Michał Praszałowicz, pok strona www: th- wykład 3 godz. za wyjątkiem listopada Egzamin: esej max.
|
|
- Jadwiga Adamska
- 9 lat temu
- Przeglądów:
Transkrypt
1 Michał Praszałowicz, pok strona www: th- wykład 3 godz. za wyjątkiem listopada Egzamin: esej max. 10 stron na jeden z listy tematów + rozmowa USOS! 1
2 Model Standardowy teoria pola Mechanika klasyczna równania na wielkości takie jak pęd, energia położenie Mechanika kwantowa wielkości klasyczne operatory, które działaja na funkcje falowe, interpretecja probabilistyczna Teoria pola funkcja falowa operator pola niezmienniczość Lorentza (STW) niezachowanie liczby cząstek" Czterowektory: Transformacja Lorentza: Transformacja Lorentza x µ = (ct, x, y, z), µ = 0, 1, 2, 3. x µ = L µ νx ν zachowuje interwał (x µ + x µ ) między zdarzeniami ( s) 2 = ( x 0 ) 2 ( x 1 ) 2 ( x 2 ) 2 ( x 3 ) 2 = ( s ) 2 2
3 Tensor metryczny g µν = pomaga zapisać to w zwartej formie ( s ) 2 = g µν x µ x ν = g µν L µ τl ν ρ x τ x ρ = g τρ x τ x ρ Transformacja Lorentza zachowuje tensor metryczny g µν L µ τl ν ρ = g τρ Ponieważ tensor metryczny jest symetryczny jest to 10 równań. L µ τ jest rzeczywistą macierzą 4 4 o 16 parametrach minus 10 warunków, co daje 6 niezależnych parametrów: 3 obroty i 3 boosty". 3
4 Klasyfikacja transformacji Lorentza co daje 3 1 = g 00 = g µν L µ 0 Lν 0 = (L 0 0) 2 (L i 0) 2 i=1 (L 0 0) 2 > 1 L 0 0 > 1 lub L 0 0 < 1 signl 0 0 detl + +1 właściwe 1 odbicie czasowe + 1 odbicie przestrzenne +1 odbicie całkowite Można łatwo pokazać L µ ρl ν µ = L ν µl µ ρ = δ ν ρ. 4
5 Czterowektor energii i pędu: p µ = (E, cp x, cp y, cp z ) p 2 = E 2 c 2 p 2 = m 2 c 4. Stąd E = ±c m 2 c 2 + p 2 = ±mc p (mc 2 m 2 c ± 2 + p 2 ) 2 2m
6 Równanie Schrödingera Nierelatywistyczna mechanika kwantowa: E Ĥ = i t, p p = i Ĥψ(x, t) = p 2 ψ(x, t) zależnie od reprezentacji 2m wybieramy znak + i opuszczamy stałą. E = ±c m 2 c 2 + p 2 = ±mc p (mc 2 m 2 c ± 2 + p 2 ) 2 2m
7 Równanie Kleina-Gordona Jak skonstruować równanie odpowiadające pierwiastkowi? Klein i Gordon: ( ) E 2 = c 2 p 2 + m 2 c 4 = 2 2 t 2ϕ(x, t) = 2 c m 2 c 4 ϕ(x, t) Są kłopoty interpretacyjne. W nierelatywistycznej mechanice kwantowej P = ψ ψ gęstość prawdopodobieństwa (dodatnia!!!!) S = 2im (ψ ψ ψ ψ ) gęstość pradu prawdopodobieństwa spełniają równanie ciągłości t P + S = 0, co wynika z faktu, że równanie Schrödingera jest liniowe w pochodnej czasowej. 7
8 W przypadku równania Kleina-Gordona: ϕ 2 t2ϕ = ϕ ( c m2 c 4 ) ϕ 2 ϕ 2 = ϕ ( c m2 c 4 ) ϕ t 2ϕ 2 odejmujemy stronami ) Lewa strona = (ϕ 2 2 t2ϕ ϕ = (ϕ t t 2ϕ t ϕ ϕ t ) ϕ ( Prawa strona = c 2 ϕ 2 ϕ ϕ ) ( ) 2 ϕ = c 2 ϕ ϕ ϕ ϕ Mnożąc stronami przez 2imc 2 dostajemy równanie ciągłości z gęstością prawdopodobieństwa P = (ϕ t 2imc ϕ ϕ t ) ϕ, która nie jest odatnio określona (po pomnożeniu przez e można intepretować jako gęstość ładunku). Otrzymuje się złe spektrum atomu wodoru (Schrödinger). 8
9 Zasada wariacyjna w mechanice klasycznej Równania klasyczne można otrzymać z zasady wariacyjnej. T S = dtl(x, ẋ) Dokonajmy przesuniecia x = x + y, ẋ = ẋ + ẏ, gdzie y(0) = y(t ) = 0. Wtedy T T 0 S = dt L(x, ẋ ) = dt L(x + y, ẋ = ẋ + ẏ) = 0 T 0 ( dt 0 L(x, ẋ) + L x y + L ẋẏ +... ). 9
10 Stąd Stąd równania ruchu: δs = S S = = T 0 T 0 dt ( L x y + L ) ẋẏ ( L dt x ) L y + L t ẋ ẋ y δs = 0 = L x L t ẋ = 0. T 0. 10
11 Zasada wariacyjna dla pola skalarnego Dla funkcji skalarnej ϕ wprowadzamy gęstość lagrangianu L(ϕ, µ ϕ), gdzie ϕ(t, r) (lokalność). S = d 4 x L(ϕ, µ ϕ). x ϕ, dx dt µϕ. δs = 0 = L ϕ L µ ( µ ϕ) = 0. Jak wygląda L (przyjmujemy = 1 i c = 1)? L(ϕ, µ ϕ) = 1 2 ( µ ϕ µ ϕ m 2 ϕ 2) = 1 2 ( g µν µ ϕ ν ϕ m 2 ϕ 2). Zadanie: przeprowadzić jawnie rachunek wariacyjny dla pola ϕ i wstawić i c do L. 11
12 Rozwiązanie falowe: Rozwiązania równania Kleina-Gordona ) ( 2 t + 2 m 2 ϕ(t, r) = 0. 2 ( ) ϕ k (t, r) = a k cos k r ωk t + θ k ω 2 k = k 2 + m 2. Zamykając układ w pudle o długości l i objętości V = l 3 narzucając periodyczne warunki brzegowe mamy ( 2πn1 k =, 2πn 2, 2πn ) 3, n 1,2,3 = 0, ±1, ±2,... l l l 12
13 Rozwiązanie falowe: ( ) ϕ k (t, r) = a k cos k r ωk t + θ k k ω 2 k = k 2 + m 2. Ogólne rozwiązanie jest superpozycją takich fal ϕ(t, r) = 1 ( ) ak e i( k r ω k t) + a k e i( k r ω k t). V 2ωk 2ωk Czynnik 2ω k jest konwencją (uwaga, ω k może być dodatnie lub ujemne, wtedy trzeba wziąć moduł). Pole ϕ jest rzeczywiste! Pole ϕ opisuje cząstkę skalarną (np. bozon Higsa lub mezon π 0 ). 13
14 Tensor energii-pędu W mechanice klasycznej energia (hamiltonian) dane są przez transformację Legendre a H = p q L Zachowanie energii-pędu jest konsekwencją symetrii względem translacji (także czasowych): wtedy i dalej Używając r. ruchu L x µ x µ + δa µ δa µ nie zależy od t i od x ϕ (x µ + δa µ ) = ϕ(x) + ( ν ϕ(x)) δa ν δl(ϕ, ϕ) = L ϕ δϕ + ϕ = L µ ( µ ϕ) δϕ = ( ν ϕ(x)) δa ν oraz 14 L ( µ ϕ) δ( µϕ). δ( µ ϕ) = µ (δϕ)
15 mamy [ ] L δl = µ δϕ + L ( µ ϕ) ( µ ϕ) µ(δϕ) [ ] L = µ ( µ ϕ) δϕ δϕ = ϕ (x ν + δa ν ) ϕ(x) = ( ν ϕ) δa ν [ ] L = µ ( µ ϕ) νϕ δa ν. Z kolei δl = µ L δa µ = ( µ L) δ µ ν δa ν i w konsekwencji [ ] L µ ( µ ϕ) νϕ δ ν µ L δa ν = 0. Ponieważ stałe δa ν są dowolne, mamy zachowanie wielkości jest tensorem energii-pędu. µ T µ ν = 0, gdzie T µ ν = L ( µ ϕ) νϕ δ µ ν L 15
16 Podobnie jak w mechanice klasycznej energia H = p q L (gęstość energii): T 0 0 = L ϕ L. ϕ Równanie µ T µ ν = 0 przyjmuje postać dla ν = 0: gdzie Całkując po całej przestrzeni: ( ) 0 = d 3 x t T T = t t T T = 0, T = (T 1 0, T 2 0, T 3 0). d 3 xt V d s T = t d 3 xt 0 0 dostaliśmy prawo zachowania całkowitej energii pola skalarnego. Składowe T 0 i mają interpretację gęstości pędu. Podobnie mozna pokazać zachowanie pędu. 16
17 W przypadku pola Kleina-Gordona L = 1 ( µ ϕ µ ϕ m 2 ϕ 2) 2 mamy T 0 0 = 1 ( ϕ 2 + ( ϕ) 2 ) 2 + m 2 ϕ 2. Podstawiając rozwiązania r. Kleina-Gordona mamy ϕ = i 1 ( a k e i( k r ω k t) a ) k ω k e i( k r ω k t) V 2ωk 2ωk ϕ = i 1 V k ω k ( ) a k k e i( k r ω k t) k a k e i( k r ω k t) 2ωk 2ωk i używając wzoru k 1 V d 3 x e i( k k ) r = δ k k 17
18 otrzymujemy H = ω k a ka k, d 3 xt 0 0 = k P = ka k a k. d 3 x T 0 = k 18
19 Wyprowadzenie (weźmy rozwiązanie z dodatnimi ω k ): d 3 x ϕ 2 = 1 ω k ω k d 3 x 2V k, k [ a k a k e i(( k+ k ) r (ω+ω )t) + a ka k e i(( k+ k ) r (ω+ω )t) ] a k a k e i(( k k ) r (ω ω)t) a ka k e i(( k k ) r (ω ω)t) = 1 ( ) ω k ak a k e 2iωt + a 2 ka ke +2iωt 2a k a k. k 19
20 Podobnie: d 3 x( ϕ) 2 = 1 2V gdzie k k = k 2. k, k k k ω k ω k d 3 x [ a k a k e i(( k+ k ) r (ω+ω )t) + a ka k e i(( k+ k ) r (ω+ω )t) ] a k a k e i(( k k ) r (ω ω)t) a ka k e i(( k k ) r (ω ω)t) = 1 k2 ( ) ak a k e 2iωt + a 2 ω ka ke +2iωt + 2a k a k, k k 20
21 A także d 3 x ϕ 2 = 1 1 d 3 x 2V k, k ωω [ a k a k e i(( k+ k ) r (ω+ω )t) + a ka k e i(( k+ k ) r (ω+ω )t) ] +a k a k e i(( k k ) r (ω ω)t) + a ka k e i(( k k ) r (ω ω)t) = 1 1 ( ) ak a k e 2iωt + a 2 ω ka ke +2iωt + 2a k a k. k 21
22 Zatem d 3 xt 0 0 = 1 2 = = k k k ( d 3 x ϕ 2 + ( ϕ) ) 2 + m 2 ϕ 2 ω2 k + k2 + m 2 ω 2 k ω2 + k2 + m2 a k a k ω k ω k a ka k, ( ak a k e 2iωt + a ka ke +2iωt) gdzie skorzystaliśmy z faktu, że ω 2 = k 2 + m 2 (warunek on shell). Ważne, że skorzystaliśmy dwa razy z warunku on shell, raz żeby dostać zero i raz, żeby dostać czynik 2. Jak to będzie dla ujemnych energii? 22
23 Skalarne pole zespolone Φ = 1 2 (φ 1 + i φ 2 ) Przekonamy się, że Φ ma ładunek q, a Φ ładunek q. Gęstość lagrangianu (rzeczywista) L = µ Φ µ Φ m 2 Φ Φ prowadzi do r. ruchu, gdzie pola Φ i Φ traktujemy jako niezależne: µ µ Φ m 2 Φ = 0 i analogicznie dla Φ. Zatem rozwiązania Φ(t, r) = 1 V k ( ak 2ωk e i( k r ω k t) + ) b k e i( k r ω k t), 2ωk gdzie a k i b k są niezależnymi liczbami zespolonymi. Można pokazać, że energia H = k ω k (a ka k + b kb k ) (suma energii dwóch rzeczywistych pól skalarnych). 23
Wstęp do Modelu Standardowego
Wstęp do Modelu Standardowego Plan Wstęp do QFT (tym razem trochę równań ) Funkcje falowe a pola Lagranżjan revisited Kilka przykładów Podsumowanie Tomasz Szumlak AGH-UST Wydział Fizyki i Informatyki Stosowanej
IX. MECHANIKA (FIZYKA) KWANTOWA
IX. MECHANIKA (FIZYKA) KWANTOWA IX.1. OPERACJE OBSERWACJI. a) klasycznie nie ważna kolejność, w jakiej wykonujemy pomiary. AB = BA A pomiar wielkości A B pomiar wielkości B b) kwantowo wartość obserwacji
Zasada najmniejszego działania
Zasada najmniejszego działania S = T dtl(x, ẋ) gdzie L(x, ẋ) jest lagrangianem. Dokonajmy przesuniecia x = x + y, ẋ = ẋ + ẏ, gdzie y(0) = y(t ) = 0. Wtedy T T S = dt L(x, ẋ ) = dt L(x + y, ẋ = ẋ + ẏ) 0
REZONANSY : IDENTYFIKACJA WŁAŚCIWOŚCI PRZEZ ANALIZĘ FAL PARCJALNYCH, WYKRESY ARGANDA
REZONANSY : IDENTYFIKACJA WŁAŚCIWOŚCI PRZEZ ANALIZĘ FAL PARCJALNYCH, WYKRESY ARGANDA Opis układu cząsteczek w mechanice kwantowej: 1. Funkcja falowa, 2. Wektora stanu ψ. TRANSFORMACJE UKŁADU CZĄSTEK: 1.
Mechanika Kwantowa. Maciej J. Mrowiński. 24 grudnia Funkcja falowa opisująca stan pewnej cząstki ma następującą postać: 2 x 2 )
Mechanika Kwantowa Maciej J. Mrowiński 4 grudnia 11 Zadanie MK1 Funkcja falowa opisująca stan pewnej cząstki w chwili t = ma następującą postać: A(a Ψ(x,) = x ) gdy x [ a,a] gdy x / [ a,a] gdzie a +. Wyznacz
Zadania z mechaniki kwantowej
Zadania z mechaniki kwantowej Gabriel Wlazłowski 13 maja 2016 Rachunek zaburzeń bez czasu 1. Metodą rachunku zaburzeń obliczyć pierwszą i drugą poprawkę dla poziomów energetycznych oscylatora harmonicznego
Rozwiązania zadań z podstaw fizyki kwantowej
Rozwiązania zadań z podstaw fizyki kwantowej Jacek Izdebski 5 stycznia roku Zadanie 1 Funkcja falowa Ψ(x) = A n sin( πn x) jest zdefiniowana jedynie w obszarze
POSTULATY MECHANIKI KWANTOWEJ cd i formalizm matematyczny
POSTULATY MECHANIKI KWANTOWEJ cd i formalizm matematyczny Funkcja Falowa Postulat 1 Dla każdego układu istnieje funkcja falowa (funkcja współrzędnych i czasu), która jest ciągła, całkowalna w kwadracie,
Spis treści. Przedmowa redaktora do wydania czwartego 11
Mechanika kwantowa : teoria nierelatywistyczna / Lew D. Landau, Jewgienij M. Lifszyc ; z jęz. ros. tł. Ludwik Dobrzyński, Andrzej Pindor. - Wyd. 3. Warszawa, 2012 Spis treści Przedmowa redaktora do wydania
Równanie Schrödingera
Równanie Schrödingera Maciej J. Mrowiński 29 lutego 2012 Zadanie RS1 Funkcja falowa opisująca stan pewnej cząstki w chwili t = 0 ma następującą postać: A(a Ψ(x,0) = 2 x 2 ) gdy x [ a,a] 0 gdy x / [ a,a]
Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie
napisał Michał Wierzbicki Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie Prędkość grupowa paczki falowej Paczka falowa jest superpozycją fal o różnej częstości biegnących wzdłuż osi z.
Postulaty interpretacyjne mechaniki kwantowej Wykład 6
Postulaty interpretacyjne mechaniki kwantowej Wykład 6 Karol Kołodziej Instytut Fizyki Uniwersytet Śląski, Katowice http://kk.us.edu.pl 19 września 2014 Karol Kołodziej Postulaty interpretacyjne mechaniki
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Równania optyki półklasycznej Posłużymy się teraz równaniem (2.4), i Ψ t = ĤΨ ażeby wyprowadzić
FALE MATERII. De Broglie, na podstawie analogii optycznych, w roku 1924 wysunął hipotezę, że
FAL MATRII De Broglie, na podstawie analogii optycznych, w roku 194 wysunął hipotezę, że cząstki materialne także charakteryzują się dualizmem korpuskularno-falowym. Hipoteza de Broglie a Cząstce materialnej
Podstawy mechaniki kwantowej / Stanisław Szpikowski. - wyd. 2. Lublin, Spis treści
Podstawy mechaniki kwantowej / Stanisław Szpikowski. - wyd. 2. Lublin, 2011 Spis treści Przedmowa 15 Przedmowa do wydania drugiego 19 I. PODSTAWY I POSTULATY 1. Doświadczalne podłoŝe mechaniki kwantowej
Wstęp do chromodynamiki kwantowej
Wstęp do chromodynamiki kwantowej Wykład 1 przez 2 tygodnie wykład następnie wykład/ćwiczenia/konsultacje/lab proszę pamiętać o konieczności posiadania kąta gdy będziemy korzystać z labolatorium (Mathematica
Symetrie w matematyce i fizyce
w matematyce i fizyce Katedra Metod Matematycznych Fizyki Wydział Fizyki, Uniwersytet Warszawski Konwersatorium Wydziału Matematyki Warszawa, 27.02.2009 w matematyce to automorfizmy struktury Zbiór
PODSTAWY MECHANIKI KWANTOWEJ
PODSTAWY MECHANIKI KWANTOWEJ De Broglie, na podstawie analogii optycznych, w roku 194 wysunął hipotezę, że cząstki materialne także charakteryzują się dualizmem korpuskularno-falowym. Hipoteza de Broglie
Rozdział 8. Analiza fourierowska. 8.1 Rozwinięcie w szereg Fouriera
Rozdział 8 Analiza fourierowska 8.1 Rozwinięcie w szereg Fouriera Rozważmy funkcję rzeczywistą f określoną na okręgu o promieniu jednostkowym. Parametryzując okrąg przy pomocy kąta φ [, π] otrzymujemy
V.6 Pęd i energia przy prędkościach bliskich c
r. akad. 005/ 006 V.6 Pęd i energia przy prędkościach bliskich c 1. Relatywistyczny pęd. Relatywistyczne równanie ruchu. Relatywistyczna energia kinetyczna 3. Relatywistyczna energia całkowita i energia
21 Symetrie Grupy symetrii Grupa translacji
21 Symetrie 21.1 Grupy symetrii Spróbujmy odpowiedzieć sobie na pytanie, jak zmienia się stan układu kwantowego pod wpływem transformacji układu współrzędnych. Najprostszą taką transformacją jest np. przesunięcie
Wykład 13 Mechanika Kwantowa
Wykład 13 Mechanika Kwantowa Maciej J. Mrowiński mrow@if.pw.edu.pl Wydział Fizyki Politechnika Warszawska 25 maja 2016 Maciej J. Mrowiński (IF PW) Wykład 13 25 maja 2016 1 / 21 Wprowadzenie Sprawy organizacyjne
Nieskończona jednowymiarowa studnia potencjału
Nieskończona jednowymiarowa studnia potencjału Zagadnienie dane jest następująco: znaleźć funkcje własne i wartości własne operatora energii dla cząstki umieszczonej w nieskończonej studni potencjału,
Pole elektromagnetyczne. Równania Maxwella
Pole elektromagnetyczne (na podstawie Wikipedii) Pole elektromagnetyczne - pole fizyczne, za pośrednictwem którego następuje wzajemne oddziaływanie obiektów fizycznych o właściwościach elektrycznych i
obrotów. Funkcje falowe cząstki ze spinem - spinory. Wykład II.3 29 Pierwsza konwencja Condona-Shortley a
Wykład II.1 25 Obroty układu kwantowego Interpretacja aktywna i pasywna. Macierz obrotu w trzech wymiarach a operator obrotu w przestrzeni stanów. Reprezentacja obrotu w przestrzeni funkcji falowych. Transformacje
Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017
Optyka Wykład V Krzysztof Golec-Biernat Fale elektromagnetyczne Uniwersytet Rzeszowski, 8 listopada 2017 Wykład V Krzysztof Golec-Biernat Optyka 1 / 17 Plan Swobodne równania Maxwella Fale elektromagnetyczne
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Rezonansowe oddziaływanie układu atomowego z promieniowaniem "! "!! # $%&'()*+,-./-(01+'2'34'*5%.25%&+)*-(6
RÓWNANIE SCHRÖDINGERA NIEZALEŻNE OD CZASU
X. RÓWNANIE SCHRÖDINGERA NIEZALEŻNE OD CZASU Równanie Schrődingera niezależne od czasu to równanie postaci: ħ 2 2m d 2 x dx 2 V xx = E x (X.1) Warunki regularności na x i a) skończone b) ciągłe c) jednoznaczne
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 6 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15
Mechanika kwantowa. Erwin Schrödinger ( ) Werner Heisenberg
Mechanika kwantowa Erwin Schrödinger (1887-1961) Werner Heisenberg 1901-1976 Falowe równanie ruchu (uproszczenie: przypadek jednowymiarowy) Dla fotonów Dla cząstek Równanie Schrödingera y x = 1 c y t y(
Feynmana wykłady z fizyki. [T.] 1.1, Mechanika, szczególna teoria względności / R. P. Feynman, R. B. Leighton, M. Sands. wyd. 7.
Feynmana wykłady z fizyki. [T.] 1.1, Mechanika, szczególna teoria względności / R. P. Feynman, R. B. Leighton, M. Sands. wyd. 7. Warszawa, 2014 Spis treści Spis rzeczy części 2 tomu I O Richardzie P. Feynmanie
Statystyka nieoddziaływujących gazów Bosego i Fermiego
Statystyka nieoddziaływujących gazów Bosego i Fermiego Bozony: fotony (kwanty pola elektromagnetycznego, których liczba nie jest zachowana mogą być pojedynczo pochłaniane lub tworzone. W konsekwencji,
gęstością prawdopodobieństwa
Funkcja falowa Zgodnie z hipotezą de Broglie'a, cząstki takie jak elektron czy proton, mają własności falowe. Własności falowe cząstki (lub innego obiektu) w mechanice kwantowej opisuje tzw. funkcja falowa(,t)
Spis treści. Przedmowa PRZESTRZEŃ I CZAS W FIZYCE NEWTONOWSKIEJ ORAZ SZCZEGÓLNEJ TEORII. 1 Grawitacja 3. 2 Geometria jako fizyka 14
Spis treści Przedmowa xi I PRZESTRZEŃ I CZAS W FIZYCE NEWTONOWSKIEJ ORAZ SZCZEGÓLNEJ TEORII WZGLĘDNOŚCI 1 1 Grawitacja 3 2 Geometria jako fizyka 14 2.1 Grawitacja to geometria 14 2.2 Geometria a doświadczenie
WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI
Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim: Podstawy elektrodynamiki Nazwa w języku angielskim: Introduction to Electrodynamics Kierunek studiów (jeśli
Fale elektromagnetyczne
Fale elektromagnetyczne dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2012/13 Plan wykładu Spis treści 1. Analiza pola 2 1.1. Rozkład pola...............................................
3 Ewolucja układu w czasie, trajektorie kwantowe
3 Ewolucja układu w czasie, trajektorie kwantowe Pytanie: jak ewoluuje funkcja falowa stanu kwantowego ψ? W tym rozdzoale zajmiemy się ruchem cząstki w jednym wymiarze. 3.1 Trajektorie klasyczne Klasyczne
Jak matematycznie opisać własności falowe materii? Czym są fale materii?
Funkcja falowa Jak matematycznie opisać własności falowe materii? Czym są fale materii? Własności falowe materii (cząstek, układów cząstek) opisuje matematycznie pewna funkcja falowa ( x, t ) Tutaj upraszczamy
3. PŁASKI STAN NAPRĘŻENIA I ODKSZTAŁCENIA
3. PŁASKI STAN NAPRĘŻNIA I ODKSZTAŁCNIA 1 3. 3. PŁASKI STAN NAPRĘŻNIA I ODKSZTAŁCNIA Analizując płaski stan naprężenia posługujemy się składowymi tensora naprężenia w postaci wektora {,,y } (3.1) Za dodatnie
Elementy mechaniki kwantowej. Mechanika kwantowa co to jest? Funkcja falowa Równanie Schrödingera
lementy mechaniki kwantowej Mechanika kwantowa co to jest? Funkcja falowa Równanie Schrödingera Funkcja falowa Jak matematycznie opisać własności falowe materii? Czym są fale materii? Własności falowe
5 Reprezentacje połozeniowa i pedowa
5 Reprezentacje połozeniowa i pedowa 5.1 Reprezentacja położeniowa W poprzednim rozdziale znaleźliśmy jawną postać operatora Ĥ w przedstawieniu położeniowym. Co to znaczy? W przedstawieniu położeniwym
po lożenie cz astki i od czasu (t). Dla cz astki, która może poruszać siȩ tylko w jednym wymiarze (tu x)
Stan czastki określa funkcja falowa Ψ zależna od wspó lrzȩdnych określaj acych po lożenie cz astki i od czasu (t). Dla cz astki, która może poruszać siȩ tylko w jednym wymiarze (tu x) Wartości funkcji
Metody rozwiązania równania Schrödingera
Metody rozwiązania równania Schrödingera Równanie Schrödingera jako algebraiczne zagadnienie własne Rozwiązanie analityczne dla skończonej i nieskończonej studni potencjału Problem rozwiązania równania
V. RÓWNANIA MECHANIKI KWANTOWEJ
V. RÓWNANIA MECHANIKI KWANTOWEJ 1 1 Postulaty mechaniki kwantowej Istota teorii kwantowej może być sformułowana za pomocą postulatów, których spełnienie postulujemy i których nie można wyprowadzić z żadnych
Równanie falowe Schrödingera ( ) ( ) Prostokątna studnia potencjału o skończonej głębokości. i 2 =-1 jednostka urojona. Ψ t. V x.
Równanie falowe Schrödingera h Ψ( x, t) + V( x, t) Ψ( x, t) W jednym wymiarze ( ) ( ) gdy V x, t = V x x Ψ = ih t Gdy V(x,t)=V =const cząstka swobodna, na którą nie działa siła Fala biegnąca Ψ s ( x, t)
Równania Maxwella. Wstęp E B H J D
Równania Maxwella E B t, H J D t, D, B 0 Równania materiałowe B 0 H M, D 0 E P, J E, gdzie: 0 przenikalność elektryczną próżni ( 0 8854 10 1 As/Vm), 0 przenikalność magetyczną próżni ( 0 4 10 7 Vs/Am),
Fale elektromagnetyczne. Gradient pola. Gradient pola... Gradient pola... Notatki. Notatki. Notatki. Notatki. dr inż. Ireneusz Owczarek 2013/14
dr inż. Ireneusz Owczarek CNMiF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2013/14 1 dr inż. Ireneusz Owczarek Gradient pola Gradient funkcji pola skalarnego ϕ przypisuje każdemu punktowi
Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne.
Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne. pytania teoretyczne:. Co to znaczy, że wektory v, v 2 i v 3
Wykład I Krzysztof Golec-Biernat Optyka 1 / 16
Optyka Wykład I Krzysztof Golec-Biernat Fale 1 Uniwersytet Rzeszowski, 4 października 2017 Wykład I Krzysztof Golec-Biernat Optyka 1 / 16 Uwagi wstępne 30 h wykładu wykład przy pomocy transparencji lub
Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki?
Mechanika kwantowa Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Elektron fala stojąca wokół jądra Mechanika kwantowa Równanie Schrödingera Ĥ E ψ H ˆψ = Eψ operator różniczkowy
Równanie Schrödingera
Fizyka 2 Wykład 3 1 Równanie Schrödingera Chcemy znaleźć dopuszczalne wartości energii układu fizycznego, dla którego znamy energię potencjalną. Z zasady odpowiedniości znamy postać hamiltonianu. Wybieramy
Równania różniczkowe cząstkowe drugiego rzędu
Równania różniczkowe cząstkowe drugiego rzędu Marcin Orchel Spis treści 1 Wstęp 1 1.1 Metoda faktoryzacji (rozdzielania zmiennych)................ 5 1.2 Metoda funkcji Greena.............................
y + p(t)y + q(t)y = 0. (1) Z rozwiązywaniem równań przez szeregi potęgowe związane są pewne definicje.
1 Szeregi potęgowe Poszukiwanie rozwiązań równań różniczkowych zwyczajnych w postaci szeregów potęgowych, zwane metodą Frobeniusa, jest bardzo ogólną metodą. Rozważmy równanie y + p(t)y + q(t)y = 0. (1)
1. PODSTAWY TEORETYCZNE
1. PODSTAWY TEORETYCZNE 1 1. 1. PODSTAWY TEORETYCZNE 1.1. Wprowadzenie W pierwszym wykładzie przypomnimy podstawowe działania na macierzach. Niektóre z nich zostały opisane bardziej szczegółowo w innych
LXVII OLIMPIADA FIZYCZNA ZAWODY II STOPNIA
LXVII OLIMPIADA FIZYCZNA ZAWODY II STOPNIA CZĘŚĆ TEORETYCZNA Za każde zadanie można otrzymać maksymalnie 0 punktów. Zadanie 1. przedmiot. Gdzie znajduje się obraz i jakie jest jego powiększenie? Dla jakich
1 Wartości własne oraz wektory własne macierzy
Rozwiązania zadania umieszczonego na końcu poniższych notatek proszę przynieść na kartkach Proszę o staranne i formalne uzasadnienie odpowiedzi Za zadanie można uzyskać do 6 punktów (jeżeli przyniesione
Moment pędu fali elektromagnetycznej
napisał Michał Wierzbicki Moment pędu fali elektromagnetycznej Definicja momentu pędu pola elektromagnetycznego Gęstość momentu pędu pola J w elektrodynamice definuje się za pomocą wzoru: J = r P = ɛ 0
Analiza stanu naprężenia - pojęcia podstawowe
10. ANALIZA STANU NAPRĘŻENIA - POJĘCIA PODSTAWOWE 1 10. 10. Analiza stanu naprężenia - pojęcia podstawowe 10.1 Podstawowy zapisu wskaźnikowego Elementy konstrukcji znajdują się w przestrzeni fizycznej.
Postulaty mechaniki kwantowej
3.10.2004 11. Postulaty mechaniki kwantowej 120 Rozdział 11 Postulaty mechaniki kwantowej Mechanika kwantowa, jak zresztą każda teoria fizyczna, bazuje na kilku postulatach, które przyjmujemy "na wiarę".
Równania dla potencjałów zależnych od czasu
Równania dla potencjałów zależnych od czasu Potencjały wektorowy A( r, t i skalarny ϕ( r, t dla zależnych od czasu pola elektrycznego E( r, t i magnetycznego B( r, t definiujemy poprzez następujące zależności
Wykład 14. Termodynamika gazu fotnonowego
Wykład 14 Termodynamika gazu fotnonowego dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 16 stycznia 217 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki statystycznej
Jak matematycznie opisać własności falowe materii? Czym są fale materii?
Funkcja falowa Jak matematycznie opisać własności falowe materii? Czym są fale materii? Własności falowe materii (cząstek, układów cząstek) opisuje matematycznie pewna funkcja falowa ( x, Funkcja falowa
Rozważania rozpoczniemy od fal elektromagnetycznych w próżni. Dla próżni równania Maxwella w tzw. postaci różniczkowej są następujące:
Rozważania rozpoczniemy od fal elektromagnetycznych w próżni Dla próżni równania Maxwella w tzw postaci różniczkowej są następujące:, gdzie E oznacza pole elektryczne, B indukcję pola magnetycznego a i
(U.14) Oddziaływanie z polem elektromagnetycznym
3.10.2004 35. U.14 Oddziaływanie z polem elektromagnetycznym 131 Rozdział 35 U.14 Oddziaływanie z polem elektromagnetycznym 35.1 Niezmienniczość ze względu na W rozdziale 16 wspominaliśmy jedynie o podstawowych
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 6 wykład: Piotr Fita pokazy: Jacek Szczytko ćwiczenia: Aneta Drabińska, Paweł Kowalczyk, Barbara Piętka, Michał Karpiński Wydział
Metody Lagrange a i Hamiltona w Mechanice
Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 9 M. Przybycień (WFiIS AGH) Metody Lagrange a i Hamiltona... Wykład
Stabilność II Metody Lapunowa badania stabilności
Metody Lapunowa badania stabilności Interesuje nas w sposób szczególny system: Wprowadzamy dla niego pojęcia: - stabilności wewnętrznej - odnosi się do zachowania się systemu przy zerowym wejściu, czyli
MiBM sem. III Zakres materiału wykładu z fizyki
MiBM sem. III Zakres materiału wykładu z fizyki 1. Dynamika układów punktów materialnych 2. Elementy mechaniki relatywistycznej 3. Podstawowe prawa elektrodynamiki i magnetyzmu 4. Zasady optyki geometrycznej
po lożenie cz astki i od czasu (t). Dla cz astki, która może poruszać siȩ tylko w jednym wymiarze (tu x)
Stan czastki określa funkcja falowa Ψ zależna od wspó lrzȩdnych określaj acych po lożenie cz astki i od czasu (t). Dla cz astki, która może poruszać siȩ tylko w jednym wymiarze (tu x) Wartości funkcji
Model oscylatorów tłumionych
Inna nazwa: model klasyczny, Lorentza Założenia: - ośrodek jest zbiorem naładowanych oscylatorów oddziałujących z falą elektromagnetyczną - wszystkie występujące siły są izotropowe - wartość siły tłumienia
Informacja o przestrzeniach Sobolewa
Wykład 11 Informacja o przestrzeniach Sobolewa 11.1 Definicja przestrzeni Sobolewa Niech R n będzie zbiorem mierzalnym. Rozważmy przestrzeń Hilberta X = L 2 () z iloczynem skalarnym zdefiniowanym równością
MECHANIKA KLASYCZNA I RELATYWISTYCZNA Cele kursu
MECHANIKA KLASYCZNA I RELATYWISTYCZNA Cele kursu Karol Kołodziej Instytut Fizyki Uniwersytet Śląski, Katowice http://kk.us.edu.pl Karol Kołodziej Mechanika klasyczna i relatywistyczna 1/8 Cele kursu Podstawowe
Mechanika kwantowa Schrödingera
Fizyka 2 Wykład 2 1 Mechanika kwantowa Schrödingera Hipoteza de Broglie a wydawała się nie zgadzać z dynamiką Newtona. Mechanika kwantowa Schrödingera zawiera mechanikę kwantową jako przypadek graniczny
Galilean Electrodynamics
22 maja 2015 r. Galilean Electrodynamics Nierelatywistyczne przybliżenia elektrodynamiki klasycznej Seminarium IF WIMiM ZUT Dlaczego elektrodynamika klasyczna NIE JEST niezmiennicza względem transformacji
Tra r n a s n fo f rm r a m c a ja a na n p a rę r ż ę eń e pomi m ę i d ę zy y uk u ł k a ł d a am a i m i obr b ó r cony n m y i m
Wytrzymałość materiałów Naprężenia główne na przykładzie płaskiego stanu naprężeń 1 Tensor naprężeń Naprężenia w stanie przestrzennym: τ τxz τ yx τ yz τzx τzy zz Układ współrzędnych jest zwykle wybrany
Matematyka stosowana i metody numeryczne
Ewa Pabisek Adam Wosatko Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładu 14 Rachunekwektorowy W celu zdefiniowania wektora a należy podać: kierunek(prostą na której leży wektor)
spis treści 1 Zbiory i zdania... 5
wstęp 1 i wiadomości wstępne 5 1 Zbiory i zdania............................ 5 Pojęcia pierwotne i podstawowe zasady 5. Zbiory i zdania 6. Operacje logiczne 7. Definicje i twierdzenia 9. Algebra zbiorów
Podstawy elektrodynamiki / David J. Griffiths. - wyd. 2, dodr. 3. Warszawa, 2011 Spis treści. Przedmowa 11
Podstawy elektrodynamiki / David J. Griffiths. - wyd. 2, dodr. 3. Warszawa, 2011 Spis treści Przedmowa 11 Wstęp: Czym jest elektrodynamika i jakie jest jej miejsce w fizyce? 13 1. Analiza wektorowa 19
Matematyka A kolokwium 26 kwietnia 2017 r., godz. 18:05 20:00. i = = i. +i sin ) = 1024(cos 5π+i sin 5π) =
Matematyka A kolokwium 6 kwietnia 7 r., godz. 8:5 : Starałem się nie popełniać błędów, ale jeśli są, będę wdzięczny za wieści o nich Mam też nadzieję, że niektórzy studenci zechcą zrozumieć poniższy tekst,
Normalizacja funkcji falowej
Normalizacja funkcji falowej Postulaty mechaniki kwantowej Zadanie. Wyznacz stałą normalizacyjną i podaj postać funkcji unormowanej: Ψ = Ncosαx) dla x [, a] Opis sposobu rozwiązania zadania krok po kroku:.
VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa.
VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. W rozdziale tym zajmiemy się dokładniej badaniem stabilności rozwiązań równania różniczkowego. Pojęcie stabilności w
15 Potencjały sferycznie symetryczne
z ϕ θ r y x Rysunek : Definicje zmiennych we współrzędnych sferycznych r, θ, ϕ) 5 Potencjały sferycznie symetryczne 5. Separacja zmiennych Do tej pory omawialiśmy problemy jednowymiarowe, które służyły
PODSTAWY RACHUNKU WEKTOROWEGO
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Skalar Definicja Skalar wielkość fizyczna (lub geometryczna)
Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury.
1 Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury. natężenie natężenie teoria klasyczna wynik eksperymentu
Teorie wiązania chemicznego i podstawowe zasady mechaniki kwantowej Zjawiska, które zapowiadały nadejście nowej ery w fizyce i przybliżały
WYKŁAD 1 Teorie wiązania chemicznego i podstawowe zasady mechaniki kwantowej Zjawiska, które zapowiadały nadejście nowej ery w fizyce i przybliżały sformułowanie praw fizyki kwantowej: promieniowanie katodowe
Księgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki
Księgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki Spis treści Przedmowa... 11 Wstęp: Czym jest elektrodynamika i jakie jest jej miejsce w fizyce?... 13 1. Analiza wektorowa... 19 1.1. Algebra
Podstawy elektromagnetyzmu. Wykład 2. Równania Maxwella
Podstawy elektromagnetyzmu Wykład 2 Równania Maxwella Prawa Maxwella opisują pola Pole elektryczne... to zjawisko występujące w otoczeniu naładowanych elektrycznie obiektów lub jest skutkiem zmiennego
Chemia ogólna - część I: Atomy i cząsteczki
dr ab. Wacław Makowski Cemia ogólna - część I: Atomy i cząsteczki 1. Kwantowanie. Atom wodoru 3. Atomy wieloelektronowe 4. Termy atomowe 5. Cząsteczki dwuatomowe 6. Hybrydyzacja 7. Orbitale zdelokalizowane
1.1 Przegląd wybranych równań i modeli fizycznych. , u x1 x 2
Temat 1 Pojęcia podstawowe 1.1 Przegląd wybranych równań i modeli fizycznych Równaniem różniczkowym cząstkowym rzędu drugiego o n zmiennych niezależnych nazywamy równanie postaci gdzie u = u (x 1, x,...,
Definicja i własności wartości bezwzględnej.
Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności
Zadanie. Oczywiście masa sklejonych ciał jest sumą poszczególnych mas. Zasada zachowania pędu: pozwala obliczyć prędkość po zderzeniu
Zderzenie centralne idealnie niesprężyste (ciała zlepiają się i po zderzeniu poruszają się razem). Jedno z ciał przed zderzeniem jest w spoczynku. Oczywiście masa sklejonych ciał jest sumą poszczególnych
Analiza wektorowa. Teoria pola.
Analiza wektorowa. Teoria pola. Pole skalarne Pole wektorowe ϕ = ϕ(x, y, z) A = A x (x, y, z) i x + A y (x, y, z) i y + A z (x, y, z) i z Gradient grad ϕ = ϕ x i x + ϕ y i y + ϕ z i z Jeśli przemieścimy
Reprezentacje położeniowa i pędowa
3.10.2004 9. Reprezentacje położeniowa i pędowa 103 Rozdział 9 Reprezentacje położeniowa i pędowa 9.1 Reprezentacja położeniowa Reprezentacja położeniowa jest szczególnie uprzywilejowana i najczęściej
Wyprowadzenie prawa Gaussa z prawa Coulomba
Wyprowadzenie prawa Gaussa z prawa Coulomba Natężenie pola elektrycznego ładunku punktowego q, umieszczonego w początku układu współrzędnych (czyli prawo Coulomba): E = Otoczmy ten ładunek dowolną powierzchnią
Mechanika kwantowa S XX
kierunek studiów: FIZYKA specjalność: FIZYKA s II WYDZIAŁ FIZYKI UwB KOD USOS: 0900 FS1 Karta przedmiotu Przedmiot grupa ECTS Mechanika kwantowa S XX Formy zajęć wykład konwersatorium seminarium laboratorium
Modele kp Studnia kwantowa
Modele kp Studnia kwantowa Przegląd modeli pozwalających obliczyć strukturę pasmową materiałów półprzewodnikowych. Metoda Fal płaskich Transformata Fouriera Przykładowe wyniki Model Kaine Hamiltonian z
Metoda elementów brzegowych
Metoda elementów brzegowych Tomasz Chwiej, Alina Mreńca-Kolasińska 9 listopada 8 Wstęp Rysunek : a) Geometria układu z zaznaczonymi: elementami brzegu (czerwony), węzłami (niebieski). b) Numeracja: elementów
Promieniowanie X. Jak powstaje promieniowanie rentgenowskie Budowa lampy rentgenowskiej Widmo ciągłe i charakterystyczne promieniowania X
Promieniowanie X Jak powstaje promieniowanie rentgenowskie Budowa lampy rentgenowskiej Widmo ciągłe i charakterystyczne promieniowania X Lampa rentgenowska Lampa rentgenowska Promieniowanie rentgenowskie
Kinematyka płynów - zadania
Zadanie 1 Zadane jest prawo ruchu w zmiennych Lagrange a x = Xe y = Ye t 0 gdzie, X, Y oznaczają współrzędne materialne dla t = 0. Wyznaczyć opis ruchu w zmiennych Eulera. Znaleźć linię prądu. Pokazać,
Modele kp wprowadzenie
Modele kp wprowadzenie Komórka elementarna i komórka sieci odwrotnej Funkcje falowe elektronu w krysztale Struktura pasmowa Przybliżenie masy efektywnej Naprężenia: potencjał deformacyjny, prawo Hooka