamy pełne nformacje

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 7

Stanisław Cichocki. Natalia Nehrebecka. Wykład 7 Stansław Cchock Natala Nehrebecka Wykład 7 . Zmenne dyskretne Kontrasty: efekty progowe, kontrasty w odchylenach Interakcje. Przyblżane model nelnowych Stosowane do zmennych dyskretnych o uporządkowanych

Bardziej szczegółowo

Natalia Nehrebecka. Zajęcia 3

Natalia Nehrebecka. Zajęcia 3 St ł Cchock Stansław C h k Natala Nehrebecka Zajęca 3 1. Dobroć dopasowana równana regresj. Współczynnk determnacj R Dk Dekompozycja warancj zmennej zależnej ż Współczynnk determnacj R. Zmenne cągłe a

Bardziej szczegółowo

Statystyka. Wykład 8. Magdalena Alama-Bućko. 23 kwietnia Magdalena Alama-Bućko Statystyka 23 kwietnia / 38

Statystyka. Wykład 8. Magdalena Alama-Bućko. 23 kwietnia Magdalena Alama-Bućko Statystyka 23 kwietnia / 38 Statystyka Wykład 8 Magdalena Alama-Bućko 23 kwietnia 2017 Magdalena Alama-Bućko Statystyka 23 kwietnia 2017 1 / 38 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia

Bardziej szczegółowo

SIGMA KWADRAT CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY

SIGMA KWADRAT CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY SIGMA KWADRAT CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY Opsowa analza struktury zjawsk masowych Demografa statystyka PROJEKT DOFINANSOWANY ZE ŚRODKÓW NARODOWEGO BANKU POLSKIEGO URZĄD STATYSTYCZNY

Bardziej szczegółowo

Korelacja krzywoliniowa i współzależność cech niemierzalnych

Korelacja krzywoliniowa i współzależność cech niemierzalnych Korelacja krzywoliniowa i współzależność cech niemierzalnych Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki Szczecińskiej

Bardziej szczegółowo

Statystyka Opisowa 2014 część 3. Katarzyna Lubnauer

Statystyka Opisowa 2014 część 3. Katarzyna Lubnauer Statystyka Opsowa 014 część 3 Katarzya Lubauer Lteratura: 1. Statystyka w Zarządzau Admr D. Aczel. Statystyka Opsowa od Podstaw Ewa Waslewska 3. Statystyka, Lucja Kowalsk. 4. Statystyka opsowa, Meczysław

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 7

Stanisław Cichocki. Natalia Nehrebecka. Wykład 7 Stansław Cchock Natala Nehrebecka Wykład 7 1 1. Interakcje 2. Przyblżane model nelnowych 3. Założena KMRL 1. Interakcje 2. Przyblżane model nelnowych 3. Założena KMRL W standardowym modelu lnowym zakładamy,

Bardziej szczegółowo

ELEKTROCHEMIA. ( i = i ) Wykład II b. Nadnapięcie Równanie Buttlera-Volmera Równania Tafela. Wykład II. Równowaga dynamiczna i prąd wymiany

ELEKTROCHEMIA. ( i = i ) Wykład II b. Nadnapięcie Równanie Buttlera-Volmera Równania Tafela. Wykład II. Równowaga dynamiczna i prąd wymiany Wykład II ELEKTROCHEMIA Wykład II b Nadnapęce Równane Buttlera-Volmera Równana Tafela Równowaga dynamczna prąd wymany Jeśl układ jest rozwarty przez elektrolzer ne płyne prąd, to ne oznacza wcale, że na

Bardziej szczegółowo

Egzamin ze statystyki/ Studia Licencjackie Stacjonarne/ Termin I /czerwiec 2010

Egzamin ze statystyki/ Studia Licencjackie Stacjonarne/ Termin I /czerwiec 2010 Egzamn ze statystyk/ Studa Lcencjacke Stacjonarne/ Termn /czerwec 2010 Uwaga: Przy rozwązywanu zadań, jeśl to koneczne, naleŝy przyjąć pozom stotnośc 0,01 współczynnk ufnośc 0,99 Zadane 1 PonŜsze zestawene

Bardziej szczegółowo

Statystyka. Wykład 7. Magdalena Alama-Bućko. 16 kwietnia Magdalena Alama-Bućko Statystyka 16 kwietnia / 35

Statystyka. Wykład 7. Magdalena Alama-Bućko. 16 kwietnia Magdalena Alama-Bućko Statystyka 16 kwietnia / 35 Statystyka Wykład 7 Magdalena Alama-Bućko 16 kwietnia 2017 Magdalena Alama-Bućko Statystyka 16 kwietnia 2017 1 / 35 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia

Bardziej szczegółowo

Natalia Nehrebecka. Wykład 2

Natalia Nehrebecka. Wykład 2 Natala Nehrebecka Wykład . Model lnowy Postad modelu lnowego Zaps macerzowy modelu lnowego. Estymacja modelu Wartośd teoretyczna (dopasowana) Reszty 3. MNK przypadek jednej zmennej . Model lnowy Postad

Bardziej szczegółowo

Metody predykcji analiza regresji

Metody predykcji analiza regresji Metody predykcj analza regresj TPD 008/009 JERZY STEFANOWSKI Instytut Informatyk Poltechnka Poznańska Przebeg wykładu. Predykcja z wykorzystanem analzy regresj.. Przypomnene wadomośc z poprzednch przedmotów..

Bardziej szczegółowo

Weryfikacja hipotez dla wielu populacji

Weryfikacja hipotez dla wielu populacji Weryfkacja hpotez dla welu populacj Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Intelgencj Metod Matematycznych Wydzał Informatyk Poltechnk Szczecńskej 5. Parametryczne testy stotnośc w

Bardziej szczegółowo

Statystyka. Wykład 8. Magdalena Alama-Bućko. 10 kwietnia Magdalena Alama-Bućko Statystyka 10 kwietnia / 31

Statystyka. Wykład 8. Magdalena Alama-Bućko. 10 kwietnia Magdalena Alama-Bućko Statystyka 10 kwietnia / 31 Statystyka Wykład 8 Magdalena Alama-Bućko 10 kwietnia 2017 Magdalena Alama-Bućko Statystyka 10 kwietnia 2017 1 / 31 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia

Bardziej szczegółowo

ZAJĘCIA 3. Pozycyjne miary dyspersji, miary asymetrii, spłaszczenia i koncentracji

ZAJĘCIA 3. Pozycyjne miary dyspersji, miary asymetrii, spłaszczenia i koncentracji ZAJĘCIA Pozycyjne ary dyspersj, ary asyetr, spłaszczena koncentracj MIARY DYSPERSJI: POZYCYJNE, BEZWZGLĘDNE Rozstęp dwartkowy (ędzykwartylowy) Rozstęp dwartkowy określa rozpętośd tej częśc obszaru zennośc

Bardziej szczegółowo

R-PEARSONA Zależność liniowa

R-PEARSONA Zależność liniowa R-PEARSONA Zależność liniowa Interpretacja wyników: wraz ze wzrostem wartości jednej zmiennej (np. zarobków) liniowo rosną wartości drugiej zmiennej (np. kwoty przeznaczanej na wakacje) czyli np. im wyższe

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA. Wkład wstępn. Teora prawdopodobeństwa element kombnatork. Zmenne losowe ch rozkład 3. Populacje prób danch, estmacja parametrów 4. Testowane hpotez statstcznch 5. Test parametrczne

Bardziej szczegółowo

Statystyka. Zmienne losowe

Statystyka. Zmienne losowe Statystyka Zmenne losowe Zmenna losowa Zmenna losowa jest funkcją, w której każdej wartośc R odpowada pewen podzbór zboru będący zdarzenem losowym. Zmenna losowa powstaje poprzez przyporządkowane każdemu

Bardziej szczegółowo

Statystyka. Wykład 7. Magdalena Alama-Bućko. 3 kwietnia Magdalena Alama-Bućko Statystyka 3 kwietnia / 36

Statystyka. Wykład 7. Magdalena Alama-Bućko. 3 kwietnia Magdalena Alama-Bućko Statystyka 3 kwietnia / 36 Statystyka Wykład 7 Magdalena Alama-Bućko 3 kwietnia 2017 Magdalena Alama-Bućko Statystyka 3 kwietnia 2017 1 / 36 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia

Bardziej szczegółowo

X Y 4,0 3,3 8,0 6,8 12,0 11,0 16,0 15,2 20,0 18,9

X Y 4,0 3,3 8,0 6,8 12,0 11,0 16,0 15,2 20,0 18,9 Zadanie W celu sprawdzenia, czy pipeta jest obarczona błędem systematycznym stałym lub zmiennym wykonano szereg pomiarów przy różnych ustawieniach pipety. Wyznacz równanie regresji liniowej, które pozwoli

Bardziej szczegółowo

V. WPROWADZENIE DO PRZESTRZENI FUNKCYJNYCH

V. WPROWADZENIE DO PRZESTRZENI FUNKCYJNYCH Krs na Stdach Doktoranckch Poltechnk Wrocławskej wersja: lty 007 34 V. WPROWADZENIE DO PRZESTRZENI FUNKCYJNYCH. Zbór np. lczb rzeczywstych a, b elementy zbor A a A b A, podzbór B zbor A : B A, sma zborów

Bardziej szczegółowo

Natalia Nehrebecka Stanisław Cichocki. Wykład 10

Natalia Nehrebecka Stanisław Cichocki. Wykład 10 Natala Nehrebecka Stansław Cchock Wykład 10 1 1. Testy dagnostyczne 2. Testowane prawdłowośc formy funkcyjnej modelu 3. Testowane normalnośc składnków losowych 4. Testowane stablnośc parametrów 5. Testowane

Bardziej szczegółowo

Pojęcie korelacji. Korelacja (współzależność cech) określa wzajemne powiązania pomiędzy wybranymi zmiennymi.

Pojęcie korelacji. Korelacja (współzależność cech) określa wzajemne powiązania pomiędzy wybranymi zmiennymi. Pojęcie korelacji Korelacja (współzależność cech) określa wzajemne powiązania pomiędzy wybranymi zmiennymi. Charakteryzując korelację dwóch cech podajemy dwa czynniki: kierunek oraz siłę. Korelacyjne wykresy

Bardziej szczegółowo

METODA UNITARYZACJI ZEROWANEJ Porównanie obiektów przy ocenie wielokryterialnej. Ranking obiektów.

METODA UNITARYZACJI ZEROWANEJ Porównanie obiektów przy ocenie wielokryterialnej. Ranking obiektów. Opracowane: Dorota Mszczyńska METODA UNITARYZACJI ZEROWANEJ Porównane obektów przy ocene welokryteralnej. Rankng obektów. Porównane wybranych obektów (warantów decyzyjnych) ze względu na różne cechy (krytera)

Bardziej szczegółowo

) będą niezależnymi zmiennymi losowymi o tym samym rozkładzie normalnym z następującymi parametrami: nieznaną wartością 1 4

) będą niezależnymi zmiennymi losowymi o tym samym rozkładzie normalnym z następującymi parametrami: nieznaną wartością 1 4 Zadane. Nech ( X, Y ),( X, Y ), K,( X, Y n n ) będą nezależnym zmennym losowym o tym samym rozkładze normalnym z następującym parametram: neznaną wartoścą oczekwaną EX = EY = m, warancją VarX = VarY =

Bardziej szczegółowo

Analiza współzależności dwóch cech I

Analiza współzależności dwóch cech I Analiza współzależności dwóch cech I Współzależność dwóch cech W tym rozdziale pokażemy metody stosowane dla potrzeb wykrywania zależności lub współzależności między dwiema cechami. W celu wykrycia tych

Bardziej szczegółowo

Ntli Natalia Nehrebecka. Dariusz Szymański. Zajęcia 4

Ntli Natalia Nehrebecka. Dariusz Szymański. Zajęcia 4 Ntl Natala Nehrebecka Darusz Szymańsk Zajęca 4 1 1. Zmenne dyskretne 3. Modele z nterakcjam 2. Przyblżane model dlnelnowych 2 Zmenne dyskretne Zmenne nomnalne Zmenne uporządkowane 3 Neco bardzej skomplkowana

Bardziej szczegółowo

Minister Edukacji Narodowej Pani Katarzyna HALL Ministerstwo Edukacji Narodowej al. J. Ch. Szucha 25 00-918 Warszawa Dnia 03 czerwca 2009 r.

Minister Edukacji Narodowej Pani Katarzyna HALL Ministerstwo Edukacji Narodowej al. J. Ch. Szucha 25 00-918 Warszawa Dnia 03 czerwca 2009 r. Mnster Edukacj arodowej Pan Katarzyna HALL Mnsterstwo Edukacj arodowej al. J. Ch. Szucha 25 00-918 arszawa Dna 03 czerwca 2009 r. TEMAT: Propozycja zmany art. 30a ustawy Karta auczycela w forme lstu otwartego

Bardziej szczegółowo

Analiza współzależności zjawisk

Analiza współzależności zjawisk Analiza współzależności zjawisk Informacje ogólne Jednostki tworzące zbiorowość statystyczną charakteryzowane są zazwyczaj za pomocą wielu cech zmiennych, które nierzadko pozostają ze sobą w pewnym związku.

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący

Bardziej szczegółowo

I. Elementy analizy matematycznej

I. Elementy analizy matematycznej WSTAWKA MATEMATYCZNA I. Elementy analzy matematycznej Pochodna funkcj f(x) Pochodna funkcj podaje nam prędkość zman funkcj: df f (x + x) f (x) f '(x) = = lm x 0 (1) dx x Pochodna funkcj podaje nam zarazem

Bardziej szczegółowo

0 0,2 0, p 0,1 0,2 0,5 0, p 0,3 0,1 0,2 0,4

0 0,2 0, p 0,1 0,2 0,5 0, p 0,3 0,1 0,2 0,4 Zad. 1. Dana jest unkcja prawdopodobeństwa zmennej losowej X -5-1 3 8 p 1 1 c 1 Wyznaczyć: a. stałą c b. wykres unkcj prawdopodobeństwa jej hstogram c. dystrybuantę jej wykres d. prawdopodobeństwa: P (

Bardziej szczegółowo

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com Analiza korelacji i regresji KORELACJA zależność liniowa Obserwujemy parę cech ilościowych (X,Y). Doświadczenie jest tak pomyślane, aby obserwowane pary cech X i Y (tzn i ta para x i i y i dla różnych

Bardziej szczegółowo

Analiza zależności zmiennych ilościowych korelacja i regresja

Analiza zależności zmiennych ilościowych korelacja i regresja Analza zależnośc zmennych loścowych korelacja regresja JERZY STEFANOWSKI Instytut Informatyk Poltechnka Poznańska Plan wykładu 1. Lnowa zależność mędzy dwoma zmennym: Prosta regresja Metoda najmnejszych

Bardziej szczegółowo

Diagnostyka układów kombinacyjnych

Diagnostyka układów kombinacyjnych Dagnostyka układów kombnacyjnych 1. Wprowadzene Dagnostyka obejmuje: stwerdzene stanu układu, systemu lub ogólne sec logcznej. Jest to tzw. kontrola stanu wykrywająca czy dzałane sec ne jest zakłócane

Bardziej szczegółowo

Plan wykładu: Typowe dane. Jednoczynnikowa Analiza wariancji. Zasada: porównać zmienność pomiędzy i wewnątrz grup

Plan wykładu: Typowe dane. Jednoczynnikowa Analiza wariancji. Zasada: porównać zmienność pomiędzy i wewnątrz grup Jednoczynnkowa Analza Waranc (ANOVA) Wykład 11 Przypomnene: wykłady zadana kursu były zaczerpnęte z podręcznków: Statystyka dla studentów kerunków techncznych przyrodnczych, J. Koronack, J. Melnczuk, WNT

Bardziej szczegółowo

TESTY NORMALNOŚCI. ( Cecha X populacji ma rozkład normalny). Hipoteza alternatywna H1( Cecha X populacji nie ma rozkładu normalnego).

TESTY NORMALNOŚCI. ( Cecha X populacji ma rozkład normalny). Hipoteza alternatywna H1( Cecha X populacji nie ma rozkładu normalnego). TESTY NORMALNOŚCI Test zgodośc Hpoteza zerowa H 0 ( Cecha X populacj ma rozkład ormaly). Hpoteza alteratywa H1( Cecha X populacj e ma rozkładu ormalego). Weryfkacja powyższych hpotez za pomocą tzw. testu

Bardziej szczegółowo

Zestaw zadań 4: Przestrzenie wektorowe i podprzestrzenie. Liniowa niezależność. Sumy i sumy proste podprzestrzeni.

Zestaw zadań 4: Przestrzenie wektorowe i podprzestrzenie. Liniowa niezależność. Sumy i sumy proste podprzestrzeni. Zestaw zadań : Przestrzene wektorowe podprzestrzene. Lnowa nezależność. Sumy sumy proste podprzestrzen. () Wykazać, że V = C ze zwykłym dodawanem jako dodawanem wektorów operacją mnożena przez skalar :

Bardziej szczegółowo

KORELACJE I REGRESJA LINIOWA

KORELACJE I REGRESJA LINIOWA KORELACJE I REGRESJA LINIOWA Korelacje i regresja liniowa Analiza korelacji: Badanie, czy pomiędzy dwoma zmiennymi istnieje zależność Obie analizy się wzajemnie przeplatają Analiza regresji: Opisanie modelem

Bardziej szczegółowo

Problemy jednoczesnego testowania wielu hipotez statystycznych i ich zastosowania w analizie mikromacierzy DNA

Problemy jednoczesnego testowania wielu hipotez statystycznych i ich zastosowania w analizie mikromacierzy DNA Problemy jednoczesnego testowana welu hpotez statystycznych ch zastosowana w analze mkromacerzy DNA Konrad Furmańczyk Katedra Zastosowań Matematyk SGGW Plan referatu Testowane w analze mkromacerzy DNA

Bardziej szczegółowo

Zależność. przyczynowo-skutkowa, symptomatyczna, pozorna (iluzoryczna),

Zależność. przyczynowo-skutkowa, symptomatyczna, pozorna (iluzoryczna), Zależność przyczynowo-skutkowa, symptomatyczna, pozorna (iluzoryczna), funkcyjna stochastyczna Korelacja brak korelacji korelacja krzywoliniowa korelacja dodatnia korelacja ujemna Szereg korelacyjny numer

Bardziej szczegółowo

Analiza Współzależności

Analiza Współzależności Statystyka Opisowa z Demografią oraz Biostatystyka Analiza Współzależności Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-300 Elblag oraz Biostatystyka

Bardziej szczegółowo

Statystyka Inżynierska

Statystyka Inżynierska Statystyka Inżynerska dr hab. nż. Jacek Tarasuk AGH, WFIS 013 Wykład DYSKRETNE I CIĄGŁE ROZKŁADY JEDNOWYMIAROWE Zmenna losowa, Funkcja rozkładu, Funkcja gęstośc, Dystrybuanta, Charakterystyk zmennej, Funkcje

Bardziej szczegółowo

Korelacja oznacza współwystępowanie, nie oznacza związku przyczynowo-skutkowego

Korelacja oznacza współwystępowanie, nie oznacza związku przyczynowo-skutkowego Korelacja oznacza współwystępowanie, nie oznacza związku przyczynowo-skutkowego Współczynnik korelacji opisuje siłę i kierunek związku. Jest miarą symetryczną. Im wyższa korelacja tym lepiej potrafimy

Bardziej szczegółowo

ĆWICZENIE 11 ANALIZA KORELACJI I REGRESJI

ĆWICZENIE 11 ANALIZA KORELACJI I REGRESJI ĆWICZENIE 11 ANALIZA KORELACJI I REGRESJI Korelacja 1. Współczynnik korelacji 2. Współczynnik korelacji liniowej definicja 3. Estymacja współczynnika korelacji 4. Testy istotności współczynnika korelacji

Bardziej szczegółowo

ANALIZA PORÓWNAWCZA WYNIKÓW UZYSKANYCH ZA POMOCĄ MIAR SYNTETYCZNYCH: M ORAZ PRZY ZASTOSOWANIU METODY UNITARYZACJI ZEROWANEJ

ANALIZA PORÓWNAWCZA WYNIKÓW UZYSKANYCH ZA POMOCĄ MIAR SYNTETYCZNYCH: M ORAZ PRZY ZASTOSOWANIU METODY UNITARYZACJI ZEROWANEJ METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XVI/3, 2015, str. 248 257 ANALIZA PORÓWNAWCZA WYNIKÓW UZYSKANYCH ZA POMOCĄ MIAR SYNTETYCZNYCH: M ORAZ PRZY ZASTOSOWANIU METODY UNITARYZACJI ZEROWANEJ Sławomr

Bardziej szczegółowo

Cechy X, Y są dowolnego typu: Test Chi Kwadrat niezależności. Łączny rozkład cech X, Y jest normalny: Test współczynnika korelacji Pearsona

Cechy X, Y są dowolnego typu: Test Chi Kwadrat niezależności. Łączny rozkład cech X, Y jest normalny: Test współczynnika korelacji Pearsona Badanie zależności między cechami Obserwujemy dwie cechy: X oraz Y Obiekt (X, Y ) H 0 : Cechy X oraz Y są niezależne Próba: (X 1, Y 1 ),..., (X n, Y n ) Cechy X, Y są dowolnego typu: Test Chi Kwadrat niezależności

Bardziej szczegółowo

Regresja liniowa i nieliniowa

Regresja liniowa i nieliniowa Metody prognozowana: Regresja lnowa nelnowa Dr nż. Sebastan Skoczypec Zmenna losowa Zmenna losowa X zmenna, która w wynku pewnego dośwadczena przyjmuje z pewnym prawdopodobeństwem wartość z określonego

Bardziej szczegółowo

Analiza struktury zbiorowości statystycznej

Analiza struktury zbiorowości statystycznej Analza struktury zborowośc statystycznej.analza tendencj centralnej. Średne klasyczne Średna arytmetyczna jest parametrem abstrakcyjnym. Wyraża przecętny pozom badanej zmennej (cechy) w populacj generalnej:

Bardziej szczegółowo

Natalia Nehrebecka. Dariusz Szymański

Natalia Nehrebecka. Dariusz Szymański Natala Nehrebecka Darusz Szymańsk . Sprawy organzacyjne Zasady zalczena Ćwczena Lteratura. Czym zajmuje sę ekonometra? Model ekonometryczny 3. Model lnowy Postać modelu lnowego Zaps macerzowy modelu dl

Bardziej szczegółowo

Hipotezy o istotności oszacowao parametrów zmiennych objaśniających ˆ ) ˆ

Hipotezy o istotności oszacowao parametrów zmiennych objaśniających ˆ ) ˆ WERYFIKACJA HIPOTEZY O ISTOTNOŚCI OCEN PARAMETRÓW STRUKTURALNYCH MODELU Hpoezy o sonośc oszacowao paramerów zmennych objaśnających Tesowane sonośc paramerów zmennych objaśnających sprowadza sę do nasępującego

Bardziej szczegółowo

ZJAZD 4. gdzie E(x) jest wartością oczekiwaną x

ZJAZD 4. gdzie E(x) jest wartością oczekiwaną x ZJAZD 4 KORELACJA, BADANIE NIEZALEŻNOŚCI, ANALIZA REGRESJI Analiza korelacji i regresji jest działem statystyki zajmującym się badaniem zależności i związków pomiędzy rozkładami dwu lub więcej badanych

Bardziej szczegółowo

(x j x)(y j ȳ) r xy =

(x j x)(y j ȳ) r xy = KORELACJA. WSPÓŁCZYNNIKI KORELACJI Gdy w badaniu mamy kilka cech, często interesujemy się stopniem powiązania tych cech między sobą. Pod słowem korelacja rozumiemy współzależność. Mówimy np. o korelacji

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 11

Stanisław Cichocki. Natalia Nehrebecka. Wykład 11 Stansław Cchock Natala Nehrebecka Wykład 11 1 1. Testowane hpotez łącznych 2. Testy dagnostyczne Testowane prawdłowośc formy funkcyjnej: test RESET Testowane normalnośc składnków losowych: test Jarque-Berra

Bardziej szczegółowo

BADANIE WSPÓŁZALEśNOŚCI DWÓCH CECH - ANALIZA KORELACJI PROSTEJ

BADANIE WSPÓŁZALEśNOŚCI DWÓCH CECH - ANALIZA KORELACJI PROSTEJ Matematka statstka matematcza dla rolków w SGGW Aa Rajfura, KDB WYKŁAD 2 BADANIE WSPÓŁZALEśNOŚCI DWÓCH CECH - ANALIZA KORELACJI PROSTEJ Matematka statstka matematcza dla rolków w SGGW Aa Rajfura, KDB Przkład.

Bardziej szczegółowo

Proces narodzin i śmierci

Proces narodzin i śmierci Proces narodzn śmerc Jeżel w ewnej oulacj nowe osobnk ojawają sę w sosób losowy, rzy czym gęstość zdarzeń na jednostkę czasu jest stała w czase wynos λ, oraz lczba osobnków n, które ojawły sę od chwl do

Bardziej szczegółowo

Prąd elektryczny U R I =

Prąd elektryczny U R I = Prąd elektryczny porządkowany ruch ładunków elektrycznych (nośnków prądu). Do scharakteryzowana welkośc prądu służy natężene prądu określające welkość ładunku przepływającego przez poprzeczny przekrój

Bardziej szczegółowo

STATYSTYKA. Zmienna losowa skokowa i jej rozkład

STATYSTYKA. Zmienna losowa skokowa i jej rozkład STATYSTYKA Wnosowane statystyczne to proces myślowy polegający na formułowanu sądów o całośc przy dysponowanu o nej ogranczoną lczbą nformacj Zmenna losowa soowa jej rozład Zmenną losową jest welość, tóra

Bardziej szczegółowo

Analiza rodzajów skutków i krytyczności uszkodzeń FMECA/FMEA według MIL STD - 1629A

Analiza rodzajów skutków i krytyczności uszkodzeń FMECA/FMEA według MIL STD - 1629A Analza rodzajów skutków krytycznośc uszkodzeń FMECA/FMEA według MIL STD - 629A Celem analzy krytycznośc jest szeregowane potencjalnych rodzajów uszkodzeń zdentyfkowanych zgodne z zasadam FMEA na podstawe

Bardziej szczegółowo

Statystyka opisowa. Wykład VI. Analiza danych jakośiowych

Statystyka opisowa. Wykład VI. Analiza danych jakośiowych Statystyka opisowa. Wykład VI. e-mail:e.kozlovski@pollub.pl Spis treści Rangowanie 1 Rangowanie 3 Rangowanie Badaniu statystycznemu czasami podlegają cechy niemierzalne jakościowe), np. kolor włosów, stopień

Bardziej szczegółowo

Kwantowa natura promieniowania elektromagnetycznego

Kwantowa natura promieniowania elektromagnetycznego Efekt Comptona. Kwantowa natura promenowana elektromagnetycznego Zadane 1. Foton jest rozpraszany na swobodnym elektrone. Wyznaczyć zmanę długośc fal fotonu w wynku rozproszena. Poneważ układ foton swobodny

Bardziej szczegółowo

Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE

Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE Inormatyka Podstawy Programowana 06/07 Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE 6. Równana algebraczne. Poszukujemy rozwązana, czyl chcemy określć perwastk rzeczywste równana:

Bardziej szczegółowo

Mikroekonometria 13. Mikołaj Czajkowski Wiktor Budziński

Mikroekonometria 13. Mikołaj Czajkowski Wiktor Budziński Mkroekonometra 13 Mkołaj Czajkowsk Wktor Budzńsk Symulacje Analogczne jak w przypadku cągłej zmennej zależnej można wykorzystać metody Monte Carlo do analzy różnego rodzaju problemów w modelach gdze zmenna

Bardziej szczegółowo

Zadanie 2. Dany jest szereg rozdzielczy przedziałowy, wyznaczyć następujące miary: 0 5 5 wariancja, odchylenie standardowe

Zadanie 2. Dany jest szereg rozdzielczy przedziałowy, wyznaczyć następujące miary: 0 5 5 wariancja, odchylenie standardowe Zadane 1. Dany jet zereg przedzałowy, wyznaczyć natępujące mary: x n średna arytmetyczna 1 10 warancja, odchylene tandardowe 15 domnanta 3 0 medana 4 35 kurtoza 5 0 6 15 Zadane. Dany jet zereg rozdzelczy

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka W 11: Analizy zależnościpomiędzy zmiennymi losowymi Model regresji wielokrotnej

Rachunek prawdopodobieństwa i statystyka W 11: Analizy zależnościpomiędzy zmiennymi losowymi Model regresji wielokrotnej Rachunek prawdopodobeństwa statstka W 11: Analz zależnoścpomędz zmennm losowm Model regresj welokrotnej Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.pl Model regresj lnowej Model regresj lnowej prostej

Bardziej szczegółowo

STATYSTYCZNA ANALIZA WYNIKÓW POMIARÓW

STATYSTYCZNA ANALIZA WYNIKÓW POMIARÓW Zakład Metrolog Systemów Pomarowych P o l t e c h n k a P o z n ańska ul. Jana Pawła II 4 60-965 POZAŃ (budynek Centrum Mechatronk, Bomechank anonżyner) www.zmsp.mt.put.poznan.pl tel. +48 61 665 5 70 fax

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7 STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7 Analiza korelacji - współczynnik korelacji Pearsona Cel: ocena współzależności między dwiema zmiennymi ilościowymi Ocenia jedynie zależność liniową. r = cov(x,y

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 5 Analiza współzależności ZADANIE DOMOWE. Strona 1

KURS STATYSTYKA. Lekcja 5 Analiza współzależności ZADANIE DOMOWE.  Strona 1 KURS STATYSTYKA Lekcja 5 Analiza współzależności ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 W analizie współzależności a) badamy

Bardziej szczegółowo

( ) ( ) 2. Zadanie 1. są niezależnymi zmiennymi losowymi o. oraz. rozkładach normalnych, przy czym EX. i σ są nieznane. 1 Niech X

( ) ( ) 2. Zadanie 1. są niezależnymi zmiennymi losowymi o. oraz. rozkładach normalnych, przy czym EX. i σ są nieznane. 1 Niech X Prawdopodobeństwo statystyka.. r. Zadane. Zakładamy, że,,,,, 5 są nezależnym zmennym losowym o rozkładach normalnych, przy czym E = μ Var = σ dla =,,, oraz E = μ Var = 3σ dla =,, 5. Parametry μ, μ σ są

Bardziej szczegółowo

Rachunek niepewności pomiaru opracowanie danych pomiarowych

Rachunek niepewności pomiaru opracowanie danych pomiarowych Rachunek nepewnośc pomaru opracowane danych pomarowych Mędzynarodowa Norma Oceny Nepewnośc Pomaru (Gude to Epresson of Uncertanty n Measurements - Mędzynarodowa Organzacja Normalzacyjna ISO) http://physcs.nst./gov/uncertanty

Bardziej szczegółowo

PODSTAWOWE MIERNIKI DYNAMIKI ZJAWISK

PODSTAWOWE MIERNIKI DYNAMIKI ZJAWISK PODSTAWOWE MIERNIKI DYNAMIKI ZJAWISK Założena Nech oznacza ozom (warość) badanego zjawska (zmennej) w kolejnch momenach czasu T0, gdze T 0 0,1,..., n 1 oznacza worz szereg czasow. zbór numerów czasu. Cąg

Bardziej szczegółowo

Kier. MTR Programowanie w MATLABie Laboratorium Ćw. 12

Kier. MTR Programowanie w MATLABie Laboratorium Ćw. 12 Ker. MTR Programowane w MATLABe Laboratorum Ćw. Analza statystyczna grafczna danych pomarowych. Wprowadzene MATLAB dysponuje weloma funcjam umożlwającym przeprowadzene analzy statystycznej pomarów, czy

Bardziej szczegółowo

INDUKCJA ELEKTROMAGNETYCZNA. - Prąd powstający w wyniku indukcji elektro-magnetycznej.

INDUKCJA ELEKTROMAGNETYCZNA. - Prąd powstający w wyniku indukcji elektro-magnetycznej. INDUKCJA ELEKTROMAGNETYCZNA Indukcja - elektromagnetyczna Powstawane prądu elektrycznego w zamknętym, przewodzącym obwodze na skutek zmany strumena ndukcj magnetycznej przez powerzchnę ogranczoną tym obwodem.

Bardziej szczegółowo

5. OPTYMALIZACJA GRAFOWO-SIECIOWA

5. OPTYMALIZACJA GRAFOWO-SIECIOWA . OPTYMALIZACJA GRAFOWO-SIECIOWA Defncja grafu Pod pojęcem grafu G rozumemy następującą dwójkę uporządkowaną (defncja grafu Berge a): (.) G W,U gdze: W zbór werzchołków grafu, U zbór łuków grafu, U W W,

Bardziej szczegółowo

X WYKŁAD STATYSTYKA. 14/05/2014 B8 sala 0.10B Godz. 15:15

X WYKŁAD STATYSTYKA. 14/05/2014 B8 sala 0.10B Godz. 15:15 X WYKŁAD STATYSTYKA 14/05/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 10 ANALIZA KORELACJI Korelacja 1. Współczynnik korelacji 2. Kowariancja 3. Współczynnik korelacji liniowej definicja 4. Estymacja współczynnika

Bardziej szczegółowo