Energia potencjalna jest energią zgromadzoną w układzie. Energia potencjalna może być zmieniona w inną formę energii (na przykład energię kinetyczną)

Wielkość: px
Rozpocząć pokaz od strony:

Download "Energia potencjalna jest energią zgromadzoną w układzie. Energia potencjalna może być zmieniona w inną formę energii (na przykład energię kinetyczną)"

Transkrypt

1 1

2 Enega potencjalna jest enegą zgomadzoną w układze. Enega potencjalna może być zmenona w nną omę eneg (na pzykład enegę knetyczną) może być wykozystana do wykonana pacy. Sumę eneg potencjalnej knetycznej nazywamy enegą mechanczną.

3 Sła cężkośc mg wykonuje pacę na spadającym całem zwększając jego enegę knetyczną. kład ema-cało ma potencjał do wykonana pacy. Iloczyn sły ceżkośc mg dzałającej na cało jego wysokośc y nad zemą nazywamy gawtacyjną enegą potencjalną. W poblżu powezchn em (gdze pzyspeszene zemske g jest stałe): g mgy 3

4 W g mg d mgy mgy mgjy y j W g g W Paca wykonana pzez słę cężkośc nad całem jest ówna zmane eneg potencjalnych układu ze znakem mnus. g mgd d x Pzemeszczene wzdłuż os x ne wpływa na watość pacy W g x mgjx x 0 4

5 Paca wykonana pzez spężynę: W s 1 x x kx kx 1 dx kx 1 kx 1 s kx s 1 kx 5

6 Jeżel paca wykonana pzez słę nad całem ne zależy od dog pokonanej pzez pzez to cało oaz jeżel paca wykonana pzez tą słę na dodze zamknętej wynos zeo to słę tą nazywamy zachowawczą Słą zachowawczą jest na pzykład sła cężkośc lub sła spężystośc Paca wykonana pzez słę zachowawczą zależy tylko od óżncy mędzy enegą potencjalną początkową a końcową (ne zależy od pokonanej dog) W x x F dx x Gdy F x dx mają ten sam zwot to enega potencjalna maleje (<0) 6

7 Jeżel sła zmena watość eneg mechancznej to słę tą nazywamy nezachowawczą. Słą nezachowawczą jest na pzykład sła taca duży ubytek eneg mechancznej (dużo wydzelonego cepła) bytek eneg mechancznej cała pouszającego sę z tacem po toach o óżnej długośc jest óżny mały ubytek eneg mechancznej (mało wydzelonego cepła) Paca wykonana pzez słę nezachowawczą (zmana eneg mechancznej) zależy od pokonanej dog 7

8 W układze w któym dzałają jedyne sły zachowawcze enega mechanczna jest zachowana. 8

9 Pawo Newtona: Sła dzałająca mędzy każdym dwoma punktam matealnym o masach m 1 m, znajdującym sę w odległośc jest słą pzycągającą, skeowaną wzdłuż postej łączącej te punkty, a jej watość ośne z loczynem ch mas maleje z kwadatem odległośc. m m F G 1 ˆ 1 1 G= 6, Nm /kg stała unwesalna F 1 F 1 paa sł akcja-eakcja 9

10 Pawo powszechnego cążena Newtona jest pzykładem zależnosc typu 1/. Innym pzykładam takego pawa są pawo Coulomba lub zależność natężena śwatła od odległośc Sła gawtacj pochodząca od obektu o symet seycznej jest taka sama jak od masy punktowej skuponej w śodku obektu. Sła gawtacj pochodząca do em jest zawsze skeowana do śodka em. 10

11 F g Na powezchn em (=R z ): M m M mg G g G R R Na wysokośc h nad powezchną em (=R z +h): g G M m R h Pzyspeszene zemske maleje waz z kwadatem odległośc 11

12 Pole gawtacyjne stneje w każdym punkce pzestzen. Jeśl masa m zostane umeszczona w pewnym punkce pola, któego natężene w tym punkce wynos g, to dośwadcza ona dzałana sły F g =mg. Mówmy że masa m oddzałuje z polem. g F g m g M G ˆ g- natężene pola gawtacyjnego (welkość wektoowa) m- masa póbna ˆ - wekto jednostkowy skeowany od śodka em. nak mnus oznacza, że wekto g jest skeowany do śodka em 1

13 Pole gawtacyje (wektoy g) wokół em Pole gawtacyje pzy powezchn em (jednoodny keunek watość) Watość natężena pola gawtacyjnego pzy powezchn em wynos 9.8 N/kg 13

14 g mgh Jest pawdzwe TYLKO pzy powezchn em! Sła gawtacj jest słą centalną (zależną tylko od odległośc ) dw Fd Paca dw dla każdego pzemeszczena d postopadłego do wektoa F wynos 0 W F d Całkowta paca wykonana podczas pzemeszczena w polu sły centalnej zależy tylko od odległośc końcowej początkowej. Oznacza to, że każda sła centalna jest zachowawcza. 14

15 odcnek ównoległy do odcnek postopadły do Paca na odcnkach postopadłych do wynos zeo m GM d m GM 1 m M G F Sła dzałająca na masę m w odległośc od em: d F m GM

16 Podstawając =0 dla : G M m m1m G M ema Gawtacyjna enega potencjalna dwóch mas jest zawsze ujemna dąży do zea gdy odległość pomędzy masam dąży do neskończonośc. R M m G 16

17 Całkowta enega mechanczna układu masa centalna- satelta (M>>m) jest sumą eneg knetycznej satelty eneg potencjalnej układu: E E mv K G Mm Mm mv Mm G ma G Mm Mm E G G mv E G Mm Enega knetyczna jest dodatna co do watośc ówna połowe eneg potencjalnej. Całkowta enega mechanczna układu jest ujemna. 17

18 v mv M m M G G R 1 1 GM R max gdy max max m max R h v GM R R M Pędkość uceczk (II pędkość kosmczna) to pędkość potzebna do wywana sę z pola gawtacyjengo em. Watość eneg knetycznej cała pouszającego sę z pędkoścą uceczk jest ówna co do watośc eneg potencjalnej na powezchn em. 18

19 ema: v=11.19 km/s czana dzua: v=c= m/s 19

ZASADA ZACHOWANIA MOMENTU PĘDU: PODSTAWY DYNAMIKI BRYŁY SZTYWNEJ

ZASADA ZACHOWANIA MOMENTU PĘDU: PODSTAWY DYNAMIKI BRYŁY SZTYWNEJ ZASADA ZACHOWANIA MOMENTU PĘDU: PODSTAWY DYNAMIKI BYŁY SZTYWNEJ 1. Welkośc w uchu obotowym. Moment pędu moment sły 3. Zasada zachowana momentu pędu 4. uch obotowy były sztywnej względem ustalonej os -II

Bardziej szczegółowo

Wykład 15 Elektrostatyka

Wykład 15 Elektrostatyka Wykład 5 Elektostatyka Obecne wadome są cztey fundamentalne oddzaływana: slne, elektomagnetyczne, słabe gawtacyjne. Slne słabe oddzaływana odgywają decydującą ole w budowe jąde atomowych cząstek elementanych.

Bardziej szczegółowo

Praca i energia. x jest. x i W Y K Ł A D 5. 6-1 Praca i energia kinetyczna. Ruch jednowymiarowy pod działaniem stałych sił.

Praca i energia. x jest. x i W Y K Ł A D 5. 6-1 Praca i energia kinetyczna. Ruch jednowymiarowy pod działaniem stałych sił. ykład z fzyk. Pot Pomykewcz 40 Y K Ł A D 5 Pa enega. Pa enega odgywają waŝną olę zaówno w fzyce jak w codzennym Ŝycu. fzyce ła wykonuje konketną pacę, jeŝel dzała ona na pzedmot ma kładową wzdłuŝ pzemezczena

Bardziej szczegółowo

Energia kinetyczna i praca. Energia potencjalna

Energia kinetyczna i praca. Energia potencjalna negia kinetyczna i paca. negia potencjalna Wykład 4 Wocław Univesity of Technology 1 NRGIA KINTYCZNA I PRACA 5.XI.011 Paca Kto wykonał większą pacę? Hossein Rezazadeh Olimpiada w Atenach 004 WR Podzut

Bardziej szczegółowo

Guma Guma. Szkło Guma

Guma Guma. Szkło Guma 1 Ładunek elektyczny jest cechą mateii. Istnieją dwa odzaje ładunków, nazywane dodatnimi i ujemnymi. Ładunki jednoimienne się odpychają, podczas gdy ładunki óżnoimeinne się pzyciągają Guma Guma Szkło Guma

Bardziej szczegółowo

[ ] D r ( ) ( ) ( ) POLE ELEKTRYCZNE

[ ] D r ( ) ( ) ( ) POLE ELEKTRYCZNE LKTYCZNOŚĆ Pole elektcne Lne sł pola elektcnego Pawo Gaussa Dpol elektcn Pole elektcne w delektkach Pawo Gaussa w delektkach Polaacja elektcna Potencjał pola elektcnego Bewowość pola elektcnego óŝnckowa

Bardziej szczegółowo

24-01-0124-01-01 G:\AA_Wyklad 2000\FIN\DOC\Geom20.doc. Drgania i fale III rok Fizyki BC

24-01-0124-01-01 G:\AA_Wyklad 2000\FIN\DOC\Geom20.doc. Drgania i fale III rok Fizyki BC 4-0-04-0-0 G:\AA_Wyklad 000\FIN\DOC\Geom0.doc Dgaa ale III ok Fzyk BC OPTYKA GEOMETRYCZNA. W ośodku jedoodym śwatło ozcodz sę ostolowo.. Pzecające sę omee śwetle e zabuzają sę awzajem. 3. Pawo odbca śwatła.

Bardziej szczegółowo

GEOMETRIA PŁASZCZYZNY

GEOMETRIA PŁASZCZYZNY GEOMETRIA PŁASZCZYZNY. Oblicz pole tapezu ównoamiennego, któego podstawy mają długość cm i 0 cm, a pzekątne są do siebie postopadłe.. Dany jest kwadat ABCD. Punkty E i F są śodkami boków BC i CD. Wiedząc,

Bardziej szczegółowo

PRAWA ZACHOWANIA Prawa zachowania najbardziej fundamentalne prawa:

PRAWA ZACHOWANIA Prawa zachowania najbardziej fundamentalne prawa: PRW ZCHOWNI Pawa achowania nabadie fundamentalne pawa: o ewnętne : pawo achowania pędu, pawo achowania momentu pędu, pawo achowania enegii; o wewnętne : pawa achowania np. całkowite licb nukleonów w eakci

Bardziej szczegółowo

Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd

Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona Ilość ruchu, stan ruchu danego ciała opisuje pęd Siły - wektory Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona I Każde ciało trwa w stanie spoczynku lub

Bardziej szczegółowo

(M2) Dynamika 1. ŚRODEK MASY. T. Środek ciężkości i środek masy

(M2) Dynamika 1. ŚRODEK MASY. T. Środek ciężkości i środek masy (MD) MECHANIKA - Dynamka T. Środek cężkośc środek masy (M) Dynamka T: Środek cężkośc środek masy robert.szczotka(at)gmal.com Fzyka astronoma, Lceum 01/014 1 (MD) MECHANIKA - Dynamka T. Środek cężkośc środek

Bardziej szczegółowo

PRACA MOC ENERGIA. Z uwagi na to, że praca jest iloczynem skalarnym jej wartość zależy również od kąta pomiędzy siłą F a przemieszczeniem r

PRACA MOC ENERGIA. Z uwagi na to, że praca jest iloczynem skalarnym jej wartość zależy również od kąta pomiędzy siłą F a przemieszczeniem r PRACA MOC ENERGIA Paca Pojęcie pacy używane jest zaówno w fizyce (w sposób ścisły) jak i w życiu codziennym (w sposób potoczny), jednak obie te definicje nie pokywają się Paca w sensie potocznym to każda

Bardziej szczegółowo

FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY RUCH PROSTOLINIOWY JEDNOSTAJNIE PRZYSPIESZONY RUCH PROSTOLINIOWY JEDNOSTAJNIE OPÓŹNIONY

FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY RUCH PROSTOLINIOWY JEDNOSTAJNIE PRZYSPIESZONY RUCH PROSTOLINIOWY JEDNOSTAJNIE OPÓŹNIONY FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY Każdy ruch jest zmienną położenia w czasie danego ciała lub układu ciał względem pewnego wybranego układu odniesienia. v= s/t RUCH

Bardziej szczegółowo

Energia potencjalna pola elektrostatycznego ładunku punktowego

Energia potencjalna pola elektrostatycznego ładunku punktowego Energia potencjalna pola elektrostatycznego ładunku punktowego Wszystkie rysunki i animacje zaczerpnięto ze strony http://web.mit.edu/8.02t/www/802teal3d/visualizations/electrostatics/index.htm. Tekst

Bardziej szczegółowo

Lekcja 40. Obraz graficzny pola elektrycznego.

Lekcja 40. Obraz graficzny pola elektrycznego. Lekcja 40. Obraz graficzny pola elektrycznego. Polem elektrycznym nazywamy obszar, w którym na wprowadzony doń ładunek próbny q działa siła. Pole elektryczne występuje wokół ładunków elektrycznych i ciał

Bardziej szczegółowo

16. Pole magnetyczne, indukcja. Wybór i opracowanie Marek Chmielewski

16. Pole magnetyczne, indukcja. Wybór i opracowanie Marek Chmielewski 6. Poe magnetczne, nukcja Wbó opacowane Maek meewsk 6.. Znaeźć nukcje poa magnetcznego w oegłośc o neskończone ługego pzewonka wacowego o pomenu pzekoju popzecznego a w któm płne pą I. 6.. Wznaczć nukcję

Bardziej szczegółowo

Siła. Zasady dynamiki

Siła. Zasady dynamiki Siła. Zasady dynaiki Siła jest wielkością wektoową. Posiada okeśloną watość, kieunek i zwot. Jednostką siły jest niuton (N). 1N=1 k s 2 Pzedstawienie aficzne A Siła pzyłożona jest do ciała w punkcie A,

Bardziej szczegółowo

Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii

Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Mechanika klasyczna Tadeusz Lesiak Wykład nr 4 Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Energia i praca T. Lesiak Mechanika klasyczna 2 Praca Praca (W) wykonana przez stałą

Bardziej szczegółowo

XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne

XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadane teoretyczne Rozwąż dowolne rzez sebe wybrane dwa sośród odanych nże zadań: ZADANIE T Nazwa zadana: Protony antyrotony A. Cząstk o mase równe mase rotonu, ale

Bardziej szczegółowo

Pole magnetyczne. 5.1 Oddziaływanie pola magnetycznego na ładunki. przewodniki z prądem. 5.1.1 Podstawowe zjawiska magnetyczne

Pole magnetyczne. 5.1 Oddziaływanie pola magnetycznego na ładunki. przewodniki z prądem. 5.1.1 Podstawowe zjawiska magnetyczne Rozdział 5 Pole magnetyczne 5.1 Oddziaływanie pola magnetycznego na ładunki i pzewodniki z pądem 5.1.1 Podstawowe zjawiska magnetyczne W obecnym ozdziale ozpatzymy niektóe zagadnienia magnetostatyki. Magnetostatyką

Bardziej szczegółowo

Karta wybranych wzorów i stałych fizycznych

Karta wybranych wzorów i stałych fizycznych Kata wybanych wzoów i stałych fizycznych Mateiały pomocnicze opacowane dla potzeb egzaminu matualnego i dopuszczone jako pomoce egzaminacyjne. publikacja współfinansowana pzez Euopejski Fundusz Społeczny

Bardziej szczegółowo

Metody optymalizacji. dr inż. Paweł Zalewski Akademia Morska w Szczecinie

Metody optymalizacji. dr inż. Paweł Zalewski Akademia Morska w Szczecinie Metody optymalizacji d inż. Paweł Zalewski kademia Moska w Szczecinie Optymalizacja - definicje: Zadaniem optymalizacji jest wyznaczenie spośód dopuszczalnych ozwiązań danego polemu ozwiązania najlepszego

Bardziej szczegółowo

Wykład 17. 13 Półprzewodniki

Wykład 17. 13 Półprzewodniki Wykład 17 13 Półpzewodniki 13.1 Rodzaje półpzewodników 13.2 Złącze typu n-p 14 Pole magnetyczne 14.1 Podstawowe infomacje doświadczalne 14.2 Pąd elektyczny jako źódło pola magnetycznego Reinhad Kulessa

Bardziej szczegółowo

Novosibirsk, Russia, September 2002

Novosibirsk, Russia, September 2002 Noobk, ua, Septebe 00 W-5 (Jaoewc) 4 lajdów Dyaka były tywej Cało tywe jego uch uch potępowy cała tywego uch obotowy cała tywego wględe tałej o obotu. oet bewładośc Dyaka cała tywego uch łożoy cała tywego

Bardziej szczegółowo

Zależność natężenia oświetlenia od odległości

Zależność natężenia oświetlenia od odległości Zależność natężenia oświetlenia CELE Badanie zależności natężenia oświetlenia powiezchni wytwazanego pzez żaówkę od niej. Uzyskane dane są analizowane w kategoiach paw fotometii (tzw. pawa odwotnych kwadatów

Bardziej szczegółowo

Fizyka, technologia oraz modelowanie wzrostu kryształów

Fizyka, technologia oraz modelowanie wzrostu kryształów Fzyka, technologa oaz modelowane wzostu kyształów Stansław Kukowsk Mchał Leszczyńsk Instytut Wysokch Cśneń PAN 0-4 Waszawa, ul Sokołowska 9/37 tel: 88 80 44 e-mal: stach@unpess.waw.pl, mke@unpess.waw.pl

Bardziej szczegółowo

5. Regulacja częstotliwościowa prędkości obrotowej silnika indukcyjnego klatkowego

5. Regulacja częstotliwościowa prędkości obrotowej silnika indukcyjnego klatkowego 5. Regulacja czętotlwoścowa pędkośc obotowej lnka ndukcyjnego klatkowego 5.1 Zaada egulacj czętotlwoścowej - waunk optymalzacj tatycznej; 5.2 Regulacja kalana pędkośc obotowej ( U/f); 5.3 Regulacja wektoowa

Bardziej szczegółowo

PRACA. MOC. ENERGIA. 1/20

PRACA. MOC. ENERGIA. 1/20 PRACA. MOC. ENERGIA. 1/20 Czym jest energia? Większość zjawisk w przyrodzie związana jest z przemianami energii. Energia może zostać przekazana od jednego ciała do drugiego lub ulec przemianie z jednej

Bardziej szczegółowo

Ruch punktu materialnego

Ruch punktu materialnego WIRTUALNE LABORATORIA FIZYCZNE NOWOCZESNĄ METODĄ NAUCZANIA INNOWACYJNY PROGRAM NAUCZANIA FIZYKI W SZKOŁACH PONADGIMNAZJALNYCH Moduł dydaktyczny: fizyka - infomatyka Ruch punktu mateialnego Elżbieta Kawecka

Bardziej szczegółowo

mgh. Praca ta jest zmagazynowana w postaci energii potencjalnej,

mgh. Praca ta jest zmagazynowana w postaci energii potencjalnej, Wykłd z fizyki. Piot Posmykiewicz 49 6-4 Enegi potencjln Cłkowit pc wykonn nd punktem mteilnym jest ówn zminie jego enegii kinetycznej. Często jednk, jesteśmy zinteesowni znlezieniem pcy jką sił wykonł

Bardziej szczegółowo

MODEL MATEMATYCZNY STATKU CYBERSHIP II

MODEL MATEMATYCZNY STATKU CYBERSHIP II Mosław Tomea Akadema Moska w Gdyn MODEL MATEMATCZ STATKU CBERSHIP II W lteatze tdno jest znaleźć dobe nelnowe modele matematyczne dynamk statk zaweające watośc nmeyczne, któe można byłoby wykozystać zaówno

Bardziej szczegółowo

STATECZNOŚĆ SKARP. α - kąt nachylenia skarpy [ o ], φ - kąt tarcia wewnętrznego gruntu [ o ],

STATECZNOŚĆ SKARP. α - kąt nachylenia skarpy [ o ], φ - kąt tarcia wewnętrznego gruntu [ o ], STATECZNOŚĆ SKARP W przypadku obektu wykonanego z gruntów nespostych zaprojektowane bezpecznego nachylena skarp sprowadza sę do przekształcena wzoru na współczynnk statecznośc do postac: tgφ tgα = n gdze:

Bardziej szczegółowo

Tradycyjne mierniki ryzyka

Tradycyjne mierniki ryzyka Tadycyjne mieniki yzyka Pzykład 1. Ryzyko w pzypadku potfela inwestycyjnego Dwie inwestycje mają następujące stopy zwotu, zależne od sytuacji gospodaczej: Sytuacja Pawdopodobieństwo R R Recesja 0, 9,0%

Bardziej szczegółowo

CIĘŻAR. gdzie: F ciężar [N] m masa [kg] g przyspieszenie ziemskie ( 10 N ) kg

CIĘŻAR. gdzie: F ciężar [N] m masa [kg] g przyspieszenie ziemskie ( 10 N ) kg WZORY CIĘŻAR F = m g F ciężar [N] m masa [kg] g przyspieszenie ziemskie ( 10 N ) kg 1N = kg m s 2 GĘSTOŚĆ ρ = m V ρ gęstość substancji, z jakiej zbudowane jest ciało [ kg m 3] m- masa [kg] V objętość [m

Bardziej szczegółowo

Wyznaczanie promienia krzywizny soczewki płasko-wypukłej metodą pierścieni Newtona

Wyznaczanie promienia krzywizny soczewki płasko-wypukłej metodą pierścieni Newtona Wyznaczanie poienia kzywizny soczewki płasko-wypukłej etodą pieścieni Newtona I. Cel ćwiczenia: zapoznanie ze zjawiskie intefeencji światła, poia poienia soczewki płasko-wypukłej. II. Pzyządy: lapa sodowa,

Bardziej szczegółowo

Sztuczny satelita Ziemi. Ruch w polu grawitacyjnym

Sztuczny satelita Ziemi. Ruch w polu grawitacyjnym Sztuczny satelita Ziemi Ruch w polu grawitacyjnym Sztuczny satelita Ziemi Jest to obiekt, któremu na pewnej wysokości nad powierzchnią Ziemi nadano prędkość wystarczającą do uzyskania przez niego ruchu

Bardziej szczegółowo

PRĘDKOŚCI KOSMICZNE OPRACOWANIE

PRĘDKOŚCI KOSMICZNE OPRACOWANIE PRĘDKOŚCI KOSMICZNE OPRACOWANIE I, II, III pędkość komiczna www.iwiedza.net Obecnie, żyjąc w XXI wieku, wydaje ię nomalne, że człowiek potafi polecieć w komo, opuścić Ziemię oaz wylądować na Kiężycu. Poza

Bardziej szczegółowo

Ładunki elektryczne i siły ich wzajemnego oddziaływania. Pole elektryczne. Copyright by pleciuga@ o2.pl

Ładunki elektryczne i siły ich wzajemnego oddziaływania. Pole elektryczne. Copyright by pleciuga@ o2.pl Ładunki elektryczne i siły ich wzajemnego oddziaływania Pole elektryczne Copyright by pleciuga@ o2.pl Ładunek punktowy Ładunek punktowy (q) jest to wyidealizowany model, który zastępuje rzeczywiste naelektryzowane

Bardziej szczegółowo

Pierwsze kolokwium z Mechaniki i Przyległości dla nanostudentów (wykład prof. J. Majewskiego)

Pierwsze kolokwium z Mechaniki i Przyległości dla nanostudentów (wykład prof. J. Majewskiego) Pierwsze kolokwium z Mechaniki i Przylełości dla nanostudentów (wykład prof. J. Majewskieo) Zadanie Dane są cztery wektory A, B, C oraz D. Wyrazić liczbę (A B) (C D), przez same iloczyny skalarne tych

Bardziej szczegółowo

NADZOROWANIE DRGAŃ UKŁADÓW NOŚNYCH ROBOTÓW PRZEMYSŁOWYCH Z ZASTOSOWANIEM STEROWANIA OPTYMALNEGO PRZY ENERGETYCZNYM WSKAŹNIKU JAKOŚCI

NADZOROWANIE DRGAŃ UKŁADÓW NOŚNYCH ROBOTÓW PRZEMYSŁOWYCH Z ZASTOSOWANIEM STEROWANIA OPTYMALNEGO PRZY ENERGETYCZNYM WSKAŹNIKU JAKOŚCI POIECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY Kateda Mechank Wytzymałośc Mateałów KRZYSZOF JASIŃSKI NADZOROWANIE DRGAŃ UKŁADÓW NOŚNYCH ROBOÓW PRZEMYSŁOWYCH Z ZASOSOWANIEM SEROWANIA OPYMANEGO PRZY ENERGEYCZNYM

Bardziej szczegółowo

F : R 0;1 rozkład prawdopodobieństwa stopy zwrotu.

F : R 0;1 rozkład prawdopodobieństwa stopy zwrotu. Nie gaussowskie kyteia zaządzania potfelem Kyteia dominacji stochastycznej stopa zwotu C 0 C0 0, C ;, 0 t C C : R 0;1 ozkład pawdopodobieństwa stopy zwotu 0 U : R R funkcja użyteczności watości stopy zwotu

Bardziej szczegółowo

PODSTAWY MECHANIKI I WYTRZYMAŁOŚCI MATERIAŁÓW

PODSTAWY MECHANIKI I WYTRZYMAŁOŚCI MATERIAŁÓW ODSTAWY MECHANIKI I WYTRZYMAŁOŚCI MATERIAŁÓW MATERIAŁY DO WYKŁADU Opacował: d hab. inż. Zygmunt Lipnicki Instytut olitechniczny aństwowa Wyższa Szkoła Zawodowa W Głogowie.3.5 Liteatua wykozystana w opacowanych

Bardziej szczegółowo

Ruch jednostajny po okręgu

Ruch jednostajny po okręgu Ruch jednostajny po okęgu W uchu jednostajnym po okęgu pędkość punktu mateialnego jest stała co do watości ale zmienia się jej kieunek. Kieunek pędkości jest zawsze styczny do okęgu będącego toem. Watość

Bardziej szczegółowo

Wektor położenia. Zajęcia uzupełniające. Mgr Kamila Rudź, Podstawy Fizyki. http://kepler.am.gdynia.pl/~karudz

Wektor położenia. Zajęcia uzupełniające. Mgr Kamila Rudź, Podstawy Fizyki. http://kepler.am.gdynia.pl/~karudz Kartezjański układ współrzędnych: Wersory osi: e x x i e y y j e z z k r - wektor o współrzędnych [ x 0, y 0, z 0 ] Wektor położenia: r t =[ x t, y t,z t ] każda współrzędna zmienia się w czasie. r t =

Bardziej szczegółowo

Źródła pola magnetycznego

Źródła pola magnetycznego Pole magnetyczne Źódła pola magnetycznego Cząstki elementane takie jak np. elektony posiadają własne pole magnetyczne, któe jest podstawową cechą tych cząstek tak jak q czy m. Pouszający się ładunek elektyczny

Bardziej szczegółowo

DOBÓR SERWOSILNIKA POSUWU

DOBÓR SERWOSILNIKA POSUWU DOBÓR SERWOSILNIKA POSUWU Rysunek 1 przedstawa schemat knematyczny napędu jednej os urządzena. Fp Fw mc l Sp Serwoslnk Rys. 1. Schemat knematyczny serwonapędu: przełożene przekładn pasowej, S p skok śruby

Bardziej szczegółowo

T E S T Z F I Z Y K I

T E S T Z F I Z Y K I 1* Miejsce egzainu 2* Nue kandydata 3* Kieunek studiów 4 Liczba uzyskanych punktów * wypełnia kandydat /100 T E S T Z F I Z Y K I Test ekutacyjny dla kandydatów na studia w Polsce WERSJA I - A 2014 ok

Bardziej szczegółowo

Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne

Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne ś POLITECHNIKA POZNAŃSKA INSTYTUT INŻYNIERII ŚRODOWISKA PROWADZĄCY: mgr nż. Łukasz Amanowcz Systemy Ochrony Powetrza Ćwczena Laboratoryjne 2 TEMAT ĆWICZENIA: Oznaczane lczbowego rozkładu lnowych projekcyjnych

Bardziej szczegółowo

Praca, moc, energia. 1. Klasyfikacja energii. W = Epoczątkowa Ekońcowa

Praca, moc, energia. 1. Klasyfikacja energii. W = Epoczątkowa Ekońcowa Praca, moc, energia 1. Klasyfikacja energii. Jeżeli ciało posiada energię, to ma również zdolnoć do wykonania pracy kosztem częci swojej energii. W = Epoczątkowa Ekońcowa Wewnętrzna Energia Mechaniczna

Bardziej szczegółowo

Warunek równowagi bryły sztywnej: Znikanie sumy sił przyłożonych i sumy momentów sił przyłożonych.

Warunek równowagi bryły sztywnej: Znikanie sumy sił przyłożonych i sumy momentów sił przyłożonych. Warunek równowag bryły sztywnej: Znkane suy sł przyłożonych suy oentów sł przyłożonych. r Precesja koła rowerowego L J Oznaczena na poprzench wykłaach L L L L g L t M M F L t F Częstość precesj: Ω ϕ t

Bardziej szczegółowo

Ć W I C Z E N I E N R M-6

Ć W I C Z E N I E N R M-6 INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA MECHANIKI Ć W I C Z E N I E N R M-6 WYZNACZANIE MODUŁU SZTYWNOŚCI DRUTU ZA POMOCĄ WAHADŁA TORSYJNEGO

Bardziej szczegółowo

10 RUCH JEDNOSTAJNY PO OKRĘGU

10 RUCH JEDNOSTAJNY PO OKRĘGU Włodzimiez Wolczyński Miaa łukowa kąta 10 RUCH JEDNOSTAJNY PO OKRĘGU 360 o =2π ad = = 2 s 180 o =π ad 90 o =π/2 ad = jednostka adian [1 = 1 = 1] Π ad 180 o 1 ad - x o = 180 57, 3 57 18, Ruch jednostajny

Bardziej szczegółowo

Potencjał pola elektrycznego

Potencjał pola elektrycznego Potencjał pola elektrycznego Pole elektryczne jest polem zachowawczym, czyli praca wykonana przy przesunięciu ładunku pomiędzy dwoma punktami nie zależy od tego po jakiej drodze przesuwamy ładunek. Spróbujemy

Bardziej szczegółowo

SPRAWNOŚĆ MECHANICZNA ZESPOŁU NAPĘDOWEGO Z SIŁOWNIKIEM HYDRAULICZNYM PRZY UWZGLĘDNIENIU TARCIA SUCHEGO

SPRAWNOŚĆ MECHANICZNA ZESPOŁU NAPĘDOWEGO Z SIŁOWNIKIEM HYDRAULICZNYM PRZY UWZGLĘDNIENIU TARCIA SUCHEGO Acta Agrophysca, 2008, 11(3), 741-751 SPRAWNOŚĆ MECHANICZNA ZESPOŁU NAPĘDOWEGO Z SIŁOWNIKIEM HYDRAULICZNYM PRZY UWZGLĘDNIENIU TARCIA SUCHEGO Andrzej Anatol Stępnewsk, Ewa Korgol Katedra Podstaw Technk,

Bardziej szczegółowo

Wykład FIZYKA I. 5. Energia, praca, moc. http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 5. Energia, praca, moc. http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html. Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 5. Energia, praca, moc Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html ENERGIA, PRACA, MOC Siła to wielkość

Bardziej szczegółowo

Zestaw 1 Ruch prostoliniowy i siły

Zestaw 1 Ruch prostoliniowy i siły Zestaw 1 Ruch prostolnowy sły Zadane 1. Na wykrese przedstawono zależność drog od czasu trwana ruchu dla cał A B. W skaż poprawną odpowedż. Które stwerdzene jest prawdzwe? D A. Prędkośc obu cał są take

Bardziej szczegółowo

średnia droga swobodna L

średnia droga swobodna L PĄD STAŁY. Na czym polega przepływ prądu elektrycznego. Natężenie prądu i opór; źródła oporu elektrycznego 3. Prawo Ohma; temperaturowa zależność oporu elektrycznego 4. Siła elektromotoryczna 5. Prawa

Bardziej szczegółowo

Ż ż Ł ż ż ż Ż Ś ż ż ż Ł Ż Ż ć ż Ż Ż Ż Ń Ż Ź ż Ź Ź ż Ż ż ż Ż Ł Ż Ł Ż ż Ż ż Ż Ż Ń Ą Ż Ń Ż Ń ć ż Ż ź Ś ć Ł Ł Ź Ż Ż ż Ł ż Ż Ł Ż Ł ź ć ż Ż Ż ż ż Ó ż Ł Ż ć Ż Ż Ę Ż Ż Ż ż Ż ż ż Ś ż Ż ż ż ź Ż Ń ć Ż ż Ż Ż ż ż ż

Bardziej szczegółowo

Ś Ł Ą Ś Ś ź Ś ń ż ż Ó ż ż Ś Ł ż ń ń ń ż ń Ś ń ć ŚĘ Ó Ł Ę Ł Ś Ę Ę ń ń ń ń ń Ź ń ń ń ń ń ż ń ń ń ń ń Ę ż ż ć Ść ń ń ż Ń ż ż ń ń Ś Ą ń Ś ń ń ż Ó ż Ź ń ż ń Ś Ń Ó ż Ł ż Ą ź ź Ś Ł ć Ś ć ż ź ż ć ć Ę Ó Ś Ó ż ż

Bardziej szczegółowo

Ł Ł Ś ź ń ź ź ź Ś Ł Ę Ę Ś ż Ś ń Ą Ś Ą Ł ż ż ń ż ć ż ż ż ź ż ć ź Ę Ę ń ć ż Ł ń ż ż ż Ś ż Ś ż ż ż ż ż ż ż ń ń ż ż ż ć ż ń ż ń ź ż ć ż ż ć ń ż Ę Ę ć ń Ę ż ż ń ń ź Ę ź ż ń ż ń ź ż ż ż ń ż ż ż ż ż ż ż ż ń ń

Bardziej szczegółowo

Ł Ł Ś Ę ź ń ź ź Ś Ę Ę Ś Ą Ś Ę Ż Ł ń Ę Ś ć ć ń ć ń ń ń ź ń Ę ź ń ń ń ź ź Ś ź ź ć ń ń ń ń Ś ć Ś ń ń Ś ź ń Ę ń Ś ź ź ź ź ź Ę Ę Ę Ś ń Ś ć ń ń ń ń ń ń Ę ń ń ń ń ć ń ń ń ń ć ń Ś ć Ł ń ń ń ć ń ć ź ń ź ć ń ń ć

Bardziej szczegółowo

Narzędzia pełnowęglikowe

Narzędzia pełnowęglikowe Nazędzia pełnowęglikowe O fimie fot. Damian Hyciuk KOMET-URPOL Sp. z o.o. to spółka utwozona na początku oku pzez fimę KOMET oaz fimę URPOL z Kędziezyna Koźla, znanym od 1997. poducentem pełnowęglikowych

Bardziej szczegółowo

Ocena precyzji badań międzylaboratoryjnych metodą odporną "S-algorytm"

Ocena precyzji badań międzylaboratoryjnych metodą odporną S-algorytm Eugen T.VOLODARSKY, Zygmunt L.WARSZA Naodowy Unwesytet Technczny Ukany -Poltechnka Kowska (), Pzemysłowy Instytut Automatyk Pomaów (PIAP) Waszawa () do:.599/48.5..4 Ocena pecyz badań mędzylaboatoynych

Bardziej szczegółowo

Model klasyczny gospodarki otwartej

Model klasyczny gospodarki otwartej Model klasyczny gospodaki otwatej Do tej poy ozpatywaliśmy model sztucznie zakładający, iż gospodaka danego kaju jest gospodaką zamkniętą. A zatem bak było międzynaodowych pzepływów dób i kapitału. Jeżeli

Bardziej szczegółowo

Ruch kulisty bryły. Kinematyka

Ruch kulisty bryły. Kinematyka Ruch kulist bł. Kinematka Ruchem kulistm nawam uch, w casie któego jeden punktów bł jest stale nieuchom. Ruch kulist jest obotem dookoła chwilowej osi obotu (oś ta mienia swoje położenie w casie). a) b)

Bardziej szczegółowo

ZASTOSOWANIE DZIANIN DYSTANSOWYCH DO STREFOWYCH MATERACY ZDROWOTNYCH. Bogdan Supeł

ZASTOSOWANIE DZIANIN DYSTANSOWYCH DO STREFOWYCH MATERACY ZDROWOTNYCH. Bogdan Supeł ZASTOSOWANIE DZIANIN DYSTANSOWYCH DO STREFOWYCH MATERACY ZDROWOTNYCH. Wstęp Bogdan Supeł W ostatnm czase obserwuje sę welke zanteresowane dzannam dystansowym do produkcj materaców. Człowek około /3 życa

Bardziej szczegółowo

Pole magnetyczne prąd elektryczny

Pole magnetyczne prąd elektryczny Pole magnetyczne pąd elektyczny Czy pole magnetyczne może wytwazać pąd elektyczny? Piewsze ekspeymenty dawały zawsze wynik negatywny. Powód: statyczny układ magnesów. Michał Faaday piewszy zauważył, że

Bardziej szczegółowo

Dźwigniki samochodowe dwukolumnowe symetryczne i asymetryczne SPO o napędzie elektrohydraulicznym i udźwigu 3500-6500 kg

Dźwigniki samochodowe dwukolumnowe symetryczne i asymetryczne SPO o napędzie elektrohydraulicznym i udźwigu 3500-6500 kg WIMAD Wyposażane serwsów samochodowych Dźwgnk samochodowe dwukolumnowe symetryczne asymetryczne SPO o napędze elektrohydraulcznym udźwgu 35006500 kg WIMAD Wyposażane serwsów samochodowych SPOA3TM/S5 Dźwgnk

Bardziej szczegółowo

XLI OLIMPIADA FIZYCZNA ETAP I Zadanie doświadczalne

XLI OLIMPIADA FIZYCZNA ETAP I Zadanie doświadczalne XLI OLIPIADA FIZYCZNA EAP I Zadanie doświadczalne ZADANIE D Pod działaniem sil zewnęznych ciała sale ulęgają odkszałceniom. Wyznacz zależność pomienia obszau syczniści szklanej soczewki z płyka szklana

Bardziej szczegółowo

Analiza termodynamiczna ożebrowanego wymiennika ciepła z nierównomiernym dopływem czynników

Analiza termodynamiczna ożebrowanego wymiennika ciepła z nierównomiernym dopływem czynników Instytut Technk Ceplnej Poltechnk Śląskej Analza temodynamczna ożebowanego wymennka cepła z neównomenym dopływem czynnków mg nż. Robet Pątek pomoto: pof. Jan Składzeń Plan pezentacj Wstęp Cel, teza zakes

Bardziej szczegółowo

3. Dynamika ruchu postępowego

3. Dynamika ruchu postępowego . Dnaka ruchu postępowego Zasad dnak Newtona Zasad dnak Newtona opsują zagadnena echank klascznej. Zasad te pozwalają w szczególnośc znaleźć wszstke paraetr opsujące ruch cała, take jak położene, prędkość

Bardziej szczegółowo

Współczynnik przenikania ciepła U v. 4.00

Współczynnik przenikania ciepła U v. 4.00 Współczynnk przenkana cepła U v. 4.00 1 WYMAGANIA Maksymalne wartośc współczynnków przenkana cepła U dla ścan, stropów, stropodachów, oken drzw balkonowych podano w załącznku do Rozporządzena Mnstra Infrastruktury

Bardziej szczegółowo

Astronomia. Znając przyspieszenie grawitacyjne planety (ciała), obliczyć możemy ciężar ciała drugiego.

Astronomia. Znając przyspieszenie grawitacyjne planety (ciała), obliczyć możemy ciężar ciała drugiego. Astronomia M = masa ciała G = stała grawitacji (6,67 10-11 [N m 2 /kg 2 ]) R, r = odległość dwóch ciał/promień Fg = ciężar ciała g = przyspieszenie grawitacyjne ( 9,8 m/s²) V I = pierwsza prędkość kosmiczna

Bardziej szczegółowo

WZORY Z FIZYKI POZNANE W GIMNAZJUM

WZORY Z FIZYKI POZNANE W GIMNAZJUM WZORY Z IZYKI POZNANE W GIMNAZJM. CięŜa ciała. g g g g atość cięŝau ciała N, aa ciała kg, g tały ółczyik zay zyiezeie zieki, N g 0 0 kg g. Gętość ubtacji. getoc aa objetoc ρ V Jedotką gętości kładzie SI

Bardziej szczegółowo

00507 Praca i energia D

00507 Praca i energia D 00507 Paca i enegia D Dane oobowe właściciela akuza 00507 Paca i enegia D Paca i moc mechaniczna. Enegia mechaniczna i jej kładniki. Zaada zachowania enegii mechanicznej. Zdezenia dokonale pęŝyte. ktualizacja

Bardziej szczegółowo

SYMULACJA KOMPUTEROWA NAPRĘŻEŃ DYNAMICZNYCH WE WRĘGACH MASOWCA NA FALI NIEREGULARNEJ

SYMULACJA KOMPUTEROWA NAPRĘŻEŃ DYNAMICZNYCH WE WRĘGACH MASOWCA NA FALI NIEREGULARNEJ Jan JANKOWSKI *), Maran BOGDANIUK *),**) SYMULACJA KOMPUTEROWA NAPRĘŻEŃ DYNAMICZNYCH WE WRĘGACH MASOWCA NA FALI NIEREGULARNEJ W referace przedstawono równana ruchu statku w warunkach falowana morza oraz

Bardziej szczegółowo

Fizyka. Kurs przygotowawczy. na studia inżynierskie. mgr Kamila Haule

Fizyka. Kurs przygotowawczy. na studia inżynierskie. mgr Kamila Haule Fizyka Kurs przygotowawczy na studia inżynierskie mgr Kamila Haule Energia i praca Energia inny sposób badania ruchu Energia jest wielkością skalarną charakteryzującą stan ciała lub układu ciał. Energia

Bardziej szczegółowo

y i a o Ma F x i z i r r r r r v r r r r

y i a o Ma F x i z i r r r r r v r r r r SIŁY BEZWŁADNOŚCI 1 z i S i NIEINERCJALNE UKŁADY ODNIESIENIA siły bezwładności = siły pozone = pseudosiły Siły działające na ciała w układach nieinecjalnych (posiadających pzyspieszenie) Układ nieinecjalny

Bardziej szczegółowo

Wykład 5. Zderzenia w mechanice

Wykład 5. Zderzenia w mechanice Wykład 5 Zderzena w echance Zderzene nazyway zjawsko, wskutek którego zachodzą raptowne zany ruchu dwóch albo klku zderzających sę cał. Warto podkreślć, że przy zderzenu sły, które dzałają ędzy cząstka

Bardziej szczegółowo

MECHANIKA. Materiały pomocnicze do wykładu Przedmiot podstawowy w ramach kierunku Mechatronika studia stacjonarne inżynierskie. Semestr II.

MECHANIKA. Materiały pomocnicze do wykładu Przedmiot podstawowy w ramach kierunku Mechatronika studia stacjonarne inżynierskie. Semestr II. ublkacja opacowaa podcas ealacj pojektu la Rowoju oltechk ęstochowskej współfasowaego pe Uę Euopejską w amach Euopejskego Fudusu Społecego. Jacek blsk MEHNIK Mateał pomocce do wkładu edmot podstawow w

Bardziej szczegółowo

WYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI POLITECHNIKI KRAKOWSKIEJ Instytut Fizyki LABORATORIUM PODSTAW ELEKTROTECHNIKI, ELEKTRONIKI I MIERNICTWA

WYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI POLITECHNIKI KRAKOWSKIEJ Instytut Fizyki LABORATORIUM PODSTAW ELEKTROTECHNIKI, ELEKTRONIKI I MIERNICTWA WYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI POITEHNIKI KRAKOWSKIEJ Instytut Fizyki ABORATORIUM PODSTAW EEKTROTEHNIKI, EEKTRONIKI I MIERNITWA ĆWIZENIE 7 Pojemność złącza p-n POJĘIA I MODEE potzebne do zozumienia

Bardziej szczegółowo

DOBÓR LINIOWO-ŁAMANEGO ROZDZIAŁU SIŁ HAMUJĄCYCH W SAMOCHODACH DOSTAWCZYCH

DOBÓR LINIOWO-ŁAMANEGO ROZDZIAŁU SIŁ HAMUJĄCYCH W SAMOCHODACH DOSTAWCZYCH Zgnew Kmńsk DOBÓ INIOWO-ŁMNEO OZDZIŁU SIŁ HMUJĄCYCH W SMOCHODCH DOSTWCZYCH Streszczene. W rtykule opsno sposoy dooru lnowo-łmnego rozdzłu sł mującyc w smocodc dostwczyc według wymgń egulmnu 3 ECE. Przedstwono

Bardziej szczegółowo

TWIERDZENIA O WZAJEMNOŚCIACH

TWIERDZENIA O WZAJEMNOŚCIACH 1 Olga Kopac, Adam Łodygows, Wojcech Pawłows, Mchał Płotowa, Krystof Tymber Konsultacje nauowe: prof. dr hab. JERZY RAKOWSKI Ponań 2002/2003 MECHANIKA BUDOWI 7 ACH TWIERDZENIE BETTIEGO (o wajemnośc prac)

Bardziej szczegółowo

EFEKTYWNA STOPA PROCENTOWA O RÓWNOWAŻNA STPOPA PROCENTOWA

EFEKTYWNA STOPA PROCENTOWA O RÓWNOWAŻNA STPOPA PROCENTOWA EFEKTYWNA STOPA PROCENTOWA O RÓWNOWAŻNA STPOPA PROCENTOWA Nekedy zachodz koneczność zany okesu kapt. z ównoczesny zachowane efektów opocentowane. Dzeje sę tak w nektóych zagadnenach ateatyk fnansowej np.

Bardziej szczegółowo

Instrukcja obsługi. Radiowy silnik nastawczy 1187 00

Instrukcja obsługi. Radiowy silnik nastawczy 1187 00 Instrukcja obsług Radowy slnk nastawczy 1187 00 Sps treśc Informacje o nnejszej nstrukcj... 2 Wdok urządzena... 3 Montaż... 3 Demontaż... 3 Zaslane... 4 Wkładane bater... 4 Postępowane w raze zanku napęca

Bardziej szczegółowo

m Jeżeli do końca naciągniętej (ściśniętej) sprężyny przymocujemy ciało o masie m., to będzie na nie działała siła (III zasada dynamiki):

m Jeżeli do końca naciągniętej (ściśniętej) sprężyny przymocujemy ciało o masie m., to będzie na nie działała siła (III zasada dynamiki): Ruch drgający -. Ruch drgający Ciało jest sprężyste, jeżei odzyskuje pierwotny kształt po ustaniu działania siły, która ten kształt zmieniła. Właściwość sprężystości jest ograniczona, to znaczy, że przy

Bardziej szczegółowo

dy dx stąd w przybliżeniu: y

dy dx stąd w przybliżeniu: y Przykłady do funkcj nelnowych funkcj Törnqusta Proszę sprawdzć uzasadnć, które z podanych zdań są prawdzwe, a które fałszywe: Przykład 1. Mesęczne wydatk na warzywa (y, w jednostkach penężnych, jp) w zależnośc

Bardziej szczegółowo

Analiza danych OGÓLNY SCHEMAT. http://zajecia.jakubw.pl/ Dane treningowe (znana decyzja) Klasyfikator. Dane testowe (znana decyzja)

Analiza danych OGÓLNY SCHEMAT. http://zajecia.jakubw.pl/ Dane treningowe (znana decyzja) Klasyfikator. Dane testowe (znana decyzja) Analza danych Dane trenngowe testowe. Algorytm k najblższych sąsadów. Jakub Wróblewsk jakubw@pjwstk.edu.pl http://zajeca.jakubw.pl/ OGÓLNY SCHEMAT Mamy dany zbór danych podzelony na klasy decyzyjne, oraz

Bardziej szczegółowo

WPŁYW POJEMNOŚCI KONDENSATORA PRACY JEDNOFAZOWEGO SILNIKA INDUKCYJNEGO Z POMOCNICZYM UZWOJENIEM KONDENSATOROWYM NA PROCES ROZRUCHU

WPŁYW POJEMNOŚCI KONDENSATORA PRACY JEDNOFAZOWEGO SILNIKA INDUKCYJNEGO Z POMOCNICZYM UZWOJENIEM KONDENSATOROWYM NA PROCES ROZRUCHU Pace Nakowe Instytt Maszyn, Napędów Pomaów Elektycznych N 63 Poltechnk Wocławskej N 63 Stda Mateały N 29 2009 Kzysztof MAKOWSKI*, Macn WIK* mkoslnk, jednofazowe, ndkcyjne, kondensatoowe, modelowane obwodowe,

Bardziej szczegółowo

3. Zadanie nr 21 z rozdziału 7. książki HRW

3. Zadanie nr 21 z rozdziału 7. książki HRW Lista 3. do kursu Fizyka; rok. ak. 2012/13 sem. letni W. Inż. Środ.; kierunek Inż. Środowiska Tabele wzorów matematycznych (http://www.if.pwr.wroc.pl/~wsalejda/mat-wzory.pdf) i fizycznych (http://www.if.pwr.wroc.pl/~wsalejda/wzf1.pdf;

Bardziej szczegółowo

Ćw. 1. Wyznaczanie wartości średniego statycznego współczynnika tarcia i sprawności mechanizmu śrubowego.

Ćw. 1. Wyznaczanie wartości średniego statycznego współczynnika tarcia i sprawności mechanizmu śrubowego. Laboratorum z Podstaw Konstrukcj Maszyn - 1 - Ćw. 1. Wyznaczane wartośc średnego statycznego współczynnka tarca sprawnośc mechanzmu śrubowego. 1. Podstawowe wadomośc pojęca. Połączene śrubowe jest to połączene

Bardziej szczegółowo

LINIA PRZESYŁOWA PRĄDU STAŁEGO

LINIA PRZESYŁOWA PRĄDU STAŁEGO oitechnia Białostoca Wydział Eetyczny Kateda Eetotechnii Teoetycznej i Metoogii nstucja do zajęć aboatoyjnych Tytuł ćwiczenia LNA RZEYŁOWA RĄD TAŁEGO Nume ćwiczenia E Auto: mg inŝ. Łuasz Zaniewsi Białysto

Bardziej szczegółowo

Mam przyjemność przedstawić Państwu prezentację oferty wynajmu powierzchni magazynowej we wschodniej Polsce.

Mam przyjemność przedstawić Państwu prezentację oferty wynajmu powierzchni magazynowej we wschodniej Polsce. Mam pzyjemność pzedstawić Państwu pezentację ofety wynajmu powiezchni magazynowej we wschodniej Polsce. Chciałbym, aby niniejszy mateiał, stał się punktem wyjścia do nawiązania owocnej i satysfakcjonującej

Bardziej szczegółowo

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Chemia Poziom rozszerzony

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Chemia Poziom rozszerzony KRYTERIA OCENIANIA ODPOWIEDZI Póbna Matua z OPERONEM Chemia Poziom ozszezony Listopad W niniejszym schemacie oceniania zadań otwatych są pezentowane pzykładowe popawne odpowiedzi. W tego typu ch należy

Bardziej szczegółowo

TEORIA SPRĘŻYSTOŚCI 10

TEORIA SPRĘŻYSTOŚCI 10 W YKŁ ADY Z T EOII S ĘŻYSTOŚCI ZADANIE BOUSSINESQA I FLAMANTA olitechnika onańska Kopac, Kawck, Łodgowski, łotkowiak, Świtek, Tmpe Olga Kopac, Kstof Kawck, Adam Łodgowski, Michał łotkowiak, Agnieska Świtek,

Bardziej szczegółowo

Ruch absolutny i względny

Ruch absolutny i względny Janusz B. Kępka Ruch absolutny względny (Absolute and Relatve Moton) Warszawa 007 Janusz B. Kępka, wrzeseń 007 All rghts reserved. No reproducton, copy or transmsson of ths work of physcs may made wthout

Bardziej szczegółowo