Stanisław Cichocki. Natalia Nehrebecka. Wykład 7
|
|
- Bogumił Barański
- 6 lat temu
- Przeglądów:
Transkrypt
1 Stansław Cchock Natala Nehrebecka Wykład 7
2 . Zmenne dyskretne Kontrasty: efekty progowe, kontrasty w odchylenach Interakcje. Przyblżane model nelnowych
3 Stosowane do zmennych dyskretnych o uporządkowanych kategorach (rosnąco lub malejąco). Przy standardowym rozkodowanu zmennej dyskretnej na zmenne zerojedynkowe, kategore wprowadzone do modelu nterpretuje sę względem kategor w modelu neuwzględnonej (bazowej). Newadomo natomast jak zmena sę pozom analzowanego zjawska przy przejścu z jednej kategor wprowadzonej do modelu do drugej. Na taką nterpretację pozwalają efekty progowe. 3
4 Sposób zdefnowana zmennych zerojedynkowych zależy od tego, czy uporządkowane zmennej dyskretnej jest rosnące, czy malejące. W przypadku porządku rosnącego zmenne zerojedynkowe zdefnowane są następująco: + D s, = dla dla W przypadku porządku malejącego zmenne zerojedynkowe zdefnowane są następująco: D s, = dla dla z z z z < > s s s s Dla s =,...,S Dla s =,...,S- 4
5 masto Freq. Percent Cum wes masto do 5tyś masto od 5tyś do 5tyś masto powyżej 5tyś Total,83. generate masto_male = (masto > ) generate masto_sredne = (masto > ) generate masto_duze = (masto > 3) 5
6 . generate masto_male = (masto > ). generate masto_sredne = (masto > ). generate masto_duze = (masto > 3). regres dochod wek wek_ masto_male masto_sredne masto_duze Source SS df MS Number of obs = F( 5, 77) = 7. Model Prob > F =. Resdual R-squared = Adj R-squared =.74 Total Root MSE = dochod Coef. Std. Err. t P> t [95% Conf. Interval] wek wek_ masto_male masto_sredne masto_duze _cons
7 Jeśl jednym z celów badana jest zdentyfkowane pozomów zmennej dyskretnej, których wpływ wyróżna sę znacząco od wpływu pozostałych pozomów, wtedy celowe jest użyce tak zwanych kontrastów w odchylenach. 7
8 W modelu będzemy uzależnać dochód od weku, płc oraz zmennej województwo (6 pozomów): Dolnośląske Kujawsko-pomorske 3 Lubelske 4 Lubuske 5 Łódzke 6 Małopolske 7 Mazowecke 8 Opolske 9 Podkarpacke Podlaske Pomorske Śląske 3 Śwętokrzyske 4 Warmńsko-mazurske 5 Welkopolske 6 Zachodnopomorske 8
9 Krok : tworzymy 6 zmennych zerojedynkowych odpowadających zmennej województwo: dla dla woj D s, = Dla s =,...,6 woj = j j Krok : Następne defnujemy zmenne: D s, = Ds, D, dla s =,..,6 9
10 Krok 3: Zapsujemy regresje: placa = β + D + ε wek + β plec + + D, , W jak sposób można nterpretować parametry przy zmennych D s,. Dla każdej obserwacj zachodz: D, D6, = placa placa = β wek = β wek + β plec + β plec + ( D, D 6, + (... 6 ) D ) + ( D,, D, + ( + ) D ) , 6 ( D 6, D, ( + 6) D 6 ) + ε 6, + ε
11 Przekształclśmy model do modelu bez stałej. Sumujemy parametry przy zmennych zerojedynkowych dotyczących województwa: 6 s = s s = 6 = 6 = 6 s Czyl stała w modelu jest średną z parametrów dla poszczególnych zmennych dotyczących województwa.
12 Pozostaje nadane nterpretacj parametrom przy zmennych D s, : Czyl parametry można nterpretować jako odchylena parametrów dla poszczególnych pozomów województwa od średnej z tych parametrów. Trzeba jeszcze wyznaczyć odchylene od średnej dla pozomu bazowego : = + = = + = S = =
13 Płaca mejsce zameszkana: kontrasty w odchylenach =... 6 =, dla Dolnośląskego woj. 3
14 W standardowym modelu lnowym zakładamy, że wpływ poszczególnych zmennych nezależnych na oczekwaną wartość zmennej nezależnej jest addytywny. W ramach modelu lnowego można także uwzględnć efekt krzyżowego wzmacnana sę efektów poszczególnych zmennych. Efekt ten zachodz, gdy sła oddzaływana jednej zmennej nezależnej jest uwarunkowana welkoścą nnych zmennych nezależnych. Ten efekt można uwzględnć, wstawając do modelu loczyny zmennych (nterakcje). 4
15 Interakcje mędzy zmennym zerojedynkowym berzemy pod uwagę, jeśl wpływ poszczególnych zmennych ne jest addytywny. Sytuacja taka może wystąpć, jeśl pewne kombnacje charakterystyk jakoścowych wpływają na zmenną zależną bardzej lub mnej, nż wynkałoby z wpływu poszczególnych zmennych. Np. Zmenna zależna: dochód Zmenne nezależna płeć, wykształcene, nterakcja: płećxwykształcene Do modelu wprowadzamy nterakcje, poneważ spodzewamy sę, ż wpływ zmennej oznaczającej wykształcene zależy od płc. 5
16 dochod - zmenna zależna, wek, wek_ oraz nterakcje medzy wykształcenem płcą - zmenne nezależne : regress dochod wek wek_.plec.wyksztalcene Source SS df MS Number of obs = F( 7, 75) = 8.83 Model Prob > F =. Resdual R-squared = Adj R-squared =.34 Total Root MSE = dochod Coef. Std. Err. t P> t [95% Conf. Interval] wek wek_ _Iplec_ _Iwyksztal~ _Iwyksztal~ _IpleXwyk_~ _IpleXwyk_~ _cons
17 Wprowadzene do modelu nterakcj pomędzy zmennym dyskretnym cągłym ma sens, jeśl wpływ pewnej zmennej nezależnej cągłej na zmenną zależną zależy od pozomów zmennej dyskretnej. 7
18 nterakcje mędzy zmenną masto a wekem : regress dochod.masto_wek Source SS df MS Number of obs = F( 7, 75) = 4.5 Model Prob > F =. Resdual R-squared = Adj R-squared =. Total Root MSE = dochod Coef. Std. Err. t P> t [95% Conf. Interval] _Imasto _Imasto _Imasto wek _ImaXwek_ _ImaXwek_ _ImaXwek_ _cons
19 . Zmenne dyskretne Kontrasty: efekty progowe, kontrasty w odchylenach Interakcje. Przyblżane model nelnowych Modele welomanowe Model schodkowy Model krzywej łamanej
20 Nelnowa zależność mędzy y a można przyblżyć za pomocą modelu lnowego stosując model:. Model welomanowy y = β + β + β β + k K ε Przy wększej lczbe zmennych objaśnających wstawa sę do modelu ch kwadraty loczyny
21 . regress dochod wek wek_ plec sredne wyzsze Source SS df MS Number of obs = F( 5, 77) =.98 Model Prob > F =. Resdual R-squared = Adj R-squared =.9 Total Root MSE = dochod Coef. Std. Err. t P> t [95% Conf. Interval] wek wek_ plec sredne wyzsze _cons
22 Średn pozom dochodu w zależnośc od weku
23 Nelnowa zależność mędzy y a można przyblżyć za pomocą modelu lnowego stosując model:. Model schodkowy W tym przypadku defnujemy zmenne zerojedynkowe zwązane z przedzałam przeprowadzamy regresję na tych zmennych zamast na. Wyestymowany model można zlustrować rysunkem: 3
24 4
25 generate wek_ = (wek > 5 & wek <= 35) generate wek_3 = (wek > 35 & wek <= 45) generate wek_4 = (wek > 45 & wek <= 55) generate wek_5 = (wek > 55) regress dochod wek_? Source SS df MS Number of obs = F( 4, 78) =.33 Model Prob > F =.544 Resdual R-squared = Adj R-squared =.49 Total Root MSE = dochod Coef. Std. Err. t P> t [95% Conf. Interval] wek_ wek_ wek_ wek_ _cons
26 Nelnowa zależność mędzy y a można przyblżyć za pomocą modelu lnowego stosując model: 3. Model krzywej łamanej Zależność nelnowa przyblżona jest w tym przypadku krzywą, którą można zlustrować rysunkem: 6 Model krzywej łamanej > < = = ) ( ) ( ) ( s s s s j j j j dla dla dla y ε β β β α ε β β α ε β α
27 regress dochod wek wek_45 plec sredne wyzsze Source SS df MS Number of obs = F( 5, 77) =.9 Model Prob > F =. Resdual R-squared = Adj R-squared =.9 Total Root MSE = dochod Coef. Std. Err. t P> t [95% Conf. Interval] wek wek_ plec sredne wyzsze _cons
28 Średn pozom dochodu w zależnośc od weku
29 Dzękuję za uwagę 9
Ntli Natalia Nehrebecka. Dariusz Szymański. Zajęcia 4
Ntl Natala Nehrebecka Darusz Szymańsk Zajęca 4 1 1. Zmenne dyskretne 3. Modele z nterakcjam 2. Przyblżane model dlnelnowych 2 Zmenne dyskretne Zmenne nomnalne Zmenne uporządkowane 3 Neco bardzej skomplkowana
Stanisław Cichocki. Natalia Nehrebecka. Wykład 7
Stansław Cchock Natala Nehrebecka Wykład 7 1 1. Interakcje 2. Przyblżane model nelnowych 3. Założena KMRL 1. Interakcje 2. Przyblżane model nelnowych 3. Założena KMRL W standardowym modelu lnowym zakładamy,
Natalia Nehrebecka Stanisław Cichocki. Wykład 6
Natalia Nehrebecka Stanisław Cichocki Wykład 6 1 1. Zmienne dyskretne Zmienne zero-jedynkowe 2. Modele z interakcjami 2 Zmienne dyskretne Zmienne nominalne Zmienne uporządkowane 3 4 1 podstawowe i 0 podstawowe
Natalia Nehrebecka Stanisław Cichocki. Wykład 10
Natala Nehrebecka Stansław Cchock Wykład 10 1 1. Testy dagnostyczne 2. Testowane prawdłowośc formy funkcyjnej modelu 3. Testowane normalnośc składnków losowych 4. Testowane stablnośc parametrów 5. Testowane
Zmienne sztuczne i jakościowe
Zmienne o ograniczonym zbiorze wartości Przykład 1. zarobki = β 0 + β 1 liczba godzin pracy + β 2 wykształcenie + ε Przykład 2. zarobki = β 0 + β 1 liczba godzin pracy + β 2 klm + ε zarobki = β 0 + β 1
Stanisław Cichocki. Natalia Nehrebecka. Wykład 6
Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Interpretacja parametrów przy zmennych objaśnających cągłych Semelastyczność 2. Zastosowane modelu potęgowego Model potęgowy 3. Zmenne cągłe za zmenne dyskretne
Stanisław Cichocki. Natalia Nehrebecka. Wykład 6
Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Zastosowane modelu potęgowego Przekształcene Boxa-Coxa 2. Zmenne cągłe za zmenne dyskretne 3. Interpretacja parametrów przy zmennych dyskretnych 1. Zastosowane
Stanisław Cichocki. Natalia Nehrebecka. Wykład 7
Stansław Cchock Natala Nehrebecka Wykład 7 1 1. Zmenne cągłe a zmenne dyskretne 2. Interpretacja parametrów przy zmennych dyskretnych 1. Zmenne cągłe a zmenne dyskretne 2. Interpretacja parametrów przy
0. Oszacowanie kilku prostych regresji, interpretacja oszacować parametrów
0. Oszacowane klku prostych regresj, nterpretacja oszacować parametrów Zacznemy od oszacowana metodą najmnejszych kwadratów następującego modelu: dochod = β0 + βwekwek + ε Najperw zastanowmy sę w jak sposób
Natalia Nehrebecka. Zajęcia 4
St ł Cchock Stansław C h k Natala Nehrebecka Zajęca 4 1. Interpretacja parametrów przy zmennych zerojedynkowych Zmenne 0 1 Interpretacja przy zmennej 0 1 w modelu lnowym względem zmennych objaśnających
Stanisław Cichocki Natalia Nehrebecka. Zajęcia 4
Stansław Cchock Natala Nehrebecka Zajęca 4 1. Interpretacja parametrów przy zmennych zerojedynkowych Zmenne 0-1 Interpretacja przy zmennej 0 1 w modelu lnowym względem zmennych objaśnających Interpretacja
Stanisław Cichocki. Natalia Nehrebecka. Wykład 6
Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Zastosowane modelu potęgowego Model potęgowy Przekształcene Boxa-Coxa 2. Zmenne cągłe za zmenne dyskretne 3. Interpretacja parametrów przy zmennych dyskretnych
Stanisław Cichocki. Natalia Nehrebecka. Wykład 11
Stansław Cchock Natala Nehrebecka Wykład 11 1 1. Testowane hpotez łącznych 2. Testy dagnostyczne Testowane prawdłowośc formy funkcyjnej: test RESET Testowane normalnośc składnków losowych: test Jarque-Berra
Testowanie hipotez statystycznych
Część 2 Hipoteza złożona Testowanie hipotez łącznych Zapis matematyczny Rozkład statystyki testowej Hipoteza łączna H 0 : Rβ = q Hipoteza złożona Testowanie hipotez łącznych Zapis matematyczny Rozkład
VI MISTRZOSTWA POLSKI URZĘDÓW MARSZAŁKOWSKICH W PIŁCE NOŻNEJ LUBELSKIE 2013 ZAMOŚĆ, września 2013 r. KOMUNIKAT KOŃCOWY
KOMUNKAT KOŃCOWY Gr. A Gr. B A. LUBELSKE B. ŚLĄSKE A. ŁÓDZKE B. ZACHODNOPOMORSKE A. KUJAWSKO-POMORSKE B. PODKARPACKE A. MAZOWECKE B. MAŁOPOLSKE Gr. C Gr. D _ C. OPOLSKE D. DOLNOŚLĄSKE C. WARMŃSKO-MAZURSKE
Metoda najmniejszych kwadratów
Własności algebraiczne Model liniowy Zapis modelu zarobki = β 0 + β 1 plec + β 2 wiek + ε Oszacowania wartości współczynników zarobki = b 0 + b 1 plec + b 2 wiek + e Model liniowy Tabela: Oszacowania współczynników
Natalia Nehrebecka. Zajęcia 3
St ł Cchock Stansław C h k Natala Nehrebecka Zajęca 3 1. Dobroć dopasowana równana regresj. Współczynnk determnacj R Dk Dekompozycja warancj zmennej zależnej ż Współczynnk determnacj R. Zmenne cągłe a
Natalia Nehrebecka Stanisław Cichocki. Wykład 10
Natalia Nehrebecka Stanisław Cichocki Wykład 10 1 1. Testy diagnostyczne 2. Testowanie prawidłowości formy funkcyjnej modelu 3. Testowanie normalności składników losowych 4. Testowanie stabilności parametrów
IID = 2. i i i i. x nx nx nx
Zadane Analzujemy model z jedną zmenną objaśnającą bez wyrazu wolnego: y = β x + ε, ε ~ (0, σ ), gdze x jest nelosowe.. Wyznacz estymator MNK parametru β oraz oblcz jego warancję. (4 pkt) y. Zaproponowano
Wprowadzenie Testy własności składnika losowego. Diagnostyka modelu. Część 1. Diagnostyka modelu
Część 1 Testy i ich rodzaje Statystyka NR 2 Cel testowania Testy i ich rodzaje Statystyka NR 2 Cel testowania Testy małej próby Testy i ich rodzaje Statystyka NR 2 Cel testowania Testy małej próby Testy
Stanisław Cichocki. Natalia Nehrebecka. Wykład 9
Stanisław Cichocki Natalia Nehrebecka Wykład 9 1 1. Dodatkowe założenie KMRL 2. Testowanie hipotez prostych Rozkład estymatora b Testowanie hipotez prostych przy użyciu statystyki t 3. Przedziały ufności
Egzamin z ekonometrii - wersja ogólna
Egzamin z ekonometrii - wersja ogólna 06-02-2019 Regulamin egzaminu 1. Egzamin trwa 90 min. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.
Opis danych znajdujących się w zbiorze
Ops danych znajdujących sę w zborze 1) masto welkość mejscowośc, w której meszka respondent 1 respondent meszka na ws 2 respondent meszka w meśce do 10 tyś. 3 respondent meszka w meśce od 10 tyś. do 25
Zmienne Binarne w Pakiecie Stata
Karol Kuhl Zbiór (hipotetyczny) dummy.dta zawiera dane, na podstawie których prowadzono analizy opisane poniżej. Nazwy zmiennych oznaczają: doch dochód w jednostkach pieniężnych; plec płeć: kobieta (0),
Budowa modelu i testowanie hipotez
Problemy metodologiczne Gdzie jest problem? Obciążenie Lovella Dysponujemy oszacowaniami parametrów następującego modelu y t = β 0 + β 1 x 1 +... + β k x k + ε t Gdzie jest problem? Obciążenie Lovella
Egzamin z ekonometrii wersja IiE, MSEMAT
Pytania teoretyczne Egzamin z ekonometrii wersja IiE, MSEMAT 08-02-2017 1. W jaki sposób przeprowadzamy test Chowa? 2. Pokazać, że jest nieobciążonym estymatorem. 3. Udowodnić, że w modelu ze stałą TSSESS+RSS.
Stanisław Cichocki. Natalia Nehrebecka
Stanisław Cichocki Natalia Nehrebecka 1 1. Wstęp a) Binarne zmienne zależne b) Interpretacja ekonomiczna c) Interpretacja współczynników 2. Liniowy model prawdopodobieństwa a) Interpretacja współczynników
Stanisław Cichocki Natalia Nehrebecka. Wykład 1
Stanisław Cichocki Natalia Nehrebecka Wykład 1 1 1. Sprawy organizacyjne Zasady zaliczenia Ćwiczenia Literatura 2. Obciążenie Lovella 3. Metoda od ogólnego do szczególnego 4. Kryteria informacyjne 2 1.
Stanisław Cichocki. Natalia Nehrebecka. Wykład 14
Stanisław Cichocki Natalia Nehrebecka Wykład 14 1 1.Problemy z danymi Współliniowość 2. Heteroskedastyczność i autokorelacja Konsekwencje heteroskedastyczności i autokorelacji Metody radzenia sobie z heteroskedastycznością
Ekonometria dla IiE i MSEMat Z12
Ekonometria dla IiE i MSEMat Z12 Rafał Woźniak Faculty of Economic Sciences, University of Warsaw Warszawa, 09-01-2017 Test RESET Ramsey a W pierwszym etapie estymujemy współczynniki regresji w modelu:
Stanisław Cichocki. Natalia Nehrebecka
Stanisław Cichocki Natalia Nehrebecka 1 1. Wstęp a) Binarne zmienne zależne b) Interpretacja ekonomiczna c) Interpretacja współczynników 2. Liniowy model prawdopodobieństwa a) Interpretacja współczynników
Testy własności składnika losowego Testy formy funkcyjnej. Diagnostyka modelu. Część 2. Diagnostyka modelu
Część 2 Test Durbina-Watsona Test Durbina-Watsona Weryfikowana hipoteza H 0 : cov(ε t, ε t 1 ) = 0 H 1 : cov(ε t, ε t 1 ) 0 Test Durbina-Watsona Weryfikowana hipoteza H 0 : cov(ε t, ε t 1 ) = 0 H 1 : cov(ε
Stanisław Cichocki. Natalia Nehrebecka. Wykład 10
Stanisław Cichoci Natalia Nehrebeca Wyład 10 1 1. Testowanie hipotez prostych Rozład estymatora b Testowanie hipotez prostych przy użyciu statystyi t Przedziały ufności Badamy czy hipotezy teoretyczne
1 Modele ADL - interpretacja współczynników
1 Modele ADL - interpretacja współczynników ZADANIE 1.1 Dany jest proces DL następującej postaci: y t = µ + β 0 x t + β 1 x t 1 + ε t. 1. Wyjaśnić, jaka jest intepretacja współczynników β 0 i β 1. 2. Pokazać
Heteroscedastyczność. Zjawisko heteroscedastyczności Uogólniona Metoda Najmniejszych Kwadratów Stosowalna Metoda Najmniejszych Kwadratów
Formy heteroscedastyczności Własności estymatorów MNK wydatki konsumpcyjne 0 10000 20000 30000 40000 14.4 31786.08 dochód rozporz¹dzalny Zródlo: Obliczenia wlasne, dane BBGD 2004 Formy heteroscedastyczności
Stanisław Cichocki. Natalia Nehrebecka. Wykład 12
Stanisław Cichocki Natalia Nehrebecka Wykład 12 1 1.Problemy z danymi Zmienne pominięte Zmienne nieistotne 2. Autokorelacja o Testowanie autokorelacji 1.Problemy z danymi Zmienne pominięte Zmienne nieistotne
, a reszta dla pominiętej obserwacji wynosi 0, RSS jest stałe, T SS rośnie, więc zarówno R 2 jak i R2 rosną. R 2 = 1 n 1 n. rosnie. n 2 (1 R2 ) = 1 59
Zadanie 1. Ekonometryk szacując funkcję konsumpcji przeprowadził estymację osobno dla tzw. Polski A oraz Polski B. Dla Polski A posiadał n 1 = 40 obserwacji i uzyskał współczynnik dopasowania RA 2 = 0.4,
Przyczynowość Kointegracja. Kointegracja. Kointegracja
korelacja a związek o charakterze przyczynowo-skutkowym korelacja a związek o charakterze przyczynowo-skutkowym Przyczynowość w sensie Grangera Zmienna x jest przyczyną w sensie Grangera zmiennej y jeżeli
Ekonometria dla IiE i MSEMat Z7
Ekonometria dla IiE i MSEMat Z7 Rafał Woźniak Faculty of Economic Sciences, University of Warsaw Warszawa, 21-11-2016 Na podstawie zbioru danych cps_small.dat z książki Principles of Econometrics oszacowany
Egzamin z ekonometrii wersja ogólna Pytania teoretyczne
Egzamin z ekonometrii wersja ogólna 08-02-2017 Pytania teoretyczne 1. Za pomocą którego testu testujemy stabilność parametrów? Jakiemu założeniu KMRL odpowiada H0 w tym teście? Jaka jest hipoteza alternatywna
Wprowadzenie Modele o opóźnieniach rozłożonych Modele autoregresyjne o opóźnieniach rozłożonych. Modele dynamiczne.
opisują kształtowanie się zjawiska w czasie opisują kształtowanie się zjawiska w czasie Najważniejszymi zastosowaniami modeli dynamicznych są opisują kształtowanie się zjawiska w czasie Najważniejszymi
Egzamin z ekonometrii wersja IiE, MSEMAT
Egzamin z ekonometrii wersja IiE, MSEMAT 04-02-2016 Pytania teoretyczne 1. Za pomocą jakiego testu weryfikowana jest normalność składnika losowego? Jakiemu założeniu KMRL odpowiada w tym teście? Jakie
Stanisław Cichocki. Natalia Nehrebecka. Wykład 4
Stanisław Cichocki Natalia Nehrebecka Wykład 4 1 1. Własności hiperpłaszczyzny regresji 2. Dobroć dopasowania równania regresji. Współczynnik determinacji R 2 Dekompozycja wariancji zmiennej zależnej Współczynnik
Stanisław Cichocki. Natalia Nehrebecka. Wykład 12
Stanisław Cichocki Natalia Nehrebecka Wykład 1 1 1. Testy diagnostyczne Testowanie stabilności parametrów modelu: test Chowa. Heteroskedastyczność Konsekwencje Testowanie heteroskedastyczności 1. Testy
ZASTOSOWANIE METOD WAP DO OCENY POZIOMU PRZESTRZENNEGO ZRÓŻNICOWANIA ROZWOJU ROLNICTWA W POLSCE
Inżynera Rolncza 1(126)/2011 ZASTOSOWANIE METOD WAP DO OCENY POZIOMU PRZESTRZENNEGO ZRÓŻNICOWANIA ROZWOJU ROLNICTWA W POLSCE Katedra Zastosowań Matematyk Informatyk, Unwersytet Przyrodnczy w Lublne w Lublne
Natalia Nehrebecka. Wykład 2
Natala Nehrebecka Wykład . Model lnowy Postad modelu lnowego Zaps macerzowy modelu lnowego. Estymacja modelu Wartośd teoretyczna (dopasowana) Reszty 3. MNK przypadek jednej zmennej . Model lnowy Postad
Egzamin z ekonometrii wersja ogólna Pytania teoretyczne
Egzamin z ekonometrii wersja ogólna 31-01-2014 Pytania teoretyczne 1. Podać postać przekształcenia Boxa-Coxa i wyjaśnić, do czego jest stosowane w ekonometrii. 2. Porównaj zastosowania znanych ci kontrastów
Problem równoczesności w MNK
Problem równoczesności w MNK O problemie równoczesności mówimy, gdy występuje korelacja między wartościa oczekiwana ε i i równoczesnym x i Model liniowy y = Xβ + ε, E (u) = 0 Powiedzmy, że występuje w
Ekonometria Ćwiczenia 19/01/05
Oszacowano regresję stopy bezrobocia (unemp) na wzroście realnego PKB (pkb) i stopie inflacji (cpi) oraz na zmiennych zero-jedynkowych związanymi z kwartałami (season). Regresję przeprowadzono na danych
Ekonometria egzamin 02/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.
imię, nazwisko, nr indeksu: Ekonometria egzamin 0/0/0. Egzamin trwa 90 minut.. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu. Złamanie
Ekonometria ćwiczenia Kolokwium 1 semestr 20/12/08. / 5 pkt. / 5 pkt. / 5 pkt. / 5 pkt. /20 pkt. Regulamin i informacje dodatkowe
Ekonometra IE Kolokwum 0/1/08 mę, nazwsko, nr ndeksu: Ekonometra ćwczena Kolokwum 1 semestr 0/1/08 Zadane 1 Zadane Zadane 3 Zadane 4 Razem / 5 pkt / 5 pkt / 5 pkt / 5 pkt /0 pkt Skala ocen: do 8,00 punktów
Modele wielorównaniowe (forma strukturalna)
Modele wielorównaniowe (forma strukturalna) Formę strukturalna modelu o G równaniach AY t = BX t + u t, gdzie Y t = [y 1t,..., y Gt ] X t = [x 1t,..., x Kt ] u t = [u 1t,..., u Gt ] E (u t ) = 0 Var (u
Czasowy wymiar danych
Problem autokorelacji Model regresji dla szeregów czasowych Model regresji dla szeregów czasowych y t = X t β + ε t Zasadnicze różnice 1 Budowa prognoz 2 Problem stabilności parametrów 3 Problem autokorelacji
Egzamin z ekonometrii wersja IiE, MSEMat Pytania teoretyczne
Egzamin z ekonometrii wersja IiE, MSEMat 31-01-2014 Pytania teoretyczne 1. Podać postać przekształcenia Boxa-Coxa i wyjaśnić, do czego jest stosowane w ekonometrii. 2. Wyjaśnić, jakie korzyści i niebezpieczeństwa
Ekonometria egzamin 02/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.
imię, nazwisko, nr indeksu: Ekonometria egzamin 02/02/2011 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.
Natalia Nehrebecka Stanisław Cichocki. Wykład 10
Natalia Nehrebecka Stanisław Cichocki Wykład 10 1 1. Testy diagnostyczne 2. Testowanie prawidłowości formy funkcyjnej modelu 3. Testowanie normalności składników losowych 4. Testowanie stabilności parametrów
Stanisław Cichocki. Natalia Nehrebecka. Wykład 10
Stanisław Cichocki Natalia Nehrebecka Wykład 10 1 1. Testy diagnostyczne Testowanie prawidłowości formy funkcyjnej: test RESET Testowanie normalności składników losowych: test Jarque-Berra Testowanie stabilności
1.6 Zmienne jakościowe i dyskretne w modelu regresji
1.6 Zmienne jakościowe i dyskretne w modelu regresji 1.6.1 Zmienne dyskretne i zero-jedynkowe (Dummy Variables) W badaniach ekonometrycznych bardzo często występują zjawiska, które opisujemy zmiennymi
Mikroekonometria 5. Mikołaj Czajkowski Wiktor Budziński
Mkroekonometra 5 Mkołaj Czajkowsk Wktor Budzńsk Uogólnone modele lnowe Uogólnone modele lnowe (ang. Generalzed Lnear Models GLM) Różną sę od standardowego MNK na dwa sposoby: Rozkład zmennej objaśnanej
Egzamin z ekonometrii wersja ogolna
Egzamin z ekonometrii wersja ogolna 04-02-2016 Pytania teoretyczne 1. Wymienić założenia Klasycznego Modelu Regresji Liniowej (KMRL). 2. Wyprowadzić estymator MNK dla modelu z wieloma zmiennymi objaśniającymi.
Perspektywy zachodniopomorskiego rynku pracy po 1 maja 2011 r.
Perspektywy zachodniopomorskiego rynku pracy po 1 maja 2011 r. Szczecin, 27 kwietnia 2011 r. Podstawowe dane o bezrobociu w województwie zachodniopomorskim wg stanu na koniec marca 2011 roku: STOPA BEZROBOCA
Heteroskedastyczość w szeregach czasowyh
Heteroskedastyczość w szeregach czasowyh Czesto zakłada się, że szeregi czasowe wykazuja autokorelację ae sa homoskedastyczne W rzeczywistości jednak często wariancja zmienia się w czasie Dobrym przykładem
Stanisław Cichocki. Natalia Nehrebecka. Wykład 14
Stanisław Cichocki Natalia Nehrebecka Wykład 14 1 1.Problemy z danymi Zmienne pominięte Zmienne nieistotne Obserwacje nietypowe i błędne Współliniowość - Mamy 2 modele: y X u 1 1 (1) y X X 1 1 2 2 (2)
Stanisław Cichocki. Natalia Nehrebecka
Stanisław Cichocki Natalia Nehrebecka 1 1. Wprowadzenie do danych panelowych a) Charakterystyka danych panelowych b) Zalety i ograniczenia 2. Modele ekonometryczne danych panelowych a) Model efektów nieobserwowalnych
Krzywa wieża w Pizie. SAS Data Step. Przykład (2) Wykład 13 Regresja liniowa
Bonformatyka - rozwój oferty edukacyjnej Unwersytetu Przyrodnczego we Wrocławu projekt realzowany w ramac Programu Operacyjnego Kaptał Ludzk współfnansowanego ze środków Europejskego Funduszu Społecznego
Natalia Nehrebecka. Wykład 1
Natalia Nehrebecka Wykład 1 1 1. Sprawy organizacyjne Zasady zaliczenia Dwiczenia Literatura 2. Czym zajmuje się ekonometria? 3. Formy danych statystycznych 4. Model ekonometryczny 2 1. Sprawy organizacyjne
65120/ / / /200
. W celu zbadana zależnośc pomędzy płcą klentów ch preferencjam, wylosowano kobet mężczyzn zadano m pytane: uważasz za lepszy produkt frmy A czy B? Wynk były następujące: Odpowedź Kobety Mężczyźn Wolę
Ćwiczenia 7 Drugie zajęcia w pracowni komputerowej.
Ćwczena 7 Druge zajęca w pracown komputerowej. Uruchom Statę. /standardowo:/ set mat 800 set mem 00m /wczytane zboru danych dane_4.dta / use "x:\trybnk\dane_4.dta", clear TROCHĘ PROSTEJ GRAFIKI W STACIE:
Stanisław Cichocki Natalia Nehrebecka. Wykład 2
Sansław Cchock Naala Nehrebecka Wykład 2 1 1. Szereg czasowy 2. Sezonowość 3. Zmenne sacjonarne 4. Zmenne znegrowane 2 1. Szereg czasowy 2. Sezonowość 3. Zmenne sacjonarne 4. Zmenne znegrowane 3 Szereg
Ekonometria. Metodologia budowy modelu. Jerzy Mycielski. Luty, 2011 WNE, UW. Jerzy Mycielski (WNE, UW) Ekonometria Luty, / 18
Ekonometria Metodologia budowy modelu Jerzy Mycielski WNE, UW Luty, 2011 Jerzy Mycielski (WNE, UW) Ekonometria Luty, 2011 1 / 18 Sprawy organizacyjne Dyżur: środa godz. 14-15 w sali 302. Strona internetowa
Stanisław Cichocki Natalia Nehrebecka. Wykład 2
Sansław Cchock Naala Nehrebecka Wykład 2 1 1. Szereg czasowy 2. Sezonowość 3. Zmenne sacjonarne 2 1. Szereg czasowy 2. Sezonowość 3. Zmenne sacjonarne 3 Szereg czasowy jes pojedynczą realzacją pewnego
Autokorelacja i heteroskedastyczność
Autokorelacja i heteroskedastyczność Założenie o braku autokorelacji Cov (ε i, ε j ) = E (ε i ε j ) = 0 dla i j Oczekiwana wielkość elementu losowego nie zależy od wielkości elementu losowego dla innych
Plan wykładu: Typowe dane. Jednoczynnikowa Analiza wariancji. Zasada: porównać zmienność pomiędzy i wewnątrz grup
Jednoczynnkowa Analza Waranc (ANOVA) Wykład 11 Przypomnene: wykłady zadana kursu były zaczerpnęte z podręcznków: Statystyka dla studentów kerunków techncznych przyrodnczych, J. Koronack, J. Melnczuk, WNT
Stanisław Cichocki. Natalia Nehrebecka. Wykład 13
Stanisław Cichocki Natalia Nehrebecka Wykład 13 1 1. Autokorelacja Konsekwencje Testowanie autokorelacji 2. Metody radzenia sobie z heteroskedastycznością i autokorelacją Uogólniona Metoda Najmniejszych
Natalia Nehrebecka. 18 maja 2010
Natalia Nehrebecka 18 maja 2010 1. Testy diagnostyczne 2. Testowanie prawidłowości formy funkcyjnej modelu 3. Testowanie normalności składników losowych 4. Testowanie stabilności parametrów 5. Testowanie
Ocena stopnia zagrożenia bezrobociem województw Polski w latach
Zeszyty Unwersytet Ekonomczny w Krakowe Naukowe 4 (94) ISSN 1898-6447 Zesz. Nauk. UEK, 15; 4 (94): 145 161 OI: 1.15678/ZNUEK.15.94.411 Monka Mśkewcz-Nawrocka Katarzyna Zeug-Żebro Katedra Matematyk Unwersytet
Diagnostyka w Pakiecie Stata
Karol Kuhl Zgodnie z twierdzeniem Gaussa-Markowa, estymator MNK w KMRL jest liniowym estymatorem efektywnym i nieobciążonym, co po angielsku opisuje się za pomocą wyrażenia BLUE Best Linear Unbiased Estimator.
Modele warunkowej heteroscedastyczności
Teoria Przykład - zwroty z WIG Niskie koszty transakcyjne Teoria Przykład - zwroty z WIG Niskie koszty transakcyjne Racjonalne oczekiwania inwestorów P t = E(P t+1 I t ) 1 + R (1) Teoria Przykład - zwroty
Ekonometria egzamin 07/03/2018
imię, nazwisko, nr indeksu: Ekonometria egzamin 07/03/2018 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.
Stanisław Cichocki. Natalia Nehrebecka. Wykład 13
Stanisław Cichocki Natalia Nehrebecka Wykład 13 1 1. Testowanie autokorelacji 2. Heteroskedastyczność i autokorelacja Konsekwencje heteroskedastyczności i autokorelacji 3.Problemy z danymi Zmienne pominięte
ZASTOSOWANIE METOD EKONOMETRYCZNYCH DO BADANIA HETEROGENICZNOŚCI OBIEKTÓW
STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 31 Marusz Doszyń Unwersytet Szczecńsk ZASTOSOWANIE METOD EKONOMETRYCZNYCH DO BADANIA HETEROGENICZNOŚCI OBIEKTÓW Streszczene W artykule scharakteryzowano
Statystyka Opisowa 2014 część 2. Katarzyna Lubnauer
Statystyka Opsowa 2014 część 2 Katarzyna Lubnauer Lteratura: 1. Statystyka w Zarządzanu Admr D. Aczel 2. Statystyka Opsowa od Podstaw Ewa Waslewska 3. Statystyka, Lucjan Kowalsk. 4. Statystyka opsowa,
EKONOMETRIA Wykład 5: Zmienne zerojedynkowe w modelowaniu ekonometrycznym
D. Cołek EKONOMETRIA wykład 5 EKONOMETRIA Wykład 5: Zmenne zerojedynkowe w modelowanu ekonometrycznym dr Dorota Cołek Katedra Ekonometr Wydzał Zarządzana UG http://wzr.pl/dorota-colek/ dorota.colek@ug.edu.pl
Ekonometria egzamin wersja Informatyka i Ekonometria 26/06/08
imię, nazwisko, nr indeksu: Ekonometria egzamin wersja Informatyka i Ekonometria 26/06/08 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz
Dobór zmiennych objaśniających
Dobór zmennych objaśnających Metoda grafowa: Należy tak rozpąć graf na werzchołkach opsujących poszczególne zmenne, aby występowały w nm wyłączne łuk symbolzujące stotne korelacje pomędzy zmennym opsującym.
Ekonometria egzamin 31/01/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.
imię, nazwisko, nr indeksu: Ekonometria egzamin 31/01/2018 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.
Ekonometria egzamin wersja ogólna 29/01/08
imię, nazwisko, nr indeksu: Ekonometria egzamin wersja ogólna 29/0/08. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca
Ekonometria egzamin 01/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.
imię, nazwisko, nr indeksu: Ekonometria egzamin 01/02/2019 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.
TAKSONOMICZNA ANALIZA ROZWOJU TRANSPORTU DROGOWEGO W POLSCE
Katarzyna CHEBA * TAKSONOMICZNA ANALIZA ROZWOJU TRANSPORTU DROGOWEGO W POLSCE Streszczene Pozom warunk życa ludnośc w Polsce są slne przestrzenne zróżncowane. W pracy na przykładze województw w Polsce
Identyfikacja determinant bogactwa dochodowego z zastosowaniem modelu logitowego
Zarządzane Fnanse Journal of Management and Fnance Vol. 13, No. 4//015 Anna Sączewska-Potrowska * Identyfkacja determnant bogactwa dochodowego z zastosowanem modelu logtowego Wstęp Przeprowadzane badana
OGÓLNE PODSTAWY SPEKTROSKOPII
WYKŁAD 8 OGÓLNE PODSTAWY SPEKTROSKOPII E E0 sn( ωt kx) ; k π ; ω πν ; λ T ν E (m c 4 p c ) / E +, dla fotonu m 0 p c p hk Rozkład energ w stane równowag: ROZKŁAD BOLTZMANA!!!!! P(E) e E / kt N E N E/
W praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np.
Wykład 7 Uwaga: W praktyce często zdarza sę, że wynk obu prób możemy traktować jako wynk pomarów na tym samym elemence populacj np. wynk x przed wynk y po operacj dla tego samego osobnka. Należy wówczas
Stanisław Cichocki. Natalia Nehrebecka. Wykład 13
Stanisław Cichocki Natalia Nehrebecka Wykład 13 1 1. Problemy z danymi Obserwacje nietypowe i błędne Współliniowość. Heteroskedastycznośd i autokorelacja Konsekwencje heteroskedastyczności i autokorelacji
Natalia Nehrebecka. Dariusz Szymański
Natala Nehrebecka Darusz Szymańsk . Sprawy organzacyjne Zasady zalczena Ćwczena Lteratura. Czym zajmuje sę ekonometra? Model ekonometryczny 3. Model lnowy Postać modelu lnowego Zaps macerzowy modelu dl
1.9 Czasowy wymiar danych
1.9 Czasowy wymiar danych Do tej pory rozpatrywaliśmy jedynie modele tworzone na podstawie danych empirycznych pochodzących z prób przekrojowych. Teraz zajmiemy się zagadnieniem budowy modeli regresji,
Analiza Szeregów Czasowych. Egzamin
Analiza Szeregów Czasowych Egzamin 12-06-2018 Zadanie 1: Zadanie 2: Zadanie 3: Zadanie 4: / 12 pkt. / 12 pkt. / 12 pkt. / 14 pkt. Projekt zaliczeniowy: Razem: / 100 pkt. / 50 pkt. Regulamin egzaminu 1.
Rachunek prawdopodobieństwa i statystyka W 11: Analizy zależnościpomiędzy zmiennymi losowymi Model regresji wielokrotnej
Rachunek prawdopodobeństwa statstka W 11: Analz zależnoścpomędz zmennm losowm Model regresj welokrotnej Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.pl Model regresj lnowej Model regresj lnowej prostej
Egzamin z Ekonometrii
Pytania teoretyczne Egzamin z Ekonometrii 18.06.2015 1. Opisać procedurę od ogólnego do szczegółowego na przykładzie doboru liczby opóźnień w modelu. 2. Na czym polega najważniejsza różnica między testowaniem
1 Metoda Najmniejszych Kwadratów (MNK) 2 Interpretacja parametrów modelu. 3 Klasyczny Model Regresji Liniowej (KMRL)
1 Metoda Najmniejszych Kwadratów (MNK) 1. Co to jest zmienna endogeniczna, a co to zmienne egzogeniczna? 2. Podaj postać macierzy obserwacji dla modelu y t = a + bt + ε t 3. Co to jest wartość dopasowana,
MIARA ZRÓŻNICOWANIA WYPOSAŻENIA GOSPODARSTW ROLNYCH W TECHNICZNE ŚRODKI PRODUKCJI
METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XIII/1, 2012, str. 204 211 MIARA ZRÓŻNICOWANIA WYPOSAŻENIA GOSPODARSTW ROLNYCH W TECHNICZNE ŚRODKI PRODUKCJI Janna Szewczyk Katedra Statystyk Matematycznej,