DOBÓR LINIOWO-ŁAMANEGO ROZDZIAŁU SIŁ HAMUJĄCYCH W SAMOCHODACH DOSTAWCZYCH

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "DOBÓR LINIOWO-ŁAMANEGO ROZDZIAŁU SIŁ HAMUJĄCYCH W SAMOCHODACH DOSTAWCZYCH"

Transkrypt

1 Zgnew Kmńsk DOBÓ INIOWO-ŁMNEO OZDZIŁU SIŁ HMUJĄCYCH W SMOCHODCH DOSTWCZYCH Streszczene. W rtykule opsno sposoy dooru lnowo-łmnego rozdzłu sł mującyc w smocodc dostwczyc według wymgń egulmnu 3 ECE. Przedstwono przykłdy olczn prmetrów rozkłdu sł mown dl pojzdów grupy M N pomocne przy projektownu korektorów o crkterystyce łmnej. Słow kluczowe: mowne, rozdzł sł mującyc, metody olczeń WSTĘP W celu zwększen efektywnośc mown przy zcownu sttecznośc kerunkowej stosowne są w ukłdc mulcowyc smocodów regultory sł mującyc ze sprzęŝenem zwrotnym (urządzen BS) ez sprzęŝen zwrotnego (korektory). Zpewnją one w róŝnyc wrunkc drogowyc przy róŝnym stopnu złdown rozdzł sł mującyc pomędzy poszczególnym osm zlŝony do rozkłdu delnego, dl którego jednostkowe sły mown poszczególnyc os z, czyl stosunk sł mown T n kołc os do ponowyc rekcj podłoŝ, są jednkowe równe współczynnkow wymown pojzdu (ntensywnośc mown): T T z () g gdze: opóźnene mown pojzdu, g przyśpeszene zemske. W prcy opsno sposoy ksztłtown crkterystyk lnowo-łmnego rozdzłu sł mującyc w smocodc dostwczyc ktegor M N, nezędnyc przy olcznu doorze prmetrów urządzeń korygującyc ydrulcznyc ukłdów mulcowyc. Dr nŝ. Zgnew Kmńsk, Ktedr Pojzdów Smocodowyc, Poltecnk Błostock

2 DOBÓ INIOWO-ŁMNEO OZDZIŁU SIŁ HMUJĄCYCH... 7 WYZNCZNIE PODSTWOWYCH PMETÓW OZDZIŁU Dl delnego mown smocodu dwuosowego jednostkowe sły mown (współczynnk przyczepnośc) os przednej tylnej są równe ntensywnośc mown z z, rozdzł względnyc (odnesonyc do cęŝru smocodu) sł mown os przednej tylnej jest opsny równnem prmetrycznym: T T () gdze: T, T sły mown os przednej tylnej,, rekcje ponowe nwerzcn n oś przedną tylną pojzdu: g g (3) rozstw os smocodu, wysokość połoŝen środk cęŝkośc nd podło- Ŝem, odległość środk cęŝkośc od płszczyzny ponowej przecodzącej przez oś tylną. Prmetry rozdzłu sł mującyc wyzncz sę n podstwe równń dwóc ln tworzącyc łmną n wykrese względnyc sł mującyc f( ). n - przecodz przez początek ukłdu współrzędnyc punkt złmn crkterystyk o ntensywnośc mown (rys. d). Drug prost przecodz przez punkt punkt B o ntensywnośc B. JeŜel punkt leŝy n krzywej delnego rozdzłu sł mującyc, to współczynnk kerunkowy prostej - wynos: / / / / (4) Wykorzystując zleŝność, moŝn dl ln - ( ) opsć rozdzł względnyc sł mującyc poszczególnyc os z pomocą równn prmetrycznego: (5) Jednostkowe sły mown poszczególnyc os dl tej prostej olcz sę ze wzoru: ( ) ( ) T z T z (6)

3 8 Zgnew Kmńsk Współczynnk kerunkowy prostej -B wylcz sę n podstwe współrzędnyc punktów B, leŝącyc zzwyczj n krzywej delnej: B / / ( B ) (7) / / B ( ) B Wykorzystując ponŝsze zleŝnośc, z któryc perwsz jest równnem kerunkowym prostej -B: ( ) (8) otrzymuje sę równne prmetryczne tej prostej: ( ) (9) gdze:, względne sły mown os przednej tylnej w punkce o ntensywnośc mown. Jednostkowe sły mown poszczególnyc os dl > wynoszą: T z ( )( / / ) ( ) ( )( / / ) T z () W zleŝnośc od ktegor smocodu moŝlwe są do zstosown róŝne sposoy dooru lnowo-łmnego rozdzłu sł mującyc. DOBÓ OZDZIŁU D SMOCHODÓW KTEOII M Według egulmnu 3 ECE smocody dostwcze, dl któryc stosunek ocąŝen os tylnej w stne złdownym do ocąŝen tej os w stne nezłdownym ne przekrcz,5 orz smocody, któryc ms cłkowt jest mnejsz nŝ kg podlegją tkm smym wymgnom jk smocody osoowe (grup M). Dl zpewnen odpowednej skutecznośc mown opóźnene względne pojzdu pownno spełnć wrunek: (,,6),85 z,,7 dl z,,,8 () Wrunek zcown sttecznośc kerunkowej pojzdu podczs mown, czyl nedopuszczene do zlokown kół tylnyc jest spełnony, jeŝel:

4 DOBÓ INIOWO-ŁMNEO OZDZIŁU SIŁ HMUJĄCYCH... 9 z > z > z dl,5,8 () W przedzle ntensywnośc mown,3,45 dopuszcz sę odwrotne połoŝene współczynnków przyczepnośc (z >z ), le przy zcownu wrunku: z,5 dl,3,45 (3), rfczną nterpretcję opsnyc zleceń pokzno n rys., c. Odpowdjące m ogrnczen sł mującyc w ukłdze współrzędnyc -- dl przykłdowego pojzdu w stne złdownym pustym przedstwono n rys., d. Perwszy ze sposoów ksztłtown crkterystyk rozdzłu sł mującyc wynk ezpośredno z moŝlwośc przekroczen crkterystyk delnej n wycnku E-F (rys. ) przy zcownu wrunku (3). Dl pojzdu pustego współrzędne punktu E( E, E ) punktu F( F, F ) wyzncz sę z zleŝnośc () dl E,3 F,45, gdyŝ o punkty leŝą n krzywej delnej. Tk smo wyzncz sę współrzędne punktu B p ( Bp, Bp ), dl którego przyjęto rtrlne ntensywność mown Bp,9. Współczynnk kerunkowy prostej -E- p olcz sę n podstwe współrzędnyc punktu E: E / E, współczynnk kerunkowy drugej prostej n podstwe punktów F B p jej przecęc z crkterystyką delną dl pojzdu pustego, podone jk w zleŝnośc (7): Bp Bp F F / / / / ( Bp F) ( ) Bp F (4) ozwązując ukłd równń kerunkowyc dl ou prostyc wyzncz sę współrzędne punktu p ( p, p ) złmn crkterystyk, nstępne z zleŝnośc (5) określ sę ntensywność mown p : ( )/( ) ( ) p F F p p p p (5) Przyjmując określoną wrtość ntensywnośc mown pojzdu złdownego (np. z,6) wyzncz sę z zleŝnośc (5) współrzędne punktu z orz równne prostej równoległej do prostej p -B p przecodzącej przez ten punkt: ( z) z (6) Olczone według zleŝnośc (6) () przeeg jednostkowyc sł mown z z dl przykłdowego pojzdu nnesono n wykres f(z, ) rys.. Drug moŝlwy sposó rozdzłu sł mującyc wynk z złoŝen, Ŝe punkt p złmn crkterystyk dl pojzdu pustego leŝy n krzywej delnej, opsnej równnem (). Podstwowym prolemem jest wyór kryterum wyznczn optymlnej wrtośc ntensywnośc mown p w punkce p.

5 Zgnew Kmńsk Dl kryterum mksymlzcj średnej wrtośc współczynnk wykorzystn przyczepnośc ζ(µ)(t T )/(µ ) w zdnym przedzle (µ, µ ) µ ζ sr ζ( µ ) dµ (7) µ µ utorzy prcy [], po przeprowdzenu eksperymentów numerycznyc otrzyml równne regresj n optymlną wrtość współczynnk przyczepnośc, przy którym pownno nstępowć złmne crkterystyk korektor: µ,56,5 /,365µ,65µ, 5µ µ (8) op µ PowyŜsz zleŝność dl /,3,7; µ,,3; µ,6, jest orczon łędem neprzekrczjącym,3 w stosunku do rozwązn otrzymnego ezpośredno z mksymlzcj wyrŝen (7). z z z, z E c z z, z F z z z T T E p z F T z p d T B p B p ys.. Przykłd lnowo-łmnego rozdzłu sł mującyc dl smocodu grupy M:, c przeeg jednostkowyc sł mown z,z ; c, d rozdzł sł mującyc; dne pojzdu [3] złdownego: ms m 7 kg,,73 m,,49 m,,68 m; pustego: m 8 kg,,76 m,,45 m,,65 m Fg.. Exmple of lner-roken dstruton of rkng forces for M group cr:, c course of untry rkng forces z,z ; c, d dstruton of rkng forces; crcterstcs of loded vecle [3]: mss m 7kg,,73 m,,49 m,,68 m; of n empty one m 8 kg,,76 m,,45 m,,65 m

6 DOBÓ INIOWO-ŁMNEO OZDZIŁU SIŁ HMUJĄCYCH... PołoŜene punktu złmn crkterystyk moŝn równeŝ określć mnmlzując pole powerzcn pomędzy krzywą rozdzłu delnego lną łmną --B. Wycodząc z tego kryterum, otrzymuje sę ntensywność mown w punkce równą połowe ntensywnośc mown w punkce B przecęc prostej -B z krzywą delnego rozkłdu sł mującyc [], tj.: µ op B / µ / (9) Dl tego rozwązn styczn do krzywej delnej w punkce jest równoległ do prostej przecodzącej przez punkty B. W rozwąznu przedstwonym n rys. d ntensywność mown w punkce p złmn crkterystyk p µ op olczono z zleŝnośc (8) dl µ, µ,9 ( Bp,9). Współczynnk kerunkowe prostyc - p p -B p wyzncz sę n podstwe współrzędnyc odpowednc punktów, wykorzystując zleŝnośc (4) (7): p p Bp Bp p p / / / / ( Bp p) ( ) Bp p () Współrzędne punktu z wyzncz sę tk smo jk w perwszym rozwąznu. Przeeg jednostkowyc sł mown z z dl pojzdu pustego złdownego przedstwono n rys. c. DOBÓ OZDZIŁU D SMOCHODÓW KTEOII N Według egulmnu 3 ECE dopuszcz sę dl smocodów o mse cłkowtej mnejszej nŝ 3,5 t (grup N) dw wrnty wymgń. Perwszy wynk z wrunku wcześnejszego lokown kół os przednej: z > z > z dl,5,5 () orz wrunku () mnmlnej dopuszczlnej ntensywnośc mown. W tym przypdku sposó dooru prmetrów rozdzłu sł mującyc jest dentyczny z drugm sposoem dl pojzdów grupy M. Według drugego wrntu wymgń jednostkowe sły mown ou os w przedzle,5-,5 pownny meścć sę w określonym pśme: z z,,,8,8 pondto pownen yć spełnony wrunek: dl,5,5 (),5 z, dl,5,6 (3),

7 Zgnew Kmńsk Dopuszczlny współczynnków przyczepnośc odpowdjący mu oszr względnyc sł mown dl rozwązn drugego pokzno n rys.,. Dl tego wrntu prmetry wyjścowe dooru rozdzłu sł mującyc ustl sę dl pojzdu w stne złdownym. Współrzędne punktu z złmn crkterystyk punktu B z n wykrese f( ) olcz sę z zleŝnośc (). W dnym przypdku przyjęto B,8 orz z Bz / z kryterum (9). Współrzędne punktu z moŝn równeŝ wyznczyć z kryterum (7). Współczynnk kerunkowe, prostyc - z z -B z olcz sę z zleŝnośc (4) (7) B z.4 z p.5 B p z.3 z z z p T..5 z... z z.5 p z, z T ys.. Przykłd dooru lnowo-łmnego rozdzłu sł mującyc dl smocodu grupy N: przeeg jednostkowyc sł mown z,z ; rozdzł sł mującyc; dne pojzdu [] złdownego: m kg,. m,.9 m; pustego: m kg, 3.m,.7m,.55m Fg.. Exmple of lner-roken dstruton of rkng forces for N group cr:, c course of untry rkng forces z,z ; c, d dstruton of rkng forces; crcterstcs of loded vecle [3]: mss m 7kg,,73 m,,49 m,,68 m; of n empty one m 8 kg,,76 m,,45 m,,65 m Przyjmując dl pojzdu pustego w punkce B p tką sm ntensywność mown jk dl pojzdu złdownego Bp Bz,8, moŝn określć z zleŝnośc () współrzędne punktu B p, leŝącego n prostej p -B p ( Bp) Bp (4) ozwązując ukłd równń kerunkowyc dl prostej - z prostej (4) wyzncz sę współrzędne punktu p ( p, p ) złmn crkterystyk dl pojzdu pustego. Nnesone n wykres f(z, ) przeeg współczynnków z z olcz sę z zleŝnośc (6) (). Welkośc z ndeksm p odnoszą sę do pojzdu pustego, z- złdownego (rys. ).

8 DOBÓ INIOWO-ŁMNEO OZDZIŁU SIŁ HMUJĄCYCH... 3 PODSUMOWNIE Dl smocodów dostwczyc ktegor M o przedstwone sposoy dją podone prmetry rozdzłu sł mującyc, w ou stneje teŝ moŝlwość zwększen względnej ntensywnośc mown w punkce z złmn crkterystyk dl pojzdu złdownego. Nemnej dl pojzdu złdownego uzyskuje sę gorsze dopsowne do crkterystyk delnej (mnejszy współczynnk wykorzystn przyczepnośc) nŝ dl pojzdu pustego, którego prmetry decydują o ncylenu prostej - p - z. Stąd teŝ w prktyce wydje sę celowy wyór rozwązn zpewnjącego wększą wrtość współczynnk kerunkowego prostej - p. W smocodc dostwczyc ktegor N wększe wrtośc współczynnk wykorzystn przyczepnośc w róŝnyc stnc złdown uzyskuje sę doerjąc rozdzł sł mującyc n podstwe drugego wrntu zleceń egulmnu 3 ECE. PIŚMIENNICTWO. redeskul.b., Fedosov V.M., Skutnev V.M., 975: Opredelene prmetrov tormoznoj sstemy s regultorom tormoznyc sl. vtomolnj promyšlennost, 6, s Mtluk M., Kmńsk Z., Czn J., 4: metod of selecton of rkng forces dstruton n one unt vecle. Commsson of Motorzton nd Power Industry n grculture, Vol.4, s eńsk., 997: Budow smocodów. Ukłdy mulcowe kerowncze orz zweszen. Ofcyn Wydwncz Poltecnk Wrszwskej, Wrszw. SEECTION OF INE-BOKEN DISTIBUTION OF BKIN FOCES IN PICK-UPS Summry. Some wys of selecton of lner-roken dstruton of rkng forces n pck-ups ccordng to rules of ECE egulton No. 3 re descred n te rtcle. Te exmples of clcultons of prmeters of rkng forces dstruton for vecles of ctegores M nd N, useful for te desgn of lod sensng rke pproprtng vlve re presented. Keywords: rkng forces, selecton, pck-ups

( ) Elementy rachunku prawdopodobieństwa. f( x) 1 F (x) f(x) - gęstość rozkładu prawdopodobieństwa X f( x) - dystrybuanta rozkładu.

( ) Elementy rachunku prawdopodobieństwa. f( x) 1 F (x) f(x) - gęstość rozkładu prawdopodobieństwa X f( x) - dystrybuanta rozkładu. Elementy rchunku prwdopodoeństw f 0 f() - gęstość rozkłdu prwdopodoeństw X f d P< < = f( d ) F = f( tdt ) - dystryunt rozkłdu E( X) = tf( t) dt - wrtość średn D ( X) = E( X ) E( X) - wrncj = f () F ()

Bardziej szczegółowo

Modelowanie sił skrawania występujących przy obróbce gniazd zaworowych

Modelowanie sił skrawania występujących przy obróbce gniazd zaworowych Scentfc Journls Mrtme Unversty of Szczecn Zeszyty ukowe Akdem Morsk w Szczecne 29, 7(89) pp. 63 67 29, 7(89) s. 63 67 Modelowne sł skrwn występujących przy obróbce gnzd zworowych Cuttng forces modelng

Bardziej szczegółowo

ĆWICZENIE ANALIZA SITOWA I PODSTAWY OCENY GRANULOMETRYCZNEJ SUROWCÓW I PRODUKTÓW

ĆWICZENIE ANALIZA SITOWA I PODSTAWY OCENY GRANULOMETRYCZNEJ SUROWCÓW I PRODUKTÓW 1 ĆWICZENIE ANALIZA SITOWA I PODSTAWY OCENY GANULOMETYCZNEJ SUOWCÓW I PODUKTÓW 1. Cel zkres ćwczen Celem ćwczen jest opnowne przez studentów metody oceny mterłu sypkego pod względem loścowej zwrtośc frkcj

Bardziej szczegółowo

EKONOMIA MENEDŻERSKA. Wykład 2 Analiza popytu. Optymalna polityka cenowa. 1 ANALIZA POPYTU. OPTYMALNA POLITYKA CENOWA.

EKONOMIA MENEDŻERSKA. Wykład 2 Analiza popytu. Optymalna polityka cenowa. 1 ANALIZA POPYTU. OPTYMALNA POLITYKA CENOWA. Wykłd Anlz popytu. Optymln poltyk cenow. 1 ANALIZA OYTU. OTYMALNA OLITYKA CENOWA. rzedmotem wykłdu jest prolem zrządzn zyskem poprzez oprcowne wdrożene odpowednej strteg różncown cen, wykorzystując do

Bardziej szczegółowo

Metoda prądów obwodowych

Metoda prądów obwodowych Metod prądów owodowyh Zmenmy wszystke rzezywste źródł prądowe n npęowe, Tworzymy kłd równń lnowyh opsjąyh poszzególne owody. Dowolną seć lnową skłdjąą sę z elementów skponyh możn opsć z pomoą kłd równń

Bardziej szczegółowo

Wymagania edukacyjne matematyka klasa 2b, 2c, 2e zakres podstawowy rok szkolny 2015/2016. 1.Sumy algebraiczne

Wymagania edukacyjne matematyka klasa 2b, 2c, 2e zakres podstawowy rok szkolny 2015/2016. 1.Sumy algebraiczne Wymgni edukcyjne mtemtyk kls 2b, 2c, 2e zkres podstwowy rok szkolny 2015/2016 1.Sumy lgebriczne N ocenę dopuszczjącą: 1. rozpoznje jednominy i sumy lgebriczne 2. oblicz wrtości liczbowe wyrżeń lgebricznych

Bardziej szczegółowo

Wymagania edukacyjne matematyka klasa 2 zakres podstawowy 1. SUMY ALGEBRAICZNE

Wymagania edukacyjne matematyka klasa 2 zakres podstawowy 1. SUMY ALGEBRAICZNE Wymgni edukcyjne mtemtyk kls 2 zkres podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych

Bardziej szczegółowo

MATeMAtyka 3 inf. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Dorota Ponczek, Karolina Wej

MATeMAtyka 3 inf. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Dorota Ponczek, Karolina Wej Dorot Ponczek, Krolin Wej MATeMAtyk 3 inf Przedmiotowy system ocenini wrz z określeniem wymgń edukcyjnych Zkres podstwowy i rozszerzony Wyróżnione zostły nstępujące wymgni progrmowe: konieczne (K), podstwowe

Bardziej szczegółowo

10.3. Przekładnie pasowe

10.3. Przekładnie pasowe 0.0. Przekłdnie 0.3. Przekłdnie psowe Przekłdni psow przekłdni kołow ciern z elementmi pośrednimi w postci elstycznych cięgieł, njczęściej o konstrukcji wielodrożnej. Przekłdnie psowe Ps klinowy Ps płski

Bardziej szczegółowo

2. FUNKCJE WYMIERNE Poziom (K) lub (P)

2. FUNKCJE WYMIERNE Poziom (K) lub (P) Kls drug poziom podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych redukuje wyrzy

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy LII Egzamin dla Aktuariuszy z 15 marca 2010 r. Część I Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy LII Egzamin dla Aktuariuszy z 15 marca 2010 r. Część I Matematyka finansowa Mtemtyk finnsow 15.0.010 r. Komisj Egzmincyjn dl Akturiuszy LII Egzmin dl Akturiuszy z 15 mrc 010 r. Część I Mtemtyk finnsow WERSJA TESTU A Imię i nzwisko osoy egzminownej:... Czs egzminu: 100 minut 1

Bardziej szczegółowo

Proces decyzyjny: 1. Sformułuj jasno problem decyzyjny. 2. Wylicz wszystkie możliwe decyzje. 3. Zidentyfikuj wszystkie możliwe stany natury.

Proces decyzyjny: 1. Sformułuj jasno problem decyzyjny. 2. Wylicz wszystkie możliwe decyzje. 3. Zidentyfikuj wszystkie możliwe stany natury. Proces decyzyny: 1. Sformułu sno problem decyzyny. 2. Wylcz wszyste możlwe decyze. 3. Zdentyfu wszyste możlwe stny ntury. 4. Oreśl wypłtę dl wszystch możlwych sytuc, ( tzn. ombnc decyz / stn ntury ). 5.

Bardziej szczegółowo

KRYTERIA OCENIANIA TECHNOLOGIA NAPRAW ZESPOŁÓW I PODZESPOŁÓW MECHANICZNYCH POJAZDÓW SAMOCHODOWYCH KLASA I TPS

KRYTERIA OCENIANIA TECHNOLOGIA NAPRAW ZESPOŁÓW I PODZESPOŁÓW MECHANICZNYCH POJAZDÓW SAMOCHODOWYCH KLASA I TPS KRYTRIA OCNIANIA TCHNOLOGIA NAPRAW ZSPOŁÓW I PODZSPOŁÓW MCHANICZNYCH POJAZDÓW SAMOCHODOWYCH KLASA I TPS Temt Klsyfikcj i identyfikcj pojzdów smochodowych Zgdnieni - Rodzje ukłdów, - Zdni i ogóln budow

Bardziej szczegółowo

Energia potencjalna jest energią zgromadzoną w układzie. Energia potencjalna może być zmieniona w inną formę energii (na przykład energię kinetyczną)

Energia potencjalna jest energią zgromadzoną w układzie. Energia potencjalna może być zmieniona w inną formę energii (na przykład energię kinetyczną) 1 Enega potencjalna jest enegą zgomadzoną w układze. Enega potencjalna może być zmenona w nną omę eneg (na pzykład enegę knetyczną) może być wykozystana do wykonana pacy. Sumę eneg potencjalnej knetycznej

Bardziej szczegółowo

Matematyka finansowa 10.03.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVI Egzamin dla Aktuariuszy z 10 marca 2014 r. Część I

Matematyka finansowa 10.03.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVI Egzamin dla Aktuariuszy z 10 marca 2014 r. Część I Mtemtyk finnsow.03.2014 r. Komisj Egzmincyjn dl Akturiuszy LXVI Egzmin dl Akturiuszy z mrc 2014 r. Część I Mtemtyk finnsow WERSJA TESTU A Imię i nzwisko osoby egzminownej:... Czs egzminu: 0 minut 1 Mtemtyk

Bardziej szczegółowo

usuwa niewymierność z mianownika wyrażenia typu

usuwa niewymierność z mianownika wyrażenia typu Wymgni edukcyjne n poszczególne oceny z mtemtyki Kls pierwsz zkres podstwowy. LICZBY RZECZYWISTE podje przykłdy liczb: nturlnych, cłkowitych, wymiernych, niewymiernych, pierwszych i złożonych orz przyporządkowuje

Bardziej szczegółowo

Określanie mocy cylindra C w zaleŝności od ostrości wzroku V 0 Ostrość wzroku V 0 7/5 6/5 5/5 4/5 3/5 2/5 Moc cylindra C 0,5 0,75 1,0 1,25 1,5 > 2

Określanie mocy cylindra C w zaleŝności od ostrości wzroku V 0 Ostrość wzroku V 0 7/5 6/5 5/5 4/5 3/5 2/5 Moc cylindra C 0,5 0,75 1,0 1,25 1,5 > 2 T A R C Z A Z E G A R O W A ASTYGMATYZM 1.Pojęca ogólne a) astygmatyzm prosty (najbardzej zgodny z pozomem) - najbardzej płask połudnk tzn. o najmnejszej mocy jest pozomy b) astygmatyzm odwrotny (najbardzej

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY. JĘZYK MATEMATYKI oblicz wrtość bezwzględną liczby rzeczywistej stosuje interpretcję geometryczną wrtości bezwzględnej liczby

Bardziej szczegółowo

Układ elektrohydrauliczny do badania siłowników teleskopowych i tłokowych

Układ elektrohydrauliczny do badania siłowników teleskopowych i tłokowych TDUSZ KRT TOMSZ PRZKŁD Ukłd elektrohydruliczny do bdni siłowników teleskopowych i tłokowych Wprowdzenie Polsk Norm PN-72/M-73202 Npędy i sterowni hydruliczne. Cylindry hydruliczne. Ogólne wymgni i bdni

Bardziej szczegółowo

ZESZYTY NAUKOWE NR 11(83) AKADEMII MORSKIEJ W SZCZECINIE. Fuzja danych nawigacyjnych w przestrzeni filtru Kalmana

ZESZYTY NAUKOWE NR 11(83) AKADEMII MORSKIEJ W SZCZECINIE. Fuzja danych nawigacyjnych w przestrzeni filtru Kalmana ISSN 733-867 ZESZ NAUKOWE NR (83) AKADEMII MORSKIEJ W SZCZECINIE IV MIĘDZNARODOWA KONFERENCJA NAUKOWO-ECHNICZNA E X L O - S H I 6 Andrzej Stteczny, Andrzej Lsj, Chfn Mohmmd Fzj dnych nwgcyjnych w przestrzen

Bardziej szczegółowo

Tydzień 1. Linie ugięcia belek cz.1. Zadanie 1. Wyznaczyć linię ugięcia metodą bezpośrednią wykorzystując równanie: EJy = -M g.

Tydzień 1. Linie ugięcia belek cz.1. Zadanie 1. Wyznaczyć linię ugięcia metodą bezpośrednią wykorzystując równanie: EJy = -M g. Studi dzienne, kierunek: Budownictwo, semestr IV Studi inżynierskie i mgisterskie (ilość godz. w2, ćw1, proj1) Wytrzymłość mteriłów. Ćwiczeni udytoryjne. Przykłdow treść ćwiczeń. Tydzień 1. Linie ugięci

Bardziej szczegółowo

ω a, ω - prędkości kątowe członów czynnego a i biernego b przy

ω a, ω - prędkości kątowe członów czynnego a i biernego b przy Prekłne Mechncne PRZEKŁADNIE MECHANICZNE Prekłne mechncne są wykle mechnmm kołowym prenconym o prenesen npęu o włu slnk wykonuącego ruch orotowy o cłonu npęowego msyny rooce, mechnmu wykonwcego lu wprost

Bardziej szczegółowo

Dorota Ponczek, Karolina Wej. MATeMAtyka 2. Plan wynikowy. Zakres podstawowy

Dorota Ponczek, Karolina Wej. MATeMAtyka 2. Plan wynikowy. Zakres podstawowy Dorot Ponczek, rolin Wej MATeMAtyk Pln wynikowy Zkres podstwowy MATeMAtyk. Pln wynikowy. ZP Oznczeni: wymgni konieczne, P wymgni podstwowe, R wymgni rozszerzjące, D wymgni dopełnijące, W wymgni wykrczjące

Bardziej szczegółowo

Metody numeryczne. Wykład nr 7. dr hab. Piotr Fronczak

Metody numeryczne. Wykład nr 7. dr hab. Piotr Fronczak Metody numeryzne Wyłd nr 7 dr. Potr Fronz Cłowne numeryzne Cłowne numeryzne to przylżone olzne łe oznzony. Metody łown numeryznego polegją n przylżenu ł z pomoą odpowednej sumy wżonej wrtoś łownej unj

Bardziej szczegółowo

Równania liniowe. gdzie. Automatyka i Robotyka Algebra -Wykład 8- dr Adam Ćmiel,

Równania liniowe. gdzie. Automatyka i Robotyka Algebra -Wykład 8- dr Adam Ćmiel, utomtyk Robotyk lgebr -Wykłd - dr dm Ćmel cmel@ghedupl Równn lnowe Nech V W będą przestrzenm lnowym nd tym smym cłem K T: V W przeksztłcenem lnowym Rozwżmy równne lnowe T(v)w Powyższe równne nzywmy równnem

Bardziej szczegółowo

I. Elementy analizy matematycznej

I. Elementy analizy matematycznej WSTAWKA MATEMATYCZNA I. Elementy analzy matematycznej Pochodna funkcj f(x) Pochodna funkcj podaje nam prędkość zman funkcj: df f (x + x) f (x) f '(x) = = lm x 0 (1) dx x Pochodna funkcj podaje nam zarazem

Bardziej szczegółowo

Wspomaganie obliczeń za pomocą programu MathCad

Wspomaganie obliczeń za pomocą programu MathCad Wprowdzenie do Mthcd' Oprcowł:M. Detk P. Stąpór Wspomgnie oliczeń z pomocą progrmu MthCd Definicj zmiennych e f g h 8 Przykłd dowolnego wyrŝeni Ay zdefinowc znienną e wyierz z klwitury kolejno: e: e f

Bardziej szczegółowo

Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych,

Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych, Klsyczn Metod Njmniejszych Kwdrtów (KMNK) Postć ć modelu jest liniow względem prmetrów (lbo nleży dokonć doprowdzeni postci modelu do liniowości względem prmetrów), Zmienne objśnijące są wielkościmi nielosowymi,

Bardziej szczegółowo

Wytrzymałość Materiałów I

Wytrzymałość Materiałów I Wytrzymłość Mteriłów I kierunek Budownictwo, sem. III mteriły pomocnicze do ćwiczeń oprcownie: dr hb. inŝ. Mrcin Kmiński TREŚĆ WYKŁADU Ro, podstwowe pojęci i złoŝeni orz zkres wytrzymłości mteriłów. Rozciągnie

Bardziej szczegółowo

TEORIA WAGNERA UTLENIANIA METALI

TEORIA WAGNERA UTLENIANIA METALI TEORIA WAGNERA UTLENIANIA METALI PROCES POWSTAWANIA ZGORZELIN W/G TAMANN A (90) Utlenz tl Utlenz Zgorzeln tl + SCHEMAT KLASYCZNEGO DOŚWIADCZENIA PFEILA (99) Powetrze Powetrze SO Zgorzeln SO Fe Fe TEORIA

Bardziej szczegółowo

MXZ INVERTER SERIA. Jedna jednostka zewnętrzna może obsługiwać do 8 pomieszczeń. Ograniczenie poboru prądu. Efektywność energetyczna: klasa A

MXZ INVERTER SERIA. Jedna jednostka zewnętrzna może obsługiwać do 8 pomieszczeń. Ograniczenie poboru prądu. Efektywność energetyczna: klasa A INVERTER SERIA MXZ Typoszereg MXZ gwrntuje cicy, wysokowydjny i elstyczny system, spełnijący wszystkie wymgni w zkresie klimtyzcji powietrz. 6 MXZ-2C30VA MXZ-2C40VA MXZ-2C52VA MXZ-3C54VA MXZ-3C68VA MXZ-4C71VA

Bardziej szczegółowo

ROZPORZĄDZENIE MINISTRA INFRASTRUKTURY 1) z dnia 16 grudnia 2004 r.

ROZPORZĄDZENIE MINISTRA INFRASTRUKTURY 1) z dnia 16 grudnia 2004 r. Typ/orgn wydjący Rozporządzenie/Minister Infrstruktury Tytuł w sprwie szczegółowych wrunków i trybu wydwni zezwoleń n przejzdy pojzdów nienormtywnych Skrócony opis pojzdy nienormtywne Dt wydni 16 grudni

Bardziej szczegółowo

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające Wymgni edukcyjne z mtemtyki ls 2 b lo Zkres podstwowy Oznczeni: wymgni konieczne; wymgni podstwowe; R wymgni rozszerzjące; D wymgni dopełnijące; W wymgni wykrczjące Temt lekcji Zkres treści Osiągnięci

Bardziej szczegółowo

Temat lekcji Zakres treści Osiągnięcia ucznia

Temat lekcji Zakres treści Osiągnięcia ucznia ln wynikowy kls 2c i 2e - Jolnt jąk Mtemtyk 2. dl liceum ogólnoksztłcącego, liceum profilownego i technikum. sztłcenie ogólne w zkresie podstwowym rok szkolny 2015/2016 Wymgni edukcyjne określjące oceny:

Bardziej szczegółowo

POWŁOKI ELEKTROISKROWE WC-CO MODYFIKOWANE WIĄZKĄ LASEROWĄ. 88 Powłoki elektroiskrowe WC-Co modyfikowane wiązką laserową. Wstęp

POWŁOKI ELEKTROISKROWE WC-CO MODYFIKOWANE WIĄZKĄ LASEROWĄ. 88 Powłoki elektroiskrowe WC-Co modyfikowane wiązką laserową. Wstęp Rdek N.,* Szlpko J.** *Ktedr Inżynierii Eksplotcji Politechnik Świętokrzysk, Kielce, Polsk **Khmelnitckij Uniwersytet Nrodowy, Khmelnitckij, Ukrin Wstęp 88 POWŁOKI ELEKTROISKROWE WC-CO MODYFIKOWANE WIĄZKĄ

Bardziej szczegółowo

RUCH OBROTOWY Można opisać ruch obrotowy ze stałym przyspieszeniem ε poprzez analogię do ruchu postępowego jednostajnie zmiennego.

RUCH OBROTOWY Można opisać ruch obrotowy ze stałym przyspieszeniem ε poprzez analogię do ruchu postępowego jednostajnie zmiennego. RUCH OBROTOWY Można opsać ruch obrotowy ze stałym przyspeszenem ε poprzez analogę do ruchu postępowego jednostajne zmennego. Ruch postępowy a const. v v at s s v t at Ruch obrotowy const. t t t Dla ruchu

Bardziej szczegółowo

Rozwiązywanie zadań z dynamicznego ruchu płaskiego część I 9

Rozwiązywanie zadań z dynamicznego ruchu płaskiego część I 9 ozwiązywnie zdń z dyniczneo ruchu płskieo część I 9 Wprowdzenie ozwiązywnie zdń w oprciu o dyniczne równni ruchu (D pole n uwolnieniu z więzów kżdeo z cił w sposób znny ze sttyki. Wrunki równowi są zbliżone

Bardziej szczegółowo

MATEMATYKA Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych z przedmiotu matematyka w PLO nr VI w Opolu

MATEMATYKA Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych z przedmiotu matematyka w PLO nr VI w Opolu MATEMATYKA Przedmiotowy system ocenini wrz z określeniem wymgń edukcyjnych z przedmiotu mtemtyk w PLO nr VI w Opolu Zkres podstwowy WyróŜnione zostły nstępujące wymgni progrmowe: konieczne (K), podstwowe

Bardziej szczegółowo

Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych

Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych Klucz odpowiedzi do zdń zmkniętc i scemt ocenini zdń otwrtc Klucz odpowiedzi do zdń zmkniętc 4 7 9 0 4 7 9 0 D D D Scemt ocenini zdń otwrtc Zdnie (pkt) Rozwiąż nierówność x x 0 Oliczm wróżnik i miejsc

Bardziej szczegółowo

Przedmiotowy system oceniania z matematyki wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Klasa II TAK

Przedmiotowy system oceniania z matematyki wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Klasa II TAK I Postnowieni ogólne Przedmiotowy system ocenini z mtemtyki wrz z określeniem wymgń edukcyjnych (zkres podstwowy) Kls II TAK 1. Wrunkiem uzyskni pozytywnej oceny semestrlnej z mtemtyki jest: ) zliczenie

Bardziej szczegółowo

Podstawy układów logicznych

Podstawy układów logicznych Podstwy ukłdów logicznych Prw logiki /9 Alger Boole Prw logiki WyrŜeni i funkcje logiczne Brmki logiczne Alger Boole /9 Alger Boole' Powszechnie stosowne ukłdy cyfrowe (logiczne) prcują w oprciu o tzw.

Bardziej szczegółowo

system identyfikacji wizualnej forma podstawowa karta A03 część A znak marki

system identyfikacji wizualnej forma podstawowa karta A03 część A znak marki krt A03 część A znk mrki form podstwow Znk mrki Portu Lotniczego Olsztyn-Mzury stnowi połączenie znku grficznego (tzw. logo) z zpisem grficznym (tzw. logotypem). Służy do projektowni elementów symboliki

Bardziej szczegółowo

4. RACHUNEK WEKTOROWY

4. RACHUNEK WEKTOROWY 4. RACHUNEK WEKTOROWY 4.1. Wektor zczepiony i wektor swoodny Uporządkowną prę punktów (A B) wyznczjącą skierowny odcinek o początku w punkcie A i końcu w punkcie B nzywmy wektorem zczepionym w punkcie

Bardziej szczegółowo

Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy)

Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Propozycj przedmiotowego systemu ocenini wrz z określeniem wymgń edukcyjnych (zkres podstwowy) Proponujemy, by omwijąc dne zgdnienie progrmowe lub rozwiązując zdnie, nuczyciel określł do jkiego zkresu

Bardziej szczegółowo

WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać:

WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać: WEKTORY Wśród wielkości fizycznych występujących w fizyce możn wyróżnić sklry i wektory. Aby określić wielkość sklrną, wystrczy podć tylko jedną liczbę. Wielkościmi tkimi są ms, czs, tempertur, objętość

Bardziej szczegółowo

Wymagania na ocenę dopuszczającą z matematyki klasa II Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02

Wymagania na ocenę dopuszczającą z matematyki klasa II Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02 Wymgni n ocenę dopuszczjącą z mtemtyki kls II Mtemtyk - Bbiński, Chńko-Now Er nr prog. DKOS 4015-99/02 Temt lekcji Zkres treści Osiągnięci uczni WIELOMIANY 1. Stopień i współczynniki wielominu 2. Dodwnie

Bardziej szczegółowo

WYMAGANIA I KRYTERIA OCENIANIA DO EGZAMINU POPRAWKOWEGO MATEMATYKA. Zakresie podstawowym i rozszerzonym. Klasa II rok szkolny 2011/2012

WYMAGANIA I KRYTERIA OCENIANIA DO EGZAMINU POPRAWKOWEGO MATEMATYKA. Zakresie podstawowym i rozszerzonym. Klasa II rok szkolny 2011/2012 mgr Jolnt Chlebd mgr Mri Mślnk mgr Leszek Mślnk mgr inż. Rent itl mgr inż. Henryk Stępniowski Zespół Szkół ondgimnzjlnych Młopolsk Szkoł Gościnności w Myślenicch WYMAGANIA I RYTERIA OCENIANIA DO EGZAMINU

Bardziej szczegółowo

OCHRONA PRZECIWPOśAROWA TABORU KOLEJOWEGO WYMAGANIA PRZECIWPOśAROWE DLA MATERIAŁÓW I KOMPONENTÓW

OCHRONA PRZECIWPOśAROWA TABORU KOLEJOWEGO WYMAGANIA PRZECIWPOśAROWE DLA MATERIAŁÓW I KOMPONENTÓW Ktedr Technicznego Zbezpieczeni Okrętów Lbortorium Bdń Cech PoŜrowych Mteriłów OCHRONA PRZECIWPOśAROWA TABORU KOLEJOWEGO WYMAGANIA PRZECIWPOśAROWE DLA MATERIAŁÓW I KOMPONENTÓW Metody bdń 1 pren 45545-2:

Bardziej szczegółowo

Raport Przeliczenie punktów osnowy wysokościowej III, IV i V klasy z układu Kronsztadt60 do układu Kronsztadt86 na obszarze powiatu krakowskiego

Raport Przeliczenie punktów osnowy wysokościowej III, IV i V klasy z układu Kronsztadt60 do układu Kronsztadt86 na obszarze powiatu krakowskiego Rport Przelczene punktów osnowy wysokoścowej III, IV V klsy z ukłdu Kronsztdt60 do ukłdu Kronsztdt86 n oszrze powtu krkowskego Wykonł: dr h. nż. Potr Bnsk dr nż. Jcek Kudrys dr nż. Mrcn Lgs dr nż. Bogdn

Bardziej szczegółowo

2. Tensometria mechaniczna

2. Tensometria mechaniczna . Tensometri mechniczn Wstęp Tensometr jk wskzywłby jego nzw to urządzenie służące do pomiru nprężeń. Jk jednk widomo, nprężeni nie są wielkościmi mierzlnymi i stnowią jedynie brdzo wygodne pojęcie mechniki

Bardziej szczegółowo

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Technikum Nr 2 im. gen. Mieczysłw Smorwińskiego w Zespole Szkół Ekonomicznych w Kliszu Wymgni edukcyjne niezbędne do uzyskni poszczególnych śródrocznych i rocznych ocen klsyfikcyjnych z obowiązkowych zjęć

Bardziej szczegółowo

- Wydział Fizyki Zestaw nr 5. Powierzchnie 2-go stopnia

- Wydział Fizyki Zestaw nr 5. Powierzchnie 2-go stopnia 1 Algebr Liniow z Geometri - Wydził Fizyki Zestw nr 5 Powierzchnie -go stopni 1 N sferze 1 + + 3 = 4 znleźć punkt, którego odległość od punktu p = (, 6, 3) byłby njmniejsz Wyznczyć osie elipsy powstłej

Bardziej szczegółowo

Zadania. I. Podzielność liczb całkowitych

Zadania. I. Podzielność liczb całkowitych Zdni I. Podzielność liczb cłkowitych. Pewn liczb sześciocyfrow kończy się cyfrą 5. Jeśli tę cyfrę przestwimy n miejsce pierwsze ze strony lewej to otrzymmy nową liczbę cztery rzy większą od poprzedniej.

Bardziej szczegółowo

( ) Lista 2 / Granica i ciągłość funkcji ( z przykładowymi rozwiązaniami)

( ) Lista 2 / Granica i ciągłość funkcji ( z przykładowymi rozwiązaniami) List / Grnic i ciągłość funkcji ( z przykłdowymi rozwiąznimi) Korzystjąc z definicji grnicy (ciągowej) funkcji uzsdnić podne równości: sin ) ( + ) ; b) ; c) + 5 Obliczyć grnice funkcji przy orz : + ) f

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy LIX Egzamin dla Aktuariuszy z 12 marca 2012 r. Część I Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy LIX Egzamin dla Aktuariuszy z 12 marca 2012 r. Część I Matematyka finansowa Mtemtyk finnsow 12.03.2012 r. Komisj Egzmincyjn dl Akturiuszy LIX Egzmin dl Akturiuszy z 12 mrc 2012 r. Część I Mtemtyk finnsow WERSJA TESTU A Imię i nzwisko osoby egzminownej:... Czs egzminu: 100 minut

Bardziej szczegółowo

Wyrównanie sieci niwelacyjnej

Wyrównanie sieci niwelacyjnej 1. Wstęp Co to jest sieć niwelcyjn Po co ją się wyrównje Co chcemy osiągnąć 2. Metod pośrednicząc Wyrównnie sieci niwelcyjnej Metod pośrednicząc i metod grpow Mmy sieć skłdjącą się z szereg pnktów. Niektóre

Bardziej szczegółowo

Wymagania kl. 2. Uczeń:

Wymagania kl. 2. Uczeń: Wymgni kl. 2 Zkres podstwowy Temt lekcji Zkres treści Osiągnięci uczni. SUMY ALGEBRAICZNE. Sumy lgebriczne definicj jednominu pojęcie współczynnik jednominu porządkuje jednominy pojęcie sumy lgebricznej

Bardziej szczegółowo

Środek masy i geometryczne momenty bezwładności figur płaskich 1

Środek masy i geometryczne momenty bezwładności figur płaskich 1 Środek ms geometrzne moment bezwłdnoś fgur płskh Środek ms fgur płskej Zleżnoś n współrzędne środk ms, fgur płskej złożonej z fgur regulrnh rs.. możem zpsć w nstępują sposób: gdze:. pole powerzhn -tej

Bardziej szczegółowo

Przeguby precyzyjne KTR z łożyskowaniem ślizgowym lub igiełkowym

Przeguby precyzyjne KTR z łożyskowaniem ślizgowym lub igiełkowym Przeguy precyzyjne KTR z łożyskowniem ślizgowym lu igiełkowym Przeguy KTR, to pod względem technicznym, wysokojkościowe elementy do łączeni dwóch włów, o dopuszczlnej wielkości kąt prcy dl pojedynczego

Bardziej szczegółowo

PROJEKTY GOTOWE DŹWIGARÓW DACHOWYCH

PROJEKTY GOTOWE DŹWIGARÓW DACHOWYCH Dwne: Centrlne Biuro Projektowo-Bdwcze Budownictw Wiejskiego 04-026 Wrszw 50, l. Stnów Zjednoczonyc 51 tel. 22-810-83-78; 22-810-64-89; fx; 22-810-58-97; e-il: isprol@isprol.pl ; www.isprol.pl PROJEKTY

Bardziej szczegółowo

Temat I. Warunku współpracy betonu i zbrojenia w konstrukcjach żelbetowych. Wymagania. Beton. Zbrojenie

Temat I. Warunku współpracy betonu i zbrojenia w konstrukcjach żelbetowych. Wymagania. Beton. Zbrojenie Dr inż. Zigniew PLEWAKO Ćwiczeni z konstrukcji żeletowych. Temt I Temt I. Wrunku współprcy etonu i zrojeni w konstrukcjch żeletowych. Wymgni. Beton Zdnie: Przeniesienie sił ściskjących, sclenie i zpewnienie

Bardziej szczegółowo

Integralność konstrukcji

Integralność konstrukcji 1 Integrlność konstrukcji Wykłd Nr 5 PROJEKTOWANIE W CELU UNIKNIĘCIA ZMĘCZENIOWEGO Wydził Inżynierii Mechnicznej i Robotyki Ktedr Wytrzymłości, Zmęczeni Mteriłów i Konstrukcji http://zwmik.imir.gh.edu.pl/dydktyk/imir/index.htm

Bardziej szczegółowo

PROJEKTY GOTOWE DŹWIGARÓW DACHOWYCH

PROJEKTY GOTOWE DŹWIGARÓW DACHOWYCH Dwne: Centrlne Biuro Projektowo-Bdwcze Budownictw Wiejskiego 04-026 Wrszw 50, l. Stnów Zjednoczonyc 51 tel. 22-810-83-78; 22-810-64-89; fx; 22-810-58-97; e-il: isprol@isprol.pl ; www.isprol.pl PROJEKTY

Bardziej szczegółowo

Twierdzenie Bezouta i liczby zespolone Javier de Lucas. Rozwi azanie 2. Z twierdzenia dzielenia wielomianów, mamy, że

Twierdzenie Bezouta i liczby zespolone Javier de Lucas. Rozwi azanie 2. Z twierdzenia dzielenia wielomianów, mamy, że Twerdzene Bezouta lczby zespolone Javer de Lucas Ćwczene 1 Ustal dla których a, b R można podzelć f 1 X) = X 4 3X 2 + ax b przez f 2 X) = X 2 3X+2 Oblcz a b Z 5 jeżel zak ladamy, że f 1 f 2 s a welomanam

Bardziej szczegółowo

Wykład 2. Granice, ciągłość, pochodna funkcji i jej interpretacja geometryczna

Wykład 2. Granice, ciągłość, pochodna funkcji i jej interpretacja geometryczna 1 Wykłd Grnice, ciągłość, pocodn unkcji i jej interpretcj geometryczn.1 Grnic unkcji. Grnic lewostronn i grnic prwostronn unkcji Deinicj.1 Mówimy, że liczb g jest grnicą lewostronną unkcji w punkcie =,

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VIII w roku szkolnym 2015/2016

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VIII w roku szkolnym 2015/2016 WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VIII w roku szkolnym 015/016 oprcowł: Dnut Wojcieszek n ocenę dopuszczjącą rysuje wykres funkcji f ( ) i podje jej włsności sprwdz lgebricznie, czy dny punkt

Bardziej szczegółowo

Materiały diagnostyczne z matematyki poziom podstawowy

Materiały diagnostyczne z matematyki poziom podstawowy Mteriły dignostyczne z mtemtyki poziom podstwowy czerwiec 0 Klucz odpowiedzi do zdń zmkniętych orz schemt ocenini Mteriły dignostyczne przygotowł Agt Siwik we współprcy z nuczycielmi mtemtyki szkół pondgimnzjlnych:

Bardziej szczegółowo

Wymagania na poszczególne oceny z matematyki w Zespole Szkół im. St. Staszica w Pile. Kl. II poziom podstawowy

Wymagania na poszczególne oceny z matematyki w Zespole Szkół im. St. Staszica w Pile. Kl. II poziom podstawowy Wymgni n poszczególne oceny z mtemtyki w Zespole Szkół im. St. Stszic w Pile 1. SUMY ALGEBRAICZNE Kl. II poziom podstwowy Uczeń otrzymuje ocenę dopuszczjącą, jeśli: rozpoznje jednominy i sumy lgebriczne

Bardziej szczegółowo

Całkowanie numeryczne Zadanie: obliczyć przybliżenie całki (1) używając wartości funkcji f(x) w punktach równoodległych. Przyjmujemy (2) (3) (4) x n

Całkowanie numeryczne Zadanie: obliczyć przybliżenie całki (1) używając wartości funkcji f(x) w punktach równoodległych. Przyjmujemy (2) (3) (4) x n lkowe_um- łkowe umercze Zde: olczć przlżee cłk ( ) d () użwjąc wrtośc ukcj () w puktc rówoodległc. Przjmujem (), gdze,,, () () tąd / (5) Metod prostokątów d / (6) gdze / / (7) -- :9: /6 lkowe_um- td. td.

Bardziej szczegółowo

MODELE TEORII GIER. Modelowanie matematyczne. dr inż. Zbigniew Tarapata Wykład nr 5: Modele teorii gier

MODELE TEORII GIER. Modelowanie matematyczne. dr inż. Zbigniew Tarapata Wykład nr 5: Modele teorii gier MODELE TEORII GIER Podejmowne decyzj nwestycyjnych często jest dokonywne w sytucjch, w których ne wdomo, jk będze stn otoczen lub też, jką decyzję podejmą nn decydenc, mjący wpływ n wynk decyzj przez ns

Bardziej szczegółowo

Model ASAD. ceny i płace mogą ulegać zmianom (w odróżnieniu od poprzednio omawianych modeli)

Model ASAD. ceny i płace mogą ulegać zmianom (w odróżnieniu od poprzednio omawianych modeli) Model odstawowe założena modelu: ceny płace mogą ulegać zmanom (w odróżnenu od poprzedno omawanych model) punktem odnesena analzy jest obserwacja pozomu produkcj cen (a ne stopy procentowej jak w modelu

Bardziej szczegółowo

Przedmiotowy system oceniania z matematyki wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Klasa II LO

Przedmiotowy system oceniania z matematyki wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Klasa II LO I Postnowieni ogólne Przedmiotowy system ocenini z mtemtyki wrz z określeniem wymgń edukcyjnych (zkres podstwowy) Kls II LO 1. Wrunkiem uzyskni pozytywnej oceny semestrlnej z mtemtyki jest: ) zliczenie

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA Mteriły do wykłdu MATEMATYKA DYSKRETNA dl studiów zocznych cz. Progrm wykłdu: KOMBINATORYKA:. Notcj i podstwowe pojęci. Zlicznie funkcji. Permutcje. Podziory zioru. Podziory k-elementowe. Ziory z powtórzenimi

Bardziej szczegółowo

Wymagania edukacyjne z matematyki FUNKCJE dopuszczającą dostateczną dobrą bardzo dobrą

Wymagania edukacyjne z matematyki FUNKCJE dopuszczającą dostateczną dobrą bardzo dobrą Wymgni edukcyjne z mtemtyki Kls IIC. Rok szkolny 013/014 Poziom podstwowy FUNKCJE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje przyporządkowni będące funkcjmi określ funkcję różnymi

Bardziej szczegółowo

zestaw DO ĆWICZEŃ z matematyki

zestaw DO ĆWICZEŃ z matematyki zestaw DO ĆWICZEŃ z mtemtyki poziom rozszerzony rozumownie i rgumentcj krty prcy ZESTAW I Zdnie 1. Wykż, że odcinek łączący środki dwóch dowolnych oków trójkąt jest równoległy do trzeciego oku i jest równy

Bardziej szczegółowo

WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ

WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ Ćwiczenie 9 WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ 9.. Opis teoretyczny Soczewką seryczną nzywmy przezroczystą bryłę ogrniczoną dwom powierzchnimi serycznymi o promienich R i

Bardziej szczegółowo

Zakład Systemów Radiowych (Z-1)

Zakład Systemów Radiowych (Z-1) Zkłd Systemów Rdowych (Z-) Bdne rozchodzen sę fl rdowych wewnątrz udynków. Oprcowne metody prognostycznej przydtnej w prktyce, wykorzystując stnejące wynk dń Etp : Oprcowne metody prognostycznej przydtnej

Bardziej szczegółowo

Zadania do rozdziału 7.

Zadania do rozdziału 7. Zdni do ozdziłu 7. Zd.7.. wiezchołkch kwdtu o okch umieszczono ednkowe łdunku. Jki łdunek o znku pzeciwnym tze umieścić w śodku kwdtu y sił wypdkow dziłąc n kżdy łdunek ył ówn zeu? ozwiąznie: ozptzmy siły

Bardziej szczegółowo

Wytrzymałość materiałów II

Wytrzymałość materiałów II Wytrzymłość mteriłów II kierunek Budownictwo, sem. IV mteriły pomocnicze do ćwiczeń oprcownie: dr inż. Iren Wgner, mgr inż. Jont Bondrczuk-Siwick TREŚĆ WYKŁADU Sprężyste skręcnie prętów pryzmtycznych.

Bardziej szczegółowo

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres podstawowy

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres podstawowy Przedmiotowy system ocenini wrz z określeniem wymgń edukcyjnych kls drug zkres podstwowy Wymgni konieczne (K) dotyczą zgdnień elementrnych, stnowiących swego rodzju podstwę, ztem powinny być opnowne przez

Bardziej szczegółowo

WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać:

WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać: WEKTORY Wśród wielkości fizycznych występujących w fizyce możn wyróżnić sklry i wektory. Aby określić wielkość sklrną, wystrczy podć tylko jedną liczbę. Wielkościmi tkimi są ms, czs, tempertur, objętość

Bardziej szczegółowo

Szczegółowe wymagania edukacyjne z matematyki, klasa 2C, poziom podstawowy

Szczegółowe wymagania edukacyjne z matematyki, klasa 2C, poziom podstawowy Szczegółowe wymgni edukcyjne z mtemtyki, kls 2C, poziom podstwowy Wymgni konieczne () dotyczą zgdnieo elementrnych, stnowiących swego rodzju podstwę, ztem powinny byd opnowne przez kżdego uczni. Wymgni

Bardziej szczegółowo

Analiza matematyczna i algebra liniowa

Analiza matematyczna i algebra liniowa Anliz mtemtyczn i lgebr liniow Mteriły pomocnicze dl studentów do wykłdów Mcierze liczbowe i wyznczniki. Ukłdy równń liniowych. Mcierze. Wyznczniki. Mcierz odwrotn. Równni mcierzowe. Rząd mcierzy. Ukłdy

Bardziej szczegółowo

Grażyna Nowicka, Waldemar Nowicki BADANIE RÓWNOWAG KWASOWO-ZASADOWYCH W ROZTWORACH ELEKTROLITÓW AMFOTERYCZNYCH

Grażyna Nowicka, Waldemar Nowicki BADANIE RÓWNOWAG KWASOWO-ZASADOWYCH W ROZTWORACH ELEKTROLITÓW AMFOTERYCZNYCH Ćwiczenie Grżyn Nowick, Wldemr Nowicki BDNIE RÓWNOWG WSOWO-ZSDOWYC W ROZTWORC ELETROLITÓW MFOTERYCZNYC Zgdnieni: ktywność i współczynnik ktywności skłdnik roztworu. ktywność jonów i ktywność elektrolitu.

Bardziej szczegółowo

2. Ciągi liczbowe. Definicja 2.1 Funkcję a : N R nazywamy ciągiem liczbowym. Wartość funkcji a(n) oznaczamy symbolem a

2. Ciągi liczbowe. Definicja 2.1 Funkcję a : N R nazywamy ciągiem liczbowym. Wartość funkcji a(n) oznaczamy symbolem a Ciągi liczbowe Defiicj Fukcję : N R zywmy iem liczbowym Wrtość fukcji () ozczmy symbolem i zywmy -tym lub ogólym wyrzem u Ciąg Przykłdy Defiicj róŝic zpisujemy rówieŝ w postci { } + Ciąg liczbowy { } zywmy

Bardziej szczegółowo

PODSTAWY ALGEBRY MACIERZY. Operacje na macierzach

PODSTAWY ALGEBRY MACIERZY. Operacje na macierzach PODSTWY LGEBRY MCIERZY WIERSZ i, KOLUMN (j) Mcierz m,n, gdzie m to ilość wierszy, n ilość kolumn i,j element mcierzy z itego wiersz, jtej kolumny Opercje n mcierzch Równość mcierzy m,n = B m,n. def i,j

Bardziej szczegółowo

2. Na ich rozwiązanie masz 90 minut. Piętnaście minut przed upływem tego czasu zostaniesz o tym poinformowany przez członka Komisji Konkursowej.

2. Na ich rozwiązanie masz 90 minut. Piętnaście minut przed upływem tego czasu zostaniesz o tym poinformowany przez członka Komisji Konkursowej. Kod uczni... MAŁOPOLSKI KONKURS MATEMATYCZNY dl uczniów gimnzjów Rok szkolny 03/0 ETAP SZKOLNY - 5 pździernik 03 roku. Przed Tobą zestw zdń konkursowych.. N ich rozwiąznie msz 90 minut. Piętnście minut

Bardziej szczegółowo

METODY KOMPUTEROWE 11

METODY KOMPUTEROWE 11 METOY KOMPUTEROWE METOA WAŻONYCH REZIUÓW Mchł PŁOTKOWIAK Adm ŁOYGOWSKI Konsultcje nukowe dr nż. Wtold Kąkol Poznń / METOY KOMPUTEROWE METOA WAŻONYCH REZIUÓW Metod wżonych rezduów jest slnym nrzędzem znjdown

Bardziej szczegółowo

PODSTAWY BAZ DANYCH Wykład 2 2. Pojęcie Relacyjnej Bazy Danych

PODSTAWY BAZ DANYCH Wykład 2 2. Pojęcie Relacyjnej Bazy Danych PODSTAWY BAZ DANYCH Wykłd 2 2. Pojęcie Relcyjnej Bzy Dnych 2005/2006 Wykłd "Podstwy bz dnych" 1 Pojęcie krotki - definicj Definicj. Niech dny będzie skończony zbiór U := { A 1, A 2,..., A n }, którego

Bardziej szczegółowo

Zawór regulacyjny ZK210 z wielostopniową dyszą promieniową

Zawór regulacyjny ZK210 z wielostopniową dyszą promieniową Zwór regulcyjny z wielostopniową dyszą promieniową Zwór regulcyjny Opis Zwór regulcyjny służący do prcy przy wysokich ciśnienich różnicowych. Stosowny jest między innymi, w instlcjch przemysłowych i elektrownich,

Bardziej szczegółowo

Macierz. Wyznacznik macierzy. Układ równań liniowych

Macierz. Wyznacznik macierzy. Układ równań liniowych Temt wykłdu: Mcierz. Wyzncznik mcierzy. Ukłd równń liniowych Kody kolorów: Ŝółty nowe pojęcie pomrńczowy uwg kursyw komentrz * mterił ndobowiązkowy Ann Rjfur, Mtemtyk n kierunku Biologi w SGGW Zgdnieni.

Bardziej szczegółowo

Kolektor płaski Hoval IDKM 250 do instalacji w dachu. Dane techniczne. Kolektor płaski IDKM250 IDKM200 G/E. absorpcja α 95% emisja ε 5%

Kolektor płaski Hoval IDKM 250 do instalacji w dachu. Dane techniczne. Kolektor płaski IDKM250 IDKM200 G/E. absorpcja α 95% emisja ε 5% Kolektor płski Hovl IDKM 50 Dne techniczne Kolektor płski IDKM50 Typ kolektor rodzj budowy kolektor typ budowy IDKM00 G/E kolektor płski przeszklony, przykrycie bsorber-powłok selektywny bsorpcj α 95%

Bardziej szczegółowo

LISTA02: Projektowanie układów drugiego rzędu Przygotowanie: 1. Jakie własności ma równanie 2-ego rzędu & x &+ bx&

LISTA02: Projektowanie układów drugiego rzędu Przygotowanie: 1. Jakie własności ma równanie 2-ego rzędu & x &+ bx& LISTA: Projektownie ukłdów drugiego rzędu Przygotownie: 1. Jkie włsności m równnie -ego rzędu & &+ b + c u jeśli: ) c>; b) c; c) c< Określ położenie biegunów, stbilność, oscylcje Zdni 1: Wyzncz bieguny.

Bardziej szczegółowo

MATEMATYKA KLASY I K i rozszerzonym WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH

MATEMATYKA KLASY I K i rozszerzonym WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH MATEMATYKA KLASY I K i rozszerzonym WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH oprcowne n podstwie przedmiotowego systemu ocenini NOWEJ ERY

Bardziej szczegółowo

ń Ż ć Ą Ę Ę ń Ą Ż ń Ż ń Ę Ę Ę ń Ż ń Ś ń ć Ś ń ń ń ń ń Ę Ę Ą ń Ą Ń Ę ń Ż Ń ń Ź ń Ż Ś ń Ż ń ń ń Ź Ż Ą ń ń Ż ń ć Ś ń ń ź ń ń Ź ń Ś Ź ń ń ń Ż ń ć Ś ń ń ć Ż Ę ń ć Ś Ś Ż ń Ź Ż ń ń Ą ń Ś Ść Ń ń ń ź ń Ż ń Ż Ż

Bardziej szczegółowo

ć ć Ż ć Ż ć ć ź ć ć ć ć ć ć ć ć ć ź ć ć ź Ę ć ć ź ć ź ć ć ć ć ć ć ć Ę ć ć ź ć ć ź ź ź ź ź ź Ę Ę ź Ę ć ź ć ź ź ć ć ć Ę ć ź ź ć ź ć ć ź Ą ć ź ź ź ź ć ć ć Ę ź ź ć ć ć ć ć ć ź ź ć ć ć ć ć ć ć ć ć ć ć ź ź ć

Bardziej szczegółowo

Ś Ę Ż Ż Ł ź ź Ę ź Ę Ą Ę ź ć Ś Ą ć Ą ź ć Ó Ę ć ć Ś ć ć Ń ć Ż Ź Ż ć Ś ć Ę Ę Ę Ł ź ć Ś Ś ź Ł ć Ę ć Ł ć ź Ł ć Ż ć Ą Ś Ę ź Ę ć ź ć Ł Ń Ę ć Ś ź ć Ł Ł Ń ć ć ć ć Ę Ę ć ć Ż Ń Ń ŻŻ Ż Ę Ż ć ć Ę Ż Ó ć Ł Ą ć Ś Ę ć

Bardziej szczegółowo