MECHANIKA BUDOWLI 6 CIĘŻARY SPRĘŻYSTE

Wielkość: px
Rozpocząć pokaz od strony:

Download "MECHANIKA BUDOWLI 6 CIĘŻARY SPRĘŻYSTE"

Transkrypt

1 Oga Koacz, Adam Łodygows, Wocech Pawłows, chał Płoowa, Krzyszof Tymer Konsuace nauowe: rof. dr hab. JERZY RAKOWSKI Poznań 00/003 ECHAIKA BUDOWLI 6 CIĘŻARY SPRĘŻYSTE Wyznaczane rzemeszczeń z zasosowanem równań racy wruane w ramach, łuach, raowncach sayczne wyznaczanych. rzemeszczne unu A o erunu dzałana edynowe sły wruane, rzyłożone w ym unce obró rzerou A Poechna Poznańsa Koacz, Łodygows, Pawłows, Płoowa, Tymer

2 wzaemny obró unów A B zbżene unów A B obró cęcwy o długośc a zmana ąa zawarego mędzy sycznym do ręów zbegaących sę w rzegube obró ręa raowncy D o długośc a Poechna Poznańsa Koacz, Łodygows, Pawłows, Płoowa, Tymer

3 3 wzaemne zbżene węzłów A B (wzgędne oddaene) zmana ąa zawarego mędzy ręam o długośc a b Równane racy wruane da raowncy uwzgędna edyne dzałane sły normane (sły odłużne w ręach). ( ) P δ = ( ) (6.) gdze - numer ręa () P - sła normana w - ym ręce, będąca wynem dzałana obcążena P -sła normana w -ym ręce będąca wynem dzałana obcążena wruanego - szywność odłużna - ego ręa -wsółczynn rzewodzena ceła -ego ręa -rzyros emeraury w -ym ręce (równomerne ogrzane ub ozębene ręa) = o - m ( o -esremana em. we włóne środowym, m -em. monażu) -długość -ego ręa Cężary srężyse (cężar srężyse) Jes o edna z meod obczana n ugęca, sosowana naczęśce rzy wyznaczanu sładowych rzemeszczeń ewne gruy unów uładu (doyczy o unów os ramy ub łuu, asa górnego, donego ub wszysch węzłów raowncy równocześne) Posłużmy sę ewną anaogą: Poechna Poznańsa Koacz, Łodygows, Pawłows, Płoowa, Tymer

4 4 Rozarzmy ewen uład beowy obcążony rzeczywsym słam zewnęrznym Sły e wywołuą onższe wyresy sł orzecznych momenów zgnaących: ϕ ϕ Z rysunu wyna: d ϕ T (6.) g = = = a dx d ϕ T (6.3) g = = = a dx Borąc od uwagę onwencę znaowana sł orzecznych możemy zasać: P = T T = gϕ gϕ (6.4) ary ąów są bardzo małe, możemy zaem rzyąć że g, czy: P ϕ ϕ (6.5) Poechna Poznańsa Koacz, Łodygows, Pawłows, Płoowa, Tymer

5 5 Rozarzmy eraz uład beowy, do órego rzyłożone fcyne obcążene w osac sł suonych W. Arosymuąc nę ugęca be łamaną, orzymuemy nasęuący wyres: δ δ δ Wyres sełna nasęuące zaeżnośc: δ δ δ δ g =, g = (6.6) a a Jeże założymy, że wyres ugęć δ(x) es denyczny z wyresem momenów zgnaących wywołanych gruą sł suonych W, o na odsawe założena, że =ϕ (orównane z orzednm rzyadem) naeży uznać, że W są weoścam, óre w rzeczywsośc ownny być różncą ąów W = (6.7) Wyna z ego, że chcąc znaeźć nę ugęca uładu, naeży obczyć owyższą różncę ąów, czego naławe doonać orzysaąc z zasady rac wruanych azywaąc sły W cężaram srężysym, możemy odać nasęuące defnce: W cężar srężysy es o weość, óre warość oreśa różnca ąów (do ozomu) dwóch sąsednch n ugęca es o fcyne obcążene, óre wrowadzone do be zasęcze dae wyres momenów zgnaących, orywaący sę z ną ugęca uładu od obcążena rzeczywsego Poechna Poznańsa Koacz, Łodygows, Pawłows, Płoowa, Tymer

6 6 Sosoby obczana cężarów srężysych da uładów raowych sayczne wyznaczanych. W ceu obczena cężarów srężysych obcążamy uład słam:/a, /a /a,/a dzałaącym na rzy sąsedne węzły -,, wzdłuż rosych równoegłych do szuanych ugęć δ -, δ, δ. Wyna z ego że cężary srężyse obczyć możemy ze wzoru: W = ( ) P (6.8) Poechna Poznańsa Koacz, Łodygows, Pawłows, Płoowa, Tymer

7 7 Pręy oznaczone oorem nebesm sanową uład samo równoważny (sły ne wywołuą reac odorowych w raowncy) wyres momenów od obcążena fcynego W, równoważny n ugęca asa donego raowncy W rzyadu gdy badany as raowncy ne es rosoadły do erunu ugęć, oneczne są dodaowe obczena (arz W.owac echana Budow om, rozdzał 0..) Powyższy sosób rozszerzymy na obczane ugęć w uładach zgnanych Poechna Poznańsa Koacz, Łodygows, Pawłows, Płoowa, Tymer

8 8 P P W = ( ) ds ( ) ds EJ h s s (6.9) Poechna Poznańsa Koacz, Łodygows, Pawłows, Płoowa, Tymer

9 Poechna Poznańsa Koacz, Łodygows, Pawłows, Płoowa, Tymer 9 ) ( ) ( ) 3 3 ( ) 3 3 ( = g g h h g g EJ EJ W Po srócenu wyłączenu wsónych czynnów: [ ] [ ] ) ( ) ( 6 6 = g g h h g g EJ EJ W (6.0) Jeś wyres momenów es rzywonowy o wzór na cężar srężysy rzymue osać: [ ] W EJ W =... 6 (6.)

10 0 gdze W= Po obczenu cężarów srężysych obcążamy nm beę fcyną, aą by sełnała warun brzegowe uładu rzeczywsego (anaoga do me. obcążeń wórnych). ożna edna zamas be fcyne obcążać cężaram srężysym be na dwóch odorach, edna rzy wyonanu ewnego zabegu grafcznego. Da be odare na dwóch ońcach wyres momenów owsałych od obcążeń W będze równy zeru w unach A B (ugęce ych unów równe zeru). Jedna warunem brzegowym be rzeczywse es zerowe ugęce w unach B C. aeży osąć w nasęuący sosób: o narysowanu wyresu momenów odare na obu ońcach, reśmy rosą zamyaącą a by rzecęła wyres w unach B C. Poechna Poznańsa Koacz, Łodygows, Pawłows, Płoowa, Tymer

11 Rzędne zaresowanego oa medzy łamaną a rosą zamyaącą sanową warośc ugęć oenych unów be rzeczywse (na nebeso oznaczono ugęca w unach rzyłożena cężarów srężysych). Anaogczne osęuemy w rzyadu raownc: rys. a) uład rzeczywsy rys. b) uład zasęczy (anaoga do me. obcazen wórnych) rys. c) uład zasęczy (bea wonoodara na obu ońcach) z rowadzenem zabegu grafcznego (arz rzyład orzedn) Poechna Poznańsa Koacz, Łodygows, Pawłows, Płoowa, Tymer

12 W rzyadu wysęowana rzegubu wewnęrznego cężar srężysy da ego unu naeży obczyć ndywduane borąc od uwagę fa, że wyresy momenów wruanych wysęuą w całym uładze. Wszyse warośc W obczamy ze wzoru (6.3) naomas weość W m obczamy z uwzgędnenem fau, że obcążene wruane w unce m wywołue reace ozome H. Zaem san narężena wysęue we wszysch ręach raowncy a ne a orzedno yo w uładach samorównoważnych (oznaczone oorem nebesm). Poechna Poznańsa Koacz, Łodygows, Pawłows, Płoowa, Tymer

Przykład 3.1. Wyznaczenie zmiany odległości między punktami ramy trójprzegubowej

Przykład 3.1. Wyznaczenie zmiany odległości między punktami ramy trójprzegubowej Przykład Wyznaczene zmany odegłośc mędzy unktam ramy trójrzegubowej Poecene: Korzystając ze wzoru axwea-ohra wyznaczyć zmanę odegłośc mędzy unktam w onższym układze Przyjąć da wszystkch rętów EI = const

Bardziej szczegółowo

MECHANIKA BUDOWLI 13

MECHANIKA BUDOWLI 13 1 Oga Kopacz, Adam Łodygos, Krzysztof ymper, chał Płotoa, Wocech Pałos Konsutace nauoe: prof. dr hab. JERZY RAKOWSKI Poznań 00/00 ECHANIKA BUDOWLI 1 Ugęca bee drgaących. Wzory transformacyne bee o cągłym

Bardziej szczegółowo

MECHANIKA BUDOWLI 2 1. UKŁADY PRZESTRZENNE

MECHANIKA BUDOWLI 2 1. UKŁADY PRZESTRZENNE Oga Kopacz, Adam Łodygows, Krzysztof Tymper, chał łotowa, Wojcech awłows Konsutacje nauowe: prof. dr hab. JERZY RAKOWSKI oznań / ECHANIKA BUDOWLI. UKŁADY RZESTRZENNE O przestrzennośc ne śwadczy tyo geometra

Bardziej szczegółowo

Wyznaczanie przemieszczeń

Wyznaczanie przemieszczeń ór Maxwea-Mora δ ynacane premesceń ór Maxwea-Mora: Bea recywsym obcążenem δ MM JE NN E ( ) M d g N o P q P TT κ G ór służy do wynacena premescena od obcążena recywsego. równanu wysępuą weośc, wywołane

Bardziej szczegółowo

Część 1 7. TWIERDZENIA O WZAJEMNOŚCI 1 7. TWIERDZENIA O WZAJEMNOŚCI Twierdzenie Bettiego (o wzajemności prac)

Część 1 7. TWIERDZENIA O WZAJEMNOŚCI 1 7. TWIERDZENIA O WZAJEMNOŚCI Twierdzenie Bettiego (o wzajemności prac) Część 1 7. TWIERDZENIA O WZAJEMNOŚCI 1 7. 7. TWIERDZENIA O WZAJEMNOŚCI 7.1. Twerdzene Bettego (o wzajemnośc prac) Nech na dowolny uład ramowy statyczne wyznaczalny lub newyznaczalny, ale o nepodatnych

Bardziej szczegółowo

Przykład 5.1. Kratownica dwukrotnie statycznie niewyznaczalna

Przykład 5.1. Kratownica dwukrotnie statycznie niewyznaczalna rzykład.. Kratownca dwukrotne statyczne newyznaczana oecene: korzystaąc z metody sł wyznaczyć sły w prętach ponższe kratowncy. const Rozwązane zadana rozpoczynamy od obczena stopna statyczne newyznaczanośc

Bardziej szczegółowo

MECHANIKA BUDOWLI 4. Słowa kluczowe: praca wirtualna, przemieszczenie wirtualne

MECHANIKA BUDOWLI 4. Słowa kluczowe: praca wirtualna, przemieszczenie wirtualne Oga Kopacz, Aa Łoygows, Wocech Pawłows, Mchał Płotowa, Krzysztof Tyber Konsutace nauowe: prof. r hab. JERZY RAKOWSKI Poznań / MECHANIKA BUDOWI 4 Rozzał ten pośwęcony est wyprowazenu twerzena o pracy wrtuane,

Bardziej szczegółowo

1. WZORY TRANSFORMACYJNE METODY PRZEMIESZCZEŃ

1. WZORY TRANSFORMACYJNE METODY PRZEMIESZCZEŃ Część. WZORY TRANSFORMACYJNE METODY PRZEMIESZCZEŃ.. WZORY TRANSFORMACYJNE METODY PRZEMIESZCZEŃ.. Wstęp Podstawowym narzędzem służącym do rozwązywana zadań metodą przemeszczeń są wzory transformacyjne.

Bardziej szczegółowo

Funkcja momentu statycznego odciętej części przekroju dla prostokąta wyraża się wzorem. z. Po podstawieniu do definicji otrzymamy

Funkcja momentu statycznego odciętej części przekroju dla prostokąta wyraża się wzorem. z. Po podstawieniu do definicji otrzymamy etoy energetyczne rzykła Wyznaczyć współczynnk z - α z a przekroju prostokątnego który wzłuż os y ma wymar b wzłuż os Funkcja momentu statycznego ocętej częśc przekroju a prostokąta wyraża sę wzorem b

Bardziej szczegółowo

Część 2 4. RAMY OBCIĄŻONE TERMICZNIE, OSIADANIEM PODPÓR ORAZ PRZYPADKI RAMY OBCIĄŻONE TERMICZNIE, OSIADANIEM PODPÓR ORAZ PRZYPADKI SZCZEGÓLNE

Część 2 4. RAMY OBCIĄŻONE TERMICZNIE, OSIADANIEM PODPÓR ORAZ PRZYPADKI RAMY OBCIĄŻONE TERMICZNIE, OSIADANIEM PODPÓR ORAZ PRZYPADKI SZCZEGÓLNE Część 4. RAY OBCIĄŻONE TERICZNIE, OSIADANIE ODÓR ORAZ RZYADKI... 4. 4. RAY OBCIĄŻONE TERICZNIE, OSIADANIE ODÓR ORAZ RZYADKI SZCZEGÓLNE 4.. Wpływ temperatury rzy obczanu uładów statyczne newyznaczanyc naeży

Bardziej szczegółowo

Stateczność układów ramowych

Stateczność układów ramowych tateczność układów ramowych PRZYPONIENIE IŁ KRYTYCZN DL POJEDYNCZYCH PRĘTÓW tateczność ustrou tateczność ustrou est to zdoność ustrou do zachowana nezmennego położena (kształtu) ub nacze mówąc układ po

Bardziej szczegółowo

Przykład 2.3 Układ belkowo-kratowy.

Przykład 2.3 Układ belkowo-kratowy. rzykład. Układ bekowo-kratowy. Dany jest układ bekowo-kratowy, który składa sę z bek o stałej sztywnośc EJ częśc kratowej złożonej z prętów o stałej sztywnośc, obcążony jak na rysunku. Wyznaczyć przemeszczene

Bardziej szczegółowo

9. STATECZNOŚĆ SPRĘŻYSTA UKŁADÓW PRĘTOWYCH

9. STATECZNOŚĆ SPRĘŻYSTA UKŁADÓW PRĘTOWYCH Część 9. STATECZOŚĆ SPRĘŻYSTA UKŁADÓW PRĘTOWYCH 1 9. 9. STATECZOŚĆ SPRĘŻYSTA UKŁADÓW PRĘTOWYCH 9.1. Wstęp Omówene zagadnena statecznośc sprężystej uładów prętowych naeży rozpocząć od przybżena probemu

Bardziej szczegółowo

Przykład 4.1. Belka dwukrotnie statycznie niewyznaczalna o stałej sztywności zginania

Przykład 4.1. Belka dwukrotnie statycznie niewyznaczalna o stałej sztywności zginania Przykład.. Beka dwukrotne statyczne newyznaczana o stałej sztywnośc zgnana Poecene: korzystając z metody sł sporządzć wykresy sł przekrojowych da ponŝszej bek. Wyznaczyć ugęce oraz wzgędną zmanę kąta w

Bardziej szczegółowo

4. RÓWNANIE PRACY WIRTUALNEJ

4. RÓWNANIE PRACY WIRTUALNEJ Część 1 4. RÓWNANIE PRACY WIRTUALNEJ 1 4. 4. RÓWNANIE PRACY WIRTUALNEJ Rozdzał ten pośwęcony et wyprowadzenu twerdzena o pracy wrtuane, edna wywód naeży poprzedzć wyaśnenem dwóch zagadneń: przemezczena

Bardziej szczegółowo

IV. WPROWADZENIE DO MES

IV. WPROWADZENIE DO MES Kondra P. Moda mnów Sończonych ora zasosowana 7 IV. WPROWADZNI DO MS Poszuwan rozwązań rzybżonych bazuących na modach rsduanych waracynych naoya na rudnośc w doborz func bazowych orśonych na całym obszarz.

Bardziej szczegółowo

METODY KOMPUTEROWE 10

METODY KOMPUTEROWE 10 MEODY KOMPUEROWE RÓWNANIA RÓŻNICZKOWE CZĄSKOWE Poechnka Poznańska Mchał Płokowak Adam Łodgowsk Mchał PŁOKOWIAK Adam ŁODYGOWSKI Konsace nakowe dr nż. Wod Kąko Poznań 00/00 MEODY KOMPUEROWE 0 RÓWNANIA RÓŻNICZKOWE

Bardziej szczegółowo

TWIERDZENIA O WZAJEMNOŚCIACH

TWIERDZENIA O WZAJEMNOŚCIACH 1 Olga Kopac, Adam Łodygows, Wojcech Pawłows, Mchał Płotowa, Krystof Tymber Konsultacje nauowe: prof. dr hab. JERZY RAKOWSKI Ponań 2002/2003 MECHANIKA BUDOWI 7 ACH TWIERDZENIE BETTIEGO (o wajemnośc prac)

Bardziej szczegółowo

PARAMETRY ELEKTRYCZNE CYFROWYCH ELEMENTÓW PÓŁPRZEWODNIKOWYCH

PARAMETRY ELEKTRYCZNE CYFROWYCH ELEMENTÓW PÓŁPRZEWODNIKOWYCH ARAMETRY ELEKTRYZNE YFROWYH ELEMENTÓW ÓŁRZEWODNIKOWYH SZYBKOŚĆ DZIAŁANIA wyrażona maksymalną częsolwoścą racy max MO OBIERANA WSÓŁZYNNIK DOBROI D OBIĄŻALNOŚĆ ELEMENTÓW N MAKSYMALNA LIZBA WEJŚĆ M ODORNOŚĆ

Bardziej szczegółowo

Przykład 3.2. Rama wolnopodparta

Przykład 3.2. Rama wolnopodparta rzykład ama wonopodparta oecene: Korzystając ze wzoru axwea-ohra wyznaczyć wektor przemeszczena w punkce w ponższym układze oszukwać będzemy składowych (ponowej pozomej) wektora przemeszczena punktu, poneważ

Bardziej szczegółowo

PODSTAWOWE MIERNIKI DYNAMIKI ZJAWISK

PODSTAWOWE MIERNIKI DYNAMIKI ZJAWISK PODSTAWOWE MIERNIKI DYNAMIKI ZJAWISK Założena Nech oznacza ozom (warość) badanego zjawska (zmennej) w kolejnch momenach czasu T0, gdze T 0 0,1,..., n 1 oznacza worz szereg czasow. zbór numerów czasu. Cąg

Bardziej szczegółowo

Małe drgania wokół położenia równowagi.

Małe drgania wokół położenia równowagi. ałe rgana woół położena równowag. ałe rgana Anazuemy ułay a tórych potencał Vqq,q,..,q posaa mnmum a oreśonych wartośc współrzęnych uogónonych q,, -czba stopn swoboy. ożemy ta przesaować te współrzęne

Bardziej szczegółowo

5. MES w mechanice ośrodka ciągłego

5. MES w mechanice ośrodka ciągłego . MES w mechance ośroda cągłego P.Pucńs. MES w mechance ośroda cągłego.. Stan równowag t S P x z y n ρb(x, y, z) u(x, y, z) P Wetor gęstośc sł masowych N/m 3 ρb ρ g Wetor gęstośc sł powerzchnowych N/m

Bardziej szczegółowo

LABORATORIUM PODSTAW OPTOELEKTRONIKI WYZNACZANIE CHARAKTERYSTYK STATYCZNYCH I DYNAMICZNYCH TRANSOPTORA PC817

LABORATORIUM PODSTAW OPTOELEKTRONIKI WYZNACZANIE CHARAKTERYSTYK STATYCZNYCH I DYNAMICZNYCH TRANSOPTORA PC817 LABORATORIUM PODSTAW OPTOELEKTRONIKI WYZNACZANIE CHARAKTERYSTYK STATYCZNYCH I DYNAMICZNYCH TRANSOPTORA PC87 Ceem badań jes ocena właściwości saycznych i dynamicznych ransopora PC 87. Badany ransopor o

Bardziej szczegółowo

Macierze hamiltonianu kp

Macierze hamiltonianu kp Macere halonanu p acer H a, dla wranego, war 44 lu 88 jeśl were jao u n r uncje s>; X>, Y>, Z>, cl uncje ransorujące sę według repreenacj grp weora alowego Γ j. worące aę aej repreenacj - o ora najardej

Bardziej szczegółowo

u u u( x) u, x METODA RÓŻNIC SKOŃCZONYCH, METODA ELEMENTÓW BRZEGOWYCH i METODA ELEMENTÓW SKOŃCZONYCH

u u u( x) u, x METODA RÓŻNIC SKOŃCZONYCH, METODA ELEMENTÓW BRZEGOWYCH i METODA ELEMENTÓW SKOŃCZONYCH METODA RÓŻNIC SKOŃCZONYCH, METODA ELEMENTÓW BRZEGOWYCH METODA ELEMENTÓW SKOŃCZONYCH Szkc rozwązana równana Possona w przestrzen dwuwymarowe. Równane Possona to równae różnczkowe cząstkowe opsuące wele

Bardziej szczegółowo

F - wypadkowa sił działających na cząstkę.

F - wypadkowa sił działających na cząstkę. PRAWA ZACHOWAIA Podstawowe termny Cała tworzące uład mechanczny oddzałują mędzy sobą z całam nenależącym do uładu za omocą: Sł wewnętrznych Sł zewnętrznych - Sł dzałających na dane cało ze strony nnych

Bardziej szczegółowo

DOBÓR SERWOSILNIKA POSUWU. Rysunek 1 przedstawia schemat kinematyczny napędu jednej osi urządzenia.

DOBÓR SERWOSILNIKA POSUWU. Rysunek 1 przedstawia schemat kinematyczny napędu jednej osi urządzenia. DOBÓR SERWOSILNIKA POSUWU Rysunek 1 rzedstawa schemat knematyczny naędu jednej os urządzena. Rys. 1. Schemat knematyczny serwonaędu: rzełożene rzekładn asowej, S skok śruby ocągowej, F sła orzeczna, F

Bardziej szczegółowo

Politechnika Poznańska 2006 Ćwiczenie nr2

Politechnika Poznańska 2006 Ćwiczenie nr2 Obliczanie przeieszczeń układów sayczne wyznaczalnych z zasosowanie równań pracy wirualnej. Poliechnika Poznańska 006 Ćwiczenie nr. Dla układu przedsawionego na rysunku naleŝy przyjąć przekroje pręów ak,

Bardziej szczegółowo

Ż ć Ó Ś Ó ć Ę Ó Ś ź Ż Ż Ó Ż ź Ó ÓŚ Ć Ó ź Ó ź Ó Ź ć Ę Ó Ś Ż Ó Ó Ń Ą ź ź Ź Ś Ą Ą Ś Ą Ś ć ć ź ź Ó Ó Ę Ź Ą Ź Ę ĘŚ ć ź Ę Ę ź Ę ć Ś Ś Ę Ż Ż ć Ść ć ć Ń Ż Ś ć Ż Ż Ż Ż Ż Ó Ą Ę Ę Ę Ą Ż Ż Ż Ź Ż ć Ś Ż Ż Ż Ż Ż ć Ś

Bardziej szczegółowo

Ćw. 5. Wyznaczanie współczynnika sprężystości przy pomocy wahadła sprężynowego

Ćw. 5. Wyznaczanie współczynnika sprężystości przy pomocy wahadła sprężynowego 5 KATEDRA FIZYKI STOSOWANEJ PRACOWNIA FIZYKI Ćw. 5. Wyznaczane współczynna sprężystośc przy pomocy wahadła sprężynowego Wprowadzene Ruch drgający należy do najbardzej rozpowszechnonych ruchów w przyrodze.

Bardziej szczegółowo

ć Ó ć Ź ć ć ć ć ć ć Ś Ą ć ź Ź ć Ź Ź ć ć ć Ą Ź ĄĄ ć ź ć ć ć ć ć ć Ą ź Ó ć ć ć ć ć ć ć Ą ć ź ć ć ć Ś Ą ź ć Ó ć ć ć Ł ć ć Ą ć ć Ą Ó ć ć ć ć ź ć ć ć ć ć ć Ść ć ć Ó ć Ę ć ć ÓĄ Ś ć ć ć Ą ć ć Ź ź Ś ć Ź ć ć ć

Bardziej szczegółowo

III. Przetwornice napięcia stałego

III. Przetwornice napięcia stałego III. Przewornce napęca sałego III.1. Wsęp Przewornce: dosarczane pożądanej warośc napęca sałego koszem energ ze źródła napęca G. Możlwość zmnejszana, zwększana, odwracana polaryzacj lb kszałowane pożądanego

Bardziej szczegółowo

Ćwiczenie 410. Wyznaczanie modułu Younga metodą zginania pręta. Długość* Szerokość Grubość C l, [m] a. , [mm] [m -1 ] Strzałka ugięcia,

Ćwiczenie 410. Wyznaczanie modułu Younga metodą zginania pręta. Długość* Szerokość Grubość C l, [m] a. , [mm] [m -1 ] Strzałka ugięcia, Katedra Fzyk SGGW Nazwsko... Data... Nr na śce... Imę... Wydzał... Dzeń tyg.... Godzna... Ćwczene 410 Wyznaczane modułu ounga metodą zgnana pręta Pomary rozmarów pręta Rodzaj pręta Długość* Szerokość Grubość

Bardziej szczegółowo

XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne

XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadane teoretyczne Rozwąż dowolne rzez sebe wybrane dwa sośród odanych nże zadań: ZADANIE T Nazwa zadana: Protony antyrotony A. Cząstk o mase równe mase rotonu, ale

Bardziej szczegółowo

ψ przedstawia zależność

ψ przedstawia zależność Ruch falowy 4-4 Ruch falowy Ruch falowy polega na rozchodzeniu się zaburzenia (odkszałcenia) w ośrodku sprężysym Wielkość zaburzenia jes, podobnie jak w przypadku drgań, funkcją czasu () Zaburzenie rozchodzi

Bardziej szczegółowo

Energia potencjalna jest energią zgromadzoną w układzie. Energia potencjalna może być zmieniona w inną formę energii (na przykład energię kinetyczną)

Energia potencjalna jest energią zgromadzoną w układzie. Energia potencjalna może być zmieniona w inną formę energii (na przykład energię kinetyczną) 1 Enega potencjalna jest enegą zgomadzoną w układze. Enega potencjalna może być zmenona w nną omę eneg (na pzykład enegę knetyczną) może być wykozystana do wykonana pacy. Sumę eneg potencjalnej knetycznej

Bardziej szczegółowo

3. Kinematyka podstawowe pojęcia i wielkości

3. Kinematyka podstawowe pojęcia i wielkości 3. Kinematya odstawowe ojęcia i wielości Kinematya zajmuje się oisem ruchu ciał. Ruch ciała oisujemy w ten sosób, że odajemy ołożenie tego ciała w ażdej chwili względem wybranego uładu wsółrzędnych. Porawny

Bardziej szczegółowo

2.1 Zagadnienie Cauchy ego dla równania jednorodnego. = f(x, t) dla x R, t > 0, (2.1)

2.1 Zagadnienie Cauchy ego dla równania jednorodnego. = f(x, t) dla x R, t > 0, (2.1) Wykład 2 Sruna nieograniczona 2.1 Zagadnienie Cauchy ego dla równania jednorodnego Równanie gań sruny jednowymiarowej zapisać można w posaci 1 2 u c 2 2 u = f(x, ) dla x R, >, (2.1) 2 x2 gdzie u(x, ) oznacza

Bardziej szczegółowo

UTRATA STATECZNOŚCI. O charakterze układu decyduje wielkośćobciążenia. powrót do pierwotnego położenia. stabilnego do stanu niestabilnego.

UTRATA STATECZNOŚCI. O charakterze układu decyduje wielkośćobciążenia. powrót do pierwotnego położenia. stabilnego do stanu niestabilnego. Metody obiczeniowe w biomechanice UTRATA STATECZNOŚCI STATECZNOŚĆ odpornośćna małe zaburzenia. Układ stabiny po małym odchyeniu od stanu równowagi powrót do pierwotnego położenia. Układ niestabiny po małym

Bardziej szczegółowo

Zasada Jourdina i zasada Gaussa

Zasada Jourdina i zasada Gaussa Zasada Jourdna zasada Gaussa Orócz zasady d Alemberta w mechance analtyczne stosue sę nne zasady waracyne. Są to: zasada Jourdana zasada Gaussa. Wyrowadzene tych zasad oarte est na oęcu rędkośc rzygotowane

Bardziej szczegółowo

ZADANIE 9.5. p p T. Dla dwuatomowego gazu doskonałego wykładnik izentropy = 1,4 (patrz tablica 1). Temperaturę spiętrzenia obliczymy następująco

ZADANIE 9.5. p p T. Dla dwuatomowego gazu doskonałego wykładnik izentropy = 1,4 (patrz tablica 1). Temperaturę spiętrzenia obliczymy następująco ZADANIE 9.5. Do dyszy Bendemanna o rzekroju wylotowym A = mm doływa owetrze o cśnenu =,85 MPa temeraturze t = C, z rędkoścą w = 5 m/s. Cśnene owetrza w rzestrzen, do której wyływa owetrze z dyszy wynos

Bardziej szczegółowo

Reprezentacje grup symetrii. g s

Reprezentacje grup symetrii. g s erezentace ru ymetr Teora rerezentac dea: oeracom ymetr rzyać oeratory dzałaące w rzetrzen func zwązać z nm funce, tóre oeratory te rzerowadzaą w ebe odobne a zb. untów odcza oerac ymetr rozważmy rzeztałcene

Bardziej szczegółowo

Linie wpływu w belkach statycznie niewyznaczalnych

Linie wpływu w belkach statycznie niewyznaczalnych EHANIKA BUOWI inie wpływu w belach statycznie niewyznaczalnych Zadanie.: la poniższej beli naszicuj linie wpływu reacji A, B i. Za pomocą metody przemieszczeń wyznaczyć rzędne poszczególnych linii w połowie

Bardziej szczegółowo

6. WYZNACZANIE LINII UGIĘCIA W UKŁADACH PRĘTOWYCH

6. WYZNACZANIE LINII UGIĘCIA W UKŁADACH PRĘTOWYCH Część 6. WYZNCZNIE LINII UGIĘCI W UKŁDCH PRĘTWYCH 6. 6. WYZNCZNIE LINII UGIĘCI W UKŁDCH PRĘTWYCH 6.. Wyznaczanie przemieszczeń z zastosowaniem równań pracy wirtualnej w układach prętowych W metodzie pracy

Bardziej szczegółowo

Metoda Różnic Skończonych

Metoda Różnic Skończonych Metody Oblczenoe, P.E.Srokosz Metoda Różnc Skończonych Część Belka na srężystym odłożu x L K SIŁY NĄCE Kontynuacja Zadana Wyznaczyć sły tnące belce na srężystym odłożu arunkach odarca jak na rysunku oyżej.

Bardziej szczegółowo

Ćw. 5. Badanie ruchu wahadła sprężynowego sprawdzenie wzoru na okres drgań

Ćw. 5. Badanie ruchu wahadła sprężynowego sprawdzenie wzoru na okres drgań KAEDRA FIZYKI SOSOWANEJ PRACOWNIA 5 FIZYKI Ćw. 5. Badanie ruchu wahadła sprężynowego sprawdzenie wzoru na ores drgań Wprowadzenie Ruch drgający naeży do najbardziej rozpowszechnionych ruchów w przyrodzie.

Bardziej szczegółowo

Mechanika teoretyczna

Mechanika teoretyczna Obciążenie ciągłe równoierne ecanika teoretyczna Wykład nr Wyznaczanie reakcji. eki rzegubowe. ay. Siły wewnętrzne. Obciążenie ciągłe trójkątne iara wyadkowej obciążenia rozłożonego iniowo równa jest ou

Bardziej szczegółowo

u (1.2) T Pierwsza zasada termodynamiki w formie różniczkowej ma postać (1.3)

u (1.2) T Pierwsza zasada termodynamiki w formie różniczkowej ma postać (1.3) obl_en_wew_enal-2.do Oblizanie energii wewnęrznej i enalii 1. Energia wewnęrzna subsanji rosej Właśiwa energia wewnęrzna, u[j/kg] jes funkją sanu. Sąd dla subsanji rosej jes ona funkją dwóh niezależnyh

Bardziej szczegółowo

Zasada pędu i popędu, krętu i pokrętu, energii i pracy oraz d Alemberta bryły w ruchu postępowym, obrotowym i płaskim

Zasada pędu i popędu, krętu i pokrętu, energii i pracy oraz d Alemberta bryły w ruchu postępowym, obrotowym i płaskim Zasada pędu i popędu, kręu i pokręu, energii i pracy oraz d Alembera bryły w ruchu posępowym, obroowym i płaskim Ruch posępowy bryły Pęd ciała w ruchu posępowym obliczamy, jak dla punku maerialnego, skupiając

Bardziej szczegółowo

Przykłady (twierdzenie A. Castigliano)

Przykłady (twierdzenie A. Castigliano) 23 Przykłady (twierdzenie A. Castigiano) Zadanie 8.4.1 Obiczyć maksymane ugięcie beki przedstawionej na rysunku (8.2). Do obiczeń przyjąć następujące dane: q = 1 kn m, = 1 [m], E = 2 17 [Pa], d = 4 [cm],

Bardziej szczegółowo

Mechanika teoretyczna

Mechanika teoretyczna Kratownica Mechanika teoretyczna Wykład nr Obiczanie sił wewnętrznych w układach rętowych. Kratownice. Układ rętów rostoiniowych, ryzmatycznych, jednorodnych: ołączenia rzegubowe w węzłach; obciążenia

Bardziej szczegółowo

WYZNACZENIE ROZKŁADU TEMPERATUR STANU USTALONEGO W MODELU 2D PRZY UŻYCIU PROGRMU EXCEL

WYZNACZENIE ROZKŁADU TEMPERATUR STANU USTALONEGO W MODELU 2D PRZY UŻYCIU PROGRMU EXCEL Zeszyty robemowe Maszyny Eetryczne Nr /203 (98) 233 Andrze ałas BOBRME KOMEL, Katowce WYZNACZENIE ROZKŁADU TEMERATUR STANU USTALONEGO W MODELU 2D RZY UŻYCIU ROGRMU EXCEL SOLVING STEADY STATE TEMERATURE

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Wykład 2

Stanisław Cichocki Natalia Nehrebecka. Wykład 2 Sansław Cchock Naala Nehrebecka Wykład 2 1 1. Szereg czasowy 2. Sezonowość 3. Zmenne sacjonarne 4. Zmenne znegrowane 2 1. Szereg czasowy 2. Sezonowość 3. Zmenne sacjonarne 4. Zmenne znegrowane 3 Szereg

Bardziej szczegółowo

Proces narodzin i śmierci

Proces narodzin i śmierci Proces narodzn śmerc Jeżel w ewnej oulacj nowe osobnk ojawają sę w sosób losowy, rzy czym gęstość zdarzeń na jednostkę czasu jest stała w czase wynos λ, oraz lczba osobnków n, które ojawły sę od chwl do

Bardziej szczegółowo

Laboratorium Podstaw Metrologii

Laboratorium Podstaw Metrologii WOCŁAW Wrocław, dnia Laboratorium odstaw Metroogii Ćwiczenie o i ierune studiów... Grupa (dzień tygodnia i godzina rozpoczęcia zajęć) Imię i nazwiso Imię i nazwiso Imię i nazwiso rzetwornii Badanie właściwości

Bardziej szczegółowo

ĆWICZENIE NR 3 OBLICZANIE UKŁADÓW STATYCZNIE NIEWYZNACZALNYCH METODĄ SIŁ OD OSIADANIA PODPÓR I TEMPERATURY

ĆWICZENIE NR 3 OBLICZANIE UKŁADÓW STATYCZNIE NIEWYZNACZALNYCH METODĄ SIŁ OD OSIADANIA PODPÓR I TEMPERATURY zęść OLIZNIE UKŁÓW STTYZNIE NIEWYZNZLNYH METOĄ SIŁ 1 POLITEHNIK POZNŃSK INSTYTUT KONSTRUKJI UOWLNYH ZKŁ MEHNIKI UOWLI ĆWIZENIE NR 3 OLIZNIE UKŁÓW STTYZNIE NIEWYZNZLNYH METOĄ SIŁ O OSINI POPÓR I TEMPERTURY

Bardziej szczegółowo

XXX OLIMPIADA FIZYCZNA ETAP I Zadania teoretyczne

XXX OLIMPIADA FIZYCZNA ETAP I Zadania teoretyczne XXX OLIPIADA FIZYCZNA TAP I Zadana teoretczne Nazwa zadana ZADANI T1 Na odstawe wsółczesnch badań wadomo że jądro atomowe może znajdować sę tlo w stanach o oreślonch energach odobne ja dobrze znan atom

Bardziej szczegółowo

WYZNACZANIE MODUŁU SZTYWNOŚCI METODĄ DYNAMICZNĄ GAUSSA

WYZNACZANIE MODUŁU SZTYWNOŚCI METODĄ DYNAMICZNĄ GAUSSA Ćwiczenie WYZNACZANIE MOUŁU SZTYWNOŚCI METOĄ YNAMICZNĄ GAUSSA.1. Wiadomości ogóne Pod wpływem sił zewnętrznych ciała stałe uegają odkształceniom tzn. zmieniają swoje wymiary oraz kształt. Jeżei po usunięciu

Bardziej szczegółowo

Zmiana bazy i macierz przejścia

Zmiana bazy i macierz przejścia Auomaya Roboya Algebra -Wyład - dr Adam Ćmel cmel@agh.edu.pl Zmaa bazy macerz prześca Nech V będze wymarową przesrzeą lową ad całem K. Nech Be e będze bazą przesrze V. Rozważmy ową bazę B e... e. Oczywśce

Bardziej szczegółowo

4.4. Obliczanie elementów grzejnych

4.4. Obliczanie elementów grzejnych 4.4. Obiczanie eemenów grzejnych Po wyznaczeniu wymiarów przewodu grzejnego naeży zaprojekować eemen grzejny, a więc okreśić wymiary skręki grzejnej czy eemenu faisego (wężownicy grzejnej, meandra grzejnego).

Bardziej szczegółowo

Wprowadzenie do rachunku tensorowego

Wprowadzenie do rachunku tensorowego A Zabors, Wprowadzene do rachunu ensorowego Wprowadzene do rachunu ensorowego Konwenca sumacyna Ensena Powórzene s wsanów oznacza sumowane, s o zw wsan neme Wsan neme mona dowolne zmena, zachowuc edna

Bardziej szczegółowo

ę Ę ę ę ó ó Ę ę ś ś Ę ę Ę ń Ę Ę ó Ę ó ę ę Ę ń ęś ś ę ść Ę ó Ą ś ę ę ęę ę ę ń ę ę Ę ś Ł ę ę ę ć ś ę ś Ę ę ś ś ś Ą ś ę ę ń ó ę ć ś ń ó ó Ą ę ń ęę ś ś ś Ę ś ś ę ś ś ę ń ń Ę ĄĄ Ł Śę ó ń ś ń Ę ó ś ś ę ś Ę ś

Bardziej szczegółowo

WYKŁAD 1 ZASADY ELEKTROMECHANICZNEGO PRZETWARZANIA ENERGII

WYKŁAD 1 ZASADY ELEKTROMECHANICZNEGO PRZETWARZANIA ENERGII WYKŁAD 1 ZASADY ELEKTROMECHANICZNEGO RZETWARZANIA ENERGII 1.1. Zasada zachowania energii. unem wyjściowym dla analizy przewarzania energii i mocy w pewnym przedziale czasu jes zasada zachowania energii

Bardziej szczegółowo

DYNAMIKA KONSTRUKCJI

DYNAMIKA KONSTRUKCJI 10. DYNAMIKA KONSTRUKCJI 1 10. 10. DYNAMIKA KONSTRUKCJI 10.1. Wprowadzenie Ogólne równanie dynamiki zapisujemy w posaci: M d C d Kd =P (10.1) Zapis powyższy oznacza, że równanie musi być spełnione w każdej

Bardziej szczegółowo

Informacja o przestrzeniach Sobolewa

Informacja o przestrzeniach Sobolewa Wykład 11 Informacja o przestrzeniach Sobolewa 11.1 Definicja przestrzeni Sobolewa Niech R n będzie zbiorem mierzalnym. Rozważmy przestrzeń Hilberta X = L 2 () z iloczynem skalarnym zdefiniowanym równością

Bardziej szczegółowo

Przykład 7.3. Belka jednoprzęsłowa z dwoma wspornikami

Przykład 7.3. Belka jednoprzęsłowa z dwoma wspornikami Przykład.. eka jednoprzęsłowa z dwoma wspornikami Narysować wykresy sił przekrojowych da poniższej beki. α Rozwiązanie Rozwiązywanie zadania rozpocząć naeży od oznaczenia punktów charakterystycznych, składowych

Bardziej szczegółowo

Ó ź ę ę ś Ą Ą Ę Ę Ł ę ę ź Ę ę ę ś ś Ł ę ś ś ę Ą ź ę ś ś ś ś ę ś ę ę ź ę ę ś ę ś ę ę ś Ś ś ę ę ś ś ę ę ę ś ę ę ę ę ś ę ź Ł Ą Ę Ł ę ś ź ść ś ę ę ę ę ę ę ś ś ś ę ę ś ę ę ś ę ź Ć ŚĆ ć ś ś ć ę ś ś ę ś ś ź ś

Bardziej szczegółowo

Ą Ą ć Ó Ó Ó Ś Ź Ź Ó ż Ź Ź Ś Ś ż Ę ĘŚ ń ń ć Ś Ą Ę ż ć Ś ć ć Ć Ó Ó ć ć Ó ć Ó ć ć ń ć Ą Ó Ó Ó Ą Ć ń ń Ź Ó ń ć Ó ć ć ć ń ż ć ć Ć Ć ć ż ć Ź Ó ć ć ć ć Ó ć ĘŚ ń ń ż ć Ś ć Ą Ó ń ć ć Ś ć Ę Ć Ę Ó Ó ń ż ź Ó Ó Ś ń

Bardziej szczegółowo

Ł Ą Ę Ń ć Ź ź ĘŚ ÓŁ Ę Ę ń ń ź Ę ń Ż ć ć ń ń ń Ę ń Ę ń ń Ę ń Ę ń ń ć ć ń Ę Ą Ś ń Ę Ą Ł ź ć Ś ć ć ć Ź Ł Ś ć ć ć ć ć Ł ć ć ź ń ń ń ń ń ń ń ź ź ć ń ć ć ć ź Ł ń Ę ÓŁ ń ź ź ź ń ć ć ć ń ń ń Ą ń ń ń ń ń Ś Ę

Bardziej szczegółowo

ROZWIĄZYWANIE DWUWYMIAROWYCH USTALONYCH ZAGADNIEŃ PRZEWODZENIA CIEPŁA PRZY POMOCY ARKUSZA KALKULACYJNEGO

ROZWIĄZYWANIE DWUWYMIAROWYCH USTALONYCH ZAGADNIEŃ PRZEWODZENIA CIEPŁA PRZY POMOCY ARKUSZA KALKULACYJNEGO OZWIĄZYWAIE DWUWYMIAOWYCH USALOYCH ZAGADIEŃ PZEWODZEIA CIEPŁA PZY POMOCY AKUSZA KALKULACYJEGO OPIS MEODY Do rozwązana ustalonego pola temperatury wyorzystana est metoda blansów elementarnych. W metodze

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Wykład 2

Stanisław Cichocki Natalia Nehrebecka. Wykład 2 Sansław Cchock Naala Nehrebecka Wykład 2 1 1. Szereg czasowy 2. Sezonowość 3. Zmenne sacjonarne 2 1. Szereg czasowy 2. Sezonowość 3. Zmenne sacjonarne 3 Szereg czasowy jes pojedynczą realzacją pewnego

Bardziej szczegółowo

Układ regulacji ze sprzężeniem od stanu

Układ regulacji ze sprzężeniem od stanu Uład reglacji ze sprzężeniem od san 1. WSĘP Jednym z celów sosowania ład reglacji owarego, zamnięego jes szałowanie dynamii obie serowania. Jeżeli obie opisany jes równaniami san, o dynamia obie jes jednoznacznie

Bardziej szczegółowo

Badania suwnicy pomostowej natorowej dwudźwigarowej

Badania suwnicy pomostowej natorowej dwudźwigarowej INSTYTUT KONSTRUKCJI MASZYN KIERUNEK: TRANSPORT PRZEDMIOT: TRANSPORT BLISKI LABORATORIUM Badana suwncy omostowej natorowej dwudźwgarowej Research of overhead travelng crane wth two grders. Cel zakres zajęć:

Bardziej szczegółowo

ZASADA ZACHOWANIA MOMENTU PĘDU: PODSTAWY DYNAMIKI BRYŁY SZTYWNEJ

ZASADA ZACHOWANIA MOMENTU PĘDU: PODSTAWY DYNAMIKI BRYŁY SZTYWNEJ ZASADA ZACHOWANIA MOMENTU PĘDU: PODSTAWY DYNAMIKI BYŁY SZTYWNEJ 1. Welkośc w uchu obotowym. Moment pędu moment sły 3. Zasada zachowana momentu pędu 4. uch obotowy były sztywnej względem ustalonej os -II

Bardziej szczegółowo

VIII. MODELE PROCESÓW EKSPLOATCJI OBIEKTÓW TECHNICZNYCH

VIII. MODELE PROCESÓW EKSPLOATCJI OBIEKTÓW TECHNICZNYCH VIII. MODL PROCSÓW KSPLOATCJI OBIKTÓW TCHNICZNYCH. WSTP Ja ju nejednorone swerdzono model w uroszczony sosób osuje rzebeg rzeczywsych rocesów esloaacj obeów echncznych w sysemach dzałana, na rzyład: rzemysłowych,

Bardziej szczegółowo

Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie

Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie Rozciąganie lub ściskanie Zginanie Skręcanie Ścinanie 1. Pręt rozciągany lub ściskany

Bardziej szczegółowo

Seria: PREPRINTY nr 34/2006. Marek Skowron. Promotor: Dr hab. inŝ. Krystyn Styczeń, prof. PWr. Instytut Informatyki, Automatyki i Robotyki

Seria: PREPRINTY nr 34/2006. Marek Skowron. Promotor: Dr hab. inŝ. Krystyn Styczeń, prof. PWr. Instytut Informatyki, Automatyki i Robotyki Insyu Informayk, Auomayk Roboyk Sera: PREPRINTY nr 34/006 Hybrydowe alorymy ewolucyjnoradenowe dla roblemów oymalneo serowana okresoweo z oranczenam zasobowo-echnolocznym (rozrawa dokorska) Marek Skowron

Bardziej szczegółowo

XLI Egzamin dla Aktuariuszy z 8 stycznia 2007 r.

XLI Egzamin dla Aktuariuszy z 8 stycznia 2007 r. Komisja Egzaminacyjna dla Akuariuszy XLI Egzamin dla Akuariuszy z 8 sycznia 7 r. Część II Maemayka ubezieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 1 minu Warszawa, 9 aździernika

Bardziej szczegółowo

M. Guminiak - Analiza płyt cienkich metodą elementów brzegowych... 55

M. Guminiak - Analiza płyt cienkich metodą elementów brzegowych... 55 . Guma - Aaza łt cech metoą eemetó brzegoch... 55 3.. CAŁKOWE SFORUŁOWANIE ZADANIA SAYKI PŁYY SPOCZYWAJĄCEJ NA PODPORACH SŁUPOWYCH Formułuąc róae rac rtuae z orztaem eośc brzegoch moża uzgęć tęoae oór

Bardziej szczegółowo

Fizyka 1- Mechanika. Wykład 6 10.XI Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

Fizyka 1- Mechanika. Wykład 6 10.XI Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów izya 1- Mechania Wyład 6 1.XI.16 Zygun Szeflińi Środowiowe Laboraoriu Ciężich Jonów zef@fuw.edu.l h://www.fuw.edu.l/~zef/ Praca i energia Najrozy rzyade: Sała iła działa na ciało P owodując jego rzeunięcie

Bardziej szczegółowo

Dyskretny proces Markowa

Dyskretny proces Markowa Procesy sochasyczne WYKŁAD 4 Dyskreny roces Markowa Rozarujemy roces sochasyczny X, w kórym aramer jes ciągły zwykle. Będziemy zakładać, że zbiór sanów jes co najwyżej rzeliczalny. Proces X, jes rocesem

Bardziej szczegółowo

cz.2 dr inż. Zbigniew Szklarski

cz.2 dr inż. Zbigniew Szklarski Wykład 1: Prąd sały cz. dr nż. Zbgnew Szklarsk szkla@agh.edu.pl hp://layer.uc.agh.edu.pl/z.szklarsk/ Pasma energeyczne pasma energeyczne - 198 Felx Bloch zblżane sę aomów do sebe powoduje rozszczepene

Bardziej szczegółowo

gdzie ω jest częstością kołową. Rozwiązaniem powyższego równania różniczkowego II-go stopnia jest wyrażenie (2) lub ( )

gdzie ω jest częstością kołową. Rozwiązaniem powyższego równania różniczkowego II-go stopnia jest wyrażenie (2) lub ( ) RUCH HARMONICZNY I. Ce ćwiczenia: wyznaczenie wartości przyspieszenia zieskiego poiar współczynnika sprężystości sprężyny k, zaznajoienie się z podstawowyi wiekościai w ruchu haroniczny. II. Przyrządy:

Bardziej szczegółowo

Ę ż Ł ś ą ł ść ó ą ż ę ł Ł ś ą ś Ż ż ż ń ż ł ś ń ż żę Ł ż ó ń ę ż ł ńó ó ł ń ą ż ę ż ą ą ż Ń ż ż ż óź ź ź ż Ę ż ś ż ł ó ń ż ć óź ż ę ż ż ńś ś ó ń ó ś

Ę ż Ł ś ą ł ść ó ą ż ę ł Ł ś ą ś Ż ż ż ń ż ł ś ń ż żę Ł ż ó ń ę ż ł ńó ó ł ń ą ż ę ż ą ą ż Ń ż ż ż óź ź ź ż Ę ż ś ż ł ó ń ż ć óź ż ę ż ż ńś ś ó ń ó ś Ę Ł ś ą ł ść ą ę ł Ł ś ą ś Ż ł ś ę Ł ę ł ł ą ę ą ą Ń ź ź ź Ę ś ł ć Ź ę ś ś ś Ę ł ś ć Ę ś ł ś ą ź ą ą ą ą ą ą ą ą ś ą ęń ś ł ą ś Ł ś ś ź Ą ł ć ą ą Ę ą ś ź Ł ź ć ś ę ę ź ą Ż ć ć Ą ć ć ł ł ś ł ś ę ą łą ć

Bardziej szczegółowo

gruparectan.pl 1. Metor Strona:1 Dla danego układu wyznaczyć MTN metodą przemieszczeń Rys. Schemat układu Współrzędne węzłów:

gruparectan.pl 1. Metor Strona:1 Dla danego układu wyznaczyć MTN metodą przemieszczeń Rys. Schemat układu Współrzędne węzłów: 1. Metor Dla danego układu wyznaczyć MTN metodą przemieszczeń Rys. Schemat układu Współrzędne węzłów: węzeł 1 x=[0.000][m], y=[0.000][m] węzeł 2 x=[2.000][m], y=[0.000][m] węzeł 3 x=[2.000][m], y=[2.000][m]

Bardziej szczegółowo

POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY. mgr inż. Artur Fiuk

POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY. mgr inż. Artur Fiuk POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY mgr nż. Arur Fuk BADANIA WPŁYWU PARAMETRÓW GEOMETRYCZNYCH I TERMOFIZYCZNYCH NA DZIAŁANIE DWUFAZOWEGO TERMOSYFONOWEGO WYMIENNIKA CIEPŁA Rozrawa dokorska Promoor

Bardziej szczegółowo

METODY SZACOWANIA PARAMETRÓW MODELI DWULINIOWYCH

METODY SZACOWANIA PARAMETRÓW MODELI DWULINIOWYCH METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XII/,, sr. 39 47 METODY SZACOWANIA ARAMETRÓW MODELI DWULINIOWYCH Joanna Górka, Mchał Bernard erzak Kaedra Ekonomer Sask Unwerse Mkołaja Koernka w Torunu e-ma:

Bardziej szczegółowo

C d u. Po podstawieniu prądu z pierwszego równania do równania drugiego i uporządkowaniu składników lewej strony uzyskuje się:

C d u. Po podstawieniu prądu z pierwszego równania do równania drugiego i uporządkowaniu składników lewej strony uzyskuje się: Zadanie. Obliczyć przebieg napięcia na pojemności C w sanie przejściowym przebiegającym przy nasępującej sekwencji działania łączników: ) łączniki Si S są oware dla < 0, ) łącznik S zamyka się w chwili

Bardziej szczegółowo

OBSZARY FLATTEROWEJ I DYWERGENCYJNEJ NIESTATECZNOŚCI RAMY TYPU Γ PRZY OBCIĄŻENIU UOGÓLNIONYM BECKA

OBSZARY FLATTEROWEJ I DYWERGENCYJNEJ NIESTATECZNOŚCI RAMY TYPU Γ PRZY OBCIĄŻENIU UOGÓLNIONYM BECKA MODELOANIE INŻYNIERSKIE ISSN 896-77X 4 s. 403-40 Gwce 0 OBSZARY FLATTERO I DYERGENCYJN NIESTATECZNOŚCI RAMY TYPU Γ PRZY OBCIĄŻENIU UOGÓLNIONYM BECKA LECH TOMSKI JANUSZ SZMIDLA Insyu Mechank Podsaw Konsrukcj

Bardziej szczegółowo

STATYKA. Cel statyki. Prof. Edmund Wittbrodt

STATYKA. Cel statyki. Prof. Edmund Wittbrodt STATYKA Cel statyk Celem statyk jest zastąpee dowolego układu sł ym, rówoważym układem sł, w tym układem złożoym z jedej tylko sły jedej pary sł (redukcja do sły mometu główego) lub zbadae waruków, jake

Bardziej szczegółowo

Funkcje wielu zmiennych różniczkowalność

Funkcje wielu zmiennych różniczkowalność Funcje weu zmennyc różnczowaność Zajmemy sę teraz różnczowanem funcj weu zmennyc. Zacznemy od pojęca pocodnej cząstowej, bo jest ono najważnejszym zarazem najprostszym z tyc, tórym przyjdze nam sę zająć.

Bardziej szczegółowo