EKONOMETRIA wykład 4. Prof. dr hab. Eugeniusz Gatnar.

Wielkość: px
Rozpocząć pokaz od strony:

Download "EKONOMETRIA wykład 4. Prof. dr hab. Eugeniusz Gatnar."

Transkrypt

1 EKONOMETRIA wykłd 4 Prof. dr hb. Eugenusz Gtnr egtnr@ml.wz.uw.edu.pl

2 Wykorzystne modelu W zleżnośc od rodzju: modele sttyczne - do symulcj, modele dynmczne - do predykcj. Symulcj pozwl wyznczyć wrtość zmennej objśnnej w pewnej, hpotetycznej sytucj (gdy zmenne objśnjące osągną pewne określone wrtośc), tj. odpowd n pytne: co by było gdyby...?. Predykcj pozwl uzyskć prognozę, tj. wrtość zmennej objśnnej w przyszłym okrese czsu (T). Oczywśce muszą być znne, np. n podstwe plnu, wrtośc zmennych objśnjących w tym przyszłym, prognozownym okrese czsu (T).

3 Predykcj W sense numerycznym ob wrnty ne różną sę od sebe. Prognozę ˆT, zgodne z zsdą predykcj neobcążonej, oblcz sę ze wzoru: ˆ Wrncj błędu predykcj jest równ: S T bˆ 0 T T T T ( ) T T S ( b gdze: T to wektor wrtośc zmennych objśnjących dl okresu T: m j bˆ j ),, T mt jt T T

4 Wtedy błąd predykcj to: Predykcj () Sˆ T S T ˆ Przedzły ufnośc dl prognozy oblcz sę nstępująco: ˆ T t ( T m ) Sˆ T T ˆ T t ( T m ) Sˆ T gdze: t ( T m ) wrtość krytyczn odczytn z rozkłdu T m t-student dl pozomu stotnośc stopn swobody.

5 Predykcj (3) Przykłd Dynmczny model ekonometryczny: t = -,86 + 0,83 t +,650 t gdze: t produkcj w tysącch sztuk t lczb ztrudnonych w tysącch osób t wrtość mjątku trwłego w mln złotych Nleży przygotowć prognozę n rok 05, w którym zplnowno:,0 T 7,0 5,0

6 Predykcj (4) Prognoz produkcj n 05 rok wynos: T=05 = -,86 + 0,83 7 +,650 5 = 40,89 Czyl w roku 05 produkcj wynese 4 tys. sztuk. Wrncj predykcj wynos: Błąd predykcj: ˆ S T SˆT 77,785 6,67 tj. rzeczywste wrtośc produkcj będą odchylć sę od prognozy średno o plus-mnus sztuk.

7 Elstyczność Merzy welkość względnej zmny zmennej objśnnej () pod wpływem określonych, względnych zmn jednej ze zmennych objśnjących ( ). Njczęścej chodz o pytn typu: "o le % zmen sę, jeżel wzrośne o 5%?, lub o le % zmenć, by wzrósł o 0%? Wyróżnmy trzy rodzje elstycznośc: elstyczność klsyczn, elstyczność różncow, elstyczność cłkowt.

8 Elstyczność klsyczn Elstycznoścą klsyczną zmennej względem zmennej nzywmy wyrżene: Mernk elstycznośc klsycznej m zstosowne, gdy: zmny wyróżnonej zmennej objśnjącej są blske zer, tj. 0, zmny wyróżnonej zmennej objśnjącej ne wywołują zmn nnych zmennych. f (,..., m) Efekt względnych zmn zmennej objśnnej wywołnych określoną względną zmną wyróżnonej zmennej objśnjącej wyrż:

9 Przykłd Mjąc model kosztów cłkowtych (mln zł): = 0 + gdze " ozncz welkość produkcj (tys. sztuk), nleży oblczyć klsyczną elstyczność dl = 0 tys. sztuk. Elstyczność określ wzór: Ogóln postć modelu: = b 0 + b. Ztem: b 0 f (,..., m) b b

10 Przykłd Podstwjąc = 0, otrzymujemy: ,5 Efekt względnych zmn: 0,5 % 0,5% Ozncz to, że przy produkcj wynoszącej 0 tys. sztuk, jej wzrost o % spowoduje wzrost kosztów cłkowtych o 0,5%.

11 Elstyczność różncow Często w nlzch ekonomcznych rozptruje sę sytucje, w których dopuszcz sę dowolne zmny zmennych. W tkej sytucj korzyst sę z mernków elstycznośc różncowej, zdefnownej jko: gdze elstyczność rzędu "r" wyzncz sę z wzoru: Zwykle w szeregu wystrczy uwzględnć 3 perwsze wyrzy, co dje wzór: ) (.! r r r R r ),..., ( ) ( ),..., ( ) ( m r m r r f f 6 ) ( (3) (). R

12 Przykłd Mjąc model produkcj Cobb-Dougls: =,5 0,5 0,6 gdze to ztrudnene, - kptł, oblczymy względny przyrost produkcj, gdy ztrudnene wzrośne o 40%. Elstycznośc rzędu perwszego, drugego trzecego: 0,5 0,6,5 0,5 0,5 0,5 0,6,5 0 0,5 (),5 0,6,5 0,5 ( 0,5) 0,5 0,5 0,6,5 (3),5 0,6,5 0,5 ( 0,5) (,5) 0,375 0,5 0,6,5

13 Elstyczność różncow będze równ: R. Zkłd sę wzrost ztrudnen o 40%, czyl: ztem podstwjąc: Czyl wzrost ztrudnen o 40% spowoduje wzrost produkcj o 8%. r ( r) R. r! Efekt względnych zmn: r 0,5 R. Przykłd 0,5 0,4 0,5 0,5 0,375 0,46 0,4 0,6 6 0,375 0,84 0,46 ( 0,4 6 )

14 Elstyczność cłkowt Jest stosown wtedy, gdy zmn zmennej objśnjącej jest blsk zero (Δ 0), le pocąg on z sobą zmny nnych (m) zmennych objśnjących w modelu. Wtedy poz wpływem zmennej n zmny nleży tkże uwzględnć efekty pośredne. gdze: / / j / j T / m / j to efekt bezpośredn, - elstyczność względem j, - elstyczność j względem. j j /

15 Anlz procesu produkcj Podstwowy problem: kwest pomru zleżnośc, jke występują mędzy nkłdm prcy żywej, przedmotów prcy środków prcy loścą otrzymywnego w procese produkcj produktu. Podstwowym pojęcem teoretycznym zwąznym z tego typu nlzą jest pojęce funkcj (modelu) produkcj. Funkcj (model) produkcj to funkcj wyrżjąc zleżność mędzy nkłdm prcy żywej uprzedmotowonej loścą otrzymywnego z tych nkłdów produktu.

16 Funkcj produkcj Jej znjomość pozwl m.n. określć: - jkego pozomu produkcj możn sę spodzewć w określonym przyszłym okrese, - w jkej merze nleży zmenć nkłdy czynnków produkcj, by uzyskć określony wyższy nż dotychczs, pozom produkcj, - jke są efekty produkcyjne relzownego w przedsęborstwe postępu technczno-orgnzcyjnego, - ustlć optymlne nkłdy czynnków produkcj mnmlzujące koszty cłkowte przy dnym pozome produkcj, - ustlć optymlne nkłdy czynnków produkcj mksymlzujące produkcję przy dnym koszce.

17 Model produkcj Cobb-Dougls Wyrż zleżność mędzy welkoścą produkcj () różnym rodzjm nkłdów (prcy, środków tp.): k e 0 k Czsm przyjmuje sę złożene o stłej wydjnośc produkcj, tj. α + + α m =, co ozncz, że jeżel nkłdy wszystkch czynnków produkcj wzrstją o p procent, to produkcj wzrst w tym smym tempe. Jeżel α + + α m <, to produkcj rośne wolnej nż nkłdy (mlejące przychody względem skl produkcj), jeżel α + + α m >, to rośne szybcej (rosnące przychody względem skl produkcj). Prmetry funkcj produkcj to elstycznośc. Np. elstyczność welkośc produkcj względem nkłdów jest równ α.

18 Model produkcj Cobb-Dougls W njprostszej postc jest to model dwuczynnkowy: gdze: - produkcj, K - kptł (wrtość brutto mjątku trwłego), L - prc (lczb ztrudnonych), 0,, - prmetry, u - skłdnk losowy. Jest to funkcj nelnow by oszcowć jej prmetry z pomocą metody njmnejszych kwdrtów (MNK) nleży ją sprowdzć do postc lnowej przez logrytmowne: Dje to model lnowy: 0 K L ln( ) ln( 0) ln( K) ln( L) y b e 0 b x b x

19 Dl pewnych dnych uzyskno model: Przykłd 0,45 3,36 K L 0,5 gdze prmetry mją nstępujące znczene: 0,45 - elstyczność produkcj względem kptłu, tj. jeżel kptł wzrośne o %, to produkcj wzrośne przecętne o 0,45% (jeżel lczb ztrudnonych sę ne zmen), 0,5 - elstyczność produkcj względem prcy, tj. jeżel lczb ztrudnonych wzrośne o %, to produkcj wzrośne średno o 0,5%.

20 Przykłd Jeżel ustlmy produkcję n pewnym pozome ( 0 ), to możn oszcowć welkość kptłu prcy, które nm ją zpewną: 0 0 K L 0 orz: np. jeżel ztrudnono 707 osób, wrtość produkcj m wyneść,05 mln zł, to wrtość kptłu pownn wynosć: K 4,9 mln złotych (przy ne zmenonym ztrudnenu). 0,45 L 0, , ,36 0 4,9 K

21 CES - Constnt Elstcty of Substtuton Funkcj o stłej elstycznośc substytucj. Jest uogólnenem modelu Cobb-Dougls, chocż trudno szcowć jej prmetry: gdze: k =. Model produkcj CES c c 0( W njprostszej postc jest to model dwuczynnkowy: gdze: oznczen są tke sme jk poprzedno,,, b, c - prmetry, przy czym: c (,0) (0,). Jest to model nelnowy ne stneje trnsformcj przeksztłcjąc go n lnowy. c ( K L c ) b c e k c k ) b c e

22 Dl pewnych dnych uzyskno model: Możn oblczyć o le wzrośne produkcj, jeżel ztrudnene wzrośne o %, wrtość środków trwłych ne ulegne zmne. Wtedy: ztem, gdy w beżącym okrese produkcj wynos 87 mln zł, ztrudnene 70 osób, to: węc: c b b L c Przykłd 0,707 0,707 (,0955K 0,6665L 0,6665 0,353 L L 0,8950 % 87 b c b L 0,707 0,8950 0,7064% c 70 ) 0,707 0,8950 0,707 0,353 Wzrost o 0,7064%.

23 Możn oblczyć o le wzrośne produkcj, jeżel ob czynnk produkcj wzrosną jednocześne o 5%. Wtedy w przyblżenu: Przykłd gdze k ozncz krotność wzrostu (czyl o (k ) 00%). Czyl: b k 0,8950,05 czyl produkcj wzrośne o 4,463%. Proces produkcyjny chrkteryzuje sę mlejącym przychodm względem skl produkcj. k b 0,04463

24 Anlz wydjnośc prcy Anlz może być prowdzon w odnesenu do: - ndywdulnej wydjnośc prcy, - zespołowej wydjnośc prcy. Przedmotem bdń jest poszukwne zleżnośc przyczynowo - skutkowych określjących pozom ksztłtown sę wydjnośc prcy wyznczne loścowych efektów oddzływn poszczególnych czynnków n wydjność prcy.

25 Model wydjnośc prcy Zleżność wydjnośc prcy od weku prcownk jest wyrżn z pomocą funkcj: W e gdze: W - wydjność, T wek prcownk, u - skłdnk losowy. Jest to funkcj nelnow nleży ją sprowdzć do postc lnowej przez logrytmowne: ln( W) Dje to model lnowy: y b 0 0 T T T 0 b x b x T

26 Dl pewnych dnych uzyskno model: W e Możn oblczyć optymlny wek prcownk (tj. wek, w którym osąg mksymlną wydjność). Oblczmy pochodną cząstkową W względem T: dw e dt W (0,308,855 0,308T przyrównujemy do zer: dw dt 0 Przykłd,855 0,308T 0,00T 0,00T 0,0044T ) 0,308 (0,308 0,0044T 0 0,00T ) T * 30

27 Przykłd Jego mksymln wydjność jest wtedy równ:,855 W mx e 0, ,00 30 W mx 6,4% wykonn normy.

28 Ekonometryczn nlz kosztów Przedmotem jest nlz prwdłowośc, jke występują w zkrese ksztłtown sę pozomu kosztów włsnych produkcj w zleżnośc od skl produkcj różnych czynnków techncznych, orgnzcyjnych ekonomcznych określjących wrunk prcy przedsęborstw. W zleżnośc od potrzeb, nlz może dotyczyć: - cłkowtych kosztów włsnych produkcj, - kosztów jednostkowych (lorz kosztów cłkowtych welkośc produkcj).

29 Może meć postć welomnową: gdze: K - koszt, Model kosztów K b 0 bq bq Q - welkość produkcj. Przykłd: Koszt wydobyc węgl w pewnej kopln ze względu n mesęczne wydobyce jest opsny funkcją: K 44, ,63Q 9,6743Q Prmetr b 0 = 44,438 ozncz tzw. koszt stły, wyrżene 64,63Q 9,6743Q reprezentuje koszty zmenne, uzleżnone od skl produkcj.

30 Możn wtedy oblczyć koszt cłkowty wydobyc np. 5 tys. ton węgl: K 44,4380 Wynos on 709 tys. zł. Model kosztów 64,63 9, ,4 Ntomst koszt jednostkowy k to lorz kosztu cłkowtego welkośc wydobyc: 5 5 k K 709,4 4,88zł tonę Q 5 /

31 Możn tkże oblczyć optymlną z punktu wdzen kosztów jednostkowych welkość wydobyc. Funkcj kosztów jednostkowych m postć: Optymlne wydobyce to tke, gdy osąg on mnmum. Lczymy pochodną cząstkową k względem Q przyrównujemy do zer: dk dq czyl dl Q 3,8639 tys. ton. Przykłd 44,4380 k 64,63 9, 6743Q Q 0 44, ,4380 Q 9,6743Q 9, Q 0 3,8639

32 Przykłd Ten mnmlny koszt wynos: k 44,4380 3, ,63 9,6743 3, ,3850 czyl 39,4 tys. zł

33 Funkcj popytu jest to funkcj wyrżjąc zleżność pozomu popytu od zespołu czynnków ekonomcznych pozekonomcznych wpływjących n ksztłtowne sę decyzj konsumentów, co do zkupu dóbr konsumpcyjnych n rynku. Klsyfkcj: Modele popytu mkrofunkcje popytu: pozwlją merzyć zleżność popytu wększych zborowośc konsumentów od tkch czynnków, jk: pozom dochodów, relcj cen popyt tychże konsumentów n nne dobr. mkrofunkcje popytu: wyrżją prwdłowośc ksztłtown sę popytu pojedynczych konsumentów lub rodzn w zleżnośc od dochodu, skłdu demogrfcznego, proflu zwodowego społecznego rodzny.

34 Njczęścej funkcje mkroekonomczne mją postć krzywych Engl (krzywych potrzeb), które wyrżją zleżność mędzy popytem (wydtkm) n dne dobro, czy usługę () dochodm konsumentów (). Może to być model: - potęgowy: - hperbolczny: - Tornqust: Modele popytu u 0 0 ) dl dóbr perwszej potrzeby: 0 u

35 - Tornqust: Modele popytu ) dl dóbr wyższego rzędu: 3) dl dóbr luksusowych: ( 3) Przy czym: - wydtk n dne dobro lub grupę dóbr, - dochody gospodrstw. - pozom, do którego wydtk n dne dobro rosną (pozom nsycen), 3 - pozom dochodów, przy którym pojwją sę wydtk n dne dobro. 3

36 W pewnej grupe osób wydtk n kulturę opsno jko funkcję Tornqust drugego rodzju dochodów. Po estymcj uzyskno model: Interpretcj: Modele popytu 670( 430) 6690 Wydtk n kulturę pojwją sę jeżel mesęczny dochód n osobę osągne pozom 430 zł będą rosły w mrę wzrostu dochodów ż do pozomu 670 zł.

EKONOMIA MENEDŻERSKA. Wykład 2 Analiza popytu. Optymalna polityka cenowa. 1 ANALIZA POPYTU. OPTYMALNA POLITYKA CENOWA.

EKONOMIA MENEDŻERSKA. Wykład 2 Analiza popytu. Optymalna polityka cenowa. 1 ANALIZA POPYTU. OPTYMALNA POLITYKA CENOWA. Wykłd Anlz popytu. Optymln poltyk cenow. 1 ANALIZA OYTU. OTYMALNA OLITYKA CENOWA. rzedmotem wykłdu jest prolem zrządzn zyskem poprzez oprcowne wdrożene odpowednej strteg różncown cen, wykorzystując do

Bardziej szczegółowo

ĆWICZENIE ANALIZA SITOWA I PODSTAWY OCENY GRANULOMETRYCZNEJ SUROWCÓW I PRODUKTÓW

ĆWICZENIE ANALIZA SITOWA I PODSTAWY OCENY GRANULOMETRYCZNEJ SUROWCÓW I PRODUKTÓW 1 ĆWICZENIE ANALIZA SITOWA I PODSTAWY OCENY GANULOMETYCZNEJ SUOWCÓW I PODUKTÓW 1. Cel zkres ćwczen Celem ćwczen jest opnowne przez studentów metody oceny mterłu sypkego pod względem loścowej zwrtośc frkcj

Bardziej szczegółowo

Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych,

Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych, Klsyczn Metod Njmniejszych Kwdrtów (KMNK) Postć ć modelu jest liniow względem prmetrów (lbo nleży dokonć doprowdzeni postci modelu do liniowości względem prmetrów), Zmienne objśnijące są wielkościmi nielosowymi,

Bardziej szczegółowo

Natalia Nehrebecka. Zajęcia 3

Natalia Nehrebecka. Zajęcia 3 St ł Cchock Stansław C h k Natala Nehrebecka Zajęca 3 1. Dobroć dopasowana równana regresj. Współczynnk determnacj R Dk Dekompozycja warancj zmennej zależnej ż Współczynnk determnacj R. Zmenne cągłe a

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Poltechnk Gdńsk Wydzł Elektrotechnk Automtyk Ktedr Inżyner Systemów Sterown Teor sterown Podstwy lgebry mcerzy Mterły pomocncze do ćwczeń lbortoryjnych 1 Część 3 Oprcowne: Kzmerz Duznkewcz, dr hb. nż.

Bardziej szczegółowo

Natalia Nehrebecka. Zajęcia 4

Natalia Nehrebecka. Zajęcia 4 St ł Cchock Stansław C h k Natala Nehrebecka Zajęca 4 1. Interpretacja parametrów przy zmennych zerojedynkowych Zmenne 0 1 Interpretacja przy zmennej 0 1 w modelu lnowym względem zmennych objaśnających

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6 Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Interpretacja parametrów przy zmennych objaśnających cągłych Semelastyczność 2. Zastosowane modelu potęgowego Model potęgowy 3. Zmenne cągłe za zmenne dyskretne

Bardziej szczegółowo

Równania liniowe. gdzie. Automatyka i Robotyka Algebra -Wykład 8- dr Adam Ćmiel,

Równania liniowe. gdzie. Automatyka i Robotyka Algebra -Wykład 8- dr Adam Ćmiel, utomtyk Robotyk lgebr -Wykłd - dr dm Ćmel cmel@ghedupl Równn lnowe Nech V W będą przestrzenm lnowym nd tym smym cłem K T: V W przeksztłcenem lnowym Rozwżmy równne lnowe T(v)w Powyższe równne nzywmy równnem

Bardziej szczegółowo

EKONOMETRIA I Spotkanie 1, dn. 05.10.2010

EKONOMETRIA I Spotkanie 1, dn. 05.10.2010 EKONOMETRIA I Spotkane, dn. 5..2 Dr Katarzyna Beń Program ramowy: http://www.sgh.waw.pl/nstytuty/e/oferta_dydaktyczna/ekonometra_stacjonarne_nest acjonarne/ Zadana, dane do zadań, ważne nformacje: http://www.e-sgh.pl/ben/ekonometra

Bardziej szczegółowo

ZESZYTY NAUKOWE NR 11(83) AKADEMII MORSKIEJ W SZCZECINIE. Fuzja danych nawigacyjnych w przestrzeni filtru Kalmana

ZESZYTY NAUKOWE NR 11(83) AKADEMII MORSKIEJ W SZCZECINIE. Fuzja danych nawigacyjnych w przestrzeni filtru Kalmana ISSN 733-867 ZESZ NAUKOWE NR (83) AKADEMII MORSKIEJ W SZCZECINIE IV MIĘDZNARODOWA KONFERENCJA NAUKOWO-ECHNICZNA E X L O - S H I 6 Andrzej Stteczny, Andrzej Lsj, Chfn Mohmmd Fzj dnych nwgcyjnych w przestrzen

Bardziej szczegółowo

Metoda prądów obwodowych

Metoda prądów obwodowych Metod prądów owodowyh Zmenmy wszystke rzezywste źródł prądowe n npęowe, Tworzymy kłd równń lnowyh opsjąyh poszzególne owody. Dowolną seć lnową skłdjąą sę z elementów skponyh możn opsć z pomoą kłd równń

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6 Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Zastosowane modelu potęgowego Model potęgowy Przekształcene Boxa-Coxa 2. Zmenne cągłe za zmenne dyskretne 3. Interpretacja parametrów przy zmennych dyskretnych

Bardziej szczegółowo

( ) Elementy rachunku prawdopodobieństwa. f( x) 1 F (x) f(x) - gęstość rozkładu prawdopodobieństwa X f( x) - dystrybuanta rozkładu.

( ) Elementy rachunku prawdopodobieństwa. f( x) 1 F (x) f(x) - gęstość rozkładu prawdopodobieństwa X f( x) - dystrybuanta rozkładu. Elementy rchunku prwdopodoeństw f 0 f() - gęstość rozkłdu prwdopodoeństw X f d P< < = f( d ) F = f( tdt ) - dystryunt rozkłdu E( X) = tf( t) dt - wrtość średn D ( X) = E( X ) E( X) - wrncj = f () F ()

Bardziej szczegółowo

Natalia Nehrebecka. Wykład 2

Natalia Nehrebecka. Wykład 2 Natala Nehrebecka Wykład . Model lnowy Postad modelu lnowego Zaps macerzowy modelu lnowego. Estymacja modelu Wartośd teoretyczna (dopasowana) Reszty 3. MNK przypadek jednej zmennej . Model lnowy Postad

Bardziej szczegółowo

dy dx stąd w przybliżeniu: y

dy dx stąd w przybliżeniu: y Przykłady do funkcj nelnowych funkcj Törnqusta Proszę sprawdzć uzasadnć, które z podanych zdań są prawdzwe, a które fałszywe: Przykład 1. Mesęczne wydatk na warzywa (y, w jednostkach penężnych, jp) w zależnośc

Bardziej szczegółowo

Sformułowanie zagadnienia. c c. Analiza zagadnienia dla przypadku m = 4 i n = 3. B 2. c A. c A

Sformułowanie zagadnienia. c c. Analiza zagadnienia dla przypadku m = 4 i n = 3. B 2. c A. c A ZGDNIENIE TRNSPORTOWE Sformułowne zgdnen Przypuśćmy, że z m punktów odprwy,, K, m m być wysłny w lośh,, K, m ednorodny produkt do n punktów przyęć,, K, n. odboru przymuą produkt w lośh b, b, K, bn. Kżdy

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 4

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 4 Stansław Cchock Natala Nehrebecka Zajęca 4 1. Interpretacja parametrów przy zmennych zerojedynkowych Zmenne 0-1 Interpretacja przy zmennej 0 1 w modelu lnowym względem zmennych objaśnających Interpretacja

Bardziej szczegółowo

Zadane 1: Wyznacz średne ruchome 3-okresowe z następujących danych obrazujących zużyce energ elektrycznej [kwh] w pewnym zakładze w mesącach styczeń - lpec 1998 r.: 400; 410; 430; 40; 400; 380; 370. Zadane

Bardziej szczegółowo

DOBÓR LINIOWO-ŁAMANEGO ROZDZIAŁU SIŁ HAMUJĄCYCH W SAMOCHODACH DOSTAWCZYCH

DOBÓR LINIOWO-ŁAMANEGO ROZDZIAŁU SIŁ HAMUJĄCYCH W SAMOCHODACH DOSTAWCZYCH Zgnew Kmńsk DOBÓ INIOWO-ŁMNEO OZDZIŁU SIŁ HMUJĄCYCH W SMOCHODCH DOSTWCZYCH Streszczene. W rtykule opsno sposoy dooru lnowo-łmnego rozdzłu sł mującyc w smocodc dostwczyc według wymgń egulmnu 3 ECE. Przedstwono

Bardziej szczegółowo

Matematyka stosowana i metody numeryczne

Matematyka stosowana i metody numeryczne Ew Pbisek Adm Wostko Piotr Pluciński Mtemtyk stosown i metody numeryczne Konspekt z wykłdu 0 Cłkownie numeryczne Wzory cłkowni numerycznego pozwlją n obliczenie przybliżonej wrtości cłki: I(f) = f(x) dx

Bardziej szczegółowo

Metody Lagrange a i Hamiltona w Mechanice

Metody Lagrange a i Hamiltona w Mechanice Metody Lgrnge i Hmilton w Mechnice Mriusz Przybycień Wydził Fizyki i Informtyki Stosownej Akdemi Górniczo-Hutnicz Wykłd 3 M. Przybycień (WFiIS AGH) Metody Lgrnge i Hmilton... Wykłd 3 1 / 15 Przestrzeń

Bardziej szczegółowo

Metody numeryczne. Wykład nr 7. dr hab. Piotr Fronczak

Metody numeryczne. Wykład nr 7. dr hab. Piotr Fronczak Metody numeryzne Wyłd nr 7 dr. Potr Fronz Cłowne numeryzne Cłowne numeryzne to przylżone olzne łe oznzony. Metody łown numeryznego polegją n przylżenu ł z pomoą odpowednej sumy wżonej wrtoś łownej unj

Bardziej szczegółowo

Modelowanie i obliczenia techniczne. Metody numeryczne w modelowaniu: Różniczkowanie i całkowanie numeryczne

Modelowanie i obliczenia techniczne. Metody numeryczne w modelowaniu: Różniczkowanie i całkowanie numeryczne Modelownie i obliczeni techniczne Metody numeryczne w modelowniu: Różniczkownie i cłkownie numeryczne Pochodn unkcji Pochodn unkcji w punkcie jest deiniown jko grnic ilorzu różnicowego (jeżeli istnieje):

Bardziej szczegółowo

Model ASAD. ceny i płace mogą ulegać zmianom (w odróżnieniu od poprzednio omawianych modeli)

Model ASAD. ceny i płace mogą ulegać zmianom (w odróżnieniu od poprzednio omawianych modeli) Model odstawowe założena modelu: ceny płace mogą ulegać zmanom (w odróżnenu od poprzedno omawanych model) punktem odnesena analzy jest obserwacja pozomu produkcj cen (a ne stopy procentowej jak w modelu

Bardziej szczegółowo

Raport Przeliczenie punktów osnowy wysokościowej III, IV i V klasy z układu Kronsztadt60 do układu Kronsztadt86 na obszarze powiatu krakowskiego

Raport Przeliczenie punktów osnowy wysokościowej III, IV i V klasy z układu Kronsztadt60 do układu Kronsztadt86 na obszarze powiatu krakowskiego Rport Przelczene punktów osnowy wysokoścowej III, IV V klsy z ukłdu Kronsztdt60 do ukłdu Kronsztdt86 n oszrze powtu krkowskego Wykonł: dr h. nż. Potr Bnsk dr nż. Jcek Kudrys dr nż. Mrcn Lgs dr nż. Bogdn

Bardziej szczegółowo

Proces decyzyjny: 1. Sformułuj jasno problem decyzyjny. 2. Wylicz wszystkie możliwe decyzje. 3. Zidentyfikuj wszystkie możliwe stany natury.

Proces decyzyjny: 1. Sformułuj jasno problem decyzyjny. 2. Wylicz wszystkie możliwe decyzje. 3. Zidentyfikuj wszystkie możliwe stany natury. Proces decyzyny: 1. Sformułu sno problem decyzyny. 2. Wylcz wszyste możlwe decyze. 3. Zdentyfu wszyste możlwe stny ntury. 4. Oreśl wypłtę dl wszystch możlwych sytuc, ( tzn. ombnc decyz / stn ntury ). 5.

Bardziej szczegółowo

Analiza matematyczna i algebra liniowa

Analiza matematyczna i algebra liniowa Anliz mtemtyczn i lgebr liniow Mteriły pomocnicze dl studentów do wykłdów Mcierze liczbowe i wyznczniki. Ukłdy równń liniowych. Mcierze. Wyznczniki. Mcierz odwrotn. Równni mcierzowe. Rząd mcierzy. Ukłdy

Bardziej szczegółowo

4. RACHUNEK WEKTOROWY

4. RACHUNEK WEKTOROWY 4. RACHUNEK WEKTOROWY 4.1. Wektor zczepiony i wektor swoodny Uporządkowną prę punktów (A B) wyznczjącą skierowny odcinek o początku w punkcie A i końcu w punkcie B nzywmy wektorem zczepionym w punkcie

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 7

Stanisław Cichocki. Natalia Nehrebecka. Wykład 7 Stansław Cchock Natala Nehrebecka Wykład 7 1 1. Zmenne cągłe a zmenne dyskretne 2. Interpretacja parametrów przy zmennych dyskretnych 1. Zmenne cągłe a zmenne dyskretne 2. Interpretacja parametrów przy

Bardziej szczegółowo

Równania i nierówności kwadratowe z jedną niewiadomą

Równania i nierówności kwadratowe z jedną niewiadomą 50 REPETYTORIUM 31 Równni i nierówności kwdrtowe z jedną niewidomą Równnie wielominowe to równość dwóch wyrżeń lgebricznych Kżd liczb, któr po podstwieniu w miejscu niewidomej w równniu o jednej niewidomej

Bardziej szczegółowo

Modele wieloczynnikowe. Modele wieloczynnikowe. Modele wieloczynnikowe ogólne. α β β β ε. Analiza i Zarządzanie Portfelem cz. 4.

Modele wieloczynnikowe. Modele wieloczynnikowe. Modele wieloczynnikowe ogólne. α β β β ε. Analiza i Zarządzanie Portfelem cz. 4. Modele weloczynnkowe Analza Zarządzane Portfelem cz. 4 Ogólne model weloczynnkowy można zapsać jako: (,...,,..., ) P f F F F = n Dr Katarzyna Kuzak lub (,...,,..., ) f F F F = n Modele weloczynnkowe Można

Bardziej szczegółowo

) będą niezależnymi zmiennymi losowymi o tym samym rozkładzie normalnym z następującymi parametrami: nieznaną wartością 1 4

) będą niezależnymi zmiennymi losowymi o tym samym rozkładzie normalnym z następującymi parametrami: nieznaną wartością 1 4 Zadane. Nech ( X, Y ),( X, Y ), K,( X, Y n n ) będą nezależnym zmennym losowym o tym samym rozkładze normalnym z następującym parametram: neznaną wartoścą oczekwaną EX = EY = m, warancją VarX = VarY =

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6 Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Zastosowane modelu potęgowego Przekształcene Boxa-Coxa 2. Zmenne cągłe za zmenne dyskretne 3. Interpretacja parametrów przy zmennych dyskretnych 1. Zastosowane

Bardziej szczegółowo

WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać:

WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać: WEKTORY Wśród wielkości fizycznych występujących w fizyce możn wyróżnić sklry i wektory. Aby określić wielkość sklrną, wystrczy podć tylko jedną liczbę. Wielkościmi tkimi są ms, czs, tempertur, objętość

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 7

Stanisław Cichocki. Natalia Nehrebecka. Wykład 7 Stansław Cchock Natala Nehrebecka Wykład 7 1 1. Interakcje 2. Przyblżane model nelnowych 3. Założena KMRL 1. Interakcje 2. Przyblżane model nelnowych 3. Założena KMRL W standardowym modelu lnowym zakładamy,

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA WYKŁAD 9. ZBIORY ROZMYTE Częstochow 204 Dr hb. inż. Grzegorz Dudek Wydził Elektryczny Politechnik Częstochowsk ZBIORY ROZMYTE Klsyczne pojęcie zbioru związne jest z logiką dwuwrtościową

Bardziej szczegółowo

( ) Lista 2 / Granica i ciągłość funkcji ( z przykładowymi rozwiązaniami)

( ) Lista 2 / Granica i ciągłość funkcji ( z przykładowymi rozwiązaniami) List / Grnic i ciągłość funkcji ( z przykłdowymi rozwiąznimi) Korzystjąc z definicji grnicy (ciągowej) funkcji uzsdnić podne równości: sin ) ( + ) ; b) ; c) + 5 Obliczyć grnice funkcji przy orz : + ) f

Bardziej szczegółowo

Pochodne i całki, macierze i wyznaczniki

Pochodne i całki, macierze i wyznaczniki Cłk oznczon Cłk niewłściw Wzór Tylor Mcierze Pochodne i cłki, mcierze i wyznczniki Stnisłw Jworski Ktedr Ekonometrii i Sttystyki Zkłd Sttystyki Stnisłw Jworski Pochodne i cłki, mcierze i wyznczniki Cłk

Bardziej szczegółowo

Grażyna Nowicka, Waldemar Nowicki BADANIE RÓWNOWAG KWASOWO-ZASADOWYCH W ROZTWORACH ELEKTROLITÓW AMFOTERYCZNYCH

Grażyna Nowicka, Waldemar Nowicki BADANIE RÓWNOWAG KWASOWO-ZASADOWYCH W ROZTWORACH ELEKTROLITÓW AMFOTERYCZNYCH Ćwiczenie Grżyn Nowick, Wldemr Nowicki BDNIE RÓWNOWG WSOWO-ZSDOWYC W ROZTWORC ELETROLITÓW MFOTERYCZNYC Zgdnieni: ktywność i współczynnik ktywności skłdnik roztworu. ktywność jonów i ktywność elektrolitu.

Bardziej szczegółowo

METODY KOMPUTEROWE 11

METODY KOMPUTEROWE 11 METOY KOMPUTEROWE METOA WAŻONYCH REZIUÓW Mchł PŁOTKOWIAK Adm ŁOYGOWSKI Konsultcje nukowe dr nż. Wtold Kąkol Poznń / METOY KOMPUTEROWE METOA WAŻONYCH REZIUÓW Metod wżonych rezduów jest slnym nrzędzem znjdown

Bardziej szczegółowo

Wykład 2. Granice, ciągłość, pochodna funkcji i jej interpretacja geometryczna

Wykład 2. Granice, ciągłość, pochodna funkcji i jej interpretacja geometryczna 1 Wykłd Grnice, ciągłość, pocodn unkcji i jej interpretcj geometryczn.1 Grnic unkcji. Grnic lewostronn i grnic prwostronn unkcji Deinicj.1 Mówimy, że liczb g jest grnicą lewostronną unkcji w punkcie =,

Bardziej szczegółowo

Rozpraszania twardych kul

Rozpraszania twardych kul Wyłd XVIII Rozprszn twrdych u Rozwżmy oddzływne twrdych u opsywne potencjłem V r r Ponewż potencjł jest seryczne symetryczny uncję ową możn zpsć w postc ( r Cm R Ym( m gdze Ym( to hrmon seryczne Rozprszne

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH

STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH 1 Test zgodnośc χ 2 Hpoteza zerowa H 0 ( Cecha X populacj ma rozkład o dystrybuance F). Hpoteza alternatywna H1( Cecha X populacj

Bardziej szczegółowo

1. Weryfikacja hipotez dotyczących wariancji test F. 2. Wykorzystanie statystyki F do badania istotności regresji

1. Weryfikacja hipotez dotyczących wariancji test F. 2. Wykorzystanie statystyki F do badania istotności regresji PODSTAWY STATYSTYKI 1. Teor prwdopodobeńtw element kombntork. Zmenne loowe ch rozkłd 3. Populcje prób dnch, etmcj prmetrów 4. Tetowne hpotez 5. Tet prmetrczne (n przkłdze tetu t) 6. Tet neprmetrczne (n

Bardziej szczegółowo

METODY NUMERYCZNE. Wykład 4. Numeryczne rozwiązywanie równań nieliniowych z jedną niewiadomą. dr hab.inż. Katarzyna Zakrzewska, prof.

METODY NUMERYCZNE. Wykład 4. Numeryczne rozwiązywanie równań nieliniowych z jedną niewiadomą. dr hab.inż. Katarzyna Zakrzewska, prof. METODY NUMERYCZNE Wykłd 4. Numeryczne rozwązywne równń nelnowych z jedną newdomą dr hb.nż. Ktrzyn Zkrzewsk, pro.agh Met.Numer. Wykłd 4 Rozwązywne równń nelnowych z jedną newdomą Nleży znleźć perwstek równn

Bardziej szczegółowo

WYBRANE ZAGADNIENIA Z DYNAMIKI GAZÓW

WYBRANE ZAGADNIENIA Z DYNAMIKI GAZÓW JB emetr II / WYBNE ZGDNIENI Z DYNIKI GZÓW Porzedno omwlśmy zgdnen rzeływu łynów neścślwych, które dorowdzły n do równń Ner- Stoke oujące ruch łynu ścślwego neścślwego orz nne dl tłej gętośc: Euler, Bernoull

Bardziej szczegółowo

METODA DIAGNOSTYKI SOCJOMETRYCZNEJ JAKO NARZĘDZIE BADAŃ CECH JAKOŚCIOWYCH KIEROWNIKÓW

METODA DIAGNOSTYKI SOCJOMETRYCZNEJ JAKO NARZĘDZIE BADAŃ CECH JAKOŚCIOWYCH KIEROWNIKÓW FOLIA UNIVERSITATIS AGRICULTURAE STETINENSIS Fol Unv. Agrc. Stetn. 007, Oeconomc 54 (47, 347 354 Leond WOROBJOW METODA DIAGNOSTYKI SOCJOMETRYCZNEJ JAKO NARZĘDZIE BADAŃ CECH JAKOŚCIOWYCH KIEROWNIKÓW THE

Bardziej szczegółowo

Wyrównanie sieci niwelacyjnej

Wyrównanie sieci niwelacyjnej 1. Wstęp Co to jest sieć niwelcyjn Po co ją się wyrównje Co chcemy osiągnąć 2. Metod pośrednicząc Wyrównnie sieci niwelcyjnej Metod pośrednicząc i metod grpow Mmy sieć skłdjącą się z szereg pnktów. Niektóre

Bardziej szczegółowo

BADANIE ZALEŻNOŚCI PRZENIKALNOŚCI MAGNETYCZNEJ

BADANIE ZALEŻNOŚCI PRZENIKALNOŚCI MAGNETYCZNEJ ADANIE ZAEŻNOŚCI PRZENIKANOŚCI MAGNETYCZNEJ FERRIMAGNETYKÓW OD TEMPERATURY 1. Teori Włściwości mgnetyczne sstncji chrkteryzje współczynnik przeniklności mgnetycznej. Dl próżni ten współczynnik jest równy

Bardziej szczegółowo

Struktura energetyczna ciał stałych-cd. Fizyka II dla Elektroniki, lato

Struktura energetyczna ciał stałych-cd. Fizyka II dla Elektroniki, lato Struktur energetyczn cił stłych-cd Fizyk II dl Elektroniki, lto 011 1 Fizyk II dl Elektroniki, lto 011 Przybliżenie periodycznego potencjłu sieci krystlicznej model Kronig- Penney potencjł rzeczywisty

Bardziej szczegółowo

1.1. Uprość opis zdarzeń: 1.2. Uprościć opis zdarzeń: a) A B A Uprościć opis zdarzeń: 1.4. Uprościć opis zdarzeń:

1.1. Uprość opis zdarzeń: 1.2. Uprościć opis zdarzeń: a) A B A Uprościć opis zdarzeń: 1.4. Uprościć opis zdarzeń: .. Uprość ops zdarzeń: a) A B, A \ B b) ( A B) ( A' B).. Uproścć ops zdarzeń: a) A B A b) A B, ( A B) ( B C).. Uproścć ops zdarzeń: a) A B A B b) A B C ( A B) ( B C).4. Uproścć ops zdarzeń: a) A B, A B

Bardziej szczegółowo

2012-10-11. Definicje ogólne

2012-10-11. Definicje ogólne 0-0- Defncje ogólne Logstyka nauka o przepływe surowców produktów gotowych rodowód wojskowy Utrzyywane zapasów koszty zwązane.n. z zarożene kaptału Brak w dostawach koszty zwązane.n. z przestoje w produkcj

Bardziej szczegółowo

Wektor kolumnowy m wymiarowy macierz prostokątna o wymiarze n=1 Wektor wierszowy n wymiarowy macierz prostokątna o wymiarze m=1

Wektor kolumnowy m wymiarowy macierz prostokątna o wymiarze n=1 Wektor wierszowy n wymiarowy macierz prostokątna o wymiarze m=1 Rchunek mcierzowy Mcierzą A nzywmy funkcję 2-zmiennych, któr prze liczb nturlnych (i,j) gdzie i = 1,2,3,4.,m; j = 1,2,3,4,n przyporządkowuje dokłdnie jeden element ij. 11 21 A = m1 12 22 m2 1n 2n mn Wymirem

Bardziej szczegółowo

VI. Rachunek całkowy. 1. Całka nieoznaczona

VI. Rachunek całkowy. 1. Całka nieoznaczona VI. Rchunek cłkowy. Cłk nieoznczon Niech F : I R i f : I R będą funkcjmi określonymi n pewnym przedzile I R. Definicj. Funkcję F nzywmy funkcją pierwotną funkcji f n przedzile I, gdy F (x) = f(x) dl x

Bardziej szczegółowo

PODSTAWY BAZ DANYCH Wykład 3 2. Pojęcie Relacyjnej Bazy Danych

PODSTAWY BAZ DANYCH Wykład 3 2. Pojęcie Relacyjnej Bazy Danych PODSTAWY BAZ DANYCH Wykłd 3 2. Pojęcie Relcyjnej Bzy Dnych 2005/2006 Wykłd "Podstwy z dnych" 1 Rozkłdlno dlność schemtów w relcyjnych Przykłd. Relcj EGZ(U), U := { I, N, P, O }, gdzie I 10 10 11 N f f

Bardziej szczegółowo

EKONOMIA MENEDŻERSKA. Wykład 3 Funkcje produkcji 1 FUNKCJE PRODUKCJI. ANALIZA KOSZTÓW I KORZYŚCI SKALI. MINIMALIZACJA KOSZTÓW PRODUKCJI.

EKONOMIA MENEDŻERSKA. Wykład 3 Funkcje produkcji 1 FUNKCJE PRODUKCJI. ANALIZA KOSZTÓW I KORZYŚCI SKALI. MINIMALIZACJA KOSZTÓW PRODUKCJI. EONOMIA MENEDŻERSA Wykład 3 Funkcje rodukcj 1 FUNCJE PRODUCJI. ANAIZA OSZTÓW I ORZYŚCI SAI. MINIMAIZACJA OSZTÓW PRODUCJI. 1. FUNCJE PRODUCJI: JEDNO- I WIEOCZYNNIOWE Funkcja rodukcj określa zależność zdolnośc

Bardziej szczegółowo

Analiza wariancji klasyfikacja prosta

Analiza wariancji klasyfikacja prosta Anlz wrnc Oprcowno n podstwe: Łomnck A. 003. Wprowdzene do sttystyk dl przyrodnków. PW Wrszw. Anlz wrnc klsyfkc prost Dne o przeżywlnośc chrząszczy hodownych hodowlnych n czterech różnych pożywkch. Kżd

Bardziej szczegółowo

R + v 10 R0, 9 k v k. a k v k + v 10 a 10. k=1. Z pierwszego równania otrzymuję R 32475, 21083. Dalej mam: (R 9P + (k 1)P )v k + v 10 a 10

R + v 10 R0, 9 k v k. a k v k + v 10 a 10. k=1. Z pierwszego równania otrzymuję R 32475, 21083. Dalej mam: (R 9P + (k 1)P )v k + v 10 a 10 Zdnie. Zkłd ubezpieczeń n życie plnuje zbudownie portfel ubezpieczeniowego przy nstępujących złożenich: ozwiąznie. Przez P k będę oznczł wrtość portfel n koniec k-tego roku. Szukm P 0 tkie by spełnił:

Bardziej szczegółowo

MODELE TEORII GIER. Modelowanie matematyczne. dr inż. Zbigniew Tarapata Wykład nr 5: Modele teorii gier

MODELE TEORII GIER. Modelowanie matematyczne. dr inż. Zbigniew Tarapata Wykład nr 5: Modele teorii gier MODELE TEORII GIER Podejmowne decyzj nwestycyjnych często jest dokonywne w sytucjch, w których ne wdomo, jk będze stn otoczen lub też, jką decyzję podejmą nn decydenc, mjący wpływ n wynk decyzj przez ns

Bardziej szczegółowo

Weryfikacja hipotez dla wielu populacji

Weryfikacja hipotez dla wielu populacji Weryfkacja hpotez dla welu populacj Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Intelgencj Metod Matematycznych Wydzał Informatyk Poltechnk Szczecńskej 5. Parametryczne testy stotnośc w

Bardziej szczegółowo

Planowanie złożonych przedsięwzięć wieloczynnościowych (Project Management - zarządzanie projektami)

Planowanie złożonych przedsięwzięć wieloczynnościowych (Project Management - zarządzanie projektami) D Miszczyńsk, M.Miszczyński KBO UŁ, Bdni opercyjne, metod PERT 1 Plnownie złożonych przedsięwzięć wieloczynnościowych (Project Mngement - zrządznie projektmi) Anlizujemy złożone przedsięwzięci wieloczynnościowe.

Bardziej szczegółowo

Natalia Nehrebecka. Dariusz Szymański

Natalia Nehrebecka. Dariusz Szymański Natala Nehrebecka Darusz Szymańsk . Sprawy organzacyjne Zasady zalczena Ćwczena Lteratura. Czym zajmuje sę ekonometra? Model ekonometryczny 3. Model lnowy Postać modelu lnowego Zaps macerzowy modelu dl

Bardziej szczegółowo

Twierdzenie Bezouta i liczby zespolone Javier de Lucas. Rozwi azanie 2. Z twierdzenia dzielenia wielomianów, mamy, że

Twierdzenie Bezouta i liczby zespolone Javier de Lucas. Rozwi azanie 2. Z twierdzenia dzielenia wielomianów, mamy, że Twerdzene Bezouta lczby zespolone Javer de Lucas Ćwczene 1 Ustal dla których a, b R można podzelć f 1 X) = X 4 3X 2 + ax b przez f 2 X) = X 2 3X+2 Oblcz a b Z 5 jeżel zak ladamy, że f 1 f 2 s a welomanam

Bardziej szczegółowo

Matematyka finansowa 10.03.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVI Egzamin dla Aktuariuszy z 10 marca 2014 r. Część I

Matematyka finansowa 10.03.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVI Egzamin dla Aktuariuszy z 10 marca 2014 r. Część I Mtemtyk finnsow.03.2014 r. Komisj Egzmincyjn dl Akturiuszy LXVI Egzmin dl Akturiuszy z mrc 2014 r. Część I Mtemtyk finnsow WERSJA TESTU A Imię i nzwisko osoby egzminownej:... Czs egzminu: 0 minut 1 Mtemtyk

Bardziej szczegółowo

ZASTOSOWANIE RÓWNANIA NASGRO DO OPISU KRZYWYCH PROPAGACYJI PĘKNIĘĆ ZMĘCZENIOWYCH

ZASTOSOWANIE RÓWNANIA NASGRO DO OPISU KRZYWYCH PROPAGACYJI PĘKNIĘĆ ZMĘCZENIOWYCH Sylwester KŁYSZ *, **, nn BIEŃ **, Pweł SZBRCKI ** ** Instytut Techniczny ojsk Lotniczych, rszw * Uniwersytet rmińsko-mzurski, Olsztyn ZSTOSONIE RÓNNI NSGRO DO OPISU KRZYYCH PROPGCYJI PĘKNIĘĆ ZMĘCZENIOYCH

Bardziej szczegółowo

PODSTAWY ALGEBRY MACIERZY. Operacje na macierzach

PODSTAWY ALGEBRY MACIERZY. Operacje na macierzach PODSTWY LGEBRY MCIERZY WIERSZ i, KOLUMN (j) Mcierz m,n, gdzie m to ilość wierszy, n ilość kolumn i,j element mcierzy z itego wiersz, jtej kolumny Opercje n mcierzch Równość mcierzy m,n = B m,n. def i,j

Bardziej szczegółowo

MATEMATYKA Wykład 4 (Funkcje) przyporządkowany został dokładnie jeden element

MATEMATYKA Wykład 4 (Funkcje) przyporządkowany został dokładnie jeden element MATEMATYKA Wykłd 4 (Funkcje) Pisząc f : (,b) R rozumiemy Ŝe kŝdemu (, b) przyporządkowny zostł dokłdnie jeden element y R. Wykresem funkcji nzywmy zbiór pr (,f()) n płszczyźnie skłdjącej się ze wszystkich

Bardziej szczegółowo

Modelowanie sił skrawania występujących przy obróbce gniazd zaworowych

Modelowanie sił skrawania występujących przy obróbce gniazd zaworowych Scentfc Journls Mrtme Unversty of Szczecn Zeszyty ukowe Akdem Morsk w Szczecne 29, 7(89) pp. 63 67 29, 7(89) s. 63 67 Modelowne sł skrwn występujących przy obróbce gnzd zworowych Cuttng forces modelng

Bardziej szczegółowo

Zadania. I. Podzielność liczb całkowitych

Zadania. I. Podzielność liczb całkowitych Zdni I. Podzielność liczb cłkowitych. Pewn liczb sześciocyfrow kończy się cyfrą 5. Jeśli tę cyfrę przestwimy n miejsce pierwsze ze strony lewej to otrzymmy nową liczbę cztery rzy większą od poprzedniej.

Bardziej szczegółowo

FUNKCJA KWADRATOWA. Moduł - dział -temat Lp. Zakres treści. z.p. z.r Funkcja kwadratowa - powtórzenie PLANIMETRIA 1

FUNKCJA KWADRATOWA. Moduł - dział -temat Lp. Zakres treści. z.p. z.r Funkcja kwadratowa - powtórzenie PLANIMETRIA 1 FUNKCJA KWADRATOWA Moduł - dził -temt Funkcj kwdrtow - powtórzenie Lp Lp z.p. z.r. 1 1 Równni kwdrtowe 2 Postć iloczynow funkcji kwdrtowej 3 Równni sprowdzlne do równń kwdrtowych Nierówności kwdrtowe 5

Bardziej szczegółowo

Fizyka. Kurs przygotowawczy. na studia inżynierskie. mgr Kamila Haule

Fizyka. Kurs przygotowawczy. na studia inżynierskie. mgr Kamila Haule Fizyk Kurs przygotowwczy n studi inżynierskie mgr Kmil Hule Dzień 3 Lbortorium Pomir dlczego mierzymy? Pomir jest nieodłączną częścią nuki. Stopień znjomości rzeczy często wiąże się ze sposobem ich pomiru.

Bardziej szczegółowo

Egzamin ze statystyki/ Studia Licencjackie Stacjonarne/ Termin I /czerwiec 2010

Egzamin ze statystyki/ Studia Licencjackie Stacjonarne/ Termin I /czerwiec 2010 Egzamn ze statystyk/ Studa Lcencjacke Stacjonarne/ Termn /czerwec 2010 Uwaga: Przy rozwązywanu zadań, jeśl to koneczne, naleŝy przyjąć pozom stotnośc 0,01 współczynnk ufnośc 0,99 Zadane 1 PonŜsze zestawene

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy LIX Egzamin dla Aktuariuszy z 12 marca 2012 r. Część I Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy LIX Egzamin dla Aktuariuszy z 12 marca 2012 r. Część I Matematyka finansowa Mtemtyk finnsow 12.03.2012 r. Komisj Egzmincyjn dl Akturiuszy LIX Egzmin dl Akturiuszy z 12 mrc 2012 r. Część I Mtemtyk finnsow WERSJA TESTU A Imię i nzwisko osoby egzminownej:... Czs egzminu: 100 minut

Bardziej szczegółowo

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych Zaawansowane metody numeryczne Komputerowa analza zagadneń różnczkowych 1. Układy równań lnowych P. F. Góra http://th-www.f.uj.edu.pl/zfs/gora/ semestr letn 2006/07 Podstawowe fakty Równane Ax = b, x,

Bardziej szczegółowo

Macierz. Wyznacznik macierzy. Układ równań liniowych

Macierz. Wyznacznik macierzy. Układ równań liniowych Temt wykłdu: Mcierz. Wyzncznik mcierzy. Ukłd równń liniowych Kody kolorów: żółty nowe pojęcie pomrńczowy uwg kursyw komentrz * mterił ndobowiązkowy Ann Rjfur, Mtemtyk Zgdnieni. Pojęci. Dziłni n mcierzch.

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA Mteriły do wykłdu MATEMATYKA DYSKRETNA dl studiów zocznych cz. Progrm wykłdu: KOMBINATORYKA:. Notcj i podstwowe pojęci. Zlicznie funkcji. Permutcje. Podziory zioru. Podziory k-elementowe. Ziory z powtórzenimi

Bardziej szczegółowo

Wprowadzenie: Do czego służą wektory?

Wprowadzenie: Do czego służą wektory? Wprowdzenie: Do czego służą wektory? Mp połączeń smolotowych Isiget pokzuje skąd smoloty wyltują i dokąd doltują; pokzne jest to z pomocą strzłek strzłki te pokzują przemieszczenie: skąd dokąd jest dny

Bardziej szczegółowo

2. Tensometria mechaniczna

2. Tensometria mechaniczna . Tensometri mechniczn Wstęp Tensometr jk wskzywłby jego nzw to urządzenie służące do pomiru nprężeń. Jk jednk widomo, nprężeni nie są wielkościmi mierzlnymi i stnowią jedynie brdzo wygodne pojęcie mechniki

Bardziej szczegółowo

Porównanie dostępności różnych, nadmiarowych konfiguracji zasilania szaf przemysłowych

Porównanie dostępności różnych, nadmiarowych konfiguracji zasilania szaf przemysłowych Porównne dotępnośc różnych, ndmrowych konfgurcj zln zf przemyłowych Whte Pper 48 Strezczene Przełącznk źródeł zln orz dwutorow dytrybucj zln przętu IT łużą zwękzenu dotępnośc ytemów oblczenowych. Sttytyczne

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1 KURS STATYSTYKA Lekcja 6 Regresja lne regresj ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowedź (tylko jedna jest prawdzwa). Pytane 1 Funkcja regresj I rodzaju cechy Y zależnej

Bardziej szczegółowo

65120/ / / /200

65120/ / / /200 . W celu zbadana zależnośc pomędzy płcą klentów ch preferencjam, wylosowano kobet mężczyzn zadano m pytane: uważasz za lepszy produkt frmy A czy B? Wynk były następujące: Odpowedź Kobety Mężczyźn Wolę

Bardziej szczegółowo

Zad 2 Dynamika zatrudnienia mierzona indeksami łańcuchowymi w ostatnich pięciu latach kształtowały się następująco: Lata Indeksy ( w %)

Zad 2 Dynamika zatrudnienia mierzona indeksami łańcuchowymi w ostatnich pięciu latach kształtowały się następująco: Lata Indeksy ( w %) Analza dnamk Zad. 1 Indeks lczb studującch studentów w województwe śląskm w kolejnch pęcu latach przedstawał sę następująco: Lata 1 2 3 4 5 Indeks jednopodstawowe z roku t = 1 100,0 115,7 161,4 250,8 195,9

Bardziej szczegółowo

Dynamika wymiany lokalnej

Dynamika wymiany lokalnej Dynmk wymny loklne Autor: Wocech Czrneck Teksty publkowne ko workng ppers wyrżą poglądy ch Autorów ne są ofclnym stnowskem Instytutu Mses Złożoność lczb relc występuących mędzy podmotm uczestnczącym w

Bardziej szczegółowo

Wykład 6 Dyfrakcja Fresnela i Fraunhofera

Wykład 6 Dyfrakcja Fresnela i Fraunhofera Wykłd 6 Dyfrkcj Fresnel i Frunhofer Zjwisko dyfrkcji (ugięci) świtł odkrył Grimldi (XVII w). Poleg ono n uginniu się promieni świetlnych przechodzących w pobliżu przeszkody (np. brzeg szczeliny). Wyjśnienie

Bardziej szczegółowo

WYKŁAD 5. Typy macierzy, działania na macierzach, macierz układu równań. Podstawowe wiadomości o macierzach

WYKŁAD 5. Typy macierzy, działania na macierzach, macierz układu równań. Podstawowe wiadomości o macierzach Mtemtyk I WYKŁD. ypy mcierzy, dziłni n mcierzch, mcierz ukłdu równń. Podstwowe widomości o mcierzch Ogóln postć ukłdu m równń liniowych lgebricznych z n niewidomymi x x n xn b x x n xn b, niewidome: x,

Bardziej szczegółowo

Algebra Boola i podstawy systemów liczbowych. Ćwiczenia z Teorii Układów Logicznych, dr inż. Ernest Jamro. 1. System dwójkowy reprezentacja binarna

Algebra Boola i podstawy systemów liczbowych. Ćwiczenia z Teorii Układów Logicznych, dr inż. Ernest Jamro. 1. System dwójkowy reprezentacja binarna lger Bool i podstwy systemów liczowych. Ćwiczeni z Teorii Ukłdów Logicznych, dr inż. Ernest Jmro. System dwójkowy reprezentcj inrn Ukłdy logiczne operują tylko n dwóch stnch ozncznymi jko zero (stn npięci

Bardziej szczegółowo

Rozwiązanie niektórych zadań treningowych do I kolokwium sem. zimowy, 2018/19

Rozwiązanie niektórych zadań treningowych do I kolokwium sem. zimowy, 2018/19 Rozwąze ektóryh zdń tregowyh do I kolokwum sem. zmowy, 8/9 Zd.. V = ost, = 98 K W wrukh dtyzyh Q = ΔU =. Końową temperturę zjdzemy rozwązują rówe ΔU =. Zm eerg wewętrzej zhodz wskutek rekj hemzej jlepej

Bardziej szczegółowo

( ) ( ) 2. Zadanie 1. są niezależnymi zmiennymi losowymi o. oraz. rozkładach normalnych, przy czym EX. i σ są nieznane. 1 Niech X

( ) ( ) 2. Zadanie 1. są niezależnymi zmiennymi losowymi o. oraz. rozkładach normalnych, przy czym EX. i σ są nieznane. 1 Niech X Prawdopodobeństwo statystyka.. r. Zadane. Zakładamy, że,,,,, 5 są nezależnym zmennym losowym o rozkładach normalnych, przy czym E = μ Var = σ dla =,,, oraz E = μ Var = 3σ dla =,, 5. Parametry μ, μ σ są

Bardziej szczegółowo

EKONOMETRIA Wykład 4: Model ekonometryczny - dodatkowe zagadnienia

EKONOMETRIA Wykład 4: Model ekonometryczny - dodatkowe zagadnienia EKONOMETRIA Wykład 4: Model ekonometryczny - dodatkowe zagadnena dr Dorota Cołek Katedra Ekonometr Wydzał Zarządzana UG http://wzr.pl/dorota-colek/ dorota.colek@ug.edu.pl 1 Wpływ skalowana danych na MNK

Bardziej szczegółowo

12. Zadanie optymalnej mieszanki - maksymalizacja ilości mieszanki wykonanej z dostępnych komponentów

12. Zadanie optymalnej mieszanki - maksymalizacja ilości mieszanki wykonanej z dostępnych komponentów P. Kowlk, Lbortorum bdń opercyjnych: zdne optymlnej mesznk - mksymlzcj lośc mesznk. Zdne optymlnej mesznk - mksymlzcj lośc mesznk wykonnej z dostępnych komponentów Jeżel wszystke komponenty dostępne są

Bardziej szczegółowo

Katedra Chemii Nieorganicznej i Analitycznej Uniwersytet Łódzki ul.tamka 12, Łódź

Katedra Chemii Nieorganicznej i Analitycznej Uniwersytet Łódzki ul.tamka 12, Łódź tedr Chem Neorgncznej Anltycznej Unwersytet Łódzk ul.tmk 12, 91-403 Łódź Dr Pweł rzyczmonk Łódź, luty 2014 1 Pln wykłdu Wstęp Sensory podstwowe określen Sensor chemczny defncj (wg IUPAC) Typy sensorów

Bardziej szczegółowo

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające Wymgni edukcyjne z mtemtyki ls 2 b lo Zkres podstwowy Oznczeni: wymgni konieczne; wymgni podstwowe; R wymgni rozszerzjące; D wymgni dopełnijące; W wymgni wykrczjące Temt lekcji Zkres treści Osiągnięci

Bardziej szczegółowo

WYMAGANIA I KRYTERIA OCENIANIA Z MATEMATYKI W 3 LETNIM LICEUM OGÓLNOKSZTAŁCĄCYM

WYMAGANIA I KRYTERIA OCENIANIA Z MATEMATYKI W 3 LETNIM LICEUM OGÓLNOKSZTAŁCĄCYM WYMAGANIA I KRYTERIA OCENIANIA Z MATEMATYKI W 3 LETNIM LICEUM OGÓLNOKSZTAŁCĄCYM Kls drug A, B, C, D, E, G, H zkres podstwowy 1. FUNKCJA LINIOWA rozpoznje funkcję liniową n podstwie wzoru lub wykresu rysuje

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 7

Stanisław Cichocki. Natalia Nehrebecka. Wykład 7 Stansław Cchock Natala Nehrebecka Wykład 7 . Zmenne dyskretne Kontrasty: efekty progowe, kontrasty w odchylenach Interakcje. Przyblżane model nelnowych Stosowane do zmennych dyskretnych o uporządkowanych

Bardziej szczegółowo

Temat lekcji Zakres treści Osiągnięcia ucznia

Temat lekcji Zakres treści Osiągnięcia ucznia ln wynikowy kls 2c i 2e - Jolnt jąk Mtemtyk 2. dl liceum ogólnoksztłcącego, liceum profilownego i technikum. sztłcenie ogólne w zkresie podstwowym rok szkolny 2015/2016 Wymgni edukcyjne określjące oceny:

Bardziej szczegółowo

MATeMAtyka 3 inf. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Dorota Ponczek, Karolina Wej

MATeMAtyka 3 inf. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Dorota Ponczek, Karolina Wej Dorot Ponczek, Krolin Wej MATeMAtyk 3 inf Przedmiotowy system ocenini wrz z określeniem wymgń edukcyjnych Zkres podstwowy i rozszerzony Wyróżnione zostły nstępujące wymgni progrmowe: konieczne (K), podstwowe

Bardziej szczegółowo

Oligopol dynamiczny. Rozpatrzmy model sekwencyjnej konkurencji ilościowej jako gra jednokrotna z pełną i doskonalej informacją

Oligopol dynamiczny. Rozpatrzmy model sekwencyjnej konkurencji ilościowej jako gra jednokrotna z pełną i doskonalej informacją Olgopol dynamczny Rozpatrzmy model sekwencyjnej konkurencj loścowej jako gra jednokrotna z pełną doskonalej nformacją (1934) Dwa okresy: t=0, 1 tzn. frma 2 podejmując decyzję zna decyzję frmy 1 Q=q 1 +q

Bardziej szczegółowo

Równania różniczkowe. y xy (1.1) x y (1.2) z xyz (1.3)

Równania różniczkowe. y xy (1.1) x y (1.2) z xyz (1.3) ownn oznczkowe Równn óżnczkowe. Wstę Równne óżnczkow nzw ównne zwejące funkcje newdoe zenne nezleżne oz ocodne funkcj newdoc lu c óżnczk. Pzkłd d 5 d d sn d. d d e d d d. z z z z. ównne óżnczkowe zwczjne

Bardziej szczegółowo

ZASTOSOWANIE ANALIZY REGRESJI W OCENIE KONKURENCYJNOŚCI WYBRANYCH BANKÓW KOMERCYJNYCH W POLSCE W LATACH

ZASTOSOWANIE ANALIZY REGRESJI W OCENIE KONKURENCYJNOŚCI WYBRANYCH BANKÓW KOMERCYJNYCH W POLSCE W LATACH Zeszyty Nukowe WSInf Vol 5, Nr 1, 2006 Ktrzyn Posck 1, Ann Szelągowsk 2 1 Poltechnk Rdomsk, Ktedr Mtemtyk 2 Poltechnk Rdomsk, Ktedr Poltyk Ekonomcznej Bnkowośc ZASTOSOWANIE ANALIZY REGRESJI W OCENIE KONKURENCYJNOŚCI

Bardziej szczegółowo

Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy)

Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Propozycj przedmiotowego systemu ocenini wrz z określeniem wymgń edukcyjnych (zkres podstwowy) Proponujemy, by omwijąc dne zgdnienie progrmowe lub rozwiązując zdnie, nuczyciel określł do jkiego zkresu

Bardziej szczegółowo