Wstęp do Modelu Standardowego
|
|
- Magda Krupa
- 7 lat temu
- Przeglądów:
Transkrypt
1 Wstęp do Modelu Standardowego Plan (Uzupełnienie matematyczne II) Abstrakcyjna przestrzeń stanów Podstawowe własności Iloczyn skalarny amplitudy prawdopodobieństwa Operatory i ich hermitowskość Wektory stanu przestrzeń Hilberta Tomasz Szumlak AGH-UST Wydział Fizyki i Informatyki Stosowanej /03/06
2 Elementy przestrzeni V Zakładamy, że stan układu (np. cząstki) możemy opisać używając elementów abstrakcyjnej liniowej przestrzeni wektorowej H W przypadku fizyki klasycznej, wektory zapisujemy jako: Wektory reprezentujące stany kwantowe zapiszemy korzystając z notacji Diraca jako: Wektory te nazywamy ket Nasza abstrakcyjna przestrzeń wektorowavpowinna spełniać poniższe warunki:. a, b V a + b = c V. a V α C α 3. a, b a V V a + b = b + a 4. a, b, c V a + b + c Ԧr, Ԧv, Ԧp, v, φ, σ, = ( a + b ) + c
3 Podstawowa reprezentacja ket-ów Dla obiektów należących do naszej zespolonej przestrzeni wektorowej możemy przyjąć następującą reprezentację: ψ = ψ ψ ψ n ψ n ψ ± φ = ψ ψ ψ n ψ n ± φ φ φ n φ n = ψ ± φ ψ ± φ ψ n ± φ n ψ n ± φ n α ψ = αψ αψ αψ n αψ n Najbardziej istotna różnica pomiędzy wektorami fizyki klasycznej a ket-ami jest użycie liczb zespolonych jako składowych ket-a 3
4 Bliżej fizyki Istnieje dokładnie jeden wektor zerowy : a V a + 0 = a Mnożenie przez skalar jest łączne: a V α, β C αβ a = α β a Mnożenie przez skalar jest liniowe: a, b V α C α( a + a V α, β C α + β b = α a + α b a = α a + β a Dla każdego wektora ket istnieje wektor przeciwny: a V! a a + a = 0 Powyższe własności przydadzą się nam również przy omawianiu elementów teorii grup, która stanowi podstawę matematyczną MS 4
5 Mnożenie wewnętrzne a.k.a. iloczyn skalarny Aby dopełnić notację Diraca potrzebujemy jeszcze obiektów bra (nie mylić z ang. bra stanik ) Wektory bra należą do tak zwanej przestrzeni dualnej V względem V Zapiszemy, przy użyciu naszej reprezentacji macierzowej: ψ = ψ ψ ψۦ = ψ ψ ψ n ψ n Iloczynem skalarnym nazwiemy odwzorowanie postaci: : V V a, b ۦ α = bۦ a C Przez analogię z wektorami klasycznymi k Ԧl = e 0 k + e 0 l + = k i l i = k i l i i φۦ ψ = φ φ φ n ψ ψ ψ n = φ i ψ i = φ i ψ i i konwencja sumacyjna 5
6 Mnożenie wewnętrzne a.k.a. iloczyn skalarny Wyznacz φۦ ψ oraz ψۦ φ dla: ψ = i7, φ = + i3 4 8 ψۦ φ = i7 + i3 4 8 = 0 + i34 φۦ ψ = i3 4 8 i7 = 0 i34 W ogólności iloczyn skalarny zdefiniowany na zespolonej przestrzeni wektorowej nie jest przemienny (abelowy) cecha niezwykła dla fizyki klasycznej! Ta różnica w amplitudach pozwoli na wprowadzenie do MS zjawiska łamania symetrii kombinowanej CP 6
7 Własności iloczynu skalarnego Iloczyn skalarny ma fundamentalne znaczenie dla mechaniki kwantowej amplituda prawd. to iloczyn skalarny Dla poniższych własności mamy zawsze: a, b, c V α, β C aۦ b = bۦ a. bۦ α a + β. c = αۦb a + βۦb c 3. bۦ c aۦ c + β βbۦ c = α + αaۦ 4. aۦ a 0 Dzięki ostatniej własności możliwe jest wyznaczenie długości wektorów z V oraz ich normalizacja a = aۦ a a = a a Np. dla wektora zdefiniowanego w naszym przykładzie (slajd 6): ψۦ ψ = i7 i7 = 3 6 ψ ൿ = 3 6 i7 7
8 Baza (powłoka) V Podobnie jak w przypadku klasycznych wektorów, możemy zdefiniować relację ortonormalności Zbiór wektorów φ, φ,, φ n nazywamy bazą przestrzeni V, jeżeli:. Zbiór ten jest zamknięty względem dodawania i mnożenia skalarnego. Rozpina przestrzeń V a V a = c φ + c φ + + c n φ n, c i C 3. Zbiór φ, φ,, φ n jest liniowo niezależny φ + a φ + + a n φ n = 0 a i = 0 a ൻu i u j ൿ = δ ij, u i = Np. poniższy zbiór nie może być bazą w V 3 a =, b = 0 0, c = 0 b c = a 8
9 Baza (powłoka) V Wymiar przestrzeni V zdefiniujemy jako liczbę wektorów bazowych dim V = dim φ, φ,, φ n Relacja zupełności (powrócimy jeszcze do tego ) i Rozwinięcie wektora ψ w bazie ψ = c ψ ψۦ = φ + c φ + + c n φ n c i = φۦ i ψ Współczynniki rozkładu wektora stanu wyznaczamy dokładnie tak samo jak w przypadku funkcji falowych por. ostatni wykład Procedura Grama-Schmidta orto-normalizacji dowolnej bazy v i, procedura odbywa się w dwóch krokach v i w i φ i w = v, w = v ൻw v w 3 = v 3 ൻw v 3 w 0 ൿ, w 0 ൿ wۦ v 3 w 0 ൿ, φ = φ = w ൻw w w ൻw w 9
10 Algebra bra-ket Dla każdego wektora ket stowarzyszony bra możemy uzyskać jako: α ψ = αψ αψ ψۦ αψۦ = α = Np. załóżmy, że mamy zdefiniowany ket znajdźmy jego bra ψ = i φ 3 φ + i φ 3 3 iۦφ φۦ 3 φۦ i φۦ 3 = φۦ 3 + i φۦ ψۦ = i Możemy również sformułować problem rozkładu wektora w bazie przy pomocy bra i ket ൻφ i φ j ൿ = δ ij ψ = i φ 3 φ + i φ 3 φ ψ = i φ φ 3 φ φ + i φ φ 3 φ ψ = 3 Ogólnie możemy zapisać: ψ = σ i c i φ i = σ i φ i ψ φ i 0
11 Algebra bra-ket Wreszcie to samo w reprezentacji macierzowej ψ = φ ψ φ ψ φ n ψ = c c c n Reprezentacja ket-u nie jest unikalna zależy od wyboru bazy Popatrzymy na przykład ćwieczenia!
II. POSTULATY MECHANIKI KWANTOWEJ W JĘZYKU WEKTORÓW STANU. Janusz Adamowski
II. POSTULATY MECHANIKI KWANTOWEJ W JĘZYKU WEKTORÓW STANU Janusz Adamowski 1 1 Przestrzeń Hilberta Do opisu stanów kwantowych używamy przestrzeni Hilberta. Przestrzenią Hilberta H nazywamy przestrzeń wektorową
Wstęp do komputerów kwantowych
Wprowadzenie do mechaniki kwantowej Uniwersytet Łódzki, Wydział Fizyki i Informatyki Stosowanej 2008/2009 Wprowadzenie do mechaniki kwantowej Podstawy matematyczne 1 Algebra liniowa Bazy i liniowa niezależność
POSTULATY MECHANIKI KWANTOWEJ cd i formalizm matematyczny
POSTULATY MECHANIKI KWANTOWEJ cd i formalizm matematyczny Funkcja Falowa Postulat 1 Dla każdego układu istnieje funkcja falowa (funkcja współrzędnych i czasu), która jest ciągła, całkowalna w kwadracie,
1. Matematyka Fizyki Kwantowej: Cześć Druga
. Matematyka Fizyki Kwantowej: Cześć Druga Piotr Szańkowski I. PRZESTRZEŃ WEKTOROWA Kolejnym punktem naszej jest ogólna struktura matematyczna mechaniki kwantowej, która jest strukturą przestrzeni wektorowej
Przestrzenie wektorowe
Rozdział 4 Przestrzenie wektorowe Rozważania dotyczące przestrzeni wektorowych rozpoczniemy od kilku prostych przykładów. Przykład 4.1. W przestrzeni R 3 = {(x, y, z) : x, y, z R} wprowadzamy dwa działania:
Notacja Diraca. Rozdział Abstrakcyjna przestrzeń wektorów stanu
3.10.2004 7. Notacja Diraca 84 Rozdział 7 Notacja Diraca 7.1 Abstrakcyjna przestrzeń wektorów stanu Do tej pory posługiwaliśmy się postulatem, że stan układu fizycznego jest w mechanice kwantowej w pełni
macierze jednostkowe (identyczności) macierze diagonalne, które na przekątnej mają same
1 Macierz definicja i zapis Macierzą wymiaru m na n nazywamy tabelę a 11 a 1n A = a m1 a mn złożoną z liczb (rzeczywistych lub zespolonych) o m wierszach i n kolumnach (zamiennie będziemy też czasem mówili,
Zadania egzaminacyjne
Rozdział 13 Zadania egzaminacyjne Egzamin z algebry liniowej AiR termin I 03022011 Zadanie 1 Wyznacz sumę rozwiązań równania: (8z + 1 i 2 2 7 iz 4 = 0 Zadanie 2 Niech u 0 = (1, 2, 1 Rozważmy odwzorowanie
Algebra liniowa. 1. Macierze.
Algebra liniowa 1 Macierze Niech m oraz n będą liczbami naturalnymi Przestrzeń M(m n F) = F n F n będącą iloczynem kartezjańskim m egzemplarzy przestrzeni F n z naturalnie określonymi działaniami nazywamy
Wstęp do Modelu Standardowego
Wstęp do Modelu Standardowego Plan Wstęp do QFT (tym razem trochę równań ) Funkcje falowe a pola Lagranżjan revisited Kilka przykładów Podsumowanie Tomasz Szumlak AGH-UST Wydział Fizyki i Informatyki Stosowanej
Przestrzenie liniowe
Rozdział 4 Przestrzenie liniowe 4.1. Działania zewnętrzne Niech X oraz F będą dwoma zbiorami niepustymi. Dowolną funkcję D : F X X nazywamy działaniem zewnętrznym w zbiorze X nad zbiorem F. Przykład 4.1.
2 1 3 c c1. e 1, e 2,..., e n A= e 1 e 2...e n [ ] M. Przybycień Matematyczne Metody Fizyki I
Liniowa niezależno ność wektorów Przykład: Sprawdzić czy następujące wektory z przestrzeni 3 tworzą bazę: e e e3 3 Sprawdzamy czy te wektory są liniowo niezależne: 3 c + c + c3 0 c 0 c iei 0 c + c + 3c3
Przestrzeń unitarna. Jacek Kłopotowski. 23 października Katedra Matematyki i Ekonomii Matematycznej SGH
Katedra Matematyki i Ekonomii Matematycznej SGH 23 października 2018 Definicja iloczynu skalarnego Definicja Iloczynem skalarnym w przestrzeni liniowej R n nazywamy odwzorowanie ( ) : R n R n R spełniające
1 Podstawowe oznaczenia
Poniżej mogą Państwo znaleźć skondensowane wiadomości z wykładu. Należy je traktować jako przegląd pojęć, które pojawiły się na wykładzie. Materiały te nie są w pełni tożsame z tym co pojawia się na wykładzie.
Macierze. Rozdział Działania na macierzach
Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i, j) (i 1,..., n; j 1,..., m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F R lub F C, nazywamy macierzą (rzeczywistą, gdy
Formy kwadratowe. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. wykład z algebry liniowej Warszawa, styczeń 2009
Formy kwadratowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2009 Mirosław Sobolewski (UW) Warszawa, 2009 1 / 15 Definicja Niech V, W,
1 Przestrzeń liniowa. α 1 x α k x k = 0
Z43: Algebra liniowa Zagadnienie: przekształcenie liniowe, macierze, wyznaczniki Zadanie: przekształcenie liniowe, jądro i obraz, interpretacja geometryczna. Przestrzeń liniowa Już w starożytności człowiek
Akwizycja i przetwarzanie sygnałów cyfrowych
Akwizycja i przetwarzanie sygnałów cyfrowych Instytut Teleinformatyki ITI PK Kraków 21 luty 2011 Reprezentacje sygnału Jak reprezentujemy sygnał: wybieramy sygnały wzorcowe (bazę) rozwijamy sygnał w wybranej
Zadania z algebry liniowej - sem. I Przestrzenie liniowe, bazy, rząd macierzy
Zadania z algebry liniowej - sem I Przestrzenie liniowe bazy rząd macierzy Definicja 1 Niech (K + ) będzie ciałem (zwanym ciałem skalarów a jego elementy nazywać będziemy skalarami) Przestrzenią liniową
Seminarium: Efekty kwantowe w informatyce
Seminarium: Efekty kwantowe w informatyce Aleksander Mądry Sprawy organizacyjne Spotykamy się w piątki o 12:15 w sali 105. Sprawy organizacyjne Spotykamy się w piątki o 12:15 w sali 105. Każdy kto będzie
Mechanika kwantowa ćwiczenia, 2007/2008, Zestaw II
1 Dane są następujące operatory: ˆD = x, ˆQ = π 0 x, ŝin = sin( ), ĉos = cos( ), ˆπ = π, ˆ0 = 0, przy czym operatory ˆπ oraz ˆ0 są operatorami mnożenia przez opowienie liczby (a) Wyznacz kwarat oraz owrotność
cx cx 1,cx 2,cx 3,...,cx n. Przykład 4, 5
Matematyka ZLic - 07 Wektory i macierze Wektorem rzeczywistym n-wymiarowym x x 1, x 2,,x n nazwiemy ciąg n liczb rzeczywistych (tzn odwzorowanie 1, 2,,n R) Zbiór wszystkich rzeczywistych n-wymiarowych
Postulaty interpretacyjne mechaniki kwantowej Wykład 6
Postulaty interpretacyjne mechaniki kwantowej Wykład 6 Karol Kołodziej Instytut Fizyki Uniwersytet Śląski, Katowice http://kk.us.edu.pl 19 września 2014 Karol Kołodziej Postulaty interpretacyjne mechaniki
Matematyka stosowana i metody numeryczne
Ewa Pabisek Adam Wosatko Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładu 14 Rachunekwektorowy W celu zdefiniowania wektora a należy podać: kierunek(prostą na której leży wektor)
Przekształcenia liniowe
Przekształcenia liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 4. wykład z algebry liniowej Warszawa, październik 2010 Mirosław Sobolewski (UW) Warszawa, wrzesień 2006 1 / 7
Postulaty mechaniki kwantowej
3.10.2004 11. Postulaty mechaniki kwantowej 120 Rozdział 11 Postulaty mechaniki kwantowej Mechanika kwantowa, jak zresztą każda teoria fizyczna, bazuje na kilku postulatach, które przyjmujemy "na wiarę".
PODSTAWY RACHUNKU WEKTOROWEGO
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Skalar Definicja Skalar wielkość fizyczna (lub geometryczna)
Mechanika. Wykład 2. Paweł Staszel
Mechanika Wykład 2 Paweł Staszel 1 Przejście graniczne 0 2 Podstawowe twierdzenia o pochodnych: pochodna funkcji mnożonej przez skalar pochodna sumy funkcji pochodna funkcji złożonej pochodna iloczynu
dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;
Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia
Wykłady z Mechaniki Kwantowej
Wykłady z Mechaniki Kwantowej Mechanika Kwantowa, Relatywistyczna Mechanika Kwantowa Wykład dla doktorantów (2017) Wykład 4 Najpiękniejszą rzeczą, jakiej możemy doświadczyć jest oczarowanie tajemnicą.
Algebra Liniowa 2 (INF, TIN), MAP1152 Lista zadań
Algebra Liniowa 2 (INF, TIN), MAP1152 Lista zadań Przekształcenia liniowe, diagonalizacja macierzy 1. Podano współrzędne wektora v w bazie B. Znaleźć współrzędne tego wektora w bazie B, gdy: a) v = (1,
a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn a 1j a 2j R i = , C j =
11 Algebra macierzy Definicja 11.1 Dla danego ciała F i dla danych m, n N funkcję A : {1,..., m} {1,..., n} F nazywamy macierzą m n (macierzą o m wierszach i n kolumnach) o wyrazach z F. Wartość A(i, j)
Analiza matematyczna i algebra liniowa Macierze
Analiza matematyczna i algebra liniowa Macierze Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje: poniedziałek
1.1 Definicja. 1.2 Przykład. 1.3 Definicja. Niech G oznacza dowolny, niepusty zbiór.
20. Definicje i przykłady podstawowych struktur algebraicznych (grupy, pierścienie, ciała, przestrzenie liniowe). Pojęcia dotyczące przestrzeni liniowych (liniowa zależność i niezależność układu wektorów,
Algorytm Grovera. Kwantowe przeszukiwanie zbiorów. Robert Nowotniak
Wydział Fizyki Technicznej, Informatyki i Matematyki Stosowanej Politechnika Łódzka 13 listopada 2007 Plan wystapienia 1 Informatyka Kwantowa podstawy 2 Opis problemu (przeszukiwanie zbioru) 3 Intuicyjna
1 Zbiory i działania na zbiorach.
Matematyka notatki do wykładu 1 Zbiory i działania na zbiorach Pojęcie zbioru jest to pojęcie pierwotne (nie definiuje się tego pojęcia) Pojęciami pierwotnymi są: element zbioru i przynależność elementu
Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm
Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i,j) (i = 1,,n;j = 1,,m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F = R lub F = C, nazywamy macierzą (rzeczywistą, gdy F
W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora.
1. Podstawy matematyki 1.1. Geometria analityczna W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. Skalarem w fizyce nazywamy
1 Rozwiązywanie układów równań. Wyznaczniki. 2 Wektory kilka faktów użytkowych
Rozwiązywanie układów równań. Wyznaczniki. 2 Wektory kilka faktów użytkowych 2. Wektory. 2.. Wektor jako n ka liczb W fizyce mamy do czynienia z pojęciami lub obiektami o różnym charakterze. Są np. wielkości,
1 Elementy logiki i teorii mnogości
1 Elementy logiki i teorii mnogości 11 Elementy logiki Notatki do wykładu Definicja Zdaniem logicznym nazywamy zdanie oznajmujące, któremu przysługuje jedna z dwu logicznych ocen prawda (1) albo fałsz
Wykład 5. Ker(f) = {v V ; f(v) = 0}
Wykład 5 Niech f : V W będzie przekształceniem liniowym przestrzeni wektorowych Wtedy jądrem przekształcenia nazywamy zbiór tych elementów z V, których obrazem jest wektor zerowy w przestrzeni W Jądro
21 Symetrie Grupy symetrii Grupa translacji
21 Symetrie 21.1 Grupy symetrii Spróbujmy odpowiedzieć sobie na pytanie, jak zmienia się stan układu kwantowego pod wpływem transformacji układu współrzędnych. Najprostszą taką transformacją jest np. przesunięcie
PODSTAWY AUTOMATYKI. MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.
WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI Katedra Inżynierii Systemów Sterowania PODSTAWY AUTOMATYKI MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.
Mechanika kwantowa Schrödingera
Fizyka 2 Wykład 2 1 Mechanika kwantowa Schrödingera Hipoteza de Broglie a wydawała się nie zgadzać z dynamiką Newtona. Mechanika kwantowa Schrödingera zawiera mechanikę kwantową jako przypadek graniczny
1 Formy hermitowskie. GAL (Informatyka) Wykład - formy hermitowskie. Paweł Bechler
GAL (Informatyka) Wykład - formy hermitowskie Wersja z dnia 23 stycznia 2014 Paweł Bechler 1 Formy hermitowskie Niech X oznacza przestrzeń liniową nad ciałem K. Definicja 1. Funkcję φ : X X K nazywamy
Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13
Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13 (1) Nazwa Algebra liniowa z geometrią (2) Nazwa jednostki prowadzącej Instytut Matematyki przedmiot (3) Kod () Studia Kierunek
Czy umiemy mnożyć wektory?
Czy umiemy mnożyć wektory? wprowadzenie do algebry geometrycznej Jacek Grela 1 UJ 2010 Plan działania Motywacja Wprowadzenie do algebry geometrycznej Algebra 2D, 3D Przykład fizyczny Algebra czasoprzestrzeni
Rozdział 3. Tensory. 3.1 Krzywoliniowe układy współrzędnych
Rozdział 3 Tensory 3.1 Krzywoliniowe układy współrzędnych W kartezjańskim układzie współrzędnych punkty P są scharakteryzowane przez współrzędne kartezjańskie wektora wodzącego r = x 1 i 1 + x 2 i 2 +
Wykład 14. Elementy algebry macierzy
Wykład 14 Elementy algebry macierzy dr Mariusz Grządziel 26 stycznia 2009 Układ równań z dwoma niewiadomymi Rozważmy układ równań z dwoma niewiadomymi: a 11 x + a 12 y = h 1 a 21 x + a 22 y = h 2 a 11,
Algebra z geometrią analityczną zadania z odpowiedziami
Algebra z geometrią analityczną zadania z odpowiedziami Maciej Burnecki Spis treści 0 Wyrażenia algebraiczne, indukcja matematyczna 2 2 2 1 Geometria analityczna w R 2 3 3 3 2 Liczby zespolone 4 4 4 3
Wykład 4 Udowodnimy teraz, że jeśli U, W są podprzetrzeniami skończenie wymiarowej przestrzeni V to zachodzi wzór: dim(u + W ) = dim U + dim W dim(u
Wykład 4 Udowodnimy teraz, że jeśli U, W są podprzetrzeniami skończenie wymiarowej przestrzeni V to zachodzi wzór: dim(u + W ) = dim U + dim W dim(u W ) Rzeczywiście U W jest podprzetrzenią przestrzeni
Krótki wstęp do mechaniki kwantowej
Piotr Kowalczewski III rok fizyki, e-mail: piotrkowalczewski@gmailcom Krótki wstęp do mechaniki kwantowej Spotkanie Sekcji Informatyki Kwantowej Mechanika kwantowa w cytatach If quantum mechanics hasn
Przestrzenie liniowe
Przestrzenie liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 2 wykład z algebry liniowej Warszawa, październik 2015 Mirosław Sobolewski (UW) Warszawa, wrzesień 2015 1 / 10 Przestrzenie
Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni ,5 1
Zał. nr 4 do ZW WYDZIAŁ ***** KARTA PRZEDMIOTU Nazwa w języku polskim ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ B Nazwa w języku angielskim Algebra and Analytic Geometry B Kierunek studiów (jeśli dotyczy): Specjalność
ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ
ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ WSHE, O/K-CE 10. Homomorfizmy Definicja 1. Niech V, W będą dwiema przestrzeniami liniowymi nad ustalonym ciałem, odwzorowanie ϕ : V W nazywamy homomorfizmem
Jak łatwo zauważyć, zbiór form symetrycznych (podobnie antysymetrycznych) stanowi podprzestrzeń przestrzeni L(V, V, K). Oznaczamy ją Sym(V ).
Odwzorowania n-liniowe; formy n-liniowe Definicja 1 Niech V 1,..., V n, U będą przestrzeniami liniowymi nad ciałem K. Odwzorowanie G: V 1 V n U nazywamy n-liniowym, jeśli dla każdego k [n] i wszelkich
Rok akademicki: 2013/2014 Kod: JFT s Punkty ECTS: 5. Poziom studiów: Studia I stopnia Forma i tryb studiów: -
Nazwa modułu: Matematyczne metody fizyki 1 Rok akademicki: 2013/2014 Kod: JFT-1-103-s Punkty ECTS: 5 Wydział: Fizyki i Informatyki Stosowanej Kierunek: Fizyka Techniczna Specjalność: - Poziom studiów:
3. Wykład Układy równań liniowych.
31 Układy równań liniowych 3 Wykład 3 Definicja 31 Niech F będzie ciałem Układem m równań liniowych o niewiadomych x 1,, x n, m, n N, o współczynnikach z ciała F nazywamy układ równań postaci: x 1 + +
Praca domowa - seria 6
Praca domowa - seria 6 28 grudnia 2012 Zadanie 1. Znajdź bazę jądra i obrazu przekształcenia liniowego φ : R 4 wzorem: R 3 danego φ(x 1, x 2, x 3, x 4 ) = (x 1 +2x 2 x 3 +3x 4, x 1 +x 2 +2x 3 +x 4, 2x
Reprezentacje położeniowa i pędowa
3.10.2004 9. Reprezentacje położeniowa i pędowa 103 Rozdział 9 Reprezentacje położeniowa i pędowa 9.1 Reprezentacja położeniowa Reprezentacja położeniowa jest szczególnie uprzywilejowana i najczęściej
Iloczyn skalarny, wektorowy, mieszany. Ortogonalność wektorów. Metoda ortogonalizacji Grama-Schmidta. Małgorzata Kowaluk semestr X
Iloczyn skalarny, wektorowy, mieszany. Ortogonalność wektorów. Metoda ortogonalizacji Grama-Schmidta. Małgorzata Kowaluk semestr X ILOCZYN SKALARNY Iloczyn skalarny operator na przestrzeni liniowej przypisujący
Działania na przekształceniach liniowych i macierzach
Działania na przekształceniach liniowych i macierzach Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 5 wykład z algebry liniowej Warszawa, listopad 2013 Mirosław Sobolewski (UW) Warszawa,
Wykłady z Mechaniki Kwantowej
Wykłady z Mechaniki Kwantowej Mechanika Kwantowa, Relatywistyczna Mechanika Kwantowa Wykład dla doktorantów (2017) Wykład 3 Fakty nie są najważniejsze. Zresztą, aby je poznać, nie trzeba studiować na
Mechanika Kwantowa. Maciej J. Mrowiński. 24 grudnia Funkcja falowa opisująca stan pewnej cząstki ma następującą postać: 2 x 2 )
Mechanika Kwantowa Maciej J. Mrowiński 4 grudnia 11 Zadanie MK1 Funkcja falowa opisująca stan pewnej cząstki w chwili t = ma następującą postać: A(a Ψ(x,) = x ) gdy x [ a,a] gdy x / [ a,a] gdzie a +. Wyznacz
SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa
SIMR 06/07, Analiza, wykład, 07-0- Przestrzeń wektorowa Przestrzeń wektorowa (liniowa) - przestrzeń (zbiór) w której określone są działania (funkcje) dodawania elementów i mnożenia elementów przez liczbę
Wykład 9. Matematyka 3, semestr zimowy 2011/ listopada 2011
Wykład 9. Matematyka 3, semestr zimowy 2011/2012 4 listopada 2011 W trakcie poprzedniego wykładu zdefiniowaliśmy pojęcie k-kowektora na przestrzeni wektorowej. Wprowadziliśmy także iloczyn zewnętrzny wielokowektorów
4 Przekształcenia liniowe
MIMUW 4. Przekształcenia liniowe 16 4 Przekształcenia liniowe Obok przestrzeni liniowych, podstawowym obiektem algebry liniowej są przekształcenia liniowe. Rozpatrując przekształcenia liniowe między przestrzeniami
Zadania z Algebry liniowej 4 Semestr letni 2009
Zadania z Algebry liniowej 4 Semestr letni 2009 Ostatnie zmiany 23.05.2009 r. 1. Niech F będzie podciałem ciała K i niech n N. Pokazać, że niepusty liniowo niezależny podzbiór S przestrzeni F n jest także
15. Macierze. Definicja Macierzy. Definicja Delty Kroneckera. Definicja Macierzy Kwadratowej. Definicja Macierzy Jednostkowej
15. Macierze Definicja Macierzy. Dla danego ciała F i dla danych m, n IN funkcję A : {1,...,m} {1,...,n} F nazywamy macierzą m n ( macierzą o m wierszach i n kolumnach) o wyrazach z F. Wartość A(i, j)
(U.16) Dodawanie momentów pędu
.0.004 7. (U.6) Dodawanie momentów pędu 5 Rozdział 7 (U.6) Dodawanie momentów pędu 7. Złożenie orbitalnego momentu pędu i spinu / 7.. Przejście do bazy sprzężonej W praktycznych zastosowaniach potrzebujemy
spis treści 1 Zbiory i zdania... 5
wstęp 1 i wiadomości wstępne 5 1 Zbiory i zdania............................ 5 Pojęcia pierwotne i podstawowe zasady 5. Zbiory i zdania 6. Operacje logiczne 7. Definicje i twierdzenia 9. Algebra zbiorów
Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15
Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15 Nazwa Algebra liniowa z geometrią Nazwa jednostki prowadzącej Wydział Matematyczno - Przyrodniczy przedmiot Kod Studia Kierunek
1 Macierze i wyznaczniki
1 Macierze i wyznaczniki 11 Definicje, twierdzenia, wzory 1 Macierzą rzeczywistą (zespoloną) wymiaru m n, gdzie m N oraz n N, nazywamy prostokątną tablicę złożoną z mn liczb rzeczywistych (zespolonych)
Układy liniowo niezależne
Układy liniowo niezależne Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 3.wykład z algebry liniowej Warszawa, październik 2016 Mirosław Sobolewski (UW) Warszawa, październik 2016 1
Układy współrzędnych
Układy współrzędnych Układ współrzędnych matematycznie - funkcja przypisująca każdemu punktowi danej przestrzeni skończony ciąg (krotkę) liczb rzeczywistych zwanych współrzędnymi punktu. Układ współrzędnych
Tydzień nr 9-10 (16 maja - 29 maja), Równania różniczkowe, wartości własne, funkcja wykładnicza od operatora - Matematyka II 2010/2011L
Tydzień nr 9-10 (16 maja - 29 maja) Równania różniczkowe wartości własne funkcja wykładnicza od operatora - Matematyka II 2010/2011L Wszelkie pytania oraz uwagi o błędach proszę kierować na przemek.majewski@gmail.com
Twierdzenie spektralne
Twierdzenie spektralne Tomasz Kochanek Uniwersytet Śląski Instytut Matematyki XXXI Sesja KNM UŚ Motywacje, intuicje, konstrukcje Szczyrk 10 13 listopada 2011 Tomasz Kochanek (Uniwersytet Śląski) Twierdzenie
Algebra liniowa z geometrią
Algebra liniowa z geometrią Maciej Czarnecki 15 stycznia 2013 Spis treści 1 Geometria płaszczyzny 2 1.1 Wektory i skalary........................... 2 1.2 Macierze, wyznaczniki, układy równań liniowych.........
Lista. Algebra z Geometrią Analityczną. Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami:
Lista Algebra z Geometrią Analityczną Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami: (N, ), (Z, +) (Z, ), (R, ), (Q \ {}, ) czym jest element neutralny i przeciwny w grupie?,
Matematyka z el. statystyki, # 1 /Geodezja i kartografia I/
Matematyka z el. statystyki, # 1 /Geodezja i kartografia I/ dr n. mat. Zdzisław Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Akademicka 15, p.211a, bud. Agro
Algebra z geometrią analityczną zadania z odpowiedziami
Algebra z geometrią analityczną zadania z odpowiedziami Maciej Burnecki Spis treści strona główna 1 Wyrażenia algebraiczne, indukcja matematyczna 2 2 Geometria analityczna w R 2 Liczby zespolone 4 4 Wielomiany
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Rezonansowe oddziaływanie układu atomowego z promieniowaniem "! "!! # $%&'()*+,-./-(01+'2'34'*5%.25%&+)*-(6
Algebra z geometrią analityczną zadania z odpowiedziami
Algebra z geometrią analityczną zadania z odpowiedziami Maciej Burnecki opracowanie Spis treści I Wyrażenia algebraiczne, indukcja matematyczna 2 II Geometria analityczna w R 2 4 III Liczby zespolone 5
Wykład I.2 1 Kłopoty z mechaniką klasyczną. 2 Postulaty mechaniki kwantowej 1. Stan układu funkcja falowa ψ(x), ψ(x) 2 interpretacja
Wykład I.2 1 Kłopoty z mechaniką klasyczną 2 Postulaty mechaniki kwantowej 1. Stan układu funkcja falowa ψ(x), ψ(x) 2 interpretacja probabilistyczna 2. Wielkości fizyczne operatory hermitowskie (obserwable)
Podstawy robotyki. Wykład II. Robert Muszyński Janusz Jakubiak Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska
Podstawy robotyki Wykład II Ruch ciała sztywnego w przestrzeni euklidesowej Robert Muszyński Janusz Jakubiak Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska Preliminaria matematyczne
Analiza funkcjonalna 1.
Analiza funkcjonalna 1. Wioletta Karpińska Semestr letni 2015/2016 0 Bibliografia [1] Banaszczyk W., Analiza matematyczna 3. Wykłady. (http://math.uni.lodz.pl/ wbanasz/am3/) [2] Birkholc A., Analiza matematyczna.
ALGEBRA Z GEOMETRIĄ MACIERZE ODWZOROWAŃ LINIOWYCH
ALGEBRA Z GEOMETRIĄ 1/10 MACIERZE ODWZOROWAŃ LINIOWYCH Piotr M. Hajac Uniwersytet Warszawski Wykład 12, 08.01.2014 Typeset by Jakub Szczepanik. Motywacje 2/10 W celu wykonania obliczeń numerycznych w zagadnieniach
Metody systemowe i decyzyjne w informatyce
Metody systemowe i decyzyjne w informatyce Laboratorium JAVA Zadanie nr 2 Rozpoznawanie liter autorzy: A. Gonczarek, J.M. Tomczak Cel zadania Celem zadania jest zapoznanie się z problemem klasyfikacji
Niezb. ednik matematyczny. Niezb. ednik matematyczny
Niezb ednik matematyczny Niezb ednik matematyczny Liczby zespolone I Rozważmy zbiór R R (zbiór par liczb rzeczywistych) i wprowadźmy w nim nastepuj ace dzia lania: z 1 + z 2 = (x 1, y 1 ) + (x 2, y 2 )
Iloczyn skalarny. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 10. wykład z algebry liniowej Warszawa, grudzień 2013
Iloczyn skalarny Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 10. wykład z algebry liniowej Warszawa, grudzień 2013 Mirosław Sobolewski (UW) Warszawa, grudzień 2013 1 / 14 Standardowy
[ A i ' ]=[ D ][ A i ] (2.3)
. WSTĘP DO TEORII SPRĘŻYSTOŚCI 1.. WSTĘP DO TEORII SPRĘŻYSTOŚCI.1. Tensory macierzy Niech macierz [D] będzie macierzą cosinusów kierunkowych [ D ]=[ i ' j ] (.1) Macierz transformowana jest równa macierzy
a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ...
Wykład 15 Układy równań liniowych Niech K będzie ciałem i niech α 1, α 2,, α n, β K. Równanie: α 1 x 1 + α 2 x 2 + + α n x n = β z niewiadomymi x 1, x 2,, x n nazywamy równaniem liniowym. Układ: a 21 x
2 Rachunek macierzowy, metoda eliminacji Gaussa-Jordana Wprowadzenie teoretyczne Zadania... 9
Spis treści 1 Podstawowe struktury algebraiczne 2 11 Grupa, pierścień, ciało 2 12 Grupy permutacji 4 13 Pierścień wielomianów, algorytm Euklidesa, największy wspólny dzielnik 6 14 Zadania 7 2 Rachunek
O informatyce kwantowej
O informatyce kwantowej Piotr Gawron Instytut Informatyki Teoretycznej i Stosowanej PAN Posiedzenie PTM Gliwice Piotr Gawron (IITiS PAN) O informatyce kwantowej 6 października 009 1 / 33 Plan wystąpienia
Matematyczne Metody Chemii I Zadania
Matematyczne Metody Chemii I Zadania Mariusz Radoń, Marcin Makowski, Grzegorz Mazur Zestaw Zadanie. Pokazać, że wyznacznik dowolnej macierzy unitarnej jest liczbą o module. Zadanie. Pokazać, że elementy
W dotychczasowych rozważaniach dotyczących różnych układów fizycznych (w tym i atomu wodoropodobnego)
3.1.4 17. Teoria spinu 1/ 196 Rozdział 17 Teoria spinu 1/ 17.1 Wprowadzenie braki dotychczasowej teorii W dotychczasowych rozważaniach dotyczących różnych układów fizycznych w tym i atomu wodoropodobnego
Kwantowa kooperacja. Robert Nowotniak. Wydział Fizyki Technicznej, Informatyki i Matematyki Stosowanej Politechnika Łódzka
Wydział Fizyki Technicznej, Informatyki i Matematyki Stosowanej Politechnika Łódzka Sekcja Informatyki Kwantowej, 17 maja 2007 Materiały źródłowe Prezentacja oparta jest na publikacjach: Johann Summhammer,
Algebra abstrakcyjna
Algebra abstrakcyjna Przykłady 1. Sama liczba 0 tworzy grupę (rzędu 1) ze względu na zwykłe dodawanie, również liczba 1 tworzy grupę (rzędu 1) ze względu na zwykłe mnożenie.. Liczby 1 i 1 stanowią grupą
Funkcje. Część pierwsza. Zbigniew Koza. Wydział Fizyki i Astronomii
Funkcje Część pierwsza Zbigniew Koza Wydział Fizyki i Astronomii Wrocław, 2015 Co to są funkcje? y(x) x Co to są funkcje? y(x) x Co to są funkcje? Funkcja dla każdego argumentu ma określoną dokładnie jedną
R n jako przestrzeń afiniczna
R n jako przestrzeń afiniczna Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 11. wykład z algebry liniowej Warszawa, grudzień 2014 Mirosław Sobolewski (UW) Warszawa, grudzień 2014 1