EKONOMIA MENEDŻERSKA. Wykład 2 Analiza popytu. Optymalna polityka cenowa. 1 ANALIZA POPYTU. OPTYMALNA POLITYKA CENOWA.

Wielkość: px
Rozpocząć pokaz od strony:

Download "EKONOMIA MENEDŻERSKA. Wykład 2 Analiza popytu. Optymalna polityka cenowa. 1 ANALIZA POPYTU. OPTYMALNA POLITYKA CENOWA."

Transkrypt

1 Wykłd Anlz popytu. Optymln poltyk cenow. 1 ANALIZA OYTU. OTYMALNA OLITYKA CENOWA. rzedmotem wykłdu jest prolem zrządzn zyskem poprzez oprcowne wdrożene odpowednej strteg różncown cen, wykorzystując do tego nlzę popytu. Anlz lustrown jest przykłdem poltyk cenowej prowdzonej przez przewoźnków powetrznych. rzykłd: - ceny letów n lot nr 31 ln n Amercn n trse Nowy Jork Mm: 15 letów I klsy - cen 369 $ 3 letów klsy ekon. - cen $ 99 letów klsy ekon. - cen 144 $ 50 letów klsy ekon. - cen 14 $ Rzem: 14 letów po średnej cene 170 $ Czy tk rozpętość cen jest rcjonln? Jeśl tk, to jke są ekonomczne przesłnk tkego ustlen cen? 1. OYT I CZYNNIKI GO KSZTAŁTUJĄCE Funkcj popytu n produkowny przez przedsęorstwo towr - funkcj uzleżnjąc welkość popytu n dny produkt (śwdczoną usługę) od zmennych ojśnjących - czynnków ksztłtujących popyt: f (,,..., 1 n ) Oznczen: - popyt, 1,,..., n - n zmennych ojśnjących. Iren Woroneck Wydzł Informtycznych Technk Zrządzn Wyższ Szkoł Informtyk Stosownej Zrządzn

2 Wykłd Anlz popytu. Optymln poltyk cenow. Główne czynnk popytu: cen, po której sprzedje towr nlzowne przedsęorstwo cen oferown przez frmę konkurencyjną ceny dór sustytucyjnych ceny dór komplementrnych dochody nywców potrzey preferencje nywców wydtk n reklmę Lnow funkcj popytu (ddytywn zleżność od zmennych ojśnjących): n n 0 + n 1 współczynnk jest pochodną cząstkową funkcj popytu po -tej zmennej ojśnjącej. Zmn popytu w zleżnośc od zmn zmennych ojśnjących: n n Interpretcj prmetrów lnowej funkcj popytu 1,,..., n : Współczynnk ozncz o le zmen sę popyt, jeśl zmenn ojśnjąc wzrośne ceters prus (przy nezmenonych pozostłych czynnkch) o jednostkę. Multplktywn zleżność popytu od zmennych ojśnjących: α1 α µ... 1 α n n owyższą funkcję popytu możn sprowdzć do zleżnośc lnowej przez zlogrytmzowne ou stron równn. Iren Woroneck Wydzł Informtycznych Technk Zrządzn Wyższ Szkoł Informtyk Stosownej Zrządzn

3 Wykłd Anlz popytu. Optymln poltyk cenow. 3 rzykłdow funkcj popytu: k + 3Y Oznczen: - popyt n wytwrzny przez frmę produkt, - cen, - cen konkurencj, Y - dochód. Interpretcj prmetrów: Współczynnk 1 ozncz o le zmen sę popyt, jeśl cen wzrośne ceters prus (przy nezmenonych pozostłych czynnkch) o jednostkę ( 1 < 0 ). Współczynnk ozncz o le zmen sę popyt, jeśl cen konkurencj wzrośne ceters prus o jednostkę ( > 0 ). Współczynnk 3 ozncz o le zmen sę popyt, jeśl dochody nywców wzrosną ceters prus o jednostkę ( 3 > 0 dl dór normlnych ). Krzyw popytu krzyw popytu - wykres funkcj popytu w zleżnośc od ceny, przy złożenu, że zmenne ojśnjące ksztłtują sę n określonym, nezmennym pozome (zwykle n wykrese przedstwn jest funkcj odwrotn do funkcj popytu, czyl funkcj ceny) Jk zmen sę położene krzywej popytu pod wpływem zmenjących sę czynnków popytu? ruch po krzywej - zmn popytu. pod wpływem ceny przesunęce krzywej - zmn popytu. pod wpływem pozostłych czynnków, np. n skutek zmny dochodów nywców, ceny konkurencj Gdy > 0, wzrost zmennej ojśnjącej o spowoduje przesunęce krzywej popytu w prwo o:. Gdy < 0, wzrost zmennej ojśnjącej spowoduje przesunęce krzywej popytu w lewo o: -. Np. wzrost dochodów nywców o Y spowoduje przesunęce krzywej popytu w prwo o welkość 3 Y. Iren Woroneck Wydzł Informtycznych Technk Zrządzn Wyższ Szkoł Informtyk Stosownej Zrządzn

4 Wykłd Anlz popytu. Optymln poltyk cenow. 4 Cen Krzyw popytu. rzesunęce krzywej pod wpływem wzrostu dochodów. 3 Y 3 Y 0 opyt. ELASTYCZNOŚĆ OYTU cenow elstyczność popytu: e % zmn popytu % zmn ceny e p - współczynnk cenowej elstycznośc popytu - popyt - cen Cenow elstyczność popytu jest mrą sły rekcj nywców n zmnę ceny lu nczej mrą wrżlwośc popytu n zmnę ceny. Dokłdnej współczynnk cenowej elstycznośc popytu nformuje o le procent zmen sę popyt pod wpływem jednoprocentowej zmny ceny, przy złożenu, że pozostłe czynnk ne ulegną zmne. Iren Woroneck Wydzł Informtycznych Technk Zrządzn Wyższ Szkoł Informtyk Stosownej Zrządzn

5 Wykłd Anlz popytu. Optymln poltyk cenow. 5 unktow elstyczność popytu d wpływ neskończene młych względnych zmn ceny: punktow elstyczność cenow popytu: e Ze względu n elstyczność popytu wyróżnmy: popyt doskonle elstyczny - gdy e p popyt elstyczny - gdy e p > 1 (elstyczność wysok) popyt o elstycznośc równej 1 - gdy e p 1 popyt neelstyczny - gdy e p < 1 (elstyczność nsk) popyt sztywny - gdy e p 0 Od czego zleży cenow elstyczność popytu? rzede wszystkm od: dostępnośc sustytutów, czyl od możlwośc zstąpen dnego towru przez nne doro o podonym przeznczenu (wyższ elstyczność popytu dl wększej dostępnośc sustytutów) czsu dostosowń (m dłuższy czs dostosowń tym wyższ elstyczność popytu) nezędnośc dor w suektywnej ocene nywców (m rdzej nezędne doro, tym elstyczność mnejsz) udzłu w wydtkch nywców (m zncznejszy udzł w wydtkch tym wększ elstyczność) Lnow funkcj popytu - elstyczność zmenn od 0 do (porównj wykres) Iren Woroneck Wydzł Informtycznych Technk Zrządzn Wyższ Szkoł Informtyk Stosownej Zrządzn

6 Wykłd Anlz popytu. Optymln poltyk cenow. 6 Cen Rodzje popytu: ) sztywny, ) doskonle elstyczny e p 0 (popyt doskonle sztywny) e p (doskonle elstyczny) 0 opyt Lnow funkcj popytu - elstyczność zmenn od 0 do Cen e p e p 1 e p 0 0 opyt Iren Woroneck Wydzł Informtycznych Technk Zrządzn Wyższ Szkoł Informtyk Stosownej Zrządzn

7 Wykłd Anlz popytu. Optymln poltyk cenow. 7 Dl weloczynnkowej funkcj popytu: f (,,..., 1 n ) elstyczność popytu względem dowolnego czynnk : elstyczność wzgl. czynnk : e % zmn popytu % zmn tego czynnk Elstyczność popytu względem czynnk nformuje o le procent zmen sę popyt pod wpływem jednoprocentowej zmny czynnk, przy złożenu, że pozostłe czynnk ne zmenją sę. punktow elstyczność popytu względem dowolnego czynnk : punktow elstyczność względem czynnk : e 3. ELASTYCZNOŚĆ CENOWA A MOŻLIWOŚĆ ROGNOZOWANIA n n n Współczynnk α 1, α,, α,, α n, oznczją elstycznośc popytu względem zmennych ojśnjących 1,,,,, n. Np. dl funkcj popytu dwóch zmennych: ceny dochodu Y : + Y Y Y Iren Woroneck Wydzł Informtycznych Technk Zrządzn Wyższ Szkoł Informtyk Stosownej Zrządzn

8 Wykłd Anlz popytu. Optymln poltyk cenow. 8 Funkcj popytu o stłej elstycznośc popytu: α1 α µ... 1 α n n Współczynnk α 1, α,, α,, α n, oznczją elstycznośc popytu względem zmennych ojśnjących 1,,,,, n. α rzykłdem może yć funkcj popytu zleżn od ceny: α µ rmetr α ozncz cenową elstyczność popytu, α < 0 (ze względu n prwo popytu). Dl α -1 funkcj popytu µ chrkteryzuje sę elstycznoścą równą -1. Cen Krzyw popytu o cenowej elstycznośc równej -1 hperol 0 opyt Iren Woroneck Wydzł Informtycznych Technk Zrządzn Wyższ Szkoł Informtyk Stosownej Zrządzn

9 Wykłd Anlz popytu. Optymln poltyk cenow. 9 Oprócz prostej cenowej elstycznośc popytu często nlzowne są: cenow meszn dochodow elstyczność popytu. Meszn cenow elstyczność popytu: cenow elstyczność meszn: e ' p % zmn popytu n doro % zmn ceny dor Meszn elstyczność cenow popytu ozncz procentową zmnę popytu n doro wywołną jednoprocentową zmną ceny dor, przy złożenu, że pozostłe czynnk są stłe. Dw przypdk: - dor wzjemne sustytucyjne ( e p > 0 ) - dor wzjemne komplementrne ( e p < 0 ) Dochodow elstyczność popytu: dochodow elstyczność popytu: e Y % zmn popytu % zmn dochodu Y Y Dochodow elstyczność popytu ozncz procentową zmnę popytu wywołną jednoprocentową zmną dochodu nywców, przy złożenu, że pozostłe czynnk pozostją stłe. Iren Woroneck Wydzł Informtycznych Technk Zrządzn Wyższ Szkoł Informtyk Stosownej Zrządzn

10 Wykłd Anlz popytu. Optymln poltyk cenow OTYMALNA OLITYKA CENOWA Utrg cłkowty R jest mksymlny, gdy: utrg krńcowy MR 0 (wrunek koneczny ekstremum funkcj) elstyczność popytu e p 1 dr MR 0 R ( ) d MR dr d d d + d d 0 1 MR dl e p -1 MR 0 e oltyk cenow w zleżnośc od elstycznośc popytu: Gdy cenow elstyczność popytu jest, co do wrtośc ezwzględnej, wększ od jednośc, tzn., gdy popyt jest elstyczny, (wtedy MR > 0), podwyższene ceny spowoduje zmnejszene utrgu, onżene ceny - wzrost utrgu. rzedsęorcy opłc sę węc zwększć produkcję onżć cenę. Gdy cenow elstyczność popytu jest, co do wrtośc ezwzględnej, mnejsz od jednośc, tzn., gdy popyt jest neelstyczny, (wtedy MR < 0), podwyższene ceny spowoduje wzrost utrgu, onżene ceny spdek utrgu. rzedsęorcy opłc sę węc ogrnczć produkcję podwyższć cenę. Uwg: Mksymlzcj utrgu jest rozstrzygjącym kryterum opłclnośc przedsęorstw tylko w przypdku tzw. czystego prolemu sprzedży. Czysty prolem sprzedży. Gdy koszt krńcowy MC 0 (wrunek mksymlzcj zysku: MR MC przyjmuje wtedy postć MR 0, przedsęorstwo de fcto dąży do mksymlzcj utrgu). rzykłdy: sprzedż zpsów, sprzedż letów lotnczych, sprzedż oprogrmown komputerowego. Iren Woroneck Wydzł Informtycznych Technk Zrządzn Wyższ Szkoł Informtyk Stosownej Zrządzn

11 Wykłd Anlz popytu. Optymln poltyk cenow. 11 Zleżność mędzy utrgem cłkowtym elstycznoścą cenową popytu dl lnowej funkcj popytu Cen () e p > 1 popyt elstyczny e p 1 * utrg krńcowy e p < 1 popyt neelstyczny 0 D* opyt (D) Utrg cłkowty mx utrgu 0 D* opyt (D) Iren Woroneck Wydzł Informtycznych Technk Zrządzn Wyższ Szkoł Informtyk Stosownej Zrządzn

12 Wykłd Anlz popytu. Optymln poltyk cenow. 1 rolem wyznczn ceny dl ogólnejszego przypdku, gdy MC 0 Wrunek mksymlzcj zysku: MR MC Zleżność utrgu krńcowego od cenowej elstycznośc popytu: MR e rzyrównne utrgu krńcowego MR do kosztu krńcowego MC: 1 e + 1 MC o przeksztłcenu otrzymujemy zleżność: MC 1 e nrzut ceny pond koszty krńcowe wyrżony jko procent ceny Równne to określ tzw. zsdę optymlnego nrzutu ceny n koszty. Zsd optymlnego nrzutu n koszty: Im popyt sztywnejszy, tym wyższą cenę pond koszt krńcowy nleży wyznczyć, m wększ elstyczność popytu, tym nższą cenę nleży ustlć. Iren Woroneck Wydzł Informtycznych Technk Zrządzn Wyższ Szkoł Informtyk Stosownej Zrządzn

13 Wykłd Anlz popytu. Optymln poltyk cenow STRATEGIE RÓŻNICOWANIA CEN. ROBLEM DYSKRYMINACJI CENOWEJ. Rodzje dyskrymncj cenowej: doskonł dyskrymncj cenow (I stopn) - różne ceny dl poszczególnych nywców dyskrymncj cenow II stopn - różne formuły cenowe, upusty cenowe, np. formuł uzleżnjąc wysokość ceny od welkośc zkupu: A A + p + p dyskrymncj cenow III stopn - różne ceny dl poszczególnych segmentów rynku rolem: Jk wyznczć optymlne ceny ( welkośc dostw) n poszczególne segmenty rynku? Gdy mmy nformcje n temt popytu n poszczególnych segmentch rynku dne dotyczące kosztów, możemy zstosowć nlzę mrgnlną: MR MC Jeśl popyt n poszczególnych segmentch rynku jest nezleżny, stosuje sę powyższą zsdę oddzelne dl kżdego segmentu rynku (np. dl segmentu ): MR MC MR MC Jeśl popyt n poszczególnych segmentch jest współzleżny, stosuje sę rozwązne jk dl przypdku popytu współzleżnego dl welu sortymentów produkcj (nlz mrgnln z zstosownem pochodnych cząstkowych) porównj przykłd II. Iren Woroneck Wydzł Informtycznych Technk Zrządzn Wyższ Szkoł Informtyk Stosownej Zrządzn

14 Wykłd Anlz popytu. Optymln poltyk cenow. 14 rzykłd I - różncowne cen n rynku krjowym n rynku zgrncznym roducent eksporter stl; segmenty rynku: rynek krjowy (H) rynek zgrnczny (F); produkcj stl wyrżon w tys. rkuszy, cen w $ z 1 rkusz. Jest to przypdek popytu nezleżnego. Dne: H H funkcj odwrotn do funkcj popytu n rynku krjowym (funkcj ceny) 3000 funkcj odwrotn do funkcj popytu n rynku zgrncznym F F opyt n rynku krjowym jest mnej elstyczny ze względu n rery celne, n rynku mędzynrodowym popyt jest rdzej elstyczny ze względu n wększą konkurencję. MC H 1000 koszt krńcowy dl produktu sprzedwnego n rynku krjowym MC 1400 koszt krńcowy n rynku zgrncznym F Koszty n rynku zgrncznym są wyższe ze względu n dodtkowe koszty trnsportu. Rozwązne optymlne: H F H F Ustlene cen n rynku krjowym zgrncznym, pozorne nercjonlne (stl jest eksportown po nższych cench pommo wyższych, ze względu n koszty trnsportu, kosztów), stje sę zrozumłe w śwetle strteg dyskrymncj cenowej. Optymln poltyk cenow przy welosortymentowośc produkcj: przypdek popytu nezleżnego przypdek popytu współzleżnego Iren Woroneck Wydzł Informtycznych Technk Zrządzn Wyższ Szkoł Informtyk Stosownej Zrządzn

15 Wykłd Anlz popytu. Optymln poltyk cenow. 15 rzypdek popytu współzleżnego π R C mx cłkowty zysk ze sprzedży dwóch sortymentów: (, ) + R ( ) R R, cłkowty utrg ze sprzedży dwóch sortymentów: ( ) C ( ) C C + cłkowty koszt produkcj dwóch sortymentów: (, ) + R ( ) C ( ) C ( ) π R, π π 0, 0 wrunek mksymlzcj zysku cłkowtego R + R C tzn.: MTR MC R + R C tzn.: MTR MC rzykłd II - popyt współzleżny Dne: 80 funkcj odwrotn do funkcj popytu n produkt 180 funkcj odwrotn do funkcj popytu n produkt Cen produktu zleży ne tylko od popytu n doro, le od popytu n doro. MC 80 koszt krńcowy dl produktu MC 40 koszt krńcowy dl produktu Rozwązne optymlne: Iren Woroneck Wydzł Informtycznych Technk Zrządzn Wyższ Szkoł Informtyk Stosownej Zrządzn

16 Wykłd Anlz popytu. Optymln poltyk cenow. 16 Zstosowne strteg dyskrymncj cenowej do zwększen zysku rzykłd III - różncowne cen letów lotnczych Dne: 580 funkcj popytu n lety lotncze 180 ogrnczene lczy mejsc w smoloce MC 0 koszt krńcowy równy 0, czysty prolem sprzedży MR 0 wrunek mksymlzcj utrgu cłkowtego R Rozwązne optymlne ez stosown różncown cen: utrg cłkowty R Dzęk zstosownu strteg dyskrymncj cenowej możn zwększyć zysk. Możn wyróżnć dw segmenty rynku: znesowy turystyczny 330 funkcj popytu - segment podróży znesowych B B 50 funkcj popytu - segment podróży turystycznych T T 330 funkcj ceny n lety lotncze - segment podróży znesowych B B 50 funkcj ceny n lety lotncze - segment podróży turystycznych T T Mksymlzowny jest cłkowty utrg n ou segmentch rynku przy ogrnczenu n lczę mejsc w smoloce: ( 330 ) + ( 50 ) mx TR B B + T T B B T T B B T T B + T 180 Iren Woroneck Wydzł Informtycznych Technk Zrządzn Wyższ Szkoł Informtyk Stosownej Zrządzn

17 Wykłd Anlz popytu. Optymln poltyk cenow. 17 Metod mnożnków Lgrnge Funkcj Lgrnge : ( ( B ) ) FL TR + u T u - mnożnk Lgrnge rzyrównne pochodnych cząstkowych funkcj Lgrnge do zer: FL B 0 FL T 0 FL u 0 Rozwązne optymlne: cen wyższ w segmence znesowym B B cen nższ w segmence turystycznym T T utrg cłkowty R o 800 wększy nż w przypdku stosown jednoltej ceny 00 Jeśl występują wększe różnce w elstycznośc popytu mędzy segmentm rynku: znesowym turystycznym, optymlne ceny w ou segmentch różną sę w wększym stopnu nstępuje rdzej znczący wzrost przychodów ze sprzedży dzęk dyskrymncj cenowej. Inne dne (popyt w segmence turystycznym jest rdzej elstyczny w porównnu z znesowym): 330 0, 5 funkcj popytu - segment znesowy (mnej elstyczny) B B 50 1, 5 funkcj popytu - segment turystyczny (rdzej elstyczny) T T Rozwązne optymlne: 137,5 385 cen znczne wyższ w segmence znesowym B B 4,5 138, 3 cen znczne nższ w segmence turystycznym T T utrg cłkowty R ,7 znczne wyższy (o pond tys.) nż w przypdku stosown jednoltej ceny 00. Iren Woroneck Wydzł Informtycznych Technk Zrządzn Wyższ Szkoł Informtyk Stosownej Zrządzn

( ) Elementy rachunku prawdopodobieństwa. f( x) 1 F (x) f(x) - gęstość rozkładu prawdopodobieństwa X f( x) - dystrybuanta rozkładu.

( ) Elementy rachunku prawdopodobieństwa. f( x) 1 F (x) f(x) - gęstość rozkładu prawdopodobieństwa X f( x) - dystrybuanta rozkładu. Elementy rchunku prwdopodoeństw f 0 f() - gęstość rozkłdu prwdopodoeństw X f d P< < = f( d ) F = f( tdt ) - dystryunt rozkłdu E( X) = tf( t) dt - wrtość średn D ( X) = E( X ) E( X) - wrncj = f () F ()

Bardziej szczegółowo

ĆWICZENIE ANALIZA SITOWA I PODSTAWY OCENY GRANULOMETRYCZNEJ SUROWCÓW I PRODUKTÓW

ĆWICZENIE ANALIZA SITOWA I PODSTAWY OCENY GRANULOMETRYCZNEJ SUROWCÓW I PRODUKTÓW 1 ĆWICZENIE ANALIZA SITOWA I PODSTAWY OCENY GANULOMETYCZNEJ SUOWCÓW I PODUKTÓW 1. Cel zkres ćwczen Celem ćwczen jest opnowne przez studentów metody oceny mterłu sypkego pod względem loścowej zwrtośc frkcj

Bardziej szczegółowo

Raport Przeliczenie punktów osnowy wysokościowej III, IV i V klasy z układu Kronsztadt60 do układu Kronsztadt86 na obszarze powiatu krakowskiego

Raport Przeliczenie punktów osnowy wysokościowej III, IV i V klasy z układu Kronsztadt60 do układu Kronsztadt86 na obszarze powiatu krakowskiego Rport Przelczene punktów osnowy wysokoścowej III, IV V klsy z ukłdu Kronsztdt60 do ukłdu Kronsztdt86 n oszrze powtu krkowskego Wykonł: dr h. nż. Potr Bnsk dr nż. Jcek Kudrys dr nż. Mrcn Lgs dr nż. Bogdn

Bardziej szczegółowo

EKONOMIA MENEDŻERSKA. Wykład 3 Funkcje produkcji 1 FUNKCJE PRODUKCJI. ANALIZA KOSZTÓW I KORZYŚCI SKALI. MINIMALIZACJA KOSZTÓW PRODUKCJI.

EKONOMIA MENEDŻERSKA. Wykład 3 Funkcje produkcji 1 FUNKCJE PRODUKCJI. ANALIZA KOSZTÓW I KORZYŚCI SKALI. MINIMALIZACJA KOSZTÓW PRODUKCJI. EONOMIA MENEDŻERSA Wykład 3 Funkcje rodukcj 1 FUNCJE PRODUCJI. ANAIZA OSZTÓW I ORZYŚCI SAI. MINIMAIZACJA OSZTÓW PRODUCJI. 1. FUNCJE PRODUCJI: JEDNO- I WIEOCZYNNIOWE Funkcja rodukcj określa zależność zdolnośc

Bardziej szczegółowo

dy dx stąd w przybliżeniu: y

dy dx stąd w przybliżeniu: y Przykłady do funkcj nelnowych funkcj Törnqusta Proszę sprawdzć uzasadnć, które z podanych zdań są prawdzwe, a które fałszywe: Przykład 1. Mesęczne wydatk na warzywa (y, w jednostkach penężnych, jp) w zależnośc

Bardziej szczegółowo

DOBÓR LINIOWO-ŁAMANEGO ROZDZIAŁU SIŁ HAMUJĄCYCH W SAMOCHODACH DOSTAWCZYCH

DOBÓR LINIOWO-ŁAMANEGO ROZDZIAŁU SIŁ HAMUJĄCYCH W SAMOCHODACH DOSTAWCZYCH Zgnew Kmńsk DOBÓ INIOWO-ŁMNEO OZDZIŁU SIŁ HMUJĄCYCH W SMOCHODCH DOSTWCZYCH Streszczene. W rtykule opsno sposoy dooru lnowo-łmnego rozdzłu sł mującyc w smocodc dostwczyc według wymgń egulmnu 3 ECE. Przedstwono

Bardziej szczegółowo

Równania różniczkowe. y xy (1.1) x y (1.2) z xyz (1.3)

Równania różniczkowe. y xy (1.1) x y (1.2) z xyz (1.3) ownn oznczkowe Równn óżnczkowe. Wstę Równne óżnczkow nzw ównne zwejące funkcje newdoe zenne nezleżne oz ocodne funkcj newdoc lu c óżnczk. Pzkłd d 5 d d sn d. d d e d d d. z z z z. ównne óżnczkowe zwczjne

Bardziej szczegółowo

Metoda prądów obwodowych

Metoda prądów obwodowych Metod prądów owodowyh Zmenmy wszystke rzezywste źródł prądowe n npęowe, Tworzymy kłd równń lnowyh opsjąyh poszzególne owody. Dowolną seć lnową skłdjąą sę z elementów skponyh możn opsć z pomoą kłd równń

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy LIX Egzamin dla Aktuariuszy z 12 marca 2012 r. Część I Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy LIX Egzamin dla Aktuariuszy z 12 marca 2012 r. Część I Matematyka finansowa Mtemtyk finnsow 12.03.2012 r. Komisj Egzmincyjn dl Akturiuszy LIX Egzmin dl Akturiuszy z 12 mrc 2012 r. Część I Mtemtyk finnsow WERSJA TESTU A Imię i nzwisko osoby egzminownej:... Czs egzminu: 100 minut

Bardziej szczegółowo

MODELE TEORII GIER. Modelowanie matematyczne. dr inż. Zbigniew Tarapata Wykład nr 5: Modele teorii gier

MODELE TEORII GIER. Modelowanie matematyczne. dr inż. Zbigniew Tarapata Wykład nr 5: Modele teorii gier MODELE TEORII GIER Podejmowne decyzj nwestycyjnych często jest dokonywne w sytucjch, w których ne wdomo, jk będze stn otoczen lub też, jką decyzję podejmą nn decydenc, mjący wpływ n wynk decyzj przez ns

Bardziej szczegółowo

Wektor kolumnowy m wymiarowy macierz prostokątna o wymiarze n=1 Wektor wierszowy n wymiarowy macierz prostokątna o wymiarze m=1

Wektor kolumnowy m wymiarowy macierz prostokątna o wymiarze n=1 Wektor wierszowy n wymiarowy macierz prostokątna o wymiarze m=1 Rchunek mcierzowy Mcierzą A nzywmy funkcję 2-zmiennych, któr prze liczb nturlnych (i,j) gdzie i = 1,2,3,4.,m; j = 1,2,3,4,n przyporządkowuje dokłdnie jeden element ij. 11 21 A = m1 12 22 m2 1n 2n mn Wymirem

Bardziej szczegółowo

Wspomaganie obliczeń za pomocą programu MathCad

Wspomaganie obliczeń za pomocą programu MathCad Wprowdzenie do Mthcd' Oprcowł:M. Detk P. Stąpór Wspomgnie oliczeń z pomocą progrmu MthCd Definicj zmiennych e f g h 8 Przykłd dowolnego wyrŝeni Ay zdefinowc znienną e wyierz z klwitury kolejno: e: e f

Bardziej szczegółowo

Proces decyzyjny: 1. Sformułuj jasno problem decyzyjny. 2. Wylicz wszystkie możliwe decyzje. 3. Zidentyfikuj wszystkie możliwe stany natury.

Proces decyzyjny: 1. Sformułuj jasno problem decyzyjny. 2. Wylicz wszystkie możliwe decyzje. 3. Zidentyfikuj wszystkie możliwe stany natury. Proces decyzyny: 1. Sformułu sno problem decyzyny. 2. Wylcz wszyste możlwe decyze. 3. Zdentyfu wszyste możlwe stny ntury. 4. Oreśl wypłtę dl wszystch możlwych sytuc, ( tzn. ombnc decyz / stn ntury ). 5.

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA Mteriły do wykłdu MATEMATYKA DYSKRETNA dl studiów zocznych cz. Progrm wykłdu: KOMBINATORYKA:. Notcj i podstwowe pojęci. Zlicznie funkcji. Permutcje. Podziory zioru. Podziory k-elementowe. Ziory z powtórzenimi

Bardziej szczegółowo

ZESZYTY NAUKOWE NR 11(83) AKADEMII MORSKIEJ W SZCZECINIE. Fuzja danych nawigacyjnych w przestrzeni filtru Kalmana

ZESZYTY NAUKOWE NR 11(83) AKADEMII MORSKIEJ W SZCZECINIE. Fuzja danych nawigacyjnych w przestrzeni filtru Kalmana ISSN 733-867 ZESZ NAUKOWE NR (83) AKADEMII MORSKIEJ W SZCZECINIE IV MIĘDZNARODOWA KONFERENCJA NAUKOWO-ECHNICZNA E X L O - S H I 6 Andrzej Stteczny, Andrzej Lsj, Chfn Mohmmd Fzj dnych nwgcyjnych w przestrzen

Bardziej szczegółowo

Dynamika wymiany lokalnej

Dynamika wymiany lokalnej Dynmk wymny loklne Autor: Wocech Czrneck Teksty publkowne ko workng ppers wyrżą poglądy ch Autorów ne są ofclnym stnowskem Instytutu Mses Złożoność lczb relc występuących mędzy podmotm uczestnczącym w

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy LII Egzamin dla Aktuariuszy z 15 marca 2010 r. Część I Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy LII Egzamin dla Aktuariuszy z 15 marca 2010 r. Część I Matematyka finansowa Mtemtyk finnsow 15.0.010 r. Komisj Egzmincyjn dl Akturiuszy LII Egzmin dl Akturiuszy z 15 mrc 010 r. Część I Mtemtyk finnsow WERSJA TESTU A Imię i nzwisko osoy egzminownej:... Czs egzminu: 100 minut 1

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1 KURS STATYSTYKA Lekcja 6 Regresja lne regresj ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowedź (tylko jedna jest prawdzwa). Pytane 1 Funkcja regresj I rodzaju cechy Y zależnej

Bardziej szczegółowo

BADANIE ZALEŻNOŚCI PRZENIKALNOŚCI MAGNETYCZNEJ

BADANIE ZALEŻNOŚCI PRZENIKALNOŚCI MAGNETYCZNEJ ADANIE ZAEŻNOŚCI PRZENIKANOŚCI MAGNETYCZNEJ FERRIMAGNETYKÓW OD TEMPERATURY 1. Teori Włściwości mgnetyczne sstncji chrkteryzje współczynnik przeniklności mgnetycznej. Dl próżni ten współczynnik jest równy

Bardziej szczegółowo

Modele wieloczynnikowe. Modele wieloczynnikowe. Modele wieloczynnikowe ogólne. α β β β ε. Analiza i Zarządzanie Portfelem cz. 4.

Modele wieloczynnikowe. Modele wieloczynnikowe. Modele wieloczynnikowe ogólne. α β β β ε. Analiza i Zarządzanie Portfelem cz. 4. Modele weloczynnkowe Analza Zarządzane Portfelem cz. 4 Ogólne model weloczynnkowy można zapsać jako: (,...,,..., ) P f F F F = n Dr Katarzyna Kuzak lub (,...,,..., ) f F F F = n Modele weloczynnkowe Można

Bardziej szczegółowo

T-08 Sprawozdanie o przewozach morską i przybrzeżną flotą transportową

T-08 Sprawozdanie o przewozach morską i przybrzeżną flotą transportową GŁÓWNY URZĄD STATYSTYCZNY, l. Niepodległości 208, 00-925 Wrszw www.stt.gov.pl Nzw i dres jednostki sprwozdwczej T-08 Sprwozdnie o przewozch morską i przyrzeżną flotą trnsportową Portl sprwozdwczy GUS www.stt.gov.pl

Bardziej szczegółowo

WENTYLACJA PRZESTRZENI POTENCJALNIE ZAGROŻONYCH WYBUCHEM MIESZANIN GAZOWYCH

WENTYLACJA PRZESTRZENI POTENCJALNIE ZAGROŻONYCH WYBUCHEM MIESZANIN GAZOWYCH Ochron przeciwwybuchow Michł Świerżewski WENTYLACJA PRZESTRZENI POTENCJALNIE ZAGROŻONYCH WYBUCHEM MIESZANIN GAZOWYCH 1. Widomości ogólne Zgodnie z postnowienimi rozporządzeni Ministr Sprw Wewnętrznych

Bardziej szczegółowo

TEORIA WAGNERA UTLENIANIA METALI

TEORIA WAGNERA UTLENIANIA METALI TEORIA WAGNERA UTLENIANIA METALI PROCES POWSTAWANIA ZGORZELIN W/G TAMANN A (90) Utlenz tl Utlenz Zgorzeln tl + SCHEMAT KLASYCZNEGO DOŚWIADCZENIA PFEILA (99) Powetrze Powetrze SO Zgorzeln SO Fe Fe TEORIA

Bardziej szczegółowo

2. FUNKCJE WYMIERNE Poziom (K) lub (P)

2. FUNKCJE WYMIERNE Poziom (K) lub (P) Kls drug poziom podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych redukuje wyrzy

Bardziej szczegółowo

Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych,

Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych, Klsyczn Metod Njmniejszych Kwdrtów (KMNK) Postć ć modelu jest liniow względem prmetrów (lbo nleży dokonć doprowdzeni postci modelu do liniowości względem prmetrów), Zmienne objśnijące są wielkościmi nielosowymi,

Bardziej szczegółowo

IZBA KSIĘGARSTWA POLSKIEGO Sprawozdanie finansowe za rok 2011 - dodatkowe informacje i objaśnienia

IZBA KSIĘGARSTWA POLSKIEGO Sprawozdanie finansowe za rok 2011 - dodatkowe informacje i objaśnienia NOTA nr 1 ZMIANY W STANIE WARTOŚCI NIEMATERIALNYCH I PRAWNYCH - WARTOŚĆ BRUTTO Koszt zkończonych prc rozwojowych Wrtość firmy Inne wrtości niemterilne i utorskie prw mjątkowe, prw pokrewne, licencje, koncesje

Bardziej szczegółowo

2. PODSTAWY STATYKI NA PŁASZCZYŹNIE

2. PODSTAWY STATYKI NA PŁASZCZYŹNIE M. DSTY STTYKI N ŁSZZYŹNIE. DSTY STTYKI N ŁSZZYŹNIE.. Zsdy dynmiki Newton Siłą nzywmy wektorową wielkość, któr jest mirą mechnicznego oddziływni n ciło ze strony innych cił. dlszej części ędziemy rozptrywć

Bardziej szczegółowo

MATeMAtyka 3 inf. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Dorota Ponczek, Karolina Wej

MATeMAtyka 3 inf. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Dorota Ponczek, Karolina Wej Dorot Ponczek, Krolin Wej MATeMAtyk 3 inf Przedmiotowy system ocenini wrz z określeniem wymgń edukcyjnych Zkres podstwowy i rozszerzony Wyróżnione zostły nstępujące wymgni progrmowe: konieczne (K), podstwowe

Bardziej szczegółowo

PROGRAMOWANIE LINIOWE.

PROGRAMOWANIE LINIOWE. Wykłd 6 Progrowe lowe. Zstosow ekoocze. PROGRAMOWANIE LINIOWE. ZASTOSOWANIA EKONOMICZNE. CENY DUALNE. ANALIZA WRAŻLIWOŚCI.. RACHUNEK EKONOMICZNY. ZASADY RACJONALNEGO GOSPODAROWANIA. Rchuek ekooczy - porówe

Bardziej szczegółowo

WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ

WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ Ćwiczenie 9 WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ 9.. Opis teoretyczny Soczewką seryczną nzywmy przezroczystą bryłę ogrniczoną dwom powierzchnimi serycznymi o promienich R i

Bardziej szczegółowo

Zastosowanie multimetrów cyfrowych do pomiaru podstawowych wielkości elektrycznych

Zastosowanie multimetrów cyfrowych do pomiaru podstawowych wielkości elektrycznych Zstosownie multimetrów cyfrowych do pomiru podstwowych wielkości elektrycznych Cel ćwiczeni Celem ćwiczeni jest zpoznnie się z możliwościmi pomirowymi współczesnych multimetrów cyfrowych orz sposobmi wykorzystni

Bardziej szczegółowo

Wymagania edukacyjne matematyka klasa 2 zakres podstawowy 1. SUMY ALGEBRAICZNE

Wymagania edukacyjne matematyka klasa 2 zakres podstawowy 1. SUMY ALGEBRAICZNE Wymgni edukcyjne mtemtyk kls 2 zkres podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych

Bardziej szczegółowo

Aparatura sterująca i sygnalizacyjna Czujniki indukcyjne zbliżeniowe LSI

Aparatura sterująca i sygnalizacyjna Czujniki indukcyjne zbliżeniowe LSI Aprtur sterując i sygnlizcyjn Czujniki indukcyjne zbliżeniowe LSI Czujnik indukcyjny zbliżeniowy prcuje n zsdzie tłumionego oscyltor LC: jeżeli w obszr dziłni dostnie się metl, to z ukłdu zostje pobrn

Bardziej szczegółowo

Algorytmy graficzne. Filtry wektorowe. Filtracja obrazów kolorowych

Algorytmy graficzne. Filtry wektorowe. Filtracja obrazów kolorowych Algorytmy grficzne Filtry wektorowe. Filtrcj orzów kolorowych Filtrcj orzów kolorowych Metody filtrcji orzów kolorowych możn podzielić n dwie podstwowe klsy: Metody komponentowe (component-wise). Cechą

Bardziej szczegółowo

Wymagania kl. 2. Uczeń:

Wymagania kl. 2. Uczeń: Wymgni kl. 2 Zkres podstwowy Temt lekcji Zkres treści Osiągnięci uczni. SUMY ALGEBRAICZNE. Sumy lgebriczne definicj jednominu pojęcie współczynnik jednominu porządkuje jednominy pojęcie sumy lgebricznej

Bardziej szczegółowo

CHEMIA MIĘDZY NAMI U S Z C Z E L K I P R O F I L E

CHEMIA MIĘDZY NAMI U S Z C Z E L K I P R O F I L E CHEMIA MIĘDZY NAMI U S Z C Z E L K I P R O F I L E CHEMIA MIĘDZY NAMI Firm AIB to prekursor nowoczesnych rozwiązń w dziedzinie udownictw. Dziłlność rozpoczęliśmy w 1992 roku, skupijąc się n produkcji innowcyjnych

Bardziej szczegółowo

Temat lekcji Zakres treści Osiągnięcia ucznia

Temat lekcji Zakres treści Osiągnięcia ucznia ln wynikowy kls 2c i 2e - Jolnt jąk Mtemtyk 2. dl liceum ogólnoksztłcącego, liceum profilownego i technikum. sztłcenie ogólne w zkresie podstwowym rok szkolny 2015/2016 Wymgni edukcyjne określjące oceny:

Bardziej szczegółowo

symbol dodatkowy element graficzny kolorystyka typografia

symbol dodatkowy element graficzny kolorystyka typografia Identyfikcj wizuln Fundcji n rzecz Nuki Polskiej 1/00 Elementy podstwowe symbol dodtkowy element grficzny kolorystyk typogrfi Identyfikcj wizuln Fundcji n rzecz Nuki Polskiej 1/01 Elementy podstwowe /

Bardziej szczegółowo

Bowflag. Bowflag 100 Bowflag 200 Bowflag Premium

Bowflag. Bowflag 100 Bowflag 200 Bowflag Premium Bowflg Przenośny mszt typu żgiel do prezentcji wewnątrz i n zewnątrz pomieszczeń. Szerok gm stóp mocującyc. Duży wybór form i wymirów flg. Bowflg 00 Bowflg 00 Bowflg Premium Bowflg 00 Bowflg 00 - sprwdzone

Bardziej szczegółowo

FORMULARZ CENOWY OPIS PRZEDMIOTU ZAMÓWIENIA

FORMULARZ CENOWY OPIS PRZEDMIOTU ZAMÓWIENIA 5 Wojskowy Szpitl Kliniczny z Polikliniką Smodzielny Publiczny Zkłd Opieki Zdrowotnej w Krkowie Sekcj Zmówień Publicznych (budynek nr 45) Tel. (012) 630 80 57, (012) 630 80 58, tel/fx (012) 630 80 59 Godziny

Bardziej szczegółowo

Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy)

Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Propozycj przedmiotowego systemu ocenini wrz z określeniem wymgń edukcyjnych (zkres podstwowy) Proponujemy, by omwijąc dne zgdnienie progrmowe lub rozwiązując zdnie, nuczyciel określł do jkiego zkresu

Bardziej szczegółowo

Narożnik MIRAGE Mini. Wygląd mebla. Okucia i poduszki. Instrukcja montażu. Poduszka oparciowa 3szt. Poduszka ozdobna 2szt. ver.3/07.

Narożnik MIRAGE Mini. Wygląd mebla. Okucia i poduszki. Instrukcja montażu. Poduszka oparciowa 3szt. Poduszka ozdobna 2szt. ver.3/07. Instrukcj montżu Spółdzielni Melrsk RAMETA ZPCH 47-400 Rciórz, ul. Królewsk 50; Centrl:+48 (0) 3-453 9 50; Sprzedż:+48(0) 3-453 9 89; Serwis:+48(0) 3-453 9 80; www.rmet.com.pl Wygląd mel 4 5 3 Okuci i

Bardziej szczegółowo

R + v 10 R0, 9 k v k. a k v k + v 10 a 10. k=1. Z pierwszego równania otrzymuję R 32475, 21083. Dalej mam: (R 9P + (k 1)P )v k + v 10 a 10

R + v 10 R0, 9 k v k. a k v k + v 10 a 10. k=1. Z pierwszego równania otrzymuję R 32475, 21083. Dalej mam: (R 9P + (k 1)P )v k + v 10 a 10 Zdnie. Zkłd ubezpieczeń n życie plnuje zbudownie portfel ubezpieczeniowego przy nstępujących złożenich: ozwiąznie. Przez P k będę oznczł wrtość portfel n koniec k-tego roku. Szukm P 0 tkie by spełnił:

Bardziej szczegółowo

Wymagania na ocenę dopuszczającą z matematyki klasa II Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02

Wymagania na ocenę dopuszczającą z matematyki klasa II Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02 Wymgni n ocenę dopuszczjącą z mtemtyki kls II Mtemtyk - Bbiński, Chńko-Now Er nr prog. DKOS 4015-99/02 Temt lekcji Zkres treści Osiągnięci uczni WIELOMIANY 1. Stopień i współczynniki wielominu 2. Dodwnie

Bardziej szczegółowo

GŁÓWNY URZĄD STATYSTYCZNY, al. Niepodległości 208, 00-925 Warszawa www.stat.gov.pl T-10

GŁÓWNY URZĄD STATYSTYCZNY, al. Niepodległości 208, 00-925 Warszawa www.stat.gov.pl T-10 GŁÓWNY URZĄD STATYSTYCZNY, l. Niepodległości 208, 00-925 Wrszw www.stt.gov.pl Nzw i dres jednostki sprwozdwczej Portl sprwozdwczy GUS www.stt.gov.pl T-10 Sprwozdnie o orotch łdunkowych orz długości nrzeży

Bardziej szczegółowo

Porównanie dostępności różnych, nadmiarowych konfiguracji zasilania szaf przemysłowych

Porównanie dostępności różnych, nadmiarowych konfiguracji zasilania szaf przemysłowych Porównne dotępnośc różnych, ndmrowych konfgurcj zln zf przemyłowych Whte Pper 48 Strezczene Przełącznk źródeł zln orz dwutorow dytrybucj zln przętu IT łużą zwękzenu dotępnośc ytemów oblczenowych. Sttytyczne

Bardziej szczegółowo

Profile z falistym œrodnikiem

Profile z falistym œrodnikiem z flistym œrodnikiem Rozwi¹zni konstrukcyjne rys. 1.1 Rysunek systemowy profili SIN mx d³. dostwy = 20.00 m bg(o) H 43 t = 3,0 mm 40 t = 2,0 mm z w bg(u) tg(u) hs tg(o) 155 155 155 155 155 Wysokoœæ œrodnik:

Bardziej szczegółowo

2. Funktory TTL cz.2

2. Funktory TTL cz.2 2. Funktory TTL z.2 1.2 Funktory z otwrtym kolektorem (O.. open olletor) ysunek poniżej przedstwi odnośny frgment płyty zołowej modelu. Shemt wewnętrzny pojedynzej rmki NAND z otwrtym kolektorem (O..)

Bardziej szczegółowo

Wymagania edukacyjne matematyka klasa 2b, 2c, 2e zakres podstawowy rok szkolny 2015/2016. 1.Sumy algebraiczne

Wymagania edukacyjne matematyka klasa 2b, 2c, 2e zakres podstawowy rok szkolny 2015/2016. 1.Sumy algebraiczne Wymgni edukcyjne mtemtyk kls 2b, 2c, 2e zkres podstwowy rok szkolny 2015/2016 1.Sumy lgebriczne N ocenę dopuszczjącą: 1. rozpoznje jednominy i sumy lgebriczne 2. oblicz wrtości liczbowe wyrżeń lgebricznych

Bardziej szczegółowo

Matematyka finansowa 10.03.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVI Egzamin dla Aktuariuszy z 10 marca 2014 r. Część I

Matematyka finansowa 10.03.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVI Egzamin dla Aktuariuszy z 10 marca 2014 r. Część I Mtemtyk finnsow.03.2014 r. Komisj Egzmincyjn dl Akturiuszy LXVI Egzmin dl Akturiuszy z mrc 2014 r. Część I Mtemtyk finnsow WERSJA TESTU A Imię i nzwisko osoby egzminownej:... Czs egzminu: 0 minut 1 Mtemtyk

Bardziej szczegółowo

WPROWADZENIE DO EKONOMII MENEDŻERSKIEJ.

WPROWADZENIE DO EKONOMII MENEDŻERSKIEJ. Wykład 1 Wprowadzenie do ekonomii menedżerskiej 1 WPROWADZENIE DO EKONOMII MENEDŻERSKIEJ. PODEJMOWANIE OPTYMALNYCH DECYZJI NA PODSTAWIE ANALIZY MARGINALNEJ. 1. EKONOMIA MENEDŻERSKA ekonomia menedżerska

Bardziej szczegółowo

NOWE NIŻSZE CENY. Ceny spiral introligatorskich DOUBLE-LOOP WIRE. www.radpor.pl

NOWE NIŻSZE CENY. Ceny spiral introligatorskich DOUBLE-LOOP WIRE. www.radpor.pl Rok złożeni 1994 Nowodworsk 32, 21-100 Lubrtów tel./fks 81-855-6154, RADPOR 81-854-2860 Nowodworsk 32, 21-100 Lubrtów tel./fks 81-855-6154, 81-854-2860 www.rdpor.pl Ceny spirl introligtorskic DOUBLE-LOOP

Bardziej szczegółowo

ROZPORZĄDZENIE MINISTRA INFRASTRUKTURY 1) z dnia 16 grudnia 2004 r.

ROZPORZĄDZENIE MINISTRA INFRASTRUKTURY 1) z dnia 16 grudnia 2004 r. Typ/orgn wydjący Rozporządzenie/Minister Infrstruktury Tytuł w sprwie szczegółowych wrunków i trybu wydwni zezwoleń n przejzdy pojzdów nienormtywnych Skrócony opis pojzdy nienormtywne Dt wydni 16 grudni

Bardziej szczegółowo

Grażyna Nowicka, Waldemar Nowicki BADANIE RÓWNOWAG KWASOWO-ZASADOWYCH W ROZTWORACH ELEKTROLITÓW AMFOTERYCZNYCH

Grażyna Nowicka, Waldemar Nowicki BADANIE RÓWNOWAG KWASOWO-ZASADOWYCH W ROZTWORACH ELEKTROLITÓW AMFOTERYCZNYCH Ćwiczenie Grżyn Nowick, Wldemr Nowicki BDNIE RÓWNOWG WSOWO-ZSDOWYC W ROZTWORC ELETROLITÓW MFOTERYCZNYC Zgdnieni: ktywność i współczynnik ktywności skłdnik roztworu. ktywność jonów i ktywność elektrolitu.

Bardziej szczegółowo

Temat I. Warunku współpracy betonu i zbrojenia w konstrukcjach żelbetowych. Wymagania. Beton. Zbrojenie

Temat I. Warunku współpracy betonu i zbrojenia w konstrukcjach żelbetowych. Wymagania. Beton. Zbrojenie Dr inż. Zigniew PLEWAKO Ćwiczeni z konstrukcji żeletowych. Temt I Temt I. Wrunku współprcy etonu i zrojeni w konstrukcjch żeletowych. Wymgni. Beton Zdnie: Przeniesienie sił ściskjących, sclenie i zpewnienie

Bardziej szczegółowo

Programy współbieżne

Programy współbieżne Specyfikownie i weryfikownie Progrmy współieżne Mrek A. Bednrczyk, www.ipipn.gd.pl Litertur wiele prc dostępnych w Sieci np.: http://www.wikipedi.org/ Specyfikownie i weryfikcj progrmy współieżne PJP Prosty

Bardziej szczegółowo

Wprowadzenie: Do czego służą wektory?

Wprowadzenie: Do czego służą wektory? Wprowdzenie: Do czego służą wektory? Mp połączeń smolotowych Isiget pokzuje skąd smoloty wyltują i dokąd doltują; pokzne jest to z pomocą strzłek strzłki te pokzują przemieszczenie: skąd dokąd jest dny

Bardziej szczegółowo

Dodatkowe informacje i objaśnienia. Zakres zmian wartości grup rodzajowych środków trwałych, wnip oraz inwestycji długoterminowych Zwieksz Stan na.

Dodatkowe informacje i objaśnienia. Zakres zmian wartości grup rodzajowych środków trwałych, wnip oraz inwestycji długoterminowych Zwieksz Stan na. STOWARZYSZENIE RYNKÓW FINANSOWYCH ACI POLSKA Afiliowne przy ACI - The Finncil Mrkets Assocition Dodtkowe informcje i objśnieni Wrszw, 21 mrzec 2014 1.1 szczegółowy zkres zmin wrtości grup rodzjowych środków

Bardziej szczegółowo

Ochrona przed przepięciami w sieciach ISDN

Ochrona przed przepięciami w sieciach ISDN OGANICZANIE PZEPIĘĆ W YEMACH PZEYŁ YGNAŁÓW Ochron przed przepięcimi w siecich IDN Andrzej ow Wstęp Wzrost zpotrzeowni n usługi odiegjące od klsycznego przekzu telefonicznego spowodowł gwłtowny rozwój sieci

Bardziej szczegółowo

Szczegółowe wymagania edukacyjne z matematyki, klasa 2C, poziom podstawowy

Szczegółowe wymagania edukacyjne z matematyki, klasa 2C, poziom podstawowy Szczegółowe wymgni edukcyjne z mtemtyki, kls 2C, poziom podstwowy Wymgni konieczne () dotyczą zgdnieo elementrnych, stnowiących swego rodzju podstwę, ztem powinny byd opnowne przez kżdego uczni. Wymgni

Bardziej szczegółowo

Zakład Systemów Radiowych (Z-1)

Zakład Systemów Radiowych (Z-1) Zkłd Systemów Rdowych (Z-) Bdne rozchodzen sę fl rdowych wewnątrz udynków. Oprcowne metody prognostycznej przydtnej w prktyce, wykorzystując stnejące wynk dń Etp : Oprcowne metody prognostycznej przydtnej

Bardziej szczegółowo

Model ISLM. Inwestycje - w modelu ISLM przyjmujemy, że inwestycje przyjmują postać funkcji liniowej:

Model ISLM. Inwestycje - w modelu ISLM przyjmujemy, że inwestycje przyjmują postać funkcji liniowej: dr Bartłomej Rokck Ćwczena z Makroekonom I Model ISLM Podstawowe założena modelu: penądz odgrywa ważną rolę przy determnowanu pozomu dochodu zatrudnena nwestycje ne mają charakteru autonomcznego, a ch

Bardziej szczegółowo

STYLE. TWORZENIE SPISÓW TREŚCI

STYLE. TWORZENIE SPISÓW TREŚCI STYLE. TWORZENIE SPISÓW TREŚCI Ćwiczenie 1 Tworzenie nowego stylu n bzie istniejącego 1. Formtujemy jeden kpit tekstu i zznczmy go (stnowi on wzorzec). 2. Wybiermy Nrzędzi główne, rozwijmy okno Style (lub

Bardziej szczegółowo

I C. 2. Grupa. Informatyka. Wychowanie fizyczne. Edukacja dla. Geografia. Godzina wychowacza PJ. Technologia produkcji cukierniczej.

I C. 2. Grupa. Informatyka. Wychowanie fizyczne. Edukacja dla. Geografia. Godzina wychowacza PJ. Technologia produkcji cukierniczej. Zsdncz Szkoł Zwodow Rzemosł Przedsęborcz Bydgoszcz, ul. Kjowsk I C Wychowwc : Jelenewsk Ptrycj :0 - : :00 - :. Grup. Grup :0 - : : - 0:0 0: - :0 Edukcj dl Relg Hstor Edukcj dl Fzyk Hstor : - :0 Relg Geogrf

Bardziej szczegółowo

ω a, ω - prędkości kątowe członów czynnego a i biernego b przy

ω a, ω - prędkości kątowe członów czynnego a i biernego b przy Prekłne Mechncne PRZEKŁADNIE MECHANICZNE Prekłne mechncne są wykle mechnmm kołowym prenconym o prenesen npęu o włu slnk wykonuącego ruch orotowy o cłonu npęowego msyny rooce, mechnmu wykonwcego lu wprost

Bardziej szczegółowo

ROLE OF CUSTOMER IN BALANCED DEVELOPMENT OF COMPANY

ROLE OF CUSTOMER IN BALANCED DEVELOPMENT OF COMPANY FOLIA UNIVERSITATIS AGRICULTURAE STETINENSIS Foli Univ. Agric. Stetin. 2007, Oeconomic 254 (47), 117 122 Jolnt KONDRATOWICZ-POZORSKA ROLA KLIENTA W ZRÓWNOWAŻONYM ROZWOJU FIRMY ROLE OF CUSTOMER IN BALANCED

Bardziej szczegółowo

2. Tensometria mechaniczna

2. Tensometria mechaniczna . Tensometri mechniczn Wstęp Tensometr jk wskzywłby jego nzw to urządzenie służące do pomiru nprężeń. Jk jednk widomo, nprężeni nie są wielkościmi mierzlnymi i stnowią jedynie brdzo wygodne pojęcie mechniki

Bardziej szczegółowo

Prosta metoda sprawdzania fundamentów ze względu na przebicie

Prosta metoda sprawdzania fundamentów ze względu na przebicie Konstrkcje Elementy Mteriły Prost metod sprwdzni fndmentów ze względ n przebicie Prof dr b inż Micł Knff, Szkoł Główn Gospodrstw Wiejskiego w Wrszwie, dr inż Piotr Knyzik, Politecnik Wrszwsk 1 Wprowdzenie

Bardziej szczegółowo

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające Wymgni edukcyjne z mtemtyki ls 2 b lo Zkres podstwowy Oznczeni: wymgni konieczne; wymgni podstwowe; R wymgni rozszerzjące; D wymgni dopełnijące; W wymgni wykrczjące Temt lekcji Zkres treści Osiągnięci

Bardziej szczegółowo

Zaoszczędź przestrzeń dzięki zastosowaniu sprężyn falistych TRUWAVE z drutu płaskiego

Zaoszczędź przestrzeń dzięki zastosowaniu sprężyn falistych TRUWAVE z drutu płaskiego Sprężyny fliste Zoszczędź przestrzeń dzięki zstosowniu sprężyn flistych TRUWAVE z drutu płskiego Sprężyny TruWve z drutu płskiego umożliwiją zoszczędzenie do 50% przestrzeni w kierunku osiowym w twoim

Bardziej szczegółowo

usuwa niewymierność z mianownika wyrażenia typu

usuwa niewymierność z mianownika wyrażenia typu Wymgni edukcyjne n poszczególne oceny z mtemtyki Kls pierwsz zkres podstwowy. LICZBY RZECZYWISTE podje przykłdy liczb: nturlnych, cłkowitych, wymiernych, niewymiernych, pierwszych i złożonych orz przyporządkowuje

Bardziej szczegółowo

Struktura kapitału, a wartość rynkowa przedsiębiorstwa na rynku kapitałowym

Struktura kapitału, a wartość rynkowa przedsiębiorstwa na rynku kapitałowym Kurs e-lerningowy Giełd Ppierów Wrtościowych i rynek kpitłowy V edycj Struktur kpitłu, wrtość rynkow przedsiębiorstw n rynku kpitłowym 2010 SPIS TREŚCI I. Wstęp 3 II. Podstwowy miernik rentowności kpitłu

Bardziej szczegółowo

Nauki ścisłe priorytetem społeczeństwa opartego na wiedzy Zbiór scenariuszy Mój przedmiot matematyka

Nauki ścisłe priorytetem społeczeństwa opartego na wiedzy Zbiór scenariuszy Mój przedmiot matematyka Stron Wstęp Zbiór Mój przedmiot mtemtyk jest zestwem scenriuszy przeznczonych dl uczniów szczególnie zinteresownych mtemtyką. Scenriusze mogą być wykorzystywne przez nuczycieli zrówno n typowych zjęcich

Bardziej szczegółowo

Modelowanie sił skrawania występujących przy obróbce gniazd zaworowych

Modelowanie sił skrawania występujących przy obróbce gniazd zaworowych Scentfc Journls Mrtme Unversty of Szczecn Zeszyty ukowe Akdem Morsk w Szczecne 29, 7(89) pp. 63 67 29, 7(89) s. 63 67 Modelowne sł skrwn występujących przy obróbce gnzd zworowych Cuttng forces modelng

Bardziej szczegółowo

Zadane 1: Wyznacz średne ruchome 3-okresowe z następujących danych obrazujących zużyce energ elektrycznej [kwh] w pewnym zakładze w mesącach styczeń - lpec 1998 r.: 400; 410; 430; 40; 400; 380; 370. Zadane

Bardziej szczegółowo

Notatki do tematu Metody poszukiwania rozwiązań jednokryterialnych problemów decyzyjnych metody dla zagadnień liniowego programowania matematycznego

Notatki do tematu Metody poszukiwania rozwiązań jednokryterialnych problemów decyzyjnych metody dla zagadnień liniowego programowania matematycznego Komputerowe wspomgnie decyzi 008/009 Liniowe zgdnieni decyzyne Nottki do temtu Metody poszukiwni rozwiązń ednokryterilnych problemów decyzynych metody dl zgdnień liniowego progrmowni mtemtycznego Liniowe

Bardziej szczegółowo

Regulamin oferty Dobry bilet

Regulamin oferty Dobry bilet Regulmin oferty Dobry bilet I. Podstwowe informcje 1. Do odwołni n wybrnych odcinkch sieci kolejowej wprowdz się ofertę Dobry bilet. 2. W ofercie wystwi się bilety: ) jednorzowy n przejzd tm (w dowolnym

Bardziej szczegółowo

1. Rachunki bieżące prowadzone w złotych polskich, a) MultiStarter BUSINESS, MultiKonta: e- BUSINESS CLASS, BUSINESS CLASS, BUSINESS MEDICUS:

1. Rachunki bieżące prowadzone w złotych polskich, a) MultiStarter BUSINESS, MultiKonta: e- BUSINESS CLASS, BUSINESS CLASS, BUSINESS MEDICUS: Zmny d Tryfy prwzj płt d frm w rmch bnkwśc detcznej mbnku.a. (dwny MutBnk) Zmny dtyczą: - ujedncen defncj dtyczących przeewów: 1. Rchunk beżące prwdzne w tych pskch, ) Muttrter, MutKnt:,, MEDICU: Wprwdzne

Bardziej szczegółowo

Podstawy programowania obiektowego

Podstawy programowania obiektowego 1/3 Podstwy progrmowni oiektowego emil: m.tedzki@p.edu.pl stron: http://rgorn.p.ilystok.pl/~tedzki/ Mrek Tędzki Wymgni wstępne: Wskzn yły znjomość podstw progrmowni strukturlnego (w dowolnym języku). Temty

Bardziej szczegółowo

Strategiczna polityka handlowa. Jan J. Michałek Leszek Wincenciak

Strategiczna polityka handlowa. Jan J. Michałek Leszek Wincenciak Strtegizn polityk hndlow Jn J. Mihłek Lezek Winenik Argumenty n rzez ktywnej polityki hndlowej Prolem efektów zewntrznyh (np. głzie wyokih tehnologii) Firmy, które inwetuj w nowe tehnologie, wpływj n rozprzetrzeninie

Bardziej szczegółowo

Równania nieliniowe. x i 1

Równania nieliniowe. x i 1 MN 08 Równni nieliniowe Wprowdzenie Podstwowe pytni 1. Pytnie: Czy komputer umie rozwiązywć równni nieliniowe f(x) = 0? Odpowiedź (uczciw): nie. 2. P: To jk on to robi? O: Dokłdnie tk, jk przy cłkowniu

Bardziej szczegółowo

Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych

Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych Klucz odpowiedzi do zdń zmkniętc i scemt ocenini zdń otwrtc Klucz odpowiedzi do zdń zmkniętc 4 7 9 0 4 7 9 0 D D D Scemt ocenini zdń otwrtc Zdnie (pkt) Rozwiąż nierówność x x 0 Oliczm wróżnik i miejsc

Bardziej szczegółowo

WYBRANE METODY ANALIZY WIELOKRYTERIALNEJ W OCENIE UŻYTECZNOŚCI SERWISÓW INTERNETOWYCH

WYBRANE METODY ANALIZY WIELOKRYTERIALNEJ W OCENIE UŻYTECZNOŚCI SERWISÓW INTERNETOWYCH ZESZYTY NAUKOE UNIERSYTETU SZCZECIŃSKIEGO NR 656 STUDIA INFORMATICA NR 8 011 LUIZA FABISIAK Unwersytet Szczecńs PAEŁ ZIEMBA Zchodnopomors Unwersytet Technologczny w Szczecne YBRANE METODY ANALIZY IELOKRYTERIALNEJ

Bardziej szczegółowo

Wykład 7: Pochodna funkcji zastosowania do badania przebiegu zmienności funkcji

Wykład 7: Pochodna funkcji zastosowania do badania przebiegu zmienności funkcji Wkłd 7: Pochodn funkcji zstosowni do bdni przebiegu zmienności funkcji dr Mriusz Grządziel semestr zimow, rok kdemicki 2013/2014 Funkcj logistczn Rozwżm funkcję logistczną = f 0 (t) = 1+5e 0,5t f(t) 0

Bardziej szczegółowo

Twoje zdrowie -isamopoczucie

Twoje zdrowie -isamopoczucie Twoje zdrowie -ismopoczucie Kidney Disese nd Qulity of Life (KDQOL-SF ) Poniższ nkiet zwier pytni dotyczące Pn/Pni opinii o włsnym zdrowiu. Informcje te pozwolą nm zorientowć się, jkie jest Pn/Pni smopoczucie

Bardziej szczegółowo

Rozdzielacz suwakowy sterowany elektrycznie typ WE10

Rozdzielacz suwakowy sterowany elektrycznie typ WE10 Rozdzielcz suwkowy sterowny elektrycznie typ WE WN do,5 M do dm /min KR KLOGOW - INSRUKCJ OSŁUGI WK 499 78.4 ZSOSOWNIE Rozdzielcz suwkowy sterowny elektrycznie typ WE jest przeznczony do zminy kierunku

Bardziej szczegółowo

5.4.1. Ruch unoszenia, względny i bezwzględny

5.4.1. Ruch unoszenia, względny i bezwzględny 5.4.1. Ruch unozeni, zględny i bezzględny Przy ominiu ruchu punktu lub bryły zkłdliśmy, że punkt lub brył poruzły ię zględem ukłdu odnieieni x, y, z użnego z nieruchomy. Możn rozptrzyć tki z przypdek,

Bardziej szczegółowo

MPEC wydaje warunki techniczne KONIEC

MPEC wydaje warunki techniczne KONIEC 1 2 3 1 2 2 1 3 MPEC wydaje warunk technczne 4 5 6 10 9 8 7 11 12 13 14 15 KONIEC 17 16 4 5 Chcesz wedzeć, czy masz możlwość przyłączena budynku Możlwośc dofnansowana wymany peców węglowych do sec mejskej?

Bardziej szczegółowo

Droga Pani/Drogi Panie! Wakacje minęły szybko i znowu możemy się spotkać. oraz za zabawami z koleżankami i kolegami.

Droga Pani/Drogi Panie! Wakacje minęły szybko i znowu możemy się spotkać. oraz za zabawami z koleżankami i kolegami. KARTY PRACY 1 CZĘŚĆ KARTA PRACY NR 1 IMIĘ:... DATA: STRONA 1 1. Jkie są twoje oczekiwni i postnowieni związne z kolejnym rokiem szkolnym? Npisz list do nuczyciel, uzupełnijąc luki w tekście. miejscowość

Bardziej szczegółowo

O RELACJACH MIĘDZY GRUPĄ OBROTÓW, A GRUPĄ PERMUTACJI

O RELACJACH MIĘDZY GRUPĄ OBROTÓW, A GRUPĄ PERMUTACJI ZESZYTY NAUKOWE 7-45 Zenon GNIAZDOWSKI O RELACJACH MIĘDZY GRUPĄ OBROTÓW, A GRUPĄ PERMUTACJI Streszczenie W prcy omówiono grupę permutcji osi krtezjńskiego ukłdu odniesieni reprezentowną przez mcierze permutcji,

Bardziej szczegółowo

załącznik nr 3 do uchwały nr V-38-11 Rady Miejskiej w Andrychowie z dnia 24 lutego 2011 r.

załącznik nr 3 do uchwały nr V-38-11 Rady Miejskiej w Andrychowie z dnia 24 lutego 2011 r. złącznik nr 3 do uchwły nr V-38-11 Rdy Miejskiej w Andrychowie z dni 24 lutego 2011 r. ROZSTRZYGNIĘCIE O SPOSOBIE ROZPATRZENIA UWAG WNIESIONYCH DO WYŁOŻONEGO DO PUBLICZNEGO WGLĄDU PROJEKTU ZMIANY MIEJSCOWEGO

Bardziej szczegółowo

Laura Opalska. Klasa 1. Gimnazjum nr 1 z Oddziałami Integracyjnym i Sportowymi im. Bł. Salomei w Skale

Laura Opalska. Klasa 1. Gimnazjum nr 1 z Oddziałami Integracyjnym i Sportowymi im. Bł. Salomei w Skale Trójkąt Pscl od kuchni Kls 1 Gimnzjum nr 1 z Oddziłmi Integrcyjnym i Sportowymi im. Bł. Slomei w Skle ul. Ks.St.Połetk 32 32-043 Skł Gimnzjum nr 1 z Oddziłmi Integrcyjnymi i Sportowymi im. Bł. Slomei w

Bardziej szczegółowo

PROGNOZOWANIE FINANSOWYCH SZEREGÓW CZASOWYCH

PROGNOZOWANIE FINANSOWYCH SZEREGÓW CZASOWYCH SSof Polsk, el. (1) 4843, (61) 414151, info@ssof.pl, www.ssof.pl PROGNOZOWANIE FINANSOWYCH SZEREGÓW CZASOWYCH Andrzej Sokołowski Akdemi Ekonomiczn w Krkowie, Zkłd Sysyki W oprcowniu ym przedswiono pewną

Bardziej szczegółowo

Wykład 6 Dyfrakcja Fresnela i Fraunhofera

Wykład 6 Dyfrakcja Fresnela i Fraunhofera Wykłd 6 Dyfrkcj Fresnel i Frunhofer Zjwisko dyfrkcji (ugięci) świtł odkrył Grimldi (XVII w). Poleg ono n uginniu się promieni świetlnych przechodzących w pobliżu przeszkody (np. brzeg szczeliny). Wyjśnienie

Bardziej szczegółowo

WYMAGANIA I KRYTERIA OCENIANIA DO EGZAMINU POPRAWKOWEGO MATEMATYKA. Zakresie podstawowym i rozszerzonym. Klasa II rok szkolny 2011/2012

WYMAGANIA I KRYTERIA OCENIANIA DO EGZAMINU POPRAWKOWEGO MATEMATYKA. Zakresie podstawowym i rozszerzonym. Klasa II rok szkolny 2011/2012 mgr Jolnt Chlebd mgr Mri Mślnk mgr Leszek Mślnk mgr inż. Rent itl mgr inż. Henryk Stępniowski Zespół Szkół ondgimnzjlnych Młopolsk Szkoł Gościnności w Myślenicch WYMAGANIA I RYTERIA OCENIANIA DO EGZAMINU

Bardziej szczegółowo

GŁÓWNY URZĄD STATYSTYCZNY, al. Niepodległości 208, 00-925 Warszawa DS-50 I OCHRONA ZDROWIA W GOSPODARSTWACH DOMOWYCH, Kwestionariusz indywidualny

GŁÓWNY URZĄD STATYSTYCZNY, al. Niepodległości 208, 00-925 Warszawa DS-50 I OCHRONA ZDROWIA W GOSPODARSTWACH DOMOWYCH, Kwestionariusz indywidualny GŁÓWNY URZĄD STATYSTYCZNY, l. Niepodległośi 08, 00-95 Wrszw www.stt.gov.pl Dził 1. CHARAKTERYSTYKA OSOBY 1. Symol województw gospodrstw domowego. Nr gospodrstw domowego. Nr kolejny osoy ojętej dniem w

Bardziej szczegółowo

I. INFORMACJE OGÓLNE O PROJEKCIE 1. Tytuł projektu. 2. Identyfikacja rodzaju interwencji

I. INFORMACJE OGÓLNE O PROJEKCIE 1. Tytuł projektu. 2. Identyfikacja rodzaju interwencji MINISTERSTWO ROZWOJU REGIONALNEGO Progrm Opercyjny Innowcyjn Gospodrk Wniosek o dofinnsownie relizcji projektu 8. Oś Priorytetow: Społeczeństwo informcyjne zwiększnie innowcyjności gospodrki Dziłnie 8.2:

Bardziej szczegółowo

Dorota Ponczek, Karolina Wej. MATeMAtyka 2. Plan wynikowy. Zakres podstawowy

Dorota Ponczek, Karolina Wej. MATeMAtyka 2. Plan wynikowy. Zakres podstawowy Dorot Ponczek, rolin Wej MATeMAtyk Pln wynikowy Zkres podstwowy MATeMAtyk. Pln wynikowy. ZP Oznczeni: wymgni konieczne, P wymgni podstwowe, R wymgni rozszerzjące, D wymgni dopełnijące, W wymgni wykrczjące

Bardziej szczegółowo

Ocena jakościowo-cenowych strategii konkurowania w polskim handlu produktami rolno-spożywczymi. dr Iwona Szczepaniak

Ocena jakościowo-cenowych strategii konkurowania w polskim handlu produktami rolno-spożywczymi. dr Iwona Szczepaniak Ocena jakoścowo-cenowych strateg konkurowana w polskm handlu produktam rolno-spożywczym dr Iwona Szczepanak Ekonomczne, społeczne nstytucjonalne czynnk wzrostu w sektorze rolno-spożywczym w Europe Cechocnek,

Bardziej szczegółowo