ANALIZA MATEMATYCZNA 1

Wielkość: px
Rozpocząć pokaz od strony:

Download "ANALIZA MATEMATYCZNA 1"

Transkrypt

1 ANALIZA MATEMATYCZNA 1

2 Maria Gewert Zbigiew Skoczylas ANALIZA MATEMATYCZNA 1 Defiicje, twierdzeia, wzory Wydaie dwudzieste czwarte zmieioe Oficya Wydawicza GiS Wrocław 2015

3 Maria Gewert Wydział Matematyki Politechika Wrocławska pwr.edu.pl Zbigiew Skoczylas Wydział Matematyki Politechika Wrocławska pwr.edu.pl Projekt okładki IMPRESJA Studio Grafiki Reklamowej Copyright c , 2015 by Oficya Wydawicza GiS Utwór w całości ai we fragmetach ie może być powielay ai rozpowszechiay za pomocą urządzeń elektroiczych, mechaiczych, kopiujących, agrywających i iych. Poadto utwór ie może być umieszczay ai rozpowszechiay w postaci cyfrowej zarówo w Iterecie, jak i w sieciach lokalych, bez pisemej zgody posiadacza praw autorskich. Składwykoaowsystemie L A TEX. ISBN Wydaie XXIV zmieioe, Wrocław 2015 Oficya Wydawicza GiS, s.c., Druk i oprawa: Oficya Wydawicza ATUT 4

4 Spis treści Wstęp 7 0 Zbiory i fukcje liczbowe Liczbyrzeczywiste Fukcje podstawoweokreśleia Złożeiafukcjiifukcjeodwrote Fukcjeelemetareiiektóreieelemetare Ciągi liczbowe Podstawoweokreśleia Graiceciągów Twierdzeiaograicachciągów Graice i ciągłość fukcji Defiicjegraicfukcji Twierdzeiaograicachfukcji Asymptotyfukcji Ciągłośćfukcji Działaiaafukcjachciągłych Twierdzeiaofukcjachciągłych Pochode fukcji Podstawowepojęcia Pochodejedostroeipochodeiewłaściwe Twierdzeiaopochodejfukcji Różiczkafukcji Pochodewyższychrzędów Pochodefukcjiwektorowych Zastosowaia pochodych Twierdzeiaowartościśrediej Twierdzeiaograicachieozaczoych RozwiięcieTaylorafukcji Ekstremafukcji

5 4.5 Fukcjewypukłeipuktyprzegięcia Przybliżoerozwiązywaierówań Badaiefukcji Całki ieozaczoe Fukcjepierwoteicałkiiezaczoe Twierdzeiaocałkachieozaczoych Całkowaiefukcjiwymierych Całkowaiefukcjitrygoometryczych Całkowaiefukcjiziewymierościami Całki ozaczoe Podstawowepojęcia Metodyobliczaiacałekozaczoych Własościcałekozaczoych Fukcjagórejgraicycałkowaia* Przybliżoemetodyobliczaiacałek* Zastosowaie całek ozaczoych Zastosowaiawgeometrii Zastosowaiawfizyce Dowody wybraych twierdzeń i faktów 128 Odpowiedzi i wskazówki 147 Literatura 168 6

6 1 Wstęp Niiejsza książka jest pierwszą częścią zestawu podręczików do Aalizy matematyczej 1. Pozostałymi częściami są zbiór pt. Aaliza matematycza 1. Przykłady i zadaia oraz opracowaie Aaliza matematycza 1. Kolokwia i egzamiy. Podręcziki te są przezaczoe główie dla studetów politechik. Mogą z ich korzystać także studeci wydziałów auk ścisłych i przyrodiczych uiwersytetów oraz uczeli ekoomiczych, pedagogiczych i roliczych. Opracowaie zawiera defiicje, twierdzeia i wzory z rachuku różiczkowego oraz całkowego fukcji jedej zmieej wraz z zastosowaiami. Wszystkie zagadieia teoretycze zakończoo ćwiczeiami, przy czym początkowe z ich są z reguły ajprostsze. Podręczik jest bogato ilustrowayzawiera poad 300 rysuków), ułatwia to przyswajaie wiedzy. Na końcu książki umieszczoo dowody większości twierdzeńw tekście twierdzeia te ozaczoe są symbolem ). Fragmety materiału ozaczoe gwiazdką iezaczie wykraczają poza aktualy program przedmiotu. Tak samo ozaczoo trudiejsze ćwiczeia. Dodatkowy materiał, trudiejsze ćwiczeia oraz dowody twierdzeń dołączoo z myślą o studetach, którzy chcą rozszerzyć swoją wiedzę z aalizy matematyczej. Rówolegle do materiału omawiaego a wykładzie studeci powii przerabiać samodzielie i a ćwiczeiach odpowiedio dobrae zadaia. Przykładową listę zadań wraz z metodami ich rozwiązywaia moża zaleźć w drugiej części podręczika. Ćwiczeia z tego podręczika oraz zadaia z listy zadań są podobych typów i mają te sam stopień trudości jak zadaia, które zwykle pojawiają a kolokwiach i egzamiach. Zestawy zadań, które w poprzedich latach studeci Politechiki Wrocławskiej rozwiązywali a sprawdziaach, są umieszczoe w trzeciej części podręczika. W obecym wydaiu podręczika zmieioo układ materiału oraz dodao owy paragraf Przybliżoerozwiązywaierówań.Jedocześieprzeredagowaosformułowaia wszystkich defiicji i twierdzeń. Poadto zwiększoo liczbę łatwych ćwiczeń, dołączoo owe rysuki oraz dowody kolejych twierdzeń. Poprawioo także błędy i usterki zgłoszoe przez studetów i wykładowców. Dzięki temu książka stała się bardziej przyjazda dla czytelika. 7

7 8 Wstęp Serdeczie dziękujemy Pai dr Teresie Jurlewicz za przygotowaie odpowiedzi do ćwiczeń z wcześiejszych wydań. Szczególe podziekowaia składamy Paom dr. Maciejowi Bureckiemu, prof. dr. hab. Jauszowi Mierczyńskiemu oraz prof. dr. hab. Krzysztofowi Stempakowi za licze spostrzeżeia, które pozwalały ulepszać koleje wydaia. Dziękujemy także Koleżakom i Kolegom z Wydziału Matematyki Politechiki Wrocławskiej oraz aszym Studetom za uwagi o poprzedich wydaiach. Dziękujemy rówież Koleżakom i Kolegom z iych uczeli za kometarze dotyczące zakresu i sposobu ujęcia materiału. Uprzejmie prosimy wykładowców i studetów o przesyłaie uwag o podręcziku oraz iformacji o dostrzeżoych błędach i usterkach. Maria Gewert Zbigiew Skoczylas

8 1 Ciągiliczbowe Podstawoweokreśleia Defiicja ciąg liczbowy) Ciągiem liczbowym azywamy fukcję określoą a zbiorze liczb aturalych i przyjmującą wartości ze zbioru liczb rzeczywistych. Wartość tej fukcji dla liczby aturalej azywamy-tymwyrazemciąguiozaczamyp.przeza.ciągotakichwyrazachozaczamyprzeza ).Zbiórwyrazówciągua ),tj.{a : N},ozaczamy krótkoprzez{a }.Ciągibędziemyprzedstawialiapłaszczyźie,jakozbiorypuktówowspółrzędych,a ),gdzie N,albojakoideksowaepuktyaosiliczb rzeczywistych. a) a b) 1,a 1 ) 2,a 2 ) 3,a 3 ) 4,a 4 ) 5,a 5 ) a 1 a 2 a 3... a Rys Ilustracja ciągua) a płaszczyźie,b) a prostej Obrazowo: ciąg moża traktować jako zbiór poumerowaych liczb rzeczywistych, które są ustawioe według rosących umerów a 1,a 2,a 3,...,a,... Przykład Ciągi możemy określać: wzorem: a)a =2, b)b = 1 si, c)c = +1, d)d = , e)e = , f)f = { 3 dlaieparzystych, 3 dlaparzystych; 27

9 28 Ciągi liczbowe rekurecyjietz. kolejy wyraz ciągu wyraża się przez iektóre poprzedie): a)a 1 =7,a +1 =a +3 ciągarytmetyczy, b)b 1 =1,b +1 =2b ciąggeometryczy, c)c 1 =1,c 2 =1,c +2 =c +c +1 ciągfiboacciego, d)d 1 =2,d +1 =2 d1 ; opisowo: a)a -tacyfrapoprzecikuwrozwiięciudziesiętymliczbyπ, b)p -taliczbapierwsza, c)c przedostatiacyfrarozwiięciadziesiętegoliczby+3) 2. Defiicja ciągi ograiczoe) Mówimy,żeciąga )jestograiczoyzdołu,jeżeliistiejeliczbarzeczywistam taka,iżierówośćm a jestprawdziwadlakażdego N.Obrazowo:ciągjest ograiczoy z dołu, gdy wszystkie jego wyrazy leżą ad pewą prostą poziomą. a) a b) a m M Rys Wykres ciągu ograiczoegoa) z dołu,b) z góry Podobiemówimy,żeciąga )jestograiczoyzgóry,jeżeliistiejeliczbarzeczywistamtaka,iżierówośća Mjestprawdziwadlakażdego N.Obrazowo: ciąg jest ograiczoy z góry, gdy wszystkie jego wyrazy leżą pod pewą prostą poziomą. Zkoleimówimy,żeciąga )jestograiczoy,jeżelijestograiczoyzdołuiz góry. Obrazowo: ciąg jest ograiczoy, gdy wszystkie jego wyrazy leżą między dwiema prostymi poziomymi. Ciąg, który ie jest ograiczoy, azywamy ieograiczoym. a) M m a b) a Rys Wykres ciągua) ograiczoego,b) ieograiczoego LeoardoPisaoFiboacci ),matematykwłoski.

10 Podstawowe określeia 29 Ćwiczeie Zbadać, czy podae ciągi są ograiczoe z dołu, z góry, ograiczoe: a)a = 2; b)a = +1 ; c)a = 2 +3 ; d)a =5si!+1); e)a =3 ; f)a = ; g*)a = 1+ 1 ) ; h)a =10 2 ; i*)a = Defiicja ciągi mootoicze) Mówimy,żeciąga )jestrosący,jeżeliierówośća <a +1 jestprawdziwa dlakażdego N.Obrazowo:ciągjestrosący,gdyjegowyrazypowiększająsięze wzrostemideksu,tz. a 1 <a 2 <a 3 <... a) a b) a Rys Wykres ciągua) rosącego,b) malejącego Podobiemówimy,żeciąga )jestmalejący,jeżeliierówośća >a +1 jestprawdziwa dla każdego N. Obrazowo: ciąg jest malejący, gdy jego wyrazy zmiejszają sięzewzrostemideksusię,tz.a 1 >a 2 >a 3 >... Uwaga. Jeżeli w powyższych defiicjach ostre ierówości zastąpimy słabymi, to mówimy,żeciąga )jestodpowiedioiemalejącyiierosący.ciągirosące,malejące, ierosące i iemalejące azywamy mootoiczymi. Wprowadza się także pojęcie ciągówmootoiczychodumeru 0. Ćwiczeie Zbadać mootoiczość ciągów: a)a = 1 ; b)a = 2 ; c)a = ) ;! d)a = 3)!!) 3; e*)a = ; f*)a =5 3 2 ; g)a = ; h)a = ; i)a = ; j)a = 100 ; k)a =! 1+ 1 ) ; l)a 1 = 2,a +1 = 2+a ; m)a = 2 +1; *)a = Ćwiczeie1.1.7.a)Dla 4iechp ozaczadługośćajwiększejprzekątejkątaforemegowpisaegowokrągopromieiu1.czyciągp )jestrosący?

11 30 Ciągi liczbowe b)dla 3iechS ozaczapole-kątaforemegoopisaegoakoleopromieiu1. CzyciągS )jestmalejący? 1.2 Graiceciągów Defiicja graica właściwa ciągu, ciąg zbieży) Mówimy,żeciąga )magraicęwłaściwąa R,cozapisujemy lim a =a,gdy dlakażdejliczbydodatiejεmożadobraćtakąliczbęaturalą 0,iżierówość a a <εjestprawdziwadlawszystkich> 0.Ciąg,którymagraicęwłaściwą, azywamy zbieżym. W przypadku przeciwym ciąg azywamy rozbieżym. Obrazowo: ciąg ma graicę a, gdy jego dostateczie dalekie wyrazy leżą dowolie blisko puktu a. a a+ε a a ε Rys Ilustracja graicy właściwej ciągu Ćwiczeie Korzystając z defiicji uzasadić rówości: a) lim = 3; b) lim 1+ 2 =0; c) lim a=1,gdziea>0. +1 Ćwiczeie* Udowodić, że ciąg zbieży: a) ma dokładie jedą graicę;b) jest ograiczoy. Defiicja graice iewłaściwe ciągu) Mówimy,żeciąga )jestrozbieżydo,cozapisujemy lim a =,gdydla każdejliczbydodatiejemożadobraćtakąliczbęaturalą 0,iżierówośća >E jestprawdziwadlakażdego> 0.Obrazowo:ciągmagraicęiewłaściwą,gdy dostateczie dalekie wyrazy tego ciągu są większe od dowolej liczby dodatiej. a E Rys Ilustracja graicy iewłaściwej

12 Graice ciągów 31 Podobie,mówimy,żeciąga )jestrozbieżydo,cozapisujemy lim a =,gdydlakażdejliczbyujemeje możadobraćtakąliczbęaturala 0,że ierówośća <Ejestprawdziwadlakażdego> 0.Obrazowo:ciągmagraicę iewłaściwą, gdy jego dostateczie dalekie wyrazy są miejsze od dowolej liczby ujemej. a E Rys Ilustracja graicy iewłaściwej Uwaga. O ciągach rozbieżych do i mówimy także, że mają graice iewłaściwe odpowiedio lub. Ciągami rozbieżymi, które ie mają graic iewłaściwych, sąp.:a = 2),b =cosπ.graicawłaściwaaiiewłaściwaciąguiezależyod wartości skończeie wielu jego wyrazów. Iaczej mówiąc, zmiaa wartości skończoej liczby wyrazów ciągu ie zmieia jego graicy. Ćwiczeie Korzystając z defiicji uzasadić rówości: a) lim = ; b) lim Ćwiczeie Pokazać,żeciąggeometryczyq )jest: 1 2 ) = ; c) lim 2 5)=. 1)zbieżydo0,gdy q <1; 2)zbieżydo1,gdyq=1; 3)rozbieżydo,gdyq>1; 4)rozbieży,gdyq 1. Korzystając z tego faktu wyzaczyć graice ciągów: a)a = 1 2) ; b)a = 10 3 ; c)a = 4) 5 ; d)a =3 π) ; e)a =si 17; f)a =tg π π 4 Defiicja podciąg) Niecha )będziedowolymciągiemoraziechk )będzierosącymciągiemliczb aturalych.podciągiemciągua )azywamyciągb )określoywzorem b =a k,gdzie N. Obrazowo: podciągiem azywamy ciąg pozostały po skreśleiu pewej liczbybyć może ieskończoej) wyrazów ciągu wyjściowegozobacz ilustracja iżej). a\ 1 a 2 a\ 3 a\ 4 a 5 a\ 6 a 7 a 8 a 9 a\ b 1 b 2 b 3 b 4 b 5... ).

13 32 Ciągi liczbowe Przykład a)ciągliczbparzystychb =2jestpodciągiemciąguliczbaturalycha =. b)ciągb = 1+ 1 ) jestpodciągiemciągua = ) c)ciągb )=1,1,2,2,3,3,...)iejestpodciągiemciągua )=1,2,3,...). Twierdzeie o graicy podciągu) 1) Każdy podciąg ciągu z graicą właściwą ma tę samą graicę. 2) Każdy podciąg ciągu rozbieżego do ± jest rozbieży do ±. Uwaga. Ciąg, z którego moża wybrać dwa podciągi z różymi graicami ie ma graicy. Ćwiczeie Korzystając z twierdzeia o graicy podciągu uzasadić rówości: 1 1 a) lim 1+2=0; b) lim 3 +2 =0; ) c) lim =1; d) lim =. 3 Ćwiczeie Wybierając odpowiedie podciągi uzasadić, że ie istieją graice: a) lim +2 [ ; b) lim + 1) 2] ; c) lim siπ 1)2 3. Twierdzeie Bolzao Weierstrassa,ociągachograiczoych) Jeżeli ciąg jest ograiczoy, to ma podciąg zbieży. Uwaga.Jeżeliciągiejestograiczoy,tomapodciągrozbieżydo lub. 1.3 Twierdzeia o graicach ciągów Twierdzeie o arytmetyce graic ciągów, dowód str. 123) Jeżeliciągia )ib )majągraicewłaściwe,to 1) lim a +b )= lim a + lim b, 2)lim a b )= lim a lim b, ) ) 3) lim a b )= lim a lim b, 4)lim c a )=c lim a c R), lim a 5) lim = b a lim b, 6)lim k a = k lim a k N). BerhardBolzao ),matematykifilozofczeski. KarlTheodorWilhelmWeierstrass ),matematykiemiecki.

14 Twierdzeia o graicach ciągów 33 Uwaga. Wzory1) i3) są prawdziwe dla dowolej liczby odpowiedio składików i czyików. Z kolei we wzorach5) i6) zakładamy, że wyrażeia po obu stroach zaku rówości mają ses. Ćwiczeie Obliczyć graice: a) lim 3 ; b) lim +1 d) lim g) lim ) 499 ) 5 ; e) lim 3 333; h) lim +1) 2 + ) ; c) lim +1) ) ; )!! ; f) lim +1)!+! ; ; i) lim Ćwiczeie1.3.3.a)Dla 3iechα ozaczamiarękątawewętrzego kąta foremego. Obliczyć lim α. b)dla 6iechp ozaczadługośćajkrótszej,aq ajdłuższejprzekątej kąta foremego, którego bok ma długość 1. Obliczyć: lim p, lim q. c)dla 3iechS ozaczapole kątaforemegoopisaegoakoleopromieiu 1. Obliczyć lim S. Podać iterpretacje geometrycze otrzymaych wyików. Ćwiczeie Pokazać rówoważość lim a =0 lim a =0.Następie uzasadić rówości: a) lim 1) 2 +1 =0; 1) b) lim =0. +1 Twierdzeie o trzech ciągach, dowód str. 123) Jeżeliciągia ),b ),c )spełiająierówościa b c dlakażdego 0 oraz lim a = lim c =b,to lim b =b. b a,b,c c b a Rys Ilustracja twierdzeia o trzech ciągach

15 34 Ciągi liczbowe Ćwiczeie Korzystając z twierdzeia o trzech ciągach uzasadić rówości: a) lim si =5; b) lim 2 =0; +1 c) lim =3; d) lim = 2; e) lim =1; g) lim f) lim log =1; h) lim 2 +1 ) =2; =1; i) lim +1 ) =1; j) lim si +1 si =0; ) 1 k) lim =1; l*) lim )= Twierdzeie o ciągu mootoiczym i ograiczoym, dowód str. 124) Jeżeliciąga )jestiemalejącyorazograiczoyzgóry,tojestzbieży. a a a a Rys Ilustracja twierdzeia o ciągu a) iemalejącym i ograiczoym z góry,b) ierosącym i ograiczoym z dołu Uwaga. Prawdziwe jest aalogicze twierdzeie dla ciągu ierosącego i ograiczoego zdołu. Ćwiczeie Korzystając z twierdzeia o ciągu mootoiczym i ograiczoym uzasadić zbieżość ciągów: a)a = ; b)a =! ; c)a 1 =0,c +1 =arctg1+c ); d*)a = 1+ ) 1 +1 ; e*)a = 1 1! +1 2! ! )! ; f*)a =. W przykładachb) if*) ułożyć rówaia z graicami i astępie je wyzaczyć.

16 Twierdzeia o graicach ciągów 35 Ćwiczeie Korzystając z twierdzeia o ciągu mootoiczym i ograiczoym uzasadić rówości: 100 [3)!] 2 a) lim =0; b) lim! 2)!4)! =0; c*) lim b =2,gdzieb 1 = 2,b +1 = 2+b dla N; d*) lim c = ),gdziec 1 =1orazc +1 = 1 1+c dla N. Ćwiczeie Koleje wyrazy ciągu tworzymy dopisując po przeciku dowolą cyfręp.x 1 =0.3,x 2 =0.37,x 3 =0.370,x 4 =0.3705,...Pokazać,żeciągx )jest zbieży. Fakt określeie liczby e, dowód str. 124) Ciąge = 1+ ) 1 jestzbieży. e e Rys Wykresciągue ) Uwaga.Graicęciągue )ozaczamyprzeze: e= lim ) Liczbaepodaazdokładościądo2cyfrpoprzecikujestrówa2.72. Logarytmprzypodstawieeazywamyaturalymiozaczamyprzezl;lx=log e x. Fukcję wykładiczą przy podstawie e azywamy ekspoes i ozaczamy przez exp; expx=e x. Ćwiczeie ) x =e.korzysta- x Pokazać,żejeżeliciągx )jest,rozbieżydo±,to lim jąc z tego obliczyć graice: a) lim d) lim ) 3 ; b) lim ) 2 +1 ; e) lim 1 ) 1 ; c) lim 1 1 ) ; ) 3+1 ; f) lim 3+4 )

17 36 Ciągi liczbowe Fakt o graicach iewłaściwych ciągów, dowód str. 125) 1) Jeżeli lim a 1 =0ia >0 N),to lim =. a 2) Jeżeli lim a b = orazciągb )jestograiczoy,to lim =0. a 3) Jeżeli lim a = orazciągb )jestograiczoyzdołu,to lim a +b )=. 4) Jeżeli lim a = orazb m>0 N),to lim a b )=. Uwaga.Aalogiczetwierdzeiamożasformułowaćdla działań zsymbolem. Ćwiczeie Obliczyć graice ciągów: a) lim 2 +1)! ; b) lim ); ) c) lim +3 ; d) lim Pokażemy iżej, że graica ilorazu ciągów rozbieżych do ieskończoości może przyjmować dowole wartości albo awet ie istieć. Przykład Dla ciągów: a)a = 2,b =mamy lim a /b = lim = ; b)a =c,gdziec>0,b =mamy lim a /b = lim c=c; c)a =,b = 2 mamy lim a /b = lim 1/=0; d)a =2+ 1) ),b =mamy lim a /b = lim 2+ 1) ) ieistieje. Ztegowzględuciąga /b )dla lim a =, lim b = azywamywyrażeiem ieozaczoym postaci /. Poadto, mamy sześć iych typów wyrażeń ieozaczych. Są to kolejo: a b )dla lim a =, lim b = wyrażeiepostaci ; a b )dla lim a =0, lim b =, wyrażeiepostaci0 ; a /b )dla lim a =0, lim b =0, wyrażeiepostaci0/0; ) a b dla lim a =1, lim b =, wyrażeiepostaci1 ; ) a b dla lim a =, lim b =0, wyrażeiepostaci 0 ; ) a b dla lim a =0, lim b =0 wyrażeie0 0. Ćwiczeie Podaćprzykładyciągówa ),b )świadczące,żewyrażeiapostaci,1,0 0 sąieozaczoe.rozważyćwszystkiewartości,jakiemogą przyjąć te wyrażeia.

18 Twierdzeia o graicach ciągów 37 Twierdzeie o dwóch ciągach, dowód str. 125) Jeżeliciągia )ib )spełiająierówośća b dla 0,aciąga )jest rozbieżydo,torówieżciągb )jestrozbieżydo. a,b b a Rys Ilustracja twierdzeia o dwóch ciągach Uwaga. Prawdziwe jest aalogicze twierdzeie dla ciągów rozbieżych do. Ćwiczeie Korzystając z twierdzeia o dwóch ciągach uzasadić rówości: a) lim [4 + 1) ]= ; b) lim 2 +3)= ; [ c) lim 2cos 5) 2 ] 1 = ; d) lim )=. 2

ANALIZA MATEMATYCZNA 1

ANALIZA MATEMATYCZNA 1 ANALIZA MATEMATYCZNA 1 Maria Gewert Zbigiew Skoczylas ANALIZA MATEMATYCZNA 1 Defiicje, twierdzeia, wzory Wydaie dwudzieste piąte zmieioe GiS Oficya Wydawicza GiS Wrocław 2017 Maria Gewert Wydział Matematyki

Bardziej szczegółowo

ANALIZA MATEMATYCZNA 1

ANALIZA MATEMATYCZNA 1 ANALIZA MATEMATYCZNA Maria Gewert Zbigiew Skoczylas ANALIZA MATEMATYCZNA Przykłady i zadaia Wydaie dwudzieste piąte uzupełioe GiS Oficya Wydawicza GiS Wrocław 07 Maria Gewert Wydział Matematyki Politechika

Bardziej szczegółowo

ANALIZA MATEMATYCZNA 1

ANALIZA MATEMATYCZNA 1 ANALIZA MATEMATYCZNA Maria Gewert Zbigiew Skoczylas ANALIZA MATEMATYCZNA Przykłady i zadaia Wydaie dwudzieste szóste zmieioe Oficya Wydawicza GiS Wrocław 08 Maria Gewert Wydział Matematyki Politechika

Bardziej szczegółowo

a 1, a 2, a 3,..., a n,...

a 1, a 2, a 3,..., a n,... III. Ciągi liczbowe. 1. Defiicja ciągu liczbowego. Defiicja 1.1. Ciągiem liczbowym azywamy fukcję a : N R odwzorowującą zbiór liczb aturalych N w zbiór liczb rzeczywistych R i ozaczamy przez { }. Używamy

Bardziej szczegółowo

I. Ciągi liczbowe. , gdzie a n oznacza n-ty wyraz ciągu (a n ) n N. spełniający warunek. a n+1 a n = r, spełniający warunek a n+1 a n

I. Ciągi liczbowe. , gdzie a n oznacza n-ty wyraz ciągu (a n ) n N. spełniający warunek. a n+1 a n = r, spełniający warunek a n+1 a n I. Ciągi liczbowe Defiicja 1. Fukcję określoą a zbiorze liczb aturalych o wartościach rzeczywistych azywamy ciągiem liczbowym. Ciągi będziemy ozaczać symbolem a ), gdzie a ozacza -ty wyraz ciągu a ). Defiicja.

Bardziej szczegółowo

Stwierdzenie 1. Jeżeli ciąg ma granicę, to jest ona określona jednoznacznie (żaden ciąg nie może mieć dwóch różnych granic).

Stwierdzenie 1. Jeżeli ciąg ma granicę, to jest ona określona jednoznacznie (żaden ciąg nie może mieć dwóch różnych granic). Materiały dydaktycze Aaliza Matematycza Wykład Ciągi liczbowe i ich graice. Graice ieskończoe. Waruek Cauchyego. Działaia arytmetycze a ciągach. Podstawowe techiki obliczaia graic ciągów. Istieie graic

Bardziej szczegółowo

Zadania z analizy matematycznej - sem. I Szeregi liczbowe

Zadania z analizy matematycznej - sem. I Szeregi liczbowe Zadaia z aalizy matematyczej - sem. I Szeregi liczbowe Defiicja szereg ciąg sum częściowyc. Szeregiem azywamy parę uporządkowaą a ) S ) ) ciągów gdzie: ciąg a ) ciąg S ) jest day jest ciągiem sum częściowych

Bardziej szczegółowo

Ciągi liczbowe wykład 3

Ciągi liczbowe wykład 3 Ciągi liczbowe wykład 3 dr Mariusz Grządziel semestr zimowy, r akad 204/205 Defiicja ciągu liczbowego) Ciagiem liczbowym azywamy fukcję odwzorowuja- ca zbiór liczb aturalych w zbiór liczb rzeczywistych

Bardziej szczegółowo

2 n < 2n + 2 n. 2 n = 2. 2 n 2 +3n+2 > 2 0 = 1 = 2. n+2 n 1 n+1 = 2. n+1

2 n < 2n + 2 n. 2 n = 2. 2 n 2 +3n+2 > 2 0 = 1 = 2. n+2 n 1 n+1 = 2. n+1 Tekst a iebiesko jest kometarzem lub treścią zadaia. Zadaie 1. Zbadaj mootoiczość i ograiczoość ciągów. a = + 3 + 1 Ciąg jest mootoiczie rosący i ieograiczoy poieważ różica kolejych wyrazów jest dodatia.

Bardziej szczegółowo

Damian Doroba. Ciągi. 1. Pierwsza z granic powinna wydawać się oczywista. Jako przykład może służyć: lim n = lim n 1 2 = lim.

Damian Doroba. Ciągi. 1. Pierwsza z granic powinna wydawać się oczywista. Jako przykład może służyć: lim n = lim n 1 2 = lim. Damia Doroba Ciągi. Graice, z których korzystamy. k. q.. 5. dla k > 0 dla k 0 0 dla k < 0 dla q > 0 dla q, ) dla q Nie istieje dla q ) e a, a > 0. Opis. Pierwsza z graic powia wydawać się oczywista. Jako

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi.

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi. Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/13 Ciągi. Ćwiczeia 5.11.2012: zad. 140-173 Kolokwium r 5, 6.11.2012: materiał z zad. 1-173 Ćwiczeia 12.11.2012: zad. 174-190 13.11.2012: zajęcia czwartkowe

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna A1, zima 2011/12. Kresy zbiorów. x Z M R

Jarosław Wróblewski Analiza Matematyczna A1, zima 2011/12. Kresy zbiorów. x Z M R Kresy zbiorów. Ćwiczeia 21.11.2011: zad. 197-229 Kolokwium r 7, 22.11.2011: materiał z zad. 1-249 Defiicja: Zbiór Z R azywamy ograiczoym z góry, jeżeli M R x Z x M. Każdą liczbę rzeczywistą M R spełiającą

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/17

Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/17 Egzami, 18.02.2017, godz. 9:00-11:30 Zadaie 1. (22 pukty) W każdym z zadań 1.1-1.10 podaj w postaci uproszczoej kresy zbioru oraz apisz, czy kresy ależą do zbioru (apisz TAK albo NIE, ewetualie T albo

Bardziej szczegółowo

Informatyka Stosowana-egzamin z Analizy Matematycznej Każde zadanie należy rozwiązać na oddzielnej, podpisanej kartce!

Informatyka Stosowana-egzamin z Analizy Matematycznej Każde zadanie należy rozwiązać na oddzielnej, podpisanej kartce! Iformatyka Stosowaa-egzami z Aalizy Matematyczej Każde zadaie ależy rozwiązać a oddzielej, podpisaej kartce! y, Daa jest fukcja f (, + y, a) zbadać ciągłość tej fukcji f b) obliczyć (,) (, (, (,) c) zbadać,

Bardziej szczegółowo

Matematyka ETId I.Gorgol Twierdzenia o granicach ciagów. Twierdzenia o granicach ciagów

Matematyka ETId I.Gorgol Twierdzenia o granicach ciagów. Twierdzenia o granicach ciagów Twierdzeia o graicach ciagów Matematyka ETId I.Gorgol Zbieżość ciagu a jego ograiczoość TWIERDZENIE Jeżeli ci ag liczbowy a ) jest zbieży do graicy skończoej, to jest ograiczoy. Zbieżość ciagu a jego ograiczoość

Bardziej szczegółowo

lim a n Cigi liczbowe i ich granice

lim a n Cigi liczbowe i ich granice Cigi liczbowe i ich graice Cigiem ieskoczoym azywamy dowol fukcj rzeczywist okrelo a zbiorze liczb aturalych. Dla wygody zapisu, zamiast a() bdziemy pisa a. Elemet a azywamy -tym wyrazem cigu. Cig (a )

Bardziej szczegółowo

Funkcje trygonometryczne Moduł - dział -temat Funkcje trygonometry czne dowolnego kąta

Funkcje trygonometryczne Moduł - dział -temat Funkcje trygonometry czne dowolnego kąta Fukcje cze Moduł - dział -temat Fukcje cze dowolego kąta Lp 1 kąt w układzie współrzędych fukcje cze dowolego kąta zaki czych wartości czych iektórych kątów Kąt obrotu 2 dodati i ujemy kieruek obrotu wartości

Bardziej szczegółowo

dna szeregu. ; m., k N ; ó. ; u. x 2n 1 ; e. n n! jest, że

dna szeregu. ; m., k N ; ó. ; u. x 2n 1 ; e. n n! jest, że KILKA ZADAŃ O SZEREGACH Zbadać zbieżość i zbieżość bezwzgle da = a, jeśli a = a!! ; a + + ; c + ; ć! ; d +/ + 3 ; e! e 3 3+ ; f ; + g 000+ ; h ; + i! ; j k ; l 5 + l + 7 0 +3 6 0 + ; +3 ; ; m 3 + 3 ; +a

Bardziej szczegółowo

Analiza matematyczna. Robert Rałowski

Analiza matematyczna. Robert Rałowski Aaliza matematycza Robert Rałowski 6 paździerika 205 2 Spis treści 0. Liczby aturale.................................... 3 0.2 Liczby rzeczywiste.................................... 5 0.2. Nierówości...................................

Bardziej szczegółowo

Metody badania zbieżności/rozbieżności ciągów liczbowych

Metody badania zbieżności/rozbieżności ciągów liczbowych Metody badaia zbieżości/rozbieżości ciągów liczbowych Ryszard Rębowski 14 grudia 2017 1 Wstęp Kluczowe pytaie odoszące się do zagadieia badaia zachowaia się ciągu liczbowego sprowadza się do sposobu opisu

Bardziej szczegółowo

Matematyka I. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 11

Matematyka I. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 11 Matematyka I Bezpieczeństwo jądrowe i ochroa radiologicza Semestr zimowy 2018/2019 Wykład 11 Całka ozaczoa podstawowe pojęcia Defiicja podziału odcika Podziałem P odcika < a, b > a części azywamy zbiór

Bardziej szczegółowo

Funkcje trygonometryczne Moduł - dział -temat Funkcje trygonometry czne dowolnego kąta

Funkcje trygonometryczne Moduł - dział -temat Funkcje trygonometry czne dowolnego kąta Fukcje cze Moduł - dział -temat Fukcje cze dowolego kąta Lp 1 kąt w układzie współrzędych fukcje cze dowolego kąta zaki czych wartości czych iektórych kątów Kąt obrotu 2 dodati i ujemy kieruek obrotu wartości

Bardziej szczegółowo

Funkcje trygonometryczne Moduł - dział -temat Funkcje trygonometry czne dowolnego kąta

Funkcje trygonometryczne Moduł - dział -temat Funkcje trygonometry czne dowolnego kąta Fukcje trygoometrycze Moduł - dział -temat Fukcje trygoometry cze dowolego kąta 1 kąt w układzie współrzędych fukcje trygoometrycze dowolego kąta zaki trygoometryczych wartości trygoometryczych iektórych

Bardziej szczegółowo

zadań z pierwszej klasówki, 10 listopada 2016 r. zestaw A 2a n 9 = 3(a n 2) 2a n 9 = 3 (a n ) jest i ograniczony. Jest wiec a n 12 2a n 9 = g 12

zadań z pierwszej klasówki, 10 listopada 2016 r. zestaw A 2a n 9 = 3(a n 2) 2a n 9 = 3 (a n ) jest i ograniczony. Jest wiec a n 12 2a n 9 = g 12 Rozwiazaia zadań z pierwszej klasówki, 0 listopada 06 r zestaw A Ciag a ) jest zaday rekuryjie: a a, a + a a 9, a R, a

Bardziej szczegółowo

I kolokwium z Analizy Matematycznej

I kolokwium z Analizy Matematycznej I kolokwium z Aalizy Matematyczej 4 XI 0 Grupa A. Korzystając z zasady idukcji matematyczej udowodić ierówość dla wszystkich N. Rozwiązaie:... 4 < + Nierówość zachodzi dla, bo 4

Bardziej szczegółowo

Twierdzenia o funkcjach ciągłych

Twierdzenia o funkcjach ciągłych Automatya i Robotya Aaliza Wyład 5 dr Adam Ćmiel cmiel@aghedupl Twierdzeia o ucjach ciągłych Tw (Weierstrassa Jeżeli ucja : R [ R jest ciągła a [, to ograiczoa i : ( sup ( i ( i ( [, Dowód Ograiczoość

Bardziej szczegółowo

Materiały do ćwiczeń z Analizy Matematycznej I

Materiały do ćwiczeń z Analizy Matematycznej I Materiały do ćwiczeń z Aalizy Matematyczej I 08/09 Maria Frotczak Ludwika Kaczmarek Katarzya Klimczak Maria Michalska Beata Osińska-Ulrych Tomasz Rodak Adam Różycki Grzegorz Skalski Staisław Spodzieja

Bardziej szczegółowo

2. Nieskończone ciągi liczbowe

2. Nieskończone ciągi liczbowe Ciągiem liczbowym azywamy fukcję 2. Nieskończoe ciągi liczbowe a: N R. Wartości tej fukcji ozaczamy przez a) = a i azywamy wyrazami ciągu. Często ciąg ozaczamy przez {a } = lub po prostu przez {a }. Prostymi

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 2B, lato 2015/16

Jarosław Wróblewski Analiza Matematyczna 2B, lato 2015/16 Egzami,.6.6, godz. 9:-: Zadaie. puktów) Wyzaczyć wszystkie rozwiązaia rówaia z i w liczbach zespoloych. Zapisać wszystkie rozwiązaia w postaci kartezjańskiej bez używaia fukcji trygoometryczych) oraz zazaczyć

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 2B, lato 2015/16

Jarosław Wróblewski Analiza Matematyczna 2B, lato 2015/16 Egzami,.9.6, godz. :-5: Zadaie. ( puktów) Wyzaczyć wszystkie rozwiązaia rówaia z 4 = 4 w liczbach zespoloych. Zapisać wszystkie rozwiązaia w postaci kartezjańskiej (bez używaia fukcji trygoometryczych)

Bardziej szczegółowo

Ciąg liczbowy. Granica ciągu

Ciąg liczbowy. Granica ciągu Temat wykładu: Ciąg liczbowy. Graica ciągu Kody kolorów: Ŝółty owe pojęcie pomarańczowy uwaga kursywa kometarz * materiał adobowiązkowy Aa Rajfura, Matematyka a kieruku Biologia w SGGW 1 Zagadieia 1. Przykłady

Bardziej szczegółowo

Szeregi liczbowe. 15 stycznia 2012

Szeregi liczbowe. 15 stycznia 2012 Szeregi liczbowe 5 styczia 0 Szeregi o wyrazach dodatich. Waruek koieczy zbieżości szeregu Defiicja.Abyszereg a < byłzbieżyciąga musizbiegaćdo0. Jest to waruek koieczy ale ie dostateczy. Jak wiecie z wykładu(i

Bardziej szczegółowo

3. Funkcje elementarne

3. Funkcje elementarne 3. Fukcje elemetare Fukcjami elemetarymi będziemy azywać fukcję tożsamościową x x, fukcję wykładiczą, fukcje trygoometrycze oraz wszystkie fukcje, jakie moża otrzymać z wyżej wymieioych drogą astępujących

Bardziej szczegółowo

Szeregi liczbowe. Szeregi potęgowe i trygonometryczne.

Szeregi liczbowe. Szeregi potęgowe i trygonometryczne. Szeregi iczbowe. Szeregi potęgowe i trygoometrycze. wykład z MATEMATYKI Automatyka i Robotyka sem. I, rok ak. 2008/2009 Katedra Matematyki Wydział Iformatyki Poitechika Białostocka Szeregi iczbowe Defiicja..

Bardziej szczegółowo

SZEREGI LICZBOWE. s n = a 1 + a a n = a k. k=1. aq n = 1 qn+1 1 q. a k = s n + a k, k=n+1. s n = 0. a k lim n

SZEREGI LICZBOWE. s n = a 1 + a a n = a k. k=1. aq n = 1 qn+1 1 q. a k = s n + a k, k=n+1. s n = 0. a k lim n SZEREGI LICZBOWE Z ciągu liczb a, a 2,... utwórzmy owy ciąg Przyjmijmy ozaczeia s = a + a 2 +... a = a k. k= k= a k = a + a 2 +... = s. Gdy graica k= a k jest liczbą, to mówimy, że szereg k= a k jest sumowaly

Bardziej szczegółowo

Zadania z Matematyka 2 - SIMR 2008/ szeregi zadania z rozwiązaniami. n 1. n n. ( 1) n n. n n + 4

Zadania z Matematyka 2 - SIMR 2008/ szeregi zadania z rozwiązaniami. n 1. n n. ( 1) n n. n n + 4 Zadaia z Matematyka - SIMR 00/009 - szeregi zadaia z rozwiązaiami. Zbadać zbieżość szeregu Rozwiązaie: 0 4 4 + 6 0 : Dla dostateczie dużych 0 wyrazy szeregu są ieujeme 0 a = 4 4 + 6 0 0 Stosujemy kryterium

Bardziej szczegółowo

Analiza numeryczna Kurs INP002009W. Wykład 1 Narzędzia matematyczne. Karol Tarnowski A-1 p.223

Analiza numeryczna Kurs INP002009W. Wykład 1 Narzędzia matematyczne. Karol Tarnowski A-1 p.223 Aaliza umerycza Kurs INP002009W Wykład Narzędzia matematycze Karol Tarowski karol.tarowski@pwr.wroc.pl A- p.223 Pla wykładu Czym jest aaliza umerycza? Podstawowe pojęcia Wzór Taylora Twierdzeie o wartości

Bardziej szczegółowo

201. a 1 a 2 a 3...a n a 2 1 +a 2 2 +a a 2 n n a 4 1 +a 4 2 +a a 4 n n. a1 + a 2 + a a n 204.

201. a 1 a 2 a 3...a n a 2 1 +a 2 2 +a a 2 n n a 4 1 +a 4 2 +a a 4 n n. a1 + a 2 + a a n 204. Liczby rzeczywiste dodatie a 1, a 2, a 3,...a spełiają waruek a 1 +a 2 +a 3 +...+a =. Wpisać w kratkę zak lub i udowodić podaą ierówość bez korzystaia z gotowych twierdzeń (moża korzystać z wcześiejszych

Bardziej szczegółowo

Dydaktyka matematyki III-IV etap edukacyjny (wykłady)

Dydaktyka matematyki III-IV etap edukacyjny (wykłady) Dydaktyka matematyki III-IV etap edukacyjy (wykłady) Wykład r 12: Fukcja wykładicza cd. Ciągłość fukcji. Pochoda fukcji Semestr zimowy 2018/2019 Fukcja wykładicza (cd.) propozycja Podobie jak w przykładach

Bardziej szczegółowo

ANALIZA MATEMATYCZNA 1 (MAP 1024) LISTY ZADAŃ

ANALIZA MATEMATYCZNA 1 (MAP 1024) LISTY ZADAŃ ANALIZA MATEMATYCZNA (MAP 0) LISTY ZADAŃ Listy zadań przezaczoe są dla studetów którzy program matematyki szkoły poadgimazjalej zają jedyie a poziomie podstawowym Obejmują iezbęde do dalszej auki zagadieia

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2014/15. n 4n n 1

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2014/15. n 4n n 1 30. Obliczyć wartość graicy ( 0 ( ( ( 4 +1 + 1 4 +3 + 4 +9 + 3 4 +7 +...+ 1 4 +3 + 1 ( ( 4 +3. Rozwiązaie: Ozaczmy sumę występującą pod zakiem graicy przez b. Zamierzamy skorzystać z twierdzeia o trzech

Bardziej szczegółowo

1. Granica funkcji w punkcie

1. Granica funkcji w punkcie Graica ukcji w pukcie Deiicja Sąsiedztwem o promieiu r > 0 puktu a R azywamy zbiór S ( a ( a r ( a a Deiicja Sąsiedztwem lewostroym o promieiu r > 0 puktu a R azywamy zbiór S ( a ( a r Deiicja Sąsiedztwem

Bardziej szczegółowo

Analiza Matematyczna I dla Inżynierii Biomedycznej Lista zadań

Analiza Matematyczna I dla Inżynierii Biomedycznej Lista zadań Aaliza Matematycza I dla Iżyierii Biomedyczej Lista zadań Jacek Cichoń, WPPT PWr, 205/6 Logika, zbiory i otacja matematycza Zadaie Niech p, q, r będą zmieymi zdaiowymi. Pokaż, że:. = ( (p p)), 2. = (p

Bardziej szczegółowo

Zadania z algebry liniowej - sem. I Liczby zespolone

Zadania z algebry liniowej - sem. I Liczby zespolone Zadaia z algebry liiowej - sem. I Liczby zespoloe Defiicja 1. Parę uporządkowaą liczb rzeczywistych x, y azywamy liczbą zespoloą i ozaczamy z = x, y. Zbiór wszystkich liczb zespoloych ozaczamy przez C

Bardziej szczegółowo

ANALIZA MATEMATYCZNA 2

ANALIZA MATEMATYCZNA 2 ANALIZA MATEMATYCZNA Marian Gewert Zbigniew Skoczylas ANALIZA MATEMATYCZNA Przykłady i zadania Wydanie dziewiętnaste powiększone GiS Oficyna Wydawnicza GiS Wrocław 6 Marian Gewert Wydział Matematyki Politechnika

Bardziej szczegółowo

Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek

Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek Zajdowaie pozostałych pierwiastków liczby zespoloej, gdy zay jest jede pierwiastek 1 Wprowadzeie Okazuje się, że gdy zamy jede z pierwiastków stopia z liczby zespoloej z, to pozostałe pierwiastki możemy

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1 LUX, zima 2016/17

Jarosław Wróblewski Analiza Matematyczna 1 LUX, zima 2016/17 Kolokwiu r 5: piątek 8..06, godz. 8:5-9:00, ateriał zad. 40, 50-585. Kolokwiu r 53: piątek 5..06, godz. 8:5-9:00, ateriał zad. 50, 50-59. Kolokwiu r 54: piątek..06, godz. 8:5-9:00, ateriał zad. 83, 50-64.

Bardziej szczegółowo

Teoria. a k. Wskaźnik sumowania można oznaczać dowolną literą. Mamy np. a j = a i =

Teoria. a k. Wskaźnik sumowania można oznaczać dowolną literą. Mamy np. a j = a i = Zastosowaie symboli Σ i Π do zapisu sum i iloczyów Teoria Niech a, a 2,..., a będą dowolymi liczbami. Sumę a + a 2 +... + a zapisuje się zazwyczaj w postaci (czytaj: suma od k do a k ). Zak Σ to duża grecka

Bardziej szczegółowo

Wymagania edukacyjne na poszczególne oceny z matematyki w klasie III poziom rozszerzony

Wymagania edukacyjne na poszczególne oceny z matematyki w klasie III poziom rozszerzony Wymagaia edukacyje a poszczególe ocey z matematyki w klasie III poziom rozszerzoy Na oceę dopuszczającą, uczeń: zazacza kąt w układzie współrzędych, wskazuje jego ramię początkowe i końcowe wyzacza wartości

Bardziej szczegółowo

Moduł 4. Granica funkcji, asymptoty

Moduł 4. Granica funkcji, asymptoty Materiały pomocicze do e-learigu Matematyka Jausz Górczyński Moduł. Graica fukcji, asymptoty Wyższa Szkoła Zarządzaia i Marketigu Sochaczew Od Autora Treści zawarte w tym materiale były pierwotie opublikowae

Bardziej szczegółowo

3.1. Ciągi liczbowe - ograniczoność, monotoniczność, zbieżność ciągu. Liczba e. Twierdzenie o trzech ciągach.

3.1. Ciągi liczbowe - ograniczoność, monotoniczność, zbieżność ciągu. Liczba e. Twierdzenie o trzech ciągach. WYKŁAD 6 3 RACHUNEK RÓŻNICZKOWY I CAŁKOWY FUNKCJI JEDNEJ ZMIENNEJ 31 Ciągi liczbowe - ogriczoość, mootoiczość, zbieżość ciągu Liczb e Twierdzeie o trzech ciągch 3A+B1 (Defiicj: ieskończoość) Symbole,,

Bardziej szczegółowo

III seria zadań domowych - Analiza I

III seria zadań domowych - Analiza I III seria zadań domowych - Aaliza I Różiczkowalość fukcji Zadaie Dla jakich wartości parametrów abc R fukcje a + gdy π si + b gdy > π a + b gdy 0 gdy > c a + b gdy c są różiczkowale. a + b gdy a 0 / arcsi

Bardziej szczegółowo

Szereg geometryczny. 5. b) b n = 4n 2 (b 1 = 2, r = 4) lub b n = 10 (b 1 = 10, r = 0). 2. jest równa 1 x dla x = 1+ Zad. 3:

Szereg geometryczny. 5. b) b n = 4n 2 (b 1 = 2, r = 4) lub b n = 10 (b 1 = 10, r = 0). 2. jest równa 1 x dla x = 1+ Zad. 3: Szereg geometryczy Zad : Suma wszystkich wyrazów ieskończoego ciągu geometryczego jest rówa 4, a suma trzech początkowych wyrazów wyosi a) Zbadaj mootoiczość ciągu sum częściowych tego ciągu geometryczego

Bardziej szczegółowo

ANALIZA MATEMATYCZNA 1

ANALIZA MATEMATYCZNA 1 ANALIZA MATEMATYCZNA Marian Gewert Zbigniew Skoczylas ANALIZA MATEMATYCZNA Kolokwia i egzaminy Wydanie szesnaste uzupełnione GiS Oficyna Wydawnicza GiS Wrocław 204 Marian Gewert Instytut Matematyki i Informatyki

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/ n 333))

Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/ n 333)) 46. Wskazać liczbę rzeczywistą k, dla której graica k 666 + 333)) istieje i jest liczbą rzeczywistą dodatią. Obliczyć wartość graicy przy tak wybraej liczbie k. Rozwiązaie: Korzystając ze wzoru a różicę

Bardziej szczegółowo

MATEMATYKA I SEMESTR ALK (PwZ)

MATEMATYKA I SEMESTR ALK (PwZ) MATEMATYKA I SEMESTR ALK (PwZ) 1. Ciągi liczbowe 1.1. OKREŚLENIE Ciąg liczbowy = Dowola fukcja przypisująca liczby rzeczywiste pierwszym (ciąg skończoy), albo wszystkim (ciąg ieskończoy) liczbom aturalym.

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 2, lato 2018/19

Jarosław Wróblewski Analiza Matematyczna 2, lato 2018/19 47. W każdym z zadań 47.-47.5 podaj wzór a fukcję różiczkowalą f :D f R o podaym wzorze a pochodą oraz o podaej wartości w podaym pukcie. 47.. f x 4x 5 54 f D f R 4x 555 fx + 47.. f x x+ f D f, + fx 9

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2014/15. n = Rozwiązanie: Stosując wzór na wartość współczynnika dwumianowego otrzymujemy

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2014/15. n = Rozwiązanie: Stosując wzór na wartość współczynnika dwumianowego otrzymujemy 12. Dowieść, że istieje ieskończeie wiele par liczb aturalych k < spełiających rówaie ( ) ( ) k. k k +1 Stosując wzór a wartość współczyika dwumiaowego otrzymujemy ( ) ( )!! oraz k k! ( k)! k +1 (k +1)!

Bardziej szczegółowo

Egzaminy. na wyższe uczelnie 2003. zadania

Egzaminy. na wyższe uczelnie 2003. zadania zadaia Egzamiy wstępe a wyższe uczelie 003 I. Akademia Ekoomicza we Wrocławiu. Rozwiąż układ rówań Æ_ -9 y - 5 _ y = 5 _ -9 _. Dla jakiej wartości parametru a suma kwadratów rozwiązań rzeczywistych rówaia

Bardziej szczegółowo

ANALIZA MATEMATYCZNA 1

ANALIZA MATEMATYCZNA 1 ANALIZA MATEMATYCZNA 1 Marian Gewert Zbigniew Skoczylas ANALIZA MATEMATYCZNA 1 Kolokwia i egzaminy Wydanie siedemnaste zmienione GiS Oficyna Wydawnicza GiS Wrocław 2018 Marian Gewert Wydział Matematyki

Bardziej szczegółowo

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Techikum Nr 2 im. ge. Mieczysława Smorawińskiego w Zespole Szkół Ekoomiczych w Kaliszu Wymagaia edukacyje iezbęde do uzyskaia poszczególych śródroczych i roczych oce klasyfikacyjych z obowiązkowych zajęć

Bardziej szczegółowo

Wykªad 2. Szeregi liczbowe.

Wykªad 2. Szeregi liczbowe. Wykªad jest prowadzoy w oparciu o podr czik Aaliza matematycza 2. Deicje, twierdzeia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 2. Szeregi liczbowe. Deicje i podstawowe twierdzeia Deicja Szeregiem liczbowym

Bardziej szczegółowo

Analiza matematyczna I. Pula jawnych zadań na kolokwia.

Analiza matematyczna I. Pula jawnych zadań na kolokwia. Aaliza matematycza I. Pula jawych zadań a kolokwia. Wydział MIiM UW, 23/4 ostatie poprawki: 6 listopada 23 Szaowi Państwo, zgodie z zapowiedzią, a każdym kolokwium w pierwszym semestrze co ajmiej 2 zadaia

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 11

RÓWNANIA RÓŻNICZKOWE WYKŁAD 11 RÓWNANIA RÓŻNICZKOWE WYKŁAD Szeregi potęgowe Defiicja Fukcja y = f () jest klasy C jeżeli jest -krotie różiczkowala i jej -ta pochoda jest fukcją ciągłą. Defiicja Fukcja y = f () jest klasy C, jeżeli jest

Bardziej szczegółowo

Analiza matematyczna I. Pula jawnych zadań na kolokwia.

Analiza matematyczna I. Pula jawnych zadań na kolokwia. Aaliza matematycza I. Pula jawych zadań a kolokwia. Wydział MIiM UW, 25/6 ostatie poprawki: 8 styczia 26 Szaowi Państwo, zgodie z zapowiedzią, a każdym kolokwium w pierwszym semestrze co ajmiej jeda trzecia

Bardziej szczegółowo

Materiały do wykładu Matematyka Stosowana 1. Dariusz Chrobak

Materiały do wykładu Matematyka Stosowana 1. Dariusz Chrobak Materiały do wykładu Matematyka Stosowaa Dariusz Chrobak 7 styczia 207 Spis treści Zbiory liczbowe i fukcje 2. Zbiór liczb wymierych Q...................... 2.2 Liczby iewymiere.........................

Bardziej szczegółowo

ALGEBRA I GEOMETRIA ANALITYCZNA

ALGEBRA I GEOMETRIA ANALITYCZNA ALGEBRA I GEOMETRIA ANALITYCZNA Opracowanie Marian Gewert Zbigniew Skoczylas ALGEBRA I GEOMETRIA ANALITYCZNA Kolokwia i egzaminy Wydanie piętnaste zmienione GiS Oficyna Wydawnicza GiS Wrocław 2014 Marian

Bardziej szczegółowo

Funkcja wykładnicza i logarytm

Funkcja wykładnicza i logarytm Rozdział 3 Fukcja wykładicza i logarytm Potrafimy już defiiować potęgi liczb dodatich o wykładiku wymierym: jeśli a > 0 i x = p/q Q dla p, q N, to aturalie jest przyjąć a x = a 1/q) p = a 1/q } {{... a

Bardziej szczegółowo

Rekursja 2. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak

Rekursja 2. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak Rekursja Materiały pomocicze do wykładu wykładowca: dr Magdalea Kacprzak Rozwiązywaie rówań rekurecyjych Jedorode liiowe rówaia rekurecyje Twierdzeie Niech k będzie ustaloą liczbą aturalą dodatią i iech

Bardziej szczegółowo

+ ln = + ln n + 1 ln(n)

+ ln = + ln n + 1 ln(n) "Łatwo z domu rzeczywistości zajśd do lasu matematyki, ale ieliczi tylko umieją wrócid." Hugo Dyoizy Steihaus Niech (a ) będzie ieskooczoym ciągiem rzeczywistym. Def. Szeregiem = a azywamy parę ciągów

Bardziej szczegółowo

ĆWICZENIA NR 1 Z MATEMATYKI (Finanse i Rachunkowość, studia zaoczne, I rok) Zad. 1. Wyznaczyć dziedziny funkcji: 1 = 1, b) ( x) , c) h ( x) x x

ĆWICZENIA NR 1 Z MATEMATYKI (Finanse i Rachunkowość, studia zaoczne, I rok) Zad. 1. Wyznaczyć dziedziny funkcji: 1 = 1, b) ( x) , c) h ( x) x x ĆWICZENIA NR Z MATEMATYKI (Fiase i Rachukowość studia zaocze I rok) Zad Wyzaczyć dziedziy fukcji: a) f ( ) b) ( ) + + 6 f c) f ( ) + + d) f ( ) + e) ( ) f l f) f ( ) l( + ) + l( ) g) f ( ) l( si ) h) f

Bardziej szczegółowo

Poziom rozszerzony. 5. Ciągi. Uczeń:

Poziom rozszerzony. 5. Ciągi. Uczeń: PIOTR LUDWIKOWSKI Materiał z wykładu z aalizy dla uczestików koerecji Podstawa programowa z kometarzami Tom 6 Edukacja matematycza i techicza w szkole podstawowej, gimazjum i liceum matematyka, zajęcia

Bardziej szczegółowo

3 Arytmetyka. 3.1 Zbiory liczbowe.

3 Arytmetyka. 3.1 Zbiory liczbowe. 3 Arytmetyka. 3.1 Zbiory liczbowe. Bóg stworzył liczby aturale, wszystko ie jest dziełem człowieka. Leopold Kroecker Ozaczeia: zbiór liczb aturalych: N = {1, 2,...} zbiór liczb całkowitych ieujemych: N

Bardziej szczegółowo

ZAGADNIENIA Z MATEMATYKI DLA STUDENTÓW I ROKU WIMiR Semestr zimowy 2017/18

ZAGADNIENIA Z MATEMATYKI DLA STUDENTÓW I ROKU WIMiR Semestr zimowy 2017/18 dr Aa Barbaszewska-Wiśiowska ZAGADNIENIA Z MATEMATYKI DLA STUDENTÓW I ROKU WIMiR Semestr zimowy 17/18 1 Elemety logiki matematyczej Zdaia i formy zdaiowe fuktory zdaiotwórcze Tautologie Wartości logicze

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 2 (LUX), lato 2017/18. a n n = 10.

Jarosław Wróblewski Analiza Matematyczna 2 (LUX), lato 2017/18. a n n = 10. Czy istieje ciąg (a ) taki, że (podać przykład lub dowieść, że ie istieje) : 576. a > 1 dla ieskończeie wielu, a > 0, szereg a jest zbieży. N 577. a = 1 2 dla ieskończeie wielu, a = 10. 578. a 2 = 1 N,

Bardziej szczegółowo

f '. Funkcja h jest ciągła. Załóżmy, że ciąg (z n ) n 0, z n+1 = h(z n ) jest dobrze określony, tzn. n 0 f ' ( z n

f '. Funkcja h jest ciągła. Załóżmy, że ciąg (z n ) n 0, z n+1 = h(z n ) jest dobrze określony, tzn. n 0 f ' ( z n Metoda Newtoa i rówaie z = 1 Załóżmy, że fucja f :C C ma ciągłą pochodą. Dla (prawie) ażdej liczby zespoloej z 0 tworzymy ciąg (1) (z ) 0, z 1 = z f ( z ), ciąg te f ' (z ) będziemy azywać orbitą liczby

Bardziej szczegółowo

Matematyka. Zakres podstawowy. Nawi zanie do gimnazjum. n/m Rozwi zywanie zada Zadanie domowe Dodatkowe Komunikaty Bie ce materiały

Matematyka. Zakres podstawowy. Nawi zanie do gimnazjum. n/m Rozwi zywanie zada Zadanie domowe Dodatkowe Komunikaty Bie ce materiały Lekcja 1. Lekcja orgaizacyja kotrakt Podręczik: W. Babiański, L. Chańko, D. Poczek Mateatyka. Zakres podstawowy. Wyd. Nowa Era. Zakres ateriału: Liczby rzeczywiste Wyrażeia algebraicze Rówaia i ierówości

Bardziej szczegółowo

Zauważone błędy bardzo proszę zgłaszać mailem lub na ćwiczeniach. Z góry dziękuję :-)

Zauważone błędy bardzo proszę zgłaszać mailem lub na ćwiczeniach. Z góry dziękuję :-) Odpowiedzi do zadań z szeregów, cz I. Zauważoe błędy bardzo proszę zgłaszać mailem lub a ćwiczeiach. Z góry dziękuję :-. a +, wsk. skorzystać z rówości a b a b, astępie a+b wyciągąć ajwyższe potęgi z liczika

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1 LUX, zima 2016/17

Jarosław Wróblewski Analiza Matematyczna 1 LUX, zima 2016/17 585. Wskaż liczbę rzeczywistą k, dla której podaa graica istieje i jest dodatią liczbą rzeczywistą. Podaj wartość graicy dla tej wartości parametru k. Jeżeli odpowiedź jest liczbą wymierą, podaj ją w postaci

Bardziej szczegółowo

Zasada indukcji matematycznej. Dowody indukcyjne.

Zasada indukcji matematycznej. Dowody indukcyjne. Zasada idukcji matematyczej Dowody idukcyje Z zasadą idukcji matematyczej i dowodami idukcyjymi sytuacja jest ajczęściej taka, że podaje się w szkole treść zasady idukcji matematyczej, a astępie omawia,

Bardziej szczegółowo

Wektory Funkcje rzeczywiste wielu. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski

Wektory Funkcje rzeczywiste wielu. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski Wektory Fukcje rzeczywiste wielu zmieych rzeczywistych Matematyka Studium doktorackie KAE SGH Semestr leti 2008/2009 R. Łochowski Wektory pukty w przestrzei R Przestrzeń R to zbiór uporządkowaych -ek liczb

Bardziej szczegółowo

Wzór Taylora. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski

Wzór Taylora. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski Wzór Taylora Szeregi potęgowe Matematyka Studium doktorackie KAE SGH Semestr leti 8/9 R. Łochowski Graica fukcji w pukcie Niech f: R D R, R oraz istieje ciąg puktów D, Fukcja f ma w pukcie graicę dowolego

Bardziej szczegółowo

I. Podzielność liczb całkowitych

I. Podzielność liczb całkowitych I Podzielość liczb całkowitych Liczba a = 57 przy dzieleiu przez pewą liczbę dodatią całkowitą b daje iloraz k = 3 i resztę r Zaleźć dzieik b oraz resztę r a = 57 = 3 b + r, 0 r b Stąd 5 r b 8, 3 więc

Bardziej szczegółowo

Przykładowe zadania dla poziomu rozszerzonego

Przykładowe zadania dla poziomu rozszerzonego Przkładowe zadaia dla poziomu rozszerzoego Zadaie. ( pkt W baku w pierwszm roku oszczędzaia stopa procetowa bła rówa p%, a w drugim roku bła o % iższa. Po dwóch latach, prz roczej kapitalizacji odsetek,

Bardziej szczegółowo

Wyk lad 8 Zasadnicze twierdzenie algebry. Poj. ecie pierścienia

Wyk lad 8 Zasadnicze twierdzenie algebry. Poj. ecie pierścienia Wy lad 8 Zasadicze twierdzeie algebry. Poj ecie pierścieia 1 Zasadicze twierdzeie algebry i jego dowód Defiicja 8.1. f: C C postaci Wielomiaem o wspó lczyiach zespoloych azywamy fucj e f(x) = a x + a 1

Bardziej szczegółowo

Analiza numeryczna. Stanisław Lewanowicz. Aproksymacja funkcji

Analiza numeryczna. Stanisław Lewanowicz. Aproksymacja funkcji http://www.ii.ui.wroc.pl/ sle/teachig/a-apr.pdf Aaliza umerycza Staisław Lewaowicz Grudzień 007 r. Aproksymacja fukcji Pojęcia wstępe Defiicja. Przestrzeń liiową X (ad ciałem liczb rzeczywistych R) azywamy

Bardziej szczegółowo

Analiza matematyczna dla informatyków

Analiza matematyczna dla informatyków Aaliza matematycza dla iformatyków Sprawdziay do Wykładów dla pierwszego roku iformatyki a Wydziale Matematyki, Iformatyki i Mechaiki Uiwersytetu Warszawskiego w latach 2007/8, 2008/9, 2009/0, 20/2, 202/3,

Bardziej szczegółowo

Analiza I.1, zima globalna lista zadań

Analiza I.1, zima globalna lista zadań Aaliza I., zima 207 - globala lista zadań Marci Kotowsi 8 styczia 208 Podstawy Zadaie. Udowodij, że dla ażdego aturalego liczby 7 2 + oraz 7 2 dzielą się przez 6. Zadaie 2. Rozstrzygij, czy poiższe liczby

Bardziej szczegółowo

Analiza matematyczna dla informatyków

Analiza matematyczna dla informatyków Aaliza matematycza dla iformatyków Sprawdziay do Wykładów dla pierwszego roku iformatyki a Wydziale Matematyki, Iformatyki i Mechaiki Uiwersytetu Warszawskiego w latach 2007/8, 2008/9, 2009/0, 20/2, 202/3,

Bardziej szczegółowo

Zdarzenia losowe, definicja prawdopodobieństwa, zmienne losowe

Zdarzenia losowe, definicja prawdopodobieństwa, zmienne losowe Metody probabilistycze i statystyka Wykład 1 Zdarzeia losowe, defiicja prawdopodobieństwa, zmiee losowe Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki

Bardziej szczegółowo

a n 7 a jest ciągiem arytmetycznym.

a n 7 a jest ciągiem arytmetycznym. ZADANIA MATURALNE - CIĄGI LICZBOWE - POZIOM PODSTAWOWY Opracowała mgr Dauta Brzezińska Zad.1. ( pkt) Ciąg a określoy jest wzorem 5.Wyzacz liczbę ujemych wyrazów tego ciągu. Zad.. ( 6 pkt) a Day jest ciąg

Bardziej szczegółowo

Geometrycznie o liczbach

Geometrycznie o liczbach Geometryczie o liczbach Geometryczie o liczbach Łukasz Bożyk Dodatią liczbę całkowitą moża iterpretować jako pole pewej figury składającej się z kwadratów jedostkowych Te prosty pomysł pozwala w aturaly

Bardziej szczegółowo

O liczbach naturalnych, których suma równa się iloczynowi

O liczbach naturalnych, których suma równa się iloczynowi O liczbach aturalych, których suma rówa się iloczyowi Lew Kurladczyk i Adrzej Nowicki Toruń UMK, 10 listopada 1998 r. Liczby aturale 1, 2, 3 posiadają szczególą własość. Ich suma rówa się iloczyowi: Podobą

Bardziej szczegółowo

Prace domowe z matematyki Semestr zimowy 2010/2011. Zoa Zieli«ska-Kolasi«ska

Prace domowe z matematyki Semestr zimowy 2010/2011. Zoa Zieli«ska-Kolasi«ska Prace domowe z matematyki Semestr zimowy 2010/2011 Zoa Zieli«ska-Kolasi«ska 5 pa¹dzierika 2010 Rozdziaª 0 Uwagi Prace domowe ie s obowi zkowe aczkolwiek zach cam gor co do ich robieia i oddawaia mi a kartkach.

Bardziej szczegółowo

5. Szeregi liczbowe. A n = A = lim. a k = lim a k, a k = a 1 + a 2 + a

5. Szeregi liczbowe. A n = A = lim. a k = lim a k, a k = a 1 + a 2 + a 5. Szeregi liczbowe Niech będzie day iesończoy ciąg liczbowy {a }. Ciąg A = azywamy ciągiem sum częściowych ciągu {a }. Jeżeli ciąg {A } jest zbieży, mówimy, że ciąg {a } jest sumowaly, a graicę a A =

Bardziej szczegółowo

CIĄGI LICZBOWE. Poziom podstawowy

CIĄGI LICZBOWE. Poziom podstawowy CIĄGI LICZBOWE Poziom podstawowy Zadaie ( pkt) + 0 Day jest ciąg o wyrazie ogólym a =, N+ + jest rówy? Wyzacz a a + Czy istieje wyraz tego ciągu, który Zadaie (6 pkt) Marek chce przekopać swój przydomowy

Bardziej szczegółowo

UKŁADY RÓWNAŃ LINOWYCH

UKŁADY RÓWNAŃ LINOWYCH Ekoeergetyka Matematyka. Wykład 4. UKŁADY RÓWNAŃ LINOWYCH Defiicja (Układ rówań liiowych, rozwiązaie układu rówań) Układem m rówań liiowych z iewiadomymi,,,, gdzie m, azywamy układ rówań postaci: a a a

Bardziej szczegółowo

MATURA 2014 z WSiP. Zasady oceniania zadań

MATURA 2014 z WSiP. Zasady oceniania zadań MATURA 0 z WSiP Matematyka Poziom rozszerzoy Zasady oceiaia zadań Copyright by Wydawictwa Szkole i Pedagogicze sp z oo, Warszawa 0 Matematyka Poziom rozszerzoy Kartoteka testu Numer zadaia Sprawdzaa umiejętość

Bardziej szczegółowo

Wykład 7. Przestrzenie metryczne zwarte. x jest ciągiem Cauchy ego i posiada podciąg zbieżny. Na mocy

Wykład 7. Przestrzenie metryczne zwarte. x jest ciągiem Cauchy ego i posiada podciąg zbieżny. Na mocy Wyład 7 Przestrzeie metrycze zwarte Defiicja 8 (przestrzei zwartej i zbioru zwartego Przestrzeń metryczą ( ρ X azywamy zwartą jeśli ażdy ciąg elemetów tej przestrzei posiada podciąg zbieży (do putu tej

Bardziej szczegółowo

Krzysztof Rykaczewski. Analiza matematyczna I Zbiór zadań

Krzysztof Rykaczewski. Analiza matematyczna I Zbiór zadań Krzysztof Rykaczewski Aaliza matematycza I Zbiór zadań Motto: Powiedz mi a zapomę Pokaż mi a zapamiętam Pozwól mi zrobić a zrozumiem. Cofucius : Zbiór zadań z aalizy matematyczej Uiwersytet Mikołaja Koperika

Bardziej szczegółowo