Zad 2 Dynamika zatrudnienia mierzona indeksami łańcuchowymi w ostatnich pięciu latach kształtowały się następująco: Lata Indeksy ( w %)

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Zad 2 Dynamika zatrudnienia mierzona indeksami łańcuchowymi w ostatnich pięciu latach kształtowały się następująco: Lata Indeksy ( w %)"

Transkrypt

1 Analza dnamk Zad. 1 Indeks lczb studującch studentów w województwe śląskm w kolejnch pęcu latach przedstawał sę następująco: Lata Indeks jednopodstawowe z roku t = 1 100,0 115,7 161,4 250,8 195,9 Wedząc, że lczba studującch studentów wnos w roku t = tś. osób, oblcz absolutne pozom studującch w poszczególnch latach badanego okresu oraz wznacz średne roczne tempo wzrostu lczb studującch studentów w poszczególnch latach. Zad 2 Dnamka zatrudnena merzona ndeksam łańcuchowm w ostatnch pęcu latach kształtował sę następująco: Lata Indeks ( w %) 101,7 103,1 104,4 103,5 102,3 Dokonaj zaman ndeksów łańcuchowch na ndeks jednopodstawowe o podstawe z roku t = 1. Zad 3 Jednopodstawowe ndeks produkcj w latach t = 1 do t = 8 kształtował sę następująco: Lata Indeks jednopodstawowe o podstawe z roku t = 4 Korzstając z powższch danch utwórz ndeks jednopodstawowe o podstawe z roku t = 1. Zad 4 Korzstając z ponższch danch przedstawającch ndeks jednopodstawowe o podstawe z roku t = 4, wznacz przrost względne łańcuchowe: Lata Indeks jednopodstawowe o podstawe z roku t = Zad 5 Zużce prądu przez gospodarstwa domowe charakterzuje następując szereg: Lata Zużce prądu Jakego zużca należ sę spodzewać w roku t = 9. dr nż. Aleksandra Czuprna-Nowak 1

2 Zad 6 Wartość produkcj artkułów A,B,C w latach w mn zł dnamkę cen badanch artkułów przedstawa ponższa tabela: Wartość produkcj w mn zł 1998r 1999r Dnamka cen A 500 spadek o 10% wzrost o 30% B 200 wzrost o 20% spadek o 25% C 300 spadek o 15% bez zman Dokonać agregatowej analz dnamk produkcj artkułów A,B,C w celu łącznej ocen dnamk obrotów w 1999r w porównanu z 1998r. Zad 7 Dsponujem nformacjam o welkoścach sprzedaż badanej frm w 1998 w 1999 roku. Wartość obrotów w ts.zt Zmana lośc sprzedaż w 1996 w stosunku do 1995r. A Spadek o 20 % B Bez zman C Wzrost o10% Dokonać agregatowo; analz dnamk produkcj artkułów A,B,C w celu łącznej ocen dnamk obrotów w 1999r w porównanu z 1998r. Zad 8 Wartość produkcj artkułów A,B,C w latach w mn zł dnamkę lośc przedstawa ponższa tabela ; Wartość produkcj w mn zł 1995r 1996r Dnamka cen A 10 spadek o 20% Spadek o 10% B 20 wzrost o 30% Wzrosło 20% C 50 wzrost o 25% bez zman Dokonać agregatowej analz dnamk produkcj artkułów A,B,C w celu łącznej ocen dnamk obrotów w 1996rw porównanu z 1995r. Zad 9 Dnamka lośc produkcj na pozome cen pewnch artkułów z okresu badanego wnosła 1,10. Dnamka cen na pozome lośc produkcj z okresu odnesena wnosła 1,3. Średn ndeks cen wnosł 1,2. Jaka bła dnamka wartośc, cen lośc badanej produkcj? Zad 10 Wartość produkcj artkułów A,B,C w latach w mln zł dnamkę cen badanch artkułów przedstawa ponższa tabela : Wartość produkcj w mln zł Dnamka cen A B C 1998r r spadek o 10% wzrost o 20% spadek o 15% wzrost o 30% spadek o 25% bez zman Dokonać agregatowej analz dnamk produkcj artkułów A,B,C w celu łącznej ocen dnamk obrotów w 1999r w porównanu z 1998r. dr nż. Aleksandra Czuprna-Nowak 2

3 Zad 11 Dsponujem nformacjam o welkoścach sprzedaż badanej frm w 1998 w 1999 roku. Wartość obrotów w ts. zł Zmana lośc sprzedaż w 1996 w 1998r 1999r. stosunku do 1995r. A Spadek o 20 % B Bez zman C Wzrost o 10% Dokonać agregatowej analz dnamk produkcj artkułów A,B,C w celu łącznej ocen dnamk obrotów w 1999r w porównanu z 1998r. Zad 12 Welkośc produkcj trzech wrobów (w tś. sztuk) oraz cen jednostkowe (w zł) w okrese bazowm badanm przedstawał sę następująco: Wrob A B C Produkcja w okrese bazowm Produkcja w okrese badanm Cen w okrese bazowm Cen w okrese badanm Oblcz znterpretuj agregatowe ndeks lośc, cen wartośc. Zad 13 Producent zanotował następującą sprzedaż produktu A na przestrzen lat : rok sprzedaż rok sprzedaż a) Oblczć znterpretować przrost absolutne jedno- łańcuchowe. b) Oblczć znterpretować przrost względne jedno- łańcuchowe. c) Oblczć znterpretować ndeks jedno- łańcuchowe. d) Oblczć znterpretować średne tempo przrostu absolutnego średne tempo procentowego wzrostu sprzedaż. Zad 14 Sprzedaż grzejnków elektrcznch pewnego producenta kształtowała sę jak nżej: rok kwartał I II III IV I II III IV I II III IV Sprzedaż grzejnków (ts.szt.) 15,2 13,5 12,8 14,9 17, , ,2 17,9 a) Oblczć znterpretować przrost absolutne jedno- łańcuchowe. b) Oblczć znterpretować przrost względne jedno- łańcuchowe. c) Oblczć znterpretować ndeks jedno- łańcuchowe. d) Oszacować parametr trendu odpowedne wskaźnk wahań sezonowch e) Na podstawe podpunktu e proszę postawć prognozę sprzedaż na cał 2006 r. dr nż. Aleksandra Czuprna-Nowak 3

4 Zad 15 Cen podręcznka z ekonom w latach kształtował sę następująco: Lata Cen w zł a) Zbadać dnamkę cen podręcznka z ekonom w latach , przjmując za podstawę porównań rok b) Wznacz dnamkę cen za pomocą ndeksów łańcuchowch. c) Jake bło średne tempo wzrostu cen w latach (w tm celu zastosuj dwa sposob wznaczana średnego tempa zman)? Zad 16 Wskaźnk dnamk cen żwnośc w latach przedstawa ponższa tablca. Lata Indeks cen (rok poprzedn = 100,0) , , , , , ,6 a) Wznacz ndwdualne ndeks jednopodstawowe o podstawe z roku b) O le procent wzrosł cen żwnośc w 1996r. w porównanu z 1994r. c) Jake bło średne tempo wzrostu cen żwnośc w latach Zad 17 Uzupełnj, o le możlwe, następującą tabelę: gdze Lata Produkcja artkułu A w szt. ( n ) t / 82 t / t , ,02 - produkcja artkułu A w roku t, t t t =, / t / t 1 = t t 1. dr nż. Aleksandra Czuprna-Nowak 4

5 Zad 17 Obrot przedsęborstwa handlowego w roku lustrują następujące dane: Wartość sprzedaż w cenach Wartość sprzedaż w cenach z Jedn. beżącch 1998r. mar A tś. szt B tś. t C tś. m Przeprowadź wszechstronną analzę dnamk wartośc sprzedaż, lośc cen sprzedawanch artkułów przez przedsęborstwo handlowe w latach Lteratura: 1. Ostasewcz S., Rusnak Z., Sedlecka U., Statstka. Element teor zadana, Wdawnctwo Akadem Ekonomcznej m. Oskara Langego, Wrocław Sobczk M., Statstka. Podstaw teoretczne, przkład, zadana, Wdawnctwo Unwerstetu Mar Cure-Skłodowskej, Lubln Balcerowcz-Szkutnk M., Szkutnk W., Podstaw statstk w przkładach zadanach. Część I statstka opsowa, ŚWSZ, Katowce dr nż. Aleksandra Czuprna-Nowak 5

SZEREG CZASOWY Y zjawisko badane w różnych okresach lub momentach czasu. Dynamika zjawiska to zmiana zjawiska w czasie. Przykład. Y średni kurs akcji

SZEREG CZASOWY Y zjawisko badane w różnych okresach lub momentach czasu. Dynamika zjawiska to zmiana zjawiska w czasie. Przykład. Y średni kurs akcji SZEREG CZASOWY Y zjawisko badane w różnch okresach lub momentach czasu. Dnamika zjawiska to zmiana zjawiska w czasie. Przkład. Y średni kurs akcji firm OPTMUS na giełdzie Okres: notowania od 1.03.2010

Bardziej szczegółowo

WPŁYW AKCESJI POLSKI DO UNII EUROPEJSKIEJ NA ROZWÓJ ROLNICTWA EKOLOGICZNEGO. Lidia Luty

WPŁYW AKCESJI POLSKI DO UNII EUROPEJSKIEJ NA ROZWÓJ ROLNICTWA EKOLOGICZNEGO. Lidia Luty 74 LIDIA LUTY ROCZNIKI NAUKOWE EKONOMII ROLNICTWA I ROZWOJU OBSZARÓW WIEJSKICH, T. 11, z. 1, 214 WPŁYW AKCESJI POLSKI DO UNII EUROPEJSKIEJ NA ROZWÓJ ROLNICTWA EKOLOGICZNEGO Lda Lut Katedra Statstk Matematcznej

Bardziej szczegółowo

PODSTAWOWE MIERNIKI DYNAMIKI ZJAWISK

PODSTAWOWE MIERNIKI DYNAMIKI ZJAWISK PODSTAWOWE MIERNIKI DYNAMIKI ZJAWISK Założena Nech oznacza ozom (warość) badanego zjawska (zmennej) w kolejnch momenach czasu T0, gdze T 0 0,1,..., n 1 oznacza worz szereg czasow. zbór numerów czasu. Cąg

Bardziej szczegółowo

Zadane 1: Wyznacz średne ruchome 3-okresowe z następujących danych obrazujących zużyce energ elektrycznej [kwh] w pewnym zakładze w mesącach styczeń - lpec 1998 r.: 400; 410; 430; 40; 400; 380; 370. Zadane

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 1 Statystyka opisowa ZADANIE DOMOWE. www.etrapez.pl Strona 1

KURS STATYSTYKA. Lekcja 1 Statystyka opisowa ZADANIE DOMOWE. www.etrapez.pl Strona 1 KURS STATYSTYKA Lekcja 1 Statystyka opsowa ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowedź (tylko jedna jest prawdzwa). Pytane 1 W statystyce opsowej mamy pełne nformacje

Bardziej szczegółowo

formularzy opisowych, ankiet lub innych dokumentów stanowi nieuporządkowany statystyczny, stanowi on podstawę dalszych

formularzy opisowych, ankiet lub innych dokumentów stanowi nieuporządkowany statystyczny, stanowi on podstawę dalszych Zebran materał statstczn w forme sprawozdań, formularz opsowch, anket lub nnch dokumentów stanow neuporządkowan surow materał statstczn, neprzdatn jeszcze do bezpośrednej analz, porównań wnosków. Materał

Bardziej szczegółowo

CZĘŚĆ 6. MODEL REGRESJI, TREND LINIOWY ESTYMACJA, WNIOSKOWANIE

CZĘŚĆ 6. MODEL REGRESJI, TREND LINIOWY ESTYMACJA, WNIOSKOWANIE CZĘŚĆ 6. MODEL REGRESJI, TREND LINIOWY ESTYMACJA, WNIOSKOWANIE Zadane 1. Na podstawe obserwacj dotczącch welkośc powerzchn ekspozcjnej (cecha X w m kw.) oraz welkośc dzennego obrotu punktu sprzedaż płtek

Bardziej szczegółowo

Analiza korelacji i regresji

Analiza korelacji i regresji Analza korelacj regresj Zad. Pewen zakład produkcyjny zatrudna pracownków fzycznych. Ich wydajność pracy (Y w szt./h) oraz mesęczne wynagrodzene (X w tys. zł) przedstawa ponższa tabela: Pracownk y x A

Bardziej szczegółowo

Współczynnik korelacji liniowej oraz funkcja regresji liniowej dwóch zmiennych

Współczynnik korelacji liniowej oraz funkcja regresji liniowej dwóch zmiennych Współcznnk korelacj lnowej oraz funkcja regresj lnowej dwóch zmennch S S r, cov współcznnk determnacj R r Współcznnk ndetermnacj ϕ r Zarówno współcznnk determnacj jak ndetermnacj po przemnożenu przez 00

Bardziej szczegółowo

Analiza szeregów czasowych

Analiza szeregów czasowych Statystyka Wykład 5. Analiza szeregów czasowych michal.trzesiok@ue.katowice.pl Uniwersytet Ekonomiczny w Katowicach Katedra Analiz Gospodarczych i Finansowych 9 listopada 2015 r. Plan Szeregi czasowe wprowadzenie

Bardziej szczegółowo

ANALIZA DYNAMIKI ZJAWISK SZEREG CZASOWY

ANALIZA DYNAMIKI ZJAWISK SZEREG CZASOWY D. Miszczńska, M.Miszczński, Maeriał do wkładu 5 ze Saski, 29/ [] ANALZA DYNAMK ZJAWSK. szereg czasow, chronologiczn (momenów, okresów) 2. średni oziom zjawiska w czasie (średnia armeczna, średnia chronologiczna)

Bardziej szczegółowo

Teoretyczne podstawy analizy indeksowej klasyfikacja indeksów, konstrukcja, zastosowanie

Teoretyczne podstawy analizy indeksowej klasyfikacja indeksów, konstrukcja, zastosowanie Teoretyczne podstawy analizy indeksowej klasyfikacja indeksów, konstrukcja, zastosowanie Szkolenie dla pracowników Urzędu Statystycznego nt. Wybrane metody statystyczne w analizach makroekonomicznych dr

Bardziej szczegółowo

STATYSTYKA EKONOMICZNA w LOGISTYCE

STATYSTYKA EKONOMICZNA w LOGISTYCE STATYSTYKA EKONOMICZNA w LOGISTYCE Metod statstczne w analze procesów zaopatrzena dr Zbgnew Karwack Katedra Badań Operacjnch UŁ Podstawowe funkcje procesów zaopatrzena Proces zaopatrzena ( zakupów ) stanową

Bardziej szczegółowo

Wyznacz łączne zmiany wartości, ilości i cen sprzedaży w październiku i listopadzie oraz zinterpretuj otrzymane wyniki.

Wyznacz łączne zmiany wartości, ilości i cen sprzedaży w październiku i listopadzie oraz zinterpretuj otrzymane wyniki. ZAD.1. Dane dotyczące zależności pomiędzy wielkością plonów w q/ha (y), a zużyciem określonego nawozu w kg/ha dla 7 niezależnych upraw przedstawia tabela: y X 17 11 19 15 19 20 20 25 20 24 22 39 23 41

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka W 11: Analizy zależnościpomiędzy zmiennymi losowymi Model regresji wielokrotnej

Rachunek prawdopodobieństwa i statystyka W 11: Analizy zależnościpomiędzy zmiennymi losowymi Model regresji wielokrotnej Rachunek prawdopodobeństwa statstka W 11: Analz zależnoścpomędz zmennm losowm Model regresj welokrotnej Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.pl Model regresj lnowej Model regresj lnowej prostej

Bardziej szczegółowo

Egzamin ze statystyki/ Studia Licencjackie Stacjonarne/ Termin I /czerwiec 2010

Egzamin ze statystyki/ Studia Licencjackie Stacjonarne/ Termin I /czerwiec 2010 Egzamn ze statystyk/ Studa Lcencjacke Stacjonarne/ Termn /czerwec 2010 Uwaga: Przy rozwązywanu zadań, jeśl to koneczne, naleŝy przyjąć pozom stotnośc 0,01 współczynnk ufnośc 0,99 Zadane 1 PonŜsze zestawene

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1 KURS STATYSTYKA Lekcja 6 Regresja lne regresj ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowedź (tylko jedna jest prawdzwa). Pytane 1 Funkcja regresj I rodzaju cechy Y zależnej

Bardziej szczegółowo

Kształtowanie się firm informatycznych jako nowych elementów struktury przestrzennej przemysłu

Kształtowanie się firm informatycznych jako nowych elementów struktury przestrzennej przemysłu PRACE KOMISJI GEOGRAFII PRZEMY SŁU Nr 7 WARSZAWA KRAKÓW 2004 Akadema Pedagogczna, Kraków Kształtowane sę frm nformatycznych jako nowych elementów struktury przestrzennej przemysłu Postępujący proces rozwoju

Bardziej szczegółowo

EKONOMETRIA I Spotkanie 1, dn. 05.10.2010

EKONOMETRIA I Spotkanie 1, dn. 05.10.2010 EKONOMETRIA I Spotkane, dn. 5..2 Dr Katarzyna Beń Program ramowy: http://www.sgh.waw.pl/nstytuty/e/oferta_dydaktyczna/ekonometra_stacjonarne_nest acjonarne/ Zadana, dane do zadań, ważne nformacje: http://www.e-sgh.pl/ben/ekonometra

Bardziej szczegółowo

Zajęcia 1. Statystyki opisowe

Zajęcia 1. Statystyki opisowe Zajęcia 1. Statystyki opisowe 1. Znajdź dane dotyczące liczby mieszkańców w polskich województwach. Dla tych danych oblicz: a) Średnią, b) Medianę, c) Dominantę, d) Wariancję, e) Odchylenie standardowe,

Bardziej szczegółowo

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ANALIZA SZEREGÓW CZASOWYCH I INDEKSY STATYSTYCZNE

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ANALIZA SZEREGÓW CZASOWYCH I INDEKSY STATYSTYCZNE WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ANALIZA SZEREGÓW CZASOWYCH I INDEKSY STATYSTYCZNE INDEKSY STATYSTYCZNE Absolutny przyrost t = y t y t 1 Względny przyrost δ t = t y t Indeks indywidualny jednopodstawowy

Bardziej szczegółowo

Analiza dynamiki. Sesja Cena akcji 1 42,9 2 41, ,5 5 41, , ,5

Analiza dynamiki. Sesja Cena akcji 1 42,9 2 41, ,5 5 41, , ,5 Analiza dynamiki Zadanie 1 Dynamikę produkcji samochodów osobowych przez pewną fabrykę w latach 2007-2013 opisuje następujący ciąg indeksów łańcuchowych: 1,1; 1,2; 1,3; 1,4; 0,8; 0,9. a) Jak zmieniała

Bardziej szczegółowo

Na poprzednim wykładzie omówiliśmy podstawowe zagadnienia. związane z badaniem dynami zjawisk. Dzisiaj dokładniej zagłębimy

Na poprzednim wykładzie omówiliśmy podstawowe zagadnienia. związane z badaniem dynami zjawisk. Dzisiaj dokładniej zagłębimy Analiza dynami zjawisk Na poprzednim wykładzie omówiliśmy podstawowe zagadnienia związane z badaniem dynami zjawisk. Dzisiaj dokładniej zagłębimy się w tej tematyce. Indywidualne indeksy dynamiki Indywidualne

Bardziej szczegółowo

Ocena jakościowo-cenowych strategii konkurowania w polskim handlu produktami rolno-spożywczymi. dr Iwona Szczepaniak

Ocena jakościowo-cenowych strategii konkurowania w polskim handlu produktami rolno-spożywczymi. dr Iwona Szczepaniak Ocena jakoścowo-cenowych strateg konkurowana w polskm handlu produktam rolno-spożywczym dr Iwona Szczepanak Ekonomczne, społeczne nstytucjonalne czynnk wzrostu w sektorze rolno-spożywczym w Europe Cechocnek,

Bardziej szczegółowo

Model ASAD. ceny i płace mogą ulegać zmianom (w odróżnieniu od poprzednio omawianych modeli)

Model ASAD. ceny i płace mogą ulegać zmianom (w odróżnieniu od poprzednio omawianych modeli) Model odstawowe założena modelu: ceny płace mogą ulegać zmanom (w odróżnenu od poprzedno omawanych model) punktem odnesena analzy jest obserwacja pozomu produkcj cen (a ne stopy procentowej jak w modelu

Bardziej szczegółowo

Rachunki narodowe ćwiczenia, 2015

Rachunki narodowe ćwiczenia, 2015 Obliczanie (zmian) wolumenów (na przykładzie PKB). Przykład opracowany na podstawie Understanding, ćwiczenie 3, str. 40. PKB, podobnie jak wiele innych wielkości makroekonomicznych, może być przedstawiany

Bardziej szczegółowo

Dr inż. Robert Smusz Politechnika Rzeszowska im. I. Łukasiewicza Wydział Budowy Maszyn i Lotnictwa Katedra Termodynamiki

Dr inż. Robert Smusz Politechnika Rzeszowska im. I. Łukasiewicza Wydział Budowy Maszyn i Lotnictwa Katedra Termodynamiki Dr nż. Robert Smusz Poltechnka Rzeszowska m. I. Łukasewcza Wydzał Budowy Maszyn Lotnctwa Katedra Termodynamk Projekt jest współfnansowany w ramach programu polskej pomocy zagrancznej Mnsterstwa Spraw Zagrancznych

Bardziej szczegółowo

Statystyka opisowa Opracował: dr hab. Eugeniusz Gatnar, prof. WSBiF

Statystyka opisowa Opracował: dr hab. Eugeniusz Gatnar, prof. WSBiF Statystyka opisowa Opracował: dr hab. Eugeniusz Gatnar, prof. WSBiF 120 I. Ogólne informacje o przedmiocie Cel przedmiotu: Opanowanie podstaw teoretycznych, poznanie przykładów zastosowań metod statystycznych.

Bardziej szczegółowo

ZESTAW ZADAŃ Z INFORMATYKI

ZESTAW ZADAŃ Z INFORMATYKI (Wpsue zdaąc przed rozpoczęcem prac) KOD ZDAJĄCEGO ZESTAW ZADAŃ Z INFORMATYKI CZĘŚĆ II (dla pozomu rozszerzonego) GRUDZIEŃ ROK 004 Czas prac 50 mnut Instrukca dla zdaącego. Proszę sprawdzć, cz zestaw zadań

Bardziej szczegółowo

ANALIZA KORELACJI WYDATKÓW NA KULTURĘ Z BUDŻETU GMIN ORAZ WYKSZTAŁCENIA RADNYCH

ANALIZA KORELACJI WYDATKÓW NA KULTURĘ Z BUDŻETU GMIN ORAZ WYKSZTAŁCENIA RADNYCH Potr Mchalsk Węzeł Centralny OŻK-SB 25.12.2013 rok ANALIZA KORELACJI WYDATKÓW NA KULTURĘ Z BUDŻETU GMIN ORAZ WYKSZTAŁCENIA RADNYCH Celem ponższej analzy jest odpowedź na pytane: czy wykształcene radnych

Bardziej szczegółowo

ANALIZA PORÓWNAWCZA WYNIKÓW UZYSKANYCH ZA POMOCĄ MIAR SYNTETYCZNYCH: M ORAZ PRZY ZASTOSOWANIU METODY UNITARYZACJI ZEROWANEJ

ANALIZA PORÓWNAWCZA WYNIKÓW UZYSKANYCH ZA POMOCĄ MIAR SYNTETYCZNYCH: M ORAZ PRZY ZASTOSOWANIU METODY UNITARYZACJI ZEROWANEJ METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XVI/3, 2015, str. 248 257 ANALIZA PORÓWNAWCZA WYNIKÓW UZYSKANYCH ZA POMOCĄ MIAR SYNTETYCZNYCH: M ORAZ PRZY ZASTOSOWANIU METODY UNITARYZACJI ZEROWANEJ Sławomr

Bardziej szczegółowo

Natalia Nehrebecka. Zajęcia 3

Natalia Nehrebecka. Zajęcia 3 St ł Cchock Stansław C h k Natala Nehrebecka Zajęca 3 1. Dobroć dopasowana równana regresj. Współczynnk determnacj R Dk Dekompozycja warancj zmennej zależnej ż Współczynnk determnacj R. Zmenne cągłe a

Bardziej szczegółowo

L.Kowalski zadania ze statystyki opisowej-zestaw 5. ZADANIA Zestaw 5

L.Kowalski zadania ze statystyki opisowej-zestaw 5. ZADANIA Zestaw 5 L.Kowalsk zadaa ze statystyk opsowej-zestaw 5 Zadae 5. X cea (zł, Y popyt (tys. szt.. Mając dae ZADANIA Zestaw 5 x,5,5 3 3,5 4 4,5 5 y 44 43 43 37 36 34 35 35 Oblcz współczyk korelacj Pearsoa. Oblcz współczyk

Bardziej szczegółowo

OGŁOSZENIE TARYFA DLA ZBIOROWEGO ZAOPATRZENIA W WODĘ I ZBIOROWEGO ODPROWADZANIA ŚCIEKÓW. Taryfa obowiązuje od 01.01.2014 do 31.12.

OGŁOSZENIE TARYFA DLA ZBIOROWEGO ZAOPATRZENIA W WODĘ I ZBIOROWEGO ODPROWADZANIA ŚCIEKÓW. Taryfa obowiązuje od 01.01.2014 do 31.12. OGŁOSZENIE Zgodne z Uchwałą Nr XXXIII/421/2013 Rady Mejskej w Busku-Zdroju z dna 14 lstopada 2013 r. w sprawe zatwerdzena taryf za zborowe zaopatrzene w wodę zborowe odprowadzane śceków dla Mejskego Przedsęborstwa

Bardziej szczegółowo

STATYSTYKA I stopień ZESTAW ZADAŃ

STATYSTYKA I stopień ZESTAW ZADAŃ Stattka ZADAIA STATYSTYKA I topeń ZESTAW ZADAŃ dr Adam Sojda. Aalza truktur jedowmarowego rozkładu emprczego..... Badae wpółzależośc w dwuwmarowm rozkładze emprczm. 8 3. Aalza zeregów czaowch.... 4. Aalza

Bardziej szczegółowo

WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY METODĄ STOKESA

WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY METODĄ STOKESA WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY METODĄ STOKESA. Ops teoretyczny do ćwczena zameszczony jest na strone www.wtc.wat.edu.pl w dzale DYDAKTYKA FIZYKA ĆWICZENIA LABORATORYJNE.. Ops układu pomarowego

Bardziej szczegółowo

Uchwała nr L/1044/05 Rady Miasta Katowice. z dnia 21 listopada 2005r.

Uchwała nr L/1044/05 Rady Miasta Katowice. z dnia 21 listopada 2005r. Uchwała nr L/1044/05 Rady Masta Katowce z dna 21 lstopada 2005r. w sprawe określena wysokośc stawek podatku od środków transportowych na rok 2006 obowązujących na terene masta Katowce Na podstawe art.18

Bardziej szczegółowo

dy dx stąd w przybliżeniu: y

dy dx stąd w przybliżeniu: y Przykłady do funkcj nelnowych funkcj Törnqusta Proszę sprawdzć uzasadnć, które z podanych zdań są prawdzwe, a które fałszywe: Przykład 1. Mesęczne wydatk na warzywa (y, w jednostkach penężnych, jp) w zależnośc

Bardziej szczegółowo

Analiza współzależności zjawisk

Analiza współzależności zjawisk Analiza współzależności zjawisk Informacje ogólne Jednostki tworzące zbiorowość statystyczną charakteryzowane są zazwyczaj za pomocą wielu cech zmiennych, które nierzadko pozostają ze sobą w pewnym związku.

Bardziej szczegółowo

Zarządzenie Nr 3831/2013 Prezydenta Miasta Płocka z dnia 25 listopada 2013

Zarządzenie Nr 3831/2013 Prezydenta Miasta Płocka z dnia 25 listopada 2013 Zarządzene Nr 3831/2013 Prezydenta Masta Płocka z dna 25 lstopada 2013 w sprawe ustalena szczegółowych zasad kryterów oblczana wynków egzamnów zewnętrznych poszczególnych szkół oraz średnej tych wynków

Bardziej szczegółowo

Motto. Czy to nie zabawne, że ci sami ludzie, którzy śmieją się z science fiction, słuchają prognoz pogody oraz ekonomistów? (K.

Motto. Czy to nie zabawne, że ci sami ludzie, którzy śmieją się z science fiction, słuchają prognoz pogody oraz ekonomistów? (K. Motto Cz to nie zabawne, że ci sami ludzie, którz śmieją się z science fiction, słuchają prognoz pogod oraz ekonomistów? (K. Throop III) 1 Specfika szeregów czasowch Modele szeregów czasowch są alternatwą

Bardziej szczegółowo

Oligopol dynamiczny. Rozpatrzmy model sekwencyjnej konkurencji ilościowej jako gra jednokrotna z pełną i doskonalej informacją

Oligopol dynamiczny. Rozpatrzmy model sekwencyjnej konkurencji ilościowej jako gra jednokrotna z pełną i doskonalej informacją Olgopol dynamczny Rozpatrzmy model sekwencyjnej konkurencj loścowej jako gra jednokrotna z pełną doskonalej nformacją (1934) Dwa okresy: t=0, 1 tzn. frma 2 podejmując decyzję zna decyzję frmy 1 Q=q 1 +q

Bardziej szczegółowo

Modele wieloczynnikowe. Modele wieloczynnikowe. Modele wieloczynnikowe ogólne. α β β β ε. Analiza i Zarządzanie Portfelem cz. 4.

Modele wieloczynnikowe. Modele wieloczynnikowe. Modele wieloczynnikowe ogólne. α β β β ε. Analiza i Zarządzanie Portfelem cz. 4. Modele weloczynnkowe Analza Zarządzane Portfelem cz. 4 Ogólne model weloczynnkowy można zapsać jako: (,...,,..., ) P f F F F = n Dr Katarzyna Kuzak lub (,...,,..., ) f F F F = n Modele weloczynnkowe Można

Bardziej szczegółowo

Analiza rodzajów skutków i krytyczności uszkodzeń FMECA/FMEA według MIL STD - 1629A

Analiza rodzajów skutków i krytyczności uszkodzeń FMECA/FMEA według MIL STD - 1629A Analza rodzajów skutków krytycznośc uszkodzeń FMECA/FMEA według MIL STD - 629A Celem analzy krytycznośc jest szeregowane potencjalnych rodzajów uszkodzeń zdentyfkowanych zgodne z zasadam FMEA na podstawe

Bardziej szczegółowo

Planowanie eksperymentu pomiarowego I

Planowanie eksperymentu pomiarowego I POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA ENERGETYKI INSTYTUT MASZYN URZĄDZEŃ ENERGETYCZNYCH Plaowae eksperymetu pomarowego I Laboratorum merctwa (M 0) Opracował: dr ż. Grzegorz Wcak

Bardziej szczegółowo

System finansowy gospodarki

System finansowy gospodarki System fasowy gospodark Zajęca r 6 Matematyka fasowa c.d. Rachuek retowy (autetowy) Maem rachuku retowego określa sę regulare płatośc w stałych odstępach czasu przy założeu stałej stopy procetowej. Przykłady

Bardziej szczegółowo

STARE A NOWE KRAJE UE KONKURENCYJNOŚĆ POLSKIEGO EKSPORTU

STARE A NOWE KRAJE UE KONKURENCYJNOŚĆ POLSKIEGO EKSPORTU Ewa Szymank Katedra Teor Ekonom Akadema Ekonomczna w Krakowe ul. Rakowcka 27, 31-510 Kraków STARE A NOWE KRAJE UE KONKURENCYJNOŚĆ POLSKIEGO EKSPORTU Abstrakt Artykuł przedstawa wynk badań konkurencyjnośc

Bardziej szczegółowo

Zadanie 2. Dany jest szereg rozdzielczy przedziałowy, wyznaczyć następujące miary: 0 5 5 wariancja, odchylenie standardowe

Zadanie 2. Dany jest szereg rozdzielczy przedziałowy, wyznaczyć następujące miary: 0 5 5 wariancja, odchylenie standardowe Zadane 1. Dany jet zereg przedzałowy, wyznaczyć natępujące mary: x n średna arytmetyczna 1 10 warancja, odchylene tandardowe 15 domnanta 3 0 medana 4 35 kurtoza 5 0 6 15 Zadane. Dany jet zereg rozdzelczy

Bardziej szczegółowo

Ćwiczenia 13 WAHANIA SEZONOWE

Ćwiczenia 13 WAHANIA SEZONOWE Ćwiczenia 3 WAHANIA SEZONOWE Wyrównanie szeregu czasowego (wyodrębnienie czystego trendu) mechanicznie Zadanie. Badano spożycie owoców i przetworów (yt) (w kg) w latach według kwartałów: kwartał lata 009

Bardziej szczegółowo

Analiza Zmian w czasie

Analiza Zmian w czasie Statystyka Opisowa z Demografią oraz Biostatystyka Analiza Zmian w czasie Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-300 Elblag oraz Biostatystyka

Bardziej szczegółowo

Analiza ryzyka jako instrument zarządzania środowiskiem

Analiza ryzyka jako instrument zarządzania środowiskiem WARSZTATY 2003 z cyklu Zagrożena naturalne w górnctwe Mat. Symp. str. 461 466 Elżbeta PILECKA, Małgorzata SZCZEPAŃSKA Instytut Gospodark Surowcam Mneralnym Energą PAN, Kraków Analza ryzyka jako nstrument

Bardziej szczegółowo

Analiza wyniku finansowego - analiza wstępna

Analiza wyniku finansowego - analiza wstępna Aalza wyku fasowego - aalza wstępa dr Potr Ls Welkość wyku fasowego determuje: etowość przedsęborstwa Welkość podatku dochodowego Welkość kaptałów własych Welkość dywded 1 Aalza wyku fasowego ma szczególe

Bardziej szczegółowo

KONSTRUKCJA OPTYMALNYCH PORTFELI Z ZASTOSOWANIEM METOD ANALIZY FUNDAMENTALNEJ UJĘCIE DYNAMICZNE

KONSTRUKCJA OPTYMALNYCH PORTFELI Z ZASTOSOWANIEM METOD ANALIZY FUNDAMENTALNEJ UJĘCIE DYNAMICZNE Adranna Mastalerz-Kodzs Unwersytet Ekonomczny w Katowcach KONSTRUKCJA OPTYMALNYCH PORTFELI Z ZASTOSOWANIEM METOD ANALIZY FUNDAMENTALNEJ UJĘCIE DYNAMICZNE Wprowadzene W dzałalnośc nstytucj fnansowych, takch

Bardziej szczegółowo

Propozycja modyfikacji klasycznego podejścia do analizy gospodarności

Propozycja modyfikacji klasycznego podejścia do analizy gospodarności Jacek Batóg Unwersytet Szczecńsk Propozycja modyfkacj klasycznego podejśca do analzy gospodarnośc Przedsęborstwa dysponujące dentycznym zasobam czynnków produkcj oraz dzałające w dentycznych warunkach

Bardziej szczegółowo

G Sprawozdanie o działalności ciepłowni, dystrybutorów i przedsiębiorstw obrotu ciepłem za kwartał r. Jedn.

G Sprawozdanie o działalności ciepłowni, dystrybutorów i przedsiębiorstw obrotu ciepłem za kwartał r. Jedn. MINISTERSTWO GOSPODARKI Nazwa adres jednostk sprawozdawczej Numer dentyfkacyjny - REGON pl. Trzech Krzyży 5, 00-507 Warswa G - 10.9 Sprawozdane o dłalnośc cepłown, dystrybutorów przedsęborstw obrotu cepłem

Bardziej szczegółowo

STATYSTYKA. Na egzamin należy przynieść:

STATYSTYKA. Na egzamin należy przynieść: [1] STATYSTYKA Na egzamin należy przynieść: 1. kalkulator 2. wzory na kartce (bez komentarzy!!!) UWAGA!!! wzory muszą być napisane odręcznie (kserokopie będą zabierane) Na kolejnych stronach zamieszczono

Bardziej szczegółowo

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 5(96)/2013

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 5(96)/2013 ZESZYTY NAUKOWE NSTYTUTU POJAZDÓW 5(96)/2013 Hubert Sar, Potr Fundowcz 1 WYZNACZANE MASOWEGO MOMENTU BEZWŁADNOŚC WZGLĘDEM OS PODŁUŻNEJ DLA SAMOCHODU TYPU VAN NA PODSTAWE WZORÓW DOŚWADCZALNYCH 1. Wstęp

Bardziej szczegółowo

Analiza porównawcza rozwoju wybranych banków komercyjnych w latach 2001 2009

Analiza porównawcza rozwoju wybranych banków komercyjnych w latach 2001 2009 Mara Konopka Katedra Ekonomk Organzacj Przedsęborstw Szkoła Główna Gospodarstwa Wejskego w Warszawe Analza porównawcza rozwoju wybranych banków komercyjnych w latach 2001 2009 Wstęp Polska prywatyzacja

Bardziej szczegółowo

1. SPRAWDZENIE WYSTEPOWANIA RYZYKA KONDENSACJI POWIERZCHNIOWEJ ORAZ KONDENSACJI MIĘDZYWARSTWOWEJ W ŚCIANIE ZEWNĘTRZNEJ

1. SPRAWDZENIE WYSTEPOWANIA RYZYKA KONDENSACJI POWIERZCHNIOWEJ ORAZ KONDENSACJI MIĘDZYWARSTWOWEJ W ŚCIANIE ZEWNĘTRZNEJ Ćwczene nr 1 cz.3 Dyfuzja pary wodnej zachodz w kerunku od środowska o wyższej temperaturze do środowska chłodnejszego. Para wodna dyfundująca przez przegrody budowlane w okrese zmowym napotyka na coraz

Bardziej szczegółowo

Ekonometria ćwiczenia Kolokwium 1 semestr 20/12/08. / 5 pkt. / 5 pkt. / 5 pkt. / 5 pkt. /20 pkt. Regulamin i informacje dodatkowe

Ekonometria ćwiczenia Kolokwium 1 semestr 20/12/08. / 5 pkt. / 5 pkt. / 5 pkt. / 5 pkt. /20 pkt. Regulamin i informacje dodatkowe Ekonometra IE Kolokwum 0/1/08 mę, nazwsko, nr ndeksu: Ekonometra ćwczena Kolokwum 1 semestr 0/1/08 Zadane 1 Zadane Zadane 3 Zadane 4 Razem / 5 pkt / 5 pkt / 5 pkt / 5 pkt /0 pkt Skala ocen: do 8,00 punktów

Bardziej szczegółowo

Kształtowanie się firm informatycznych jako nowych elementów struktury przestrzennej przemysłu

Kształtowanie się firm informatycznych jako nowych elementów struktury przestrzennej przemysłu PRACE KOMISJI GEOGRAFII PRZEMYSŁU Nr 7 WARSZAWA KRAKÓW 2004 Akadema Pedagogczna, Kraków Kształtowane sę frm nformatycznych jako nowych elementów struktury przestrzennej przemysłu Postępujący proces rozwoju

Bardziej szczegółowo

czerwiec 2013 Uwaga: Przy rozwiązywaniu zadań, jeśli to konieczne, należy przyjąć poziom istotności 0,1 i współczynnik ufności 0,90

czerwiec 2013 Uwaga: Przy rozwiązywaniu zadań, jeśli to konieczne, należy przyjąć poziom istotności 0,1 i współczynnik ufności 0,90 Uwaga: Przy rozwiązywaniu zadań, jeśli to konieczne, należy przyjąć poziom istotności 0,1 i współczynnik ufności 0,90 czerwiec 2013 Zadanie 1 Poniższe tabele przestawiają dane dotyczące umieralności dzieci

Bardziej szczegółowo

Statystyka Opisowa 2014 część 2. Katarzyna Lubnauer

Statystyka Opisowa 2014 część 2. Katarzyna Lubnauer Statystyka Opsowa 2014 część 2 Katarzyna Lubnauer Lteratura: 1. Statystyka w Zarządzanu Admr D. Aczel 2. Statystyka Opsowa od Podstaw Ewa Waslewska 3. Statystyka, Lucjan Kowalsk. 4. Statystyka opsowa,

Bardziej szczegółowo

Służą opisowi oraz przewidywaniu przyszłego kształtowania się zależności gospodarczych.

Służą opisowi oraz przewidywaniu przyszłego kształtowania się zależności gospodarczych. MODEL EOOMERYCZY MODEL EOOMERYCZY DEFIICJA Modl konomtrczn jst równanm matmatcznm (lub układm równao), któr przdstawa zasadncz powązana loścow pomędz rozpatrwanm zjawskam konomcznm., uwzględnającm tlko

Bardziej szczegółowo

Uchwała Nr XXVI 11/176/2012 Rada Gminy Jeleśnia z dnia 11 grudnia 2012

Uchwała Nr XXVI 11/176/2012 Rada Gminy Jeleśnia z dnia 11 grudnia 2012 RADA GMNY JELEŚNA Uchwała Nr XXV 11/176/2012 Rada Gmny Jeleśna z dna 11 grudna 2012 w sprawe zatwerdzena taryfy na odprowadzane śceków dostarczane wody przedstawonej przez Zakład Gospodark Komunalnej w

Bardziej szczegółowo

Zjawiska masowe takie, które mogą wystąpid nieograniczoną ilośd razy. Wyrazów Obcych)

Zjawiska masowe takie, które mogą wystąpid nieograniczoną ilośd razy. Wyrazów Obcych) Statystyka - nauka zajmująca sę metodam badana przedmotów zjawsk w ch masowych przejawach ch loścową lub jakoścową analzą z punktu wdzena nauk, do której zakresu należą.

Bardziej szczegółowo

Imię, nazwisko i tytuł/stopień KOORDYNATORA (-ÓW) kursu/przedmiotu zatwierdzającego protokoły w systemie USOS Jacek Marcinkiewicz, mgr

Imię, nazwisko i tytuł/stopień KOORDYNATORA (-ÓW) kursu/przedmiotu zatwierdzającego protokoły w systemie USOS Jacek Marcinkiewicz, mgr SYLLABUS na rok akademicki 010/011 Tryb studiów Studia stacjonarne Kierunek studiów Ekonomia Poziom studiów Pierwszego stopnia Rok studiów/ semestr /4 Specjalność Bez specjalności Kod katedry/zakładu w

Bardziej szczegółowo

Weryfikacja hipotez parametrycznych. Test Value = % Confidence Interval of the

Weryfikacja hipotez parametrycznych. Test Value = % Confidence Interval of the Weryfkacja hpotez parametrycznych Zadane 1 Wadomo, ze meseczne wydatk na srodk czystosc w gospodarstwach domowych sa zmenna losowa o rozkladze normalnym z odchylenem standardowym równym 4 zl. Wsród 10

Bardziej szczegółowo

Ż ż Ł ż ż ż Ż Ś ż ż ż Ł Ż Ż ć ż Ż Ż Ż Ń Ż Ź ż Ź Ź ż Ż ż ż Ż Ł Ż Ł Ż ż Ż ż Ż Ż Ń Ą Ż Ń Ż Ń ć ż Ż ź Ś ć Ł Ł Ź Ż Ż ż Ł ż Ż Ł Ż Ł ź ć ż Ż Ż ż ż Ó ż Ł Ż ć Ż Ż Ę Ż Ż Ż ż Ż ż ż Ś ż Ż ż ż ź Ż Ń ć Ż ż Ż Ż ż ż ż

Bardziej szczegółowo

Ś Ł Ą Ś Ś ź Ś ń ż ż Ó ż ż Ś Ł ż ń ń ń ż ń Ś ń ć ŚĘ Ó Ł Ę Ł Ś Ę Ę ń ń ń ń ń Ź ń ń ń ń ń ż ń ń ń ń ń Ę ż ż ć Ść ń ń ż Ń ż ż ń ń Ś Ą ń Ś ń ń ż Ó ż Ź ń ż ń Ś Ń Ó ż Ł ż Ą ź ź Ś Ł ć Ś ć ż ź ż ć ć Ę Ó Ś Ó ż ż

Bardziej szczegółowo

Ł Ł Ś ź ń ź ź ź Ś Ł Ę Ę Ś ż Ś ń Ą Ś Ą Ł ż ż ń ż ć ż ż ż ź ż ć ź Ę Ę ń ć ż Ł ń ż ż ż Ś ż Ś ż ż ż ż ż ż ż ń ń ż ż ż ć ż ń ż ń ź ż ć ż ż ć ń ż Ę Ę ć ń Ę ż ż ń ń ź Ę ź ż ń ż ń ź ż ż ż ń ż ż ż ż ż ż ż ż ń ń

Bardziej szczegółowo

Ł Ł Ś Ę ź ń ź ź Ś Ę Ę Ś Ą Ś Ę Ż Ł ń Ę Ś ć ć ń ć ń ń ń ź ń Ę ź ń ń ń ź ź Ś ź ź ć ń ń ń ń Ś ć Ś ń ń Ś ź ń Ę ń Ś ź ź ź ź ź Ę Ę Ę Ś ń Ś ć ń ń ń ń ń ń Ę ń ń ń ń ć ń ń ń ń ć ń Ś ć Ł ń ń ń ć ń ć ź ń ź ć ń ń ć

Bardziej szczegółowo

ZRÓŻNICOWANIE ROZWOJU EKONOMICZNEGO POWIATÓW POLSKI WSCHODNIEJ

ZRÓŻNICOWANIE ROZWOJU EKONOMICZNEGO POWIATÓW POLSKI WSCHODNIEJ Studa Materały. Mscellanea Oeconomcae Rok 19, Nr 4/2015, tom I Wydzał Zarządzana Admnstracj Unwersytetu Jana Kochanowskego w Kelcach Zntegrowane podejśce do spójnośc rola statystyk publcznej Paweł Dykas

Bardziej szczegółowo

STATYSTYKA OPISOWA LABORATORIUM KOMPUTEROWE DLA I ROKU KIERUNKU ZARZĄDZANIE ZESTAWY ZADAŃ

STATYSTYKA OPISOWA LABORATORIUM KOMPUTEROWE DLA I ROKU KIERUNKU ZARZĄDZANIE ZESTAWY ZADAŃ STATYSTYKA OPISOWA LABORATORIUM KOMPUTEROWE DLA I ROKU KIERUNKU ZARZĄDZANIE ZESTAWY ZADAŃ Opracowała: Milena STATYSTYKA OPISOWA LAB.1. Zadanie 1 Następujące dane są liczbami pasażerów korzystających z

Bardziej szczegółowo

W praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np.

W praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np. Wykład 7 Uwaga: W praktyce często zdarza sę, że wynk obu prób możemy traktować jako wynk pomarów na tym samym elemence populacj np. wynk x przed wynk y po operacj dla tego samego osobnka. Należy wówczas

Bardziej szczegółowo

Egzamin ze Statystyki, Studia Licencjackie Stacjonarne czerwiec 2007 Temat A

Egzamin ze Statystyki, Studia Licencjackie Stacjonarne czerwiec 2007 Temat A (imię, nazwisko, nr albumu).. Przy rozwiązywaniu zadań, jeśli to konieczne, naleŝy przyjąć poziom istotności 0,01 i współczynnik ufności 0,95. Zadanie 1 W 005 roku przeprowadzono badanie ankietowe, którego

Bardziej szczegółowo

2012-10-11. Definicje ogólne

2012-10-11. Definicje ogólne 0-0- Defncje ogólne Logstyka nauka o przepływe surowców produktów gotowych rodowód wojskowy Utrzyywane zapasów koszty zwązane.n. z zarożene kaptału Brak w dostawach koszty zwązane.n. z przestoje w produkcj

Bardziej szczegółowo

Zmiany cen nieruchomości w czasie

Zmiany cen nieruchomości w czasie Inwestycje i ryzyko na rynku nieruchości Ewa Kusideł 1 Zmiany cen nieruchomości w czasie Dr Ewa Kusideł Inwestycje i ryzyko na rynku nieruchości 2 Analiza średnich zmian cen nieruchomości w czasie za pomocą

Bardziej szczegółowo

POLITECHNIKA ŚLĄSKA. WYDZIAŁ ORGANIZACJI I ZARZĄDZANIA. Katedra Podstaw Systemów Technicznych - Mechanika Stosowana. y P 1. Śr 1 (x 1,y 1 ) P 2

POLITECHNIKA ŚLĄSKA. WYDZIAŁ ORGANIZACJI I ZARZĄDZANIA. Katedra Podstaw Systemów Technicznych - Mechanika Stosowana. y P 1. Śr 1 (x 1,y 1 ) P 2 POLITECHNIKA ŚLĄSKA. WYDZIAŁ ORGANIZACI I ZARZĄDZANIA. Katedra Podstaw Sstemów Technicznch Płaska geometria mas c c 3c Dla zadanego pola przekroju wznaczć: - połoŝenie środka cięŝkości S( s, s ) - moment

Bardziej szczegółowo

TRANZYSTOR BIPOLARNY CHARAKTERYSTYKI STATYCZNE

TRANZYSTOR BIPOLARNY CHARAKTERYSTYKI STATYCZNE POLITHNIKA RZSZOWSKA Katedra Podstaw lektronk Instrkcja Nr4 F 00/003 sem. letn TRANZYSTOR IPOLARNY HARAKTRYSTYKI STATYZN elem ćwczena jest pomar charakterystyk statycznych tranzystora bpolarnego npn lb

Bardziej szczegółowo

Badanie optymalnego poziomu kapitału i zatrudnienia w polskich przedsiębiorstwach - ocena i klasyfikacja

Badanie optymalnego poziomu kapitału i zatrudnienia w polskich przedsiębiorstwach - ocena i klasyfikacja Jacek Batóg Unwersytet Szczecńsk Badane optymalnego pozomu kaptału zatrudnena w polskch przedsęborstwach - ocena klasyfkacja Prowadząc dzałalność gospodarczą przedsęborstwa kerują sę jedną z dwóch zasad

Bardziej szczegółowo

Egzamin ze statystyki, Studia Licencjackie Stacjonarne. TEMAT C grupa 1 Czerwiec 2007

Egzamin ze statystyki, Studia Licencjackie Stacjonarne. TEMAT C grupa 1 Czerwiec 2007 Egzamin ze statystyki, Studia Licencjackie Stacjonarne TEMAT C grupa 1 Czerwiec 2007 (imię, nazwisko, nr albumu).. Przy rozwiązywaniu zadań, jeśli to konieczne, naleŝy przyjąć poziom istotności 0,01 i

Bardziej szczegółowo

Analiza progu rentowności

Analiza progu rentowności Analiza progu rentowności Próg rentowności ( literaturze przedmiotu spotyka się również określenia: punkt równowagi, punkt krytyczny, punkt bez straty punkt zerowy) jest to taki punkt, w którym jednostka

Bardziej szczegółowo

ZASTOSOWANIE ANALIZY HARMONICZNEJ DO OKREŚLENIA SIŁY I DŁUGOŚCI CYKLI GIEŁDOWYCH

ZASTOSOWANIE ANALIZY HARMONICZNEJ DO OKREŚLENIA SIŁY I DŁUGOŚCI CYKLI GIEŁDOWYCH Grzegorz PRZEKOTA ZESZYTY NAUKOWE WYDZIAŁU NAUK EKONOMICZNYCH ZASTOSOWANIE ANALIZY HARMONICZNEJ DO OKREŚLENIA SIŁY I DŁUGOŚCI CYKLI GIEŁDOWYCH Zarys treśc: W pracy podjęto problem dentyfkacj cykl gełdowych.

Bardziej szczegółowo

System finansowy gospodarki

System finansowy gospodarki System fasowy gospodark Zajęca r 7 Krzywa retowośc, zadaa (mat. f.), marża w hadlu, NPV IRR, Ustawa o kredyce kosumeckm, fukcje fasowe Excela Krzywa retowośc (dochodowośc) Yeld Curve Krzywa ta jest grafczym

Bardziej szczegółowo

Zasady budowania prognoz ekonometrycznych

Zasady budowania prognoz ekonometrycznych Zasad budowania prognoz ekonometrcznch Klasczne założenia teorii predkcji 1. Znajomość modelu kształtowania się zmiennej prognozowanej Znajomość postaci analitcznej wstępującch zależności międz zmiennmi

Bardziej szczegółowo

A.Światkowski. Wroclaw University of Economics. Working paper

A.Światkowski. Wroclaw University of Economics. Working paper A.Światkowski Wroclaw University of Economics Working paper 1 Planowanie sprzedaży na przykładzie przedsiębiorstwa z branży deweloperskiej Cel pracy: Zaplanowanie sprzedaży spółki na rok 2012 Słowa kluczowe:

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Prawdopodobeństwo statystya.05.00 r. Zadane Zmenna losowa X ma rozład wyładnczy o wartośc oczewanej, a zmenna losowa Y rozład wyładnczy o wartośc oczewanej. Obe zmenne są nezależne. Oblcz E( Y X + Y =

Bardziej szczegółowo

Badania sondażowe. Braki danych Konstrukcja wag. Agnieszka Zięba. Zakład Badań Marketingowych Instytut Statystyki i Demografii Szkoła Główna Handlowa

Badania sondażowe. Braki danych Konstrukcja wag. Agnieszka Zięba. Zakład Badań Marketingowych Instytut Statystyki i Demografii Szkoła Główna Handlowa Badana sondażowe Brak danych Konstrukcja wag Agneszka Zęba Zakład Badań Marketngowych Instytut Statystyk Demograf Szkoła Główna Handlowa 1 Błędy braku odpowedz Całkowty brak odpowedz (UNIT nonresponse)

Bardziej szczegółowo

PRZESTRZENNE ZRÓŻNICOWANIE WYBRANYCH WSKAŹNIKÓW POZIOMU ŻYCIA MIESZKAŃCÓW MIAST ŚREDNIEJ WIELKOŚCI A SYSTEM LOGISTYCZNY MIASTA 1

PRZESTRZENNE ZRÓŻNICOWANIE WYBRANYCH WSKAŹNIKÓW POZIOMU ŻYCIA MIESZKAŃCÓW MIAST ŚREDNIEJ WIELKOŚCI A SYSTEM LOGISTYCZNY MIASTA 1 METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XI/2, 2010, str. 102 111 PRZESTRZENNE ZRÓŻNICOWANIE WYBRANYCH WSKAŹNIKÓW POZIOMU ŻYCIA MIESZKAŃCÓW MIAST ŚREDNIEJ WIELKOŚCI A SYSTEM LOGISTYCZNY MIASTA 1

Bardziej szczegółowo

OPTYMALIZACJA PROCESU PRZESIEWANIA W PRZESIEWACZACH WIELOPOKŁADOWYCH

OPTYMALIZACJA PROCESU PRZESIEWANIA W PRZESIEWACZACH WIELOPOKŁADOWYCH Prace Naukowe Instytutu Górnctwa Nr 136 Poltechnk Wrocławskej Nr 136 Studa Materały Nr 43 2013 Jerzy MALEWSKI* Marta BASZCZYŃSKA** przesewane, jakość produktów, optymalzacja OPTYMALIZACJA PROCESU PRZESIEWANIA

Bardziej szczegółowo

EFEKTYWNOŚĆ INTERWENCJONIZMU PAŃSTWOWEGO W GOSPODARKĘ ŻYWNOŚCIOWĄ UKRAINY. Wstęp

EFEKTYWNOŚĆ INTERWENCJONIZMU PAŃSTWOWEGO W GOSPODARKĘ ŻYWNOŚCIOWĄ UKRAINY. Wstęp Efektywność STOWARZYSZENIE nterwencjonzmu EKONOMISTÓW państwowego ROLNICTWA w gospodarkę I AGROBIZNESU żywnoścową Ukrany Rocznk Naukowe tom XVI zeszyt 2 33 Georgj Czerewko Lwowsk Narodowy Unwersytet Agrarny

Bardziej szczegółowo

Zapis informacji, systemy pozycyjne 1. Literatura Jerzy Grębosz, Symfonia C++ standard. Harvey M. Deitl, Paul J. Deitl, Arkana C++. Programowanie.

Zapis informacji, systemy pozycyjne 1. Literatura Jerzy Grębosz, Symfonia C++ standard. Harvey M. Deitl, Paul J. Deitl, Arkana C++. Programowanie. Zaps nformacj, systemy pozycyjne 1 Lteratura Jerzy Grębosz, Symfona C++ standard. Harvey M. Detl, Paul J. Detl, Arkana C++. Programowane. Zaps nformacj w komputerach Wszystke elementy danych przetwarzane

Bardziej szczegółowo

Zagadnienie 1: Prognozowanie za pomocą modeli liniowych i kwadratowych przy wykorzystaniu Analizy regresji wielorakiej w programie STATISTICA

Zagadnienie 1: Prognozowanie za pomocą modeli liniowych i kwadratowych przy wykorzystaniu Analizy regresji wielorakiej w programie STATISTICA Zagadnienie 1: Prognozowanie za pomocą modeli liniowych i kwadratowych przy wykorzystaniu Analizy regresji wielorakiej w programie STATISTICA Zadanie 1 (Plik danych: Transport w Polsce (1990-2015)) Na

Bardziej szczegółowo

Analiza i diagnoza sytuacji finansowej wybranych branż notowanych na Warszawskiej Giełdzie Papierów Wartościowych w latach

Analiza i diagnoza sytuacji finansowej wybranych branż notowanych na Warszawskiej Giełdzie Papierów Wartościowych w latach Jacek Batóg Unwersytet Szczecńsk Analza dagnoza sytuacj fnansowej wybranych branż notowanych na Warszawskej Gełdze Paperów Wartoścowych w latach 997-998 W artykule podjęta została próba analzy dagnozy

Bardziej szczegółowo

Ocena pozycji konkurencyjnej nowych państw członkowskich UE w handlu zagranicznym produktami rolno-spożywczymi. dr Łukasz Ambroziak

Ocena pozycji konkurencyjnej nowych państw członkowskich UE w handlu zagranicznym produktami rolno-spożywczymi. dr Łukasz Ambroziak Ocena pozycj konkurencyjnej nowych państw członkowskch UE w handlu zagrancznym produktam rolno-spożywczym dr Łukasz Ambrozak Zakład Ekonomk Przemysłu Spożywczego Warszawa, 22 lstopada 2013 r. Plan wystąpena

Bardziej szczegółowo