XXX OLIMPIADA FIZYCZNA ETAP I Zadania teoretyczne

Wielkość: px
Rozpocząć pokaz od strony:

Download "XXX OLIMPIADA FIZYCZNA ETAP I Zadania teoretyczne"

Transkrypt

1 XXX OLIPIADA FIZYCZNA TAP I Zadana teoretczne Nazwa zadana ZADANI T1 Na odstawe wsółczesnch badań wadomo że jądro atomowe może znajdować sę tlo w stanach o oreślonch energach odobne ja dobrze znan atom wodoru. Dsonując wnam rozraszana wąz rotonów na jądrach ( rs.1) sróbuj oreślć uład ozomów energettcznch tego jądra. Proton w wązce mają energe 88 ev. Przjmujem że ażd roton ulega tlo jednemu zderzenu że energa wązana atomów w naśwetlanej róbce ( tarcz ) jest znedbwalne mała. Schemat esermentu w uroszczenu rzedstawono na rsunu 2. rs. 1

2 rs.2 ROZWIĄZANI ZADANIA T1 Wadomo że jeżel tarcza jądrowa jest bombardowana cząstam jądrowm to w oreślonch warunach w zależnośc od rodzaju tarcz oraz od energ rodzaju adającch cząste może zajść reacja jądrowa. W szczególnośc gd cząsta ewmtowana w wnu reacj jest taa sama ja cząsta bombardująca tarczę roces ta nazwam rozroszenem. W naszm rzadu ( zgodne ze schematem esermetru rs. 2 ) tarcza z magnezu bombardowana jest monoenergetczną wązą rotonów od oreślonm ątem rejestrowane są roton rozroszone. Zgodne z warunam zadana rozraszane rotonów na jądrach magnezu można zasać nastęująco : gdze * oznacza stan udzon Przjmujem że obserwowan roton owstaje w wnu jednorotnego rozraszana na jądrze magnezu co wna z założena że roton ulega tlo jednemu zderzenu. ożna rzjąć że zderzene zachodz z jądrem swobodnm ozostającm w socznu. Założene tae jest uzasadnone tm że zarówno energa wązana atomów magnezu ja ch energa zwązana z ruchem celnm są zanedbwalne małe w orównanu z energą netczną rotonów. Wrowadżm oznaczena: ( 1 ) wsażn - dotcz welośc charaterzującch adające roton wsażn - roton rozroszone wsażn - jądra magnezu - ęd energa netczna m - masa rotonu - masa jądra magnezu - energa udzena jądra magnezu. Padając na tarczę roton rz zderzenu rozrasza se rzeazuje ewną część energ netcznej jądru magnezu tóre uzsuje energę netczną ewentualne energę udzena co zgodne z zasadą zachowana energ można zasać : + + ( 2 )

3 Rozraszane jest elastczne jeżel całowta energa netczna uładu( tj. ocsu jądra tarcz ) jest taa sama rzed zderzenem ja o zderzenu a jądro magnezu ozostaje w nezmenonm wewnętrznm stane energetcznm w jam bło rzed zderzenem. ( arosoowm rzładem zderzena srężstego jest zderzene srężste dwóch ul blardowch w tórm żadna z ul ne ulega zmanom trwałm ). Rozraszane jest neelastczne jeżel uderzone jądro rzechodz do stanu udzonego zaś całowta energa netczna uładu zmnejsza se o wartość energ udzena oddanej jądru uderzonemu. Im wższ ozom energetczn osagne udzone jądro tm mnejsza będze energa netczna uładu o zderzenu. Stąd wna że energa netczna rotonów rozroszonch jest najwęsza dla rozroszena elastcznego ( tzn. gd jądro ozostaje w stane odstawowm ) maleje wraz ze wzrostem energ udzena. Na odstawe wzoru ( 2 ) można wznaczć wartość energ udzena jao różncę energ netcznej adającego rotonu sum energ netcznej rozroszonego rotonu jądra magnezu : ( ) + nerga netczna jądra odrzutu o reacj jest weloścą małą trudną do zmerzena można ją wznaczć orzstając z zasad zachowana ędu w rocese rozraszana. Przjmujem uład wsółrzednch (rs. onżej) ( 3 ) x θ Kerune ruchu bombardującch rotonów nech będze zgodn z erunem os. Zgodne z zasadą zachowana ędu mam : + oraz x x Wadow ęd o zderzenu mus bć serowan wzdłuż os a ęd orzeczne muszą sę równoważć.

4 Z onfguracj rzedstawonej na rsunu wna że Zatem : x snϑ x snϑ + 2 x ( ) + ( ) nerge netczne cząste są znaczne mnejsze od ch energ socznowch zatem orzstając z nerelatwstcznch zwązów mędz ędem a energą netczną otrzmujem g m 2 2m m ( ) Jest to wzór na energę netczną uzsaną rzez jądro magnezu w zderzenu z rotonem. nerga ta zależ ne tlo od energ netcznej adającego rozroszonego rotonu ąta rozroszena ale równeż od stosunu mas rotonu jądra. Uwzględnając (3) (4) otrzmujem wzór na energę udzena jądra : ( 4 ) m m 2m ( 5 ) Znajomość energ rotonów rozroszonch od ątem θ ozwala na wznaczene energ udzena bobmardowanego jądra a tm samm ołożena ozomu energetcznego udzonego jądra. Rozroszonm rotonom o masmalnej energ towarzsz emsja jądra w stane odstawowm co zgodne z zależnoścą ( 2 ) odowada zerowej energ udzena. Stąd m m 2m o cos ϑ Jeżel obserwujem la gru energetcznch rozroszonch rotonów o energach netcznch sełnającch warune ( 6 )

5 to ażdej grue rotonów odowada oreślona energa udzena Położene -tego ozomu energetcznego równe -tej energ udzena wnos 1 m 1 + m 2m Korzstając z warunu ( 6 ) otrzmam m 2m ( ) ( ) Zauważam że jeżel stosune mas : mas rotonu do mas jądra tarcz dąż do zera wówczas oznacza to że w rozraszanu rotonów na cężch jądrach energa udzena jądra W charaterzująca ołożene -tego ozomu energetcznego jest z dobrm rzblżenem równa różnc energ netcznej rotonu adającego rozroszonego. ( Wąże sę to z fatem że energa odrzutu cężego jądra jest zanedbwalne mała ). Zgodne z uroszczonm schematem esermentu rzedstawonm na rs.2 monoenergetczna wąza rotonów o energ 88eV ada rostoadle na tarczę wonaną z magnezu a rozroszone roton rejestrowane są rzez detetor umeszczon od ątem ϑ 6. Uładem detecjnm jest na ogół uład lcznów wraz z uładam eletroncznm ( n. uład oncdencjne analzator weloanałowe t. ) umożlwając dentfację omar energ cząste. Każda cząsta rzechodząca rzez detetor jest ostateczne zarejstrowana w weloanałowm analzatorze energ jao jedno zlczene w anale odowadającm oreślonemu rzedzałow energ. I ta w anale o numerze N rejestrowane są wszste cząst o energ zawartej w rzedzale energ : N N + S ( 7 ) gdze N - mnmalna energa cząst rejestrowanej w anale N S rzedzału. - szeroość nerga N zależ od wsalowana analzatora a zerowemu anałow ne mus odowadać zerowa energa cząst. Jeżel wem że energa cząste N rejestrowanch w anale o numerze równa jest N wówczas cząstom rejestrowanm w anale o numerze N odowada energa N N + ( N N ) S Po wsalowanu analzatora numer anału szeroość anału defnuje rzedzał energ cząste rejestrowanch w danm anale a lczba zlczeń w oszczególnch ( 8 )

6 anałach równa jest lczbe rejestrowanch cząste w oszczególnch rzedzałach energ. Rsune 1 rzedstawa wn naszego esermentu rozraszana rotonów na jądrach magnezu zarejstrowane w weloanałowm analzatorze energ. Na os odcętch odłożon jest numer anału ( szeroość ażdego anału S 27 5eV ) a na os rzędnch odłożona jest lczba zlczeń. Punt wresu odają lczbę zlczeń w olejnch anałach od numeru anału N 155 do N 322. Na wrese obeserwujem wrażne masma. Najwęszą lczbę zlczeń mam dla anału N 322. Jest to anał odowadając najwęszej energ rotonów z czego wnosujem że w anale tm rejestrowane są roton rozroszone elastczne. ożna wznaczć energę rotonów rozroszonch elastczne sełna warune ( 6 ) sąd o rostch rzeształcenach otrzmam : tóra 2m m + m + + m ( 9 ) Przjmujem masę jądra magnezu Z warunów zadana 8 8eV 26m. 1 ϑ 6 2 Wstawając owższe dane do równana ( 9 ) mam Rozwazując to równane otrzmujem wartość energ rotonów rozroszonch elastczne : 7 845eV. Pozwala nam to na wsalowane analzatora. Dla anału N 322 energa rejestrowanch rotonów wnos 322 N 7 845eV. Stąd zgodne z wzorem ( 8 ) możem nasać : ( N 322) ( N 322) ) [ ev ] n S 275 ( 1 ) Znając ołożena olejnch masmów rejestrowanch rotonów w anałach N 259 N 22 N 185 oraz N 17 możem na odstawe wzoru ( 1 ) wznaczć energę rotonów eV : 2 5 4eV 3 4 7eV eV

7 Natomast ołożene olejnch ozomów energetcznch wznaczam ze wzoru ( 7 ). Po wstawenu do ( 7 ) danch lczbowch otrzmujem równane w ostac : ( ) ev ( ) 2 ( 11 ) Stąd o odstawenu olejnch wartośc energ rotonów ołożene olejnch ozomów energetcznch magnezu eV eV 3 4 9eV eV wznaczam Błąd wznaczena energ rotonu równ jest szeroośc anału tj. 275eV.W naszm rzadu dochodz neewność odcztana z rsunu numeru anału dla tórego wstęuje masmum zlczeń ( neewność odcztu 2 anał ). Bład wznaczena energ rotonów rzenos se na błąd wznaczena ołożena ozomów energetcznch. Zauważm że obserwowane masma mają ewną szeroość to znacz że energa rotonów rozroszonch dla danej energ udzena jądra jest rozmta. Wna to zarówno ze statstcznego charateru detecj rotonów w lcznu ja równeż z naturalnej szeroośc samego ozomu. Proton rejestrowane w analzatorze oza masmum stanową tło mogą to bc n. roton tóre uległ dodatowemu zderzenu. Zadane to oazało sę bardzo trudne dla olmczów jao zadane do wboru bło wberane rzado. Nelczn ucznowe rozwazując to zadane najwęsz łoot mel z orawnm wsalowanem energ rotonów rozroszonch. W sformułowanu zadana zabrało nestet odreślena fatu że zerowemu anałow analzatora ne odowada zerowa energa rotonów. Źródło: Autorz : Andrzej Nadoln Krstna Pnewsa Wdawnctwo : WSP 1986 r Komtet Oregow Olmad Fzcznej w Szczecne

XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne

XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadane teoretyczne Rozwąż dowolne rzez sebe wybrane dwa sośród odanych nże zadań: ZADANIE T Nazwa zadana: Protony antyrotony A. Cząstk o mase równe mase rotonu, ale

Bardziej szczegółowo

Proces narodzin i śmierci

Proces narodzin i śmierci Proces narodzn śmerc Jeżel w ewnej oulacj nowe osobnk ojawają sę w sosób losowy, rzy czym gęstość zdarzeń na jednostkę czasu jest stała w czase wynos λ, oraz lczba osobnków n, które ojawły sę od chwl do

Bardziej szczegółowo

F - wypadkowa sił działających na cząstkę.

F - wypadkowa sił działających na cząstkę. PRAWA ZACHOWAIA Podstawowe termny Cała tworzące uład mechanczny oddzałują mędzy sobą z całam nenależącym do uładu za omocą: Sł wewnętrznych Sł zewnętrznych - Sł dzałających na dane cało ze strony nnych

Bardziej szczegółowo

SELEKCJA: JAK JEDNA POPULACJA (STRATEGIA) WYPIERA INNĄ

SELEKCJA: JAK JEDNA POPULACJA (STRATEGIA) WYPIERA INNĄ W stronę bolog: dnama oulacj Martn. owa Evolutonar Dnamcs elna Press 6 SELEKCJ: JK JED POPULCJ (STRTEGI) WYPIER IĄ Model determnstczn ( a ) ( b ) : Dodając stronam mam a b czl średne dostosowane (ftness).

Bardziej szczegółowo

Badanie energetyczne płaskiego kolektora słonecznego

Badanie energetyczne płaskiego kolektora słonecznego Katedra Slnów Salnowych Pojazdów ATH ZAKŁAD TERMODYNAMIKI Badane energetyczne łasego oletora słonecznego - 1 - rowadzene yorzystane energ celnej romenowana słonecznego do celów ogrzewana, chłodzena oraz

Bardziej szczegółowo

Kompresja fraktalna obrazów. obraz. 1. Kopiarka wielokrotnie redukująca 1.1. Zasada działania ania najprostszej kopiarki

Kompresja fraktalna obrazów. obraz. 1. Kopiarka wielokrotnie redukująca 1.1. Zasada działania ania najprostszej kopiarki Kompresa fratalna obraów. Kopara welorotne reuuąca.. Zasaa ałana ana naprostse opar Koncepca opar welorotne reuuące Naprosts prła opar. Moel matematcn obrau opara cęś ęścowa. obra weścow opara obra wścow

Bardziej szczegółowo

ZESTAW ZADAŃ Z INFORMATYKI

ZESTAW ZADAŃ Z INFORMATYKI (Wpsue zdaąc przed rozpoczęcem prac) KOD ZDAJĄCEGO ZESTAW ZADAŃ Z INFORMATYKI CZĘŚĆ II (dla pozomu rozszerzonego) GRUDZIEŃ ROK 004 Czas prac 50 mnut Instrukca dla zdaącego. Proszę sprawdzć, cz zestaw zadań

Bardziej szczegółowo

RUCH OBROTOWY Można opisać ruch obrotowy ze stałym przyspieszeniem ε poprzez analogię do ruchu postępowego jednostajnie zmiennego.

RUCH OBROTOWY Można opisać ruch obrotowy ze stałym przyspieszeniem ε poprzez analogię do ruchu postępowego jednostajnie zmiennego. RUCH OBROTOWY Można opsać ruch obrotowy ze stałym przyspeszenem ε poprzez analogę do ruchu postępowego jednostajne zmennego. Ruch postępowy a const. v v at s s v t at Ruch obrotowy const. t t t Dla ruchu

Bardziej szczegółowo

1. Zmienne i dane wejściowe Algorytmu Rozdziału Obciążeń

1. Zmienne i dane wejściowe Algorytmu Rozdziału Obciążeń ZAŁĄCZNIK nr Zasada dzałana Algorytmu Rozdzału Obcążeń. Zmenne dane wejścowe Algorytmu Rozdzału Obcążeń.. Zmennym podlegającym optymalzacj w procese rozdzału obcążeń są welośc energ delarowane przez Jednost

Bardziej szczegółowo

Anna Grych Test z budowy atomu i wiązań chemicznych

Anna Grych Test z budowy atomu i wiązań chemicznych Anna Grych Test z budowy atomu i wiązań chemicznych 1. Uzupełnij tabelkę wpisując odpowiednie dane: Nazwa atomu Liczba nukleonów protonów neutronów elektronów X -... 4 2 Y -... 88 138 Z -... 238 92 W -...

Bardziej szczegółowo

TWIERDZENIA O WZAJEMNOŚCIACH

TWIERDZENIA O WZAJEMNOŚCIACH 1 Olga Kopac, Adam Łodygows, Wojcech Pawłows, Mchał Płotowa, Krystof Tymber Konsultacje nauowe: prof. dr hab. JERZY RAKOWSKI Ponań 2002/2003 MECHANIKA BUDOWI 7 ACH TWIERDZENIE BETTIEGO (o wajemnośc prac)

Bardziej szczegółowo

WikiWS For Business Sharks

WikiWS For Business Sharks WkWS For Busness Sharks Ops zadana konkursowego Zadane Opracowane algorytmu automatyczne przetwarzającego zdjęce odręczne narysowanego dagramu na tablcy lub kartce do postac wektorowej zapsanej w formace

Bardziej szczegółowo

Analiza Matematyczna Ćwiczenia. J. de Lucas

Analiza Matematyczna Ćwiczenia. J. de Lucas Aalza Matematycza Ćwczea J. de Lucas Zadae. Oblczyć grace astępujących fucj a lm y 3,y 0,0 b lm y 3 y ++y,y 0,0 +y c lm,y 0,0 + 4 y 4 y d lm y,y 0,0 3 y 3 e lm,y 0,0 +y 4 +y 4 f lm,y 0,0 4 y 6 +y 3 g lm,y

Bardziej szczegółowo

Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 6

Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 6 ozwiązwanie beek prostch i przegubowch wznaczanie reakcji i wkresów sił przekrojowch 6 Obciążenie beki mogą stanowić sił skupione, moment skupione oraz obciążenia ciągłe q rs. 6.. s. 6. rzed przstąpieniem

Bardziej szczegółowo

EKONOMIA MENEDŻERSKA. Wykład 3 Funkcje produkcji 1 FUNKCJE PRODUKCJI. ANALIZA KOSZTÓW I KORZYŚCI SKALI. MINIMALIZACJA KOSZTÓW PRODUKCJI.

EKONOMIA MENEDŻERSKA. Wykład 3 Funkcje produkcji 1 FUNKCJE PRODUKCJI. ANALIZA KOSZTÓW I KORZYŚCI SKALI. MINIMALIZACJA KOSZTÓW PRODUKCJI. EONOMIA MENEDŻERSA Wykład 3 Funkcje rodukcj 1 FUNCJE PRODUCJI. ANAIZA OSZTÓW I ORZYŚCI SAI. MINIMAIZACJA OSZTÓW PRODUCJI. 1. FUNCJE PRODUCJI: JEDNO- I WIEOCZYNNIOWE Funkcja rodukcj określa zależność zdolnośc

Bardziej szczegółowo

XXX OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne

XXX OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne XXX OLIMPIADA FIZYCZNA ETAP III Zadane dośwadczalne ZADANIE D Nazwa zadana: Maszyna analogowa. Dane są:. doda półprzewodnkowa (krzemowa) 2. opornk dekadowy (- 5 Ω ), 3. woltomerz cyfrowy, 4. źródło napęca

Bardziej szczegółowo

RUCH DRGAJĄCY. Ruch harmoniczny. dt A zatem równanie różniczkowe ruchu oscylatora ma postać:

RUCH DRGAJĄCY. Ruch harmoniczny. dt A zatem równanie różniczkowe ruchu oscylatora ma postać: RUCH DRGAJĄCY Ruch haroniczny Ruch, tóry owtarza się w regularnych odstęach czasu, nazyway ruche oresowy (eriodyczny). Szczególny rzyadie ruchu oresowego jest ruch haroniczny: zależność rzeieszczenia od

Bardziej szczegółowo

Macierze hamiltonianu kp

Macierze hamiltonianu kp Macere halonanu p acer H a, dla wranego, war 44 lu 88 jeśl were jao u n r uncje s>; X>, Y>, Z>, cl uncje ransorujące sę według repreenacj grp weora alowego Γ j. worące aę aej repreenacj - o ora najardej

Bardziej szczegółowo

= σ σ. 5. CML Capital Market Line, Rynkowa Linia Kapitału

= σ σ. 5. CML Capital Market Line, Rynkowa Linia Kapitału 5 CML Catal Market Lne, ynkowa Lna Katału Zbór ortolo o nalny odchylenu standardowy zbór eektywny ozważy ortolo złożone ze wszystkch aktywów stnejących na rynku Załóży, że jest ch N A * P H P Q P 3 * B

Bardziej szczegółowo

2012-10-11. Definicje ogólne

2012-10-11. Definicje ogólne 0-0- Defncje ogólne Logstyka nauka o przepływe surowców produktów gotowych rodowód wojskowy Utrzyywane zapasów koszty zwązane.n. z zarożene kaptału Brak w dostawach koszty zwązane.n. z przestoje w produkcj

Bardziej szczegółowo

Rekonstrukcja zderzenia dwóch samochodów osobowych podstawowe zasady i praktyka ich stosowania

Rekonstrukcja zderzenia dwóch samochodów osobowych podstawowe zasady i praktyka ich stosowania Mrosław Gdlews esze Jeoł Reonstrucja zderzena dwóch saochodów osobowch podstawowe zasad prata ch stosowana treszczene RóŜnorodność złoŝoność wpadów drogowch polegającch na zderzenu dwóch saochodów sprawają,

Bardziej szczegółowo

METODY KOMPUTEROWE 1

METODY KOMPUTEROWE 1 MTODY KOMPUTROW WIADOMOŚCI WSTĘPN MTODA ULRA Mcał PŁOTKOWIAK Adam ŁODYGOWSKI Kosultacje aukowe dr z. Wtold Kąkol Pozań 00/00 MTODY KOMPUTROW WIADOMOŚCI WSTĘPN Metod umercze MN pozwalają a ormułowae matematczc

Bardziej szczegółowo

BADANIA OPERACYJNE. Podejmowanie decyzji w warunkach niepewności. dr Adam Sojda

BADANIA OPERACYJNE. Podejmowanie decyzji w warunkach niepewności. dr Adam Sojda BADANIA OPERACYJNE Podejmowane decyzj w warunkach nepewnośc dr Adam Sojda Teora podejmowana decyzj gry z naturą Wynk dzałana zależy ne tylko od tego, jaką podejmujemy decyzję, ale równeż od tego, jak wystąp

Bardziej szczegółowo

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych Zaawansowane metody numeryczne Komputerowa analza zagadneń różnczkowych 1. Układy równań lnowych P. F. Góra http://th-www.f.uj.edu.pl/zfs/gora/ semestr letn 2006/07 Podstawowe fakty Równane Ax = b, x,

Bardziej szczegółowo

A. ROZLICZENIE KOSZTÓW CENTRALNEGO OGRZEWANIA CHARAKTERYSTYKA KOSZTÓW DOSTAWY CIEPŁA

A. ROZLICZENIE KOSZTÓW CENTRALNEGO OGRZEWANIA CHARAKTERYSTYKA KOSZTÓW DOSTAWY CIEPŁA REGULAMIN ndywdualnego rozlczena osztów energ ceplnej dostarczonej na potrzeby centralnego ogrzewana cepłej wody meszań w zasobach Spółdzeln Meszanowej Lębora. POSTANOIENIA OGÓLNE Regulamn oreśla zasady:

Bardziej szczegółowo

aij - wygrana gracza I bij - wygrana gracza II

aij - wygrana gracza I bij - wygrana gracza II M.Mszczsk KBO UŁ, Badana operacjne I (cz.) (wkład B 7) GRY KONFLIKTOWE GRY -OSOBOWE O SUMIE WYPŁT ZERO I. DEFINICJE TWIERDZENI Konflktowe gr dwuosobowe opsuje macerz wpłat ( a ) [ ] mxn j,b j gdze: aj

Bardziej szczegółowo

Zadania do rozdziału 10.

Zadania do rozdziału 10. Zadania do rozdziału 0. Zad.0.. Jaką wsokość musi mieć pionowe zwierciadło ab osoba o wzroście.80 m mogła się w nim zobaczć cała. Załóżm, że ocz znajdują się 0 cm poniżej czubka głow. Ab prawidłowo rozwiązać

Bardziej szczegółowo

Zmienna losowa. M. Przybycień Rachunek prawdopodobieństwa i statystyka

Zmienna losowa. M. Przybycień Rachunek prawdopodobieństwa i statystyka Zmienna losowa ozszerzenie znaczenia funcji zmiennej rzeczwistej na przpadi, ied zmienna niezależna nie jest liczbą rzeczwistą: odległość to funcja par puntów, obwód trójąta, to funcja oreślona na zbiorze

Bardziej szczegółowo

Zadania powtórkowe do egzaminu maturalnego z chemii Budowa atomu, układ okresowy i promieniotwórczość

Zadania powtórkowe do egzaminu maturalnego z chemii Budowa atomu, układ okresowy i promieniotwórczość strona 1/11 Zadania powtórkowe do egzaminu maturalnego z chemii Budowa atomu, układ okresowy i promieniotwórczość Monika Gałkiewicz Zad. 1 () Przedstaw pełną konfigurację elektronową atomu pierwiastka

Bardziej szczegółowo

1. Definicje podstawowe. Rys Profile prędkości w rurze. A przepływ laminarny, B - przepływ burzliwy. Liczba Reynoldsa

1. Definicje podstawowe. Rys Profile prędkości w rurze. A przepływ laminarny, B - przepływ burzliwy. Liczba Reynoldsa . Defncje odstaoe Rys... Profle rędkośc rurze. rzeły lamnarny, B - rzeły burzly. Lczba Reynoldsa D Re [m /s] - sółczynnk lekośc knematycznej Re 3 - rzeły lamnarny Re - rzeły burzly Średna rędkość masoa

Bardziej szczegółowo

Zasady wyznaczania minimalnej wartości środków pobieranych przez uczestników od osób zlecających zawarcie transakcji na rynku terminowym

Zasady wyznaczania minimalnej wartości środków pobieranych przez uczestników od osób zlecających zawarcie transakcji na rynku terminowym Załązn nr 3 Do zzegółowyh Zasad rowadzena Rozlzeń Transa rzez KDW_CC Zasady wyznazana mnmalne wartoś środów oberanyh rzez uzestnów od osób zleaąyh zaware transa na rynu termnowym 1. Metodologa wyznazana

Bardziej szczegółowo

Metody numeryczne. Wykład nr 2. dr hab. Piotr Fronczak

Metody numeryczne. Wykład nr 2. dr hab. Piotr Fronczak Metod numerczne Wład nr dr hab. Piotr Froncza Przbliżone rozwiązwanie równań nieliniowch Jedno równanie z jedną niewiadomą Szuam pierwiastów rzeczwistch równania =. zwle jest uncją nieliniową zatem orzstam

Bardziej szczegółowo

FUNKCJE DWÓCH ZMIENNYCH

FUNKCJE DWÓCH ZMIENNYCH FUNKCJE DWÓCH MIENNYCH De. JeŜel kaŝdemu puktow (, ) ze zoru E płaszczz XY przporządkujem pewą lczę rzeczwstą z, to mówm, Ŝe a zorze E określoa została ukcja z (, ). Gd zór E e jest wraźe poda, sprawdzam

Bardziej szczegółowo

SKRYPT Z MATEMATYKI. Wstęp do matematyki. Rafał Filipów Piotr Szuca

SKRYPT Z MATEMATYKI. Wstęp do matematyki. Rafał Filipów Piotr Szuca Publikacja współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego SKRYPT Z MATEMATYKI Wstęp do matematki Rafał Filipów Piotr Szuca Publikacja współfinansowana przez Unię Europejską

Bardziej szczegółowo

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi.

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi. 3 Metody estymacj N ( µ, σ ) Wyzacz estymatory parametrów µ 3 Populacja geerala ma rozład ormaly mometów wyorzystując perwszy momet zwyły drug momet cetraly z prób σ metodą 3 Zmea losowa ma rozład geometryczy

Bardziej szczegółowo

EFEKTYWNA STOPA PROCENTOWA O RÓWNOWAŻNA STPOPA PROCENTOWA

EFEKTYWNA STOPA PROCENTOWA O RÓWNOWAŻNA STPOPA PROCENTOWA EFEKTYWNA STOPA PROCENTOWA O RÓWNOWAŻNA STPOPA PROCENTOWA Nekedy zachodz koneczność zany okesu kapt. z ównoczesny zachowane efektów opocentowane. Dzeje sę tak w nektóych zagadnenach ateatyk fnansowej np.

Bardziej szczegółowo

W-23 (Jaroszewicz) 20 slajdów Na podstawie prezentacji prof. J. Rutkowskiego

W-23 (Jaroszewicz) 20 slajdów Na podstawie prezentacji prof. J. Rutkowskiego Bangkok, Thailand, March 011 W-3 (Jaroszewicz) 0 slajdów Na odstawie rezentacji rof. J. Rutkowskiego Fizyka kwantowa fale rawdoodobieństwa funkcja falowa aczki falowe materii zasada nieoznaczoności równanie

Bardziej szczegółowo

CZĘŚĆ 6. MODEL REGRESJI, TREND LINIOWY ESTYMACJA, WNIOSKOWANIE

CZĘŚĆ 6. MODEL REGRESJI, TREND LINIOWY ESTYMACJA, WNIOSKOWANIE CZĘŚĆ 6. MODEL REGRESJI, TREND LINIOWY ESTYMACJA, WNIOSKOWANIE Zadane 1. Na podstawe obserwacj dotczącch welkośc powerzchn ekspozcjnej (cecha X w m kw.) oraz welkośc dzennego obrotu punktu sprzedaż płtek

Bardziej szczegółowo

1. SPRAWDZENIE WYSTEPOWANIA RYZYKA KONDENSACJI POWIERZCHNIOWEJ ORAZ KONDENSACJI MIĘDZYWARSTWOWEJ W ŚCIANIE ZEWNĘTRZNEJ

1. SPRAWDZENIE WYSTEPOWANIA RYZYKA KONDENSACJI POWIERZCHNIOWEJ ORAZ KONDENSACJI MIĘDZYWARSTWOWEJ W ŚCIANIE ZEWNĘTRZNEJ Ćwczene nr 1 cz.3 Dyfuzja pary wodnej zachodz w kerunku od środowska o wyższej temperaturze do środowska chłodnejszego. Para wodna dyfundująca przez przegrody budowlane w okrese zmowym napotyka na coraz

Bardziej szczegółowo

25. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU. y +y tgx=sinx

25. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU. y +y tgx=sinx 5. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU 5.1. Pojęcia wstępne. Klasfikacja równań i rozwiązań Rozróżniam dwa zasadnicze tp równań różniczkowch: równania różniczkowe zwczajne i równania różniczkowe cząstkowe.

Bardziej szczegółowo

Młodzieżowe Uniwersytety Matematyczne. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego REGUŁA GULDINA

Młodzieżowe Uniwersytety Matematyczne. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego REGUŁA GULDINA Młodzieżowe Uniwerstet Matematczne Projekt współfinansowan przez Unię Europejską w ramach Europejskiego Funduszu połecznego REGUŁA GULDINA dr Bronisław Pabich Rzeszów marca 1 Projekt realizowan przez Uniwerstet

Bardziej szczegółowo

Tabela 9.1. Moc akustyczna niektórych źródeł hałasu.

Tabela 9.1. Moc akustyczna niektórych źródeł hałasu. Ćwczene 9 POMIAR POIOMU DŹWIĘKU 43 9.. Podstawy teoretyczne Dźwę jest zjawsem zycznym olegającym na drganu ośroda srężystego. Drgana rozchodzą sę w ostac al. Rozchodzene sę al dźwęowej olega na owstanu

Bardziej szczegółowo

Indukcja matematyczna

Indukcja matematyczna Iducja matematycza Twerdzee. zasada ducj matematyczej Nech T ozacza pewą tezę o lczbe aturalej. Jeżel dla pewej lczby aturalej 0 teza T 0 jest prawdzwa dla ażdej lczby aturalej 0 z prawdzwośc tezy T wya

Bardziej szczegółowo

(M2) Dynamika 1. ŚRODEK MASY. T. Środek ciężkości i środek masy

(M2) Dynamika 1. ŚRODEK MASY. T. Środek ciężkości i środek masy (MD) MECHANIKA - Dynamka T. Środek cężkośc środek masy (M) Dynamka T: Środek cężkośc środek masy robert.szczotka(at)gmal.com Fzyka astronoma, Lceum 01/014 1 (MD) MECHANIKA - Dynamka T. Środek cężkośc środek

Bardziej szczegółowo

Relaksacja. Chem. Fiz. TCH II/19 1

Relaksacja. Chem. Fiz. TCH II/19 1 Relasaja Relasaja oznaza powrót uładu do stanu równowagi po zaburzeniu równowagi pierwotnej jaimś bodźem (wielośią zewnętrzną zmieniająą swoją wartość soowo, np. stężenie jednego z reagentów, iśnienie

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Prawdopodobeństwo statystya.05.00 r. Zadane Zmenna losowa X ma rozład wyładnczy o wartośc oczewanej, a zmenna losowa Y rozład wyładnczy o wartośc oczewanej. Obe zmenne są nezależne. Oblcz E( Y X + Y =

Bardziej szczegółowo

Energia potencjalna jest energią zgromadzoną w układzie. Energia potencjalna może być zmieniona w inną formę energii (na przykład energię kinetyczną)

Energia potencjalna jest energią zgromadzoną w układzie. Energia potencjalna może być zmieniona w inną formę energii (na przykład energię kinetyczną) 1 Enega potencjalna jest enegą zgomadzoną w układze. Enega potencjalna może być zmenona w nną omę eneg (na pzykład enegę knetyczną) może być wykozystana do wykonana pacy. Sumę eneg potencjalnej knetycznej

Bardziej szczegółowo

jednoznacznie wyznaczają wymiary wszystkich reprezentacji grup punktowych, a związki ortogonalności jednoznacznie wyznaczają ich charaktery

jednoznacznie wyznaczają wymiary wszystkich reprezentacji grup punktowych, a związki ortogonalności jednoznacznie wyznaczają ich charaktery Reprezentacje grup puntowych związi pomiędzy h i n a jednoznacznie wyznaczają wymiary wszystich reprezentacji grup puntowych, a związi ortogonalności jednoznacznie wyznaczają ich charatery oznaczenia:

Bardziej szczegółowo

ZASADA ZACHOWANIA MOMENTU PĘDU: PODSTAWY DYNAMIKI BRYŁY SZTYWNEJ

ZASADA ZACHOWANIA MOMENTU PĘDU: PODSTAWY DYNAMIKI BRYŁY SZTYWNEJ ZASADA ZACHOWANIA MOMENTU PĘDU: PODSTAWY DYNAMIKI BYŁY SZTYWNEJ 1. Welkośc w uchu obotowym. Moment pędu moment sły 3. Zasada zachowana momentu pędu 4. uch obotowy były sztywnej względem ustalonej os -II

Bardziej szczegółowo

Wprowadzenie do Sieci Neuronowych Sieci rekurencyjne

Wprowadzenie do Sieci Neuronowych Sieci rekurencyjne Wprowadzene do Sec Neuronowych Sec rekurencyjne M. Czoków, J. Persa 2010-12-07 1 Powtórzene Konstrukcja autoasocjatora Hopfelda 1.1 Konstrukcja Danych jest m obrazów wzorcowych ξ 1..ξ m, gdze każdy pojedynczy

Bardziej szczegółowo

Ćw. 5. Badanie ruchu wahadła sprężynowego sprawdzenie wzoru na okres drgań

Ćw. 5. Badanie ruchu wahadła sprężynowego sprawdzenie wzoru na okres drgań KAEDRA FIZYKI SOSOWANEJ PRACOWNIA 5 FIZYKI Ćw. 5. Badanie ruchu wahadła sprężynowego sprawdzenie wzoru na ores drgań Wprowadzenie Ruch drgający naeży do najbardziej rozpowszechnionych ruchów w przyrodzie.

Bardziej szczegółowo

JEDNOWYMIAROWA ZMIENNA LOSOWA

JEDNOWYMIAROWA ZMIENNA LOSOWA JEDNOWYMIAROWA ZMIENNA LOSOWA Nech E bedze zborem zdarzen elementarnych danego doswadczena. Funcje X(e) przyporzadowujaca azdemu zdarzenu elementarnemu e E jedna tylo jedna lczbe X(e)x nazywamy ZMIENNA

Bardziej szczegółowo

Ł Ł Ś ź ń ź ź ź Ś Ł Ę Ę Ś ż Ś ń Ą Ś Ą Ł ż ż ń ż ć ż ż ż ź ż ć ź Ę Ę ń ć ż Ł ń ż ż ż Ś ż Ś ż ż ż ż ż ż ż ń ń ż ż ż ć ż ń ż ń ź ż ć ż ż ć ń ż Ę Ę ć ń Ę ż ż ń ń ź Ę ź ż ń ż ń ź ż ż ż ń ż ż ż ż ż ż ż ż ń ń

Bardziej szczegółowo

Ż ż Ł ż ż ż Ż Ś ż ż ż Ł Ż Ż ć ż Ż Ż Ż Ń Ż Ź ż Ź Ź ż Ż ż ż Ż Ł Ż Ł Ż ż Ż ż Ż Ż Ń Ą Ż Ń Ż Ń ć ż Ż ź Ś ć Ł Ł Ź Ż Ż ż Ł ż Ż Ł Ż Ł ź ć ż Ż Ż ż ż Ó ż Ł Ż ć Ż Ż Ę Ż Ż Ż ż Ż ż ż Ś ż Ż ż ż ź Ż Ń ć Ż ż Ż Ż ż ż ż

Bardziej szczegółowo

Ś Ł Ą Ś Ś ź Ś ń ż ż Ó ż ż Ś Ł ż ń ń ń ż ń Ś ń ć ŚĘ Ó Ł Ę Ł Ś Ę Ę ń ń ń ń ń Ź ń ń ń ń ń ż ń ń ń ń ń Ę ż ż ć Ść ń ń ż Ń ż ż ń ń Ś Ą ń Ś ń ń ż Ó ż Ź ń ż ń Ś Ń Ó ż Ł ż Ą ź ź Ś Ł ć Ś ć ż ź ż ć ć Ę Ó Ś Ó ż ż

Bardziej szczegółowo

Ł Ł Ś Ę ź ń ź ź Ś Ę Ę Ś Ą Ś Ę Ż Ł ń Ę Ś ć ć ń ć ń ń ń ź ń Ę ź ń ń ń ź ź Ś ź ź ć ń ń ń ń Ś ć Ś ń ń Ś ź ń Ę ń Ś ź ź ź ź ź Ę Ę Ę Ś ń Ś ć ń ń ń ń ń ń Ę ń ń ń ń ć ń ń ń ń ć ń Ś ć Ł ń ń ń ć ń ć ź ń ź ć ń ń ć

Bardziej szczegółowo

Foton, kwant światła. w klasycznym opisie świata, światło jest falą sinusoidalną o częstości n równej: c gdzie: c prędkość światła, długość fali św.

Foton, kwant światła. w klasycznym opisie świata, światło jest falą sinusoidalną o częstości n równej: c gdzie: c prędkość światła, długość fali św. Foton, kwant światła Wielkość fizyczna jest skwantowana jeśli istnieje w pewnych minimalnych (elementarnych) porcjach lub ich całkowitych wielokrotnościach w klasycznym opisie świata, światło jest falą

Bardziej szczegółowo

Metoda podziału zbioru obiektów na wielokryterialne klastry jakościowe

Metoda podziału zbioru obiektów na wielokryterialne klastry jakościowe BIULET ISTTUTU SSTEMÓW IFOMATCZCH (03) Metoda podziału zbioru obietów na wielorterialne lastr jaościowe A. AMELJAŃCZK aameljancz@wat.edu.pl Insttut Sstemów Informatcznch Wdział Cberneti WAT ul. S. Kalisiego,

Bardziej szczegółowo

Zarządzanie ryzykiem w przedsiębiorstwie i jego wpływ na analizę opłacalności przedsięwzięć inwestycyjnych

Zarządzanie ryzykiem w przedsiębiorstwie i jego wpływ na analizę opłacalności przedsięwzięć inwestycyjnych dr nż Andrze Chylńsk Katedra Bankowośc Fnansów Wyższa Szkoła Menedżerska w Warszawe Zarządzane ryzykem w rzedsęborstwe ego wływ na analzę ołacalnośc rzedsęwzęć nwestycynych w w w e - f n a n s e c o m

Bardziej szczegółowo

WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII.

WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII. ĆWICZENIE 3. WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII. 1. Oscylator harmoniczny. Wprowadzenie Oscylatorem harmonicznym nazywamy punt materialny, na tóry,działa siła sierowana do pewnego centrum,

Bardziej szczegółowo

( ) σ v. Adam Bodnar: Wytrzymałość Materiałów. Analiza płaskiego stanu naprężenia.

( ) σ v. Adam Bodnar: Wytrzymałość Materiałów. Analiza płaskiego stanu naprężenia. Adam Bdnar: Wtrzmałść Materiałów Analiza płaskieg stanu naprężenia 5 ANALIZA PŁASKIEGO STANU NAPRĘŻENIA 5 Naprężenia na dwlnej płaszczźnie Jak pamiętam płaski stan naprężenia w punkcie cechuje t że wektr

Bardziej szczegółowo

; -1 x 1 spełnia powyższe warunki. Ale

; -1 x 1 spełnia powyższe warunki. Ale AIB-Inormatka-Wkła - r Aam Ćmel cmel@.ah.eu.pl Funkcje uwkłane Przkła.ozważm równane np. nech. Ptane Cz la owolneo [] stneje tak że? Nech. Wówczas unkcja - spełna powższe warunk. Ale [ ] Q spełna je także

Bardziej szczegółowo

16. Pole magnetyczne, indukcja. Wybór i opracowanie Marek Chmielewski

16. Pole magnetyczne, indukcja. Wybór i opracowanie Marek Chmielewski 6. Poe magnetczne, nukcja Wbó opacowane Maek meewsk 6.. Znaeźć nukcje poa magnetcznego w oegłośc o neskończone ługego pzewonka wacowego o pomenu pzekoju popzecznego a w któm płne pą I. 6.. Wznaczć nukcję

Bardziej szczegółowo

$y = XB KLASYCZNY MODEL REGRESJI LINIOWEJ Z WIELOMA ZMIENNYMI NIEZALEŻNYMI

$y = XB KLASYCZNY MODEL REGRESJI LINIOWEJ Z WIELOMA ZMIENNYMI NIEZALEŻNYMI KASYCZNY ODE REGRESJI INIOWEJ Z WIEOA ZIENNYI NIEZAEŻNYI. gdz: wtor obsrwacj a zmj Y, o wmarach ( macrz obsrwacj a zmch zalżch, o wmarach ( ( wtor paramtrów struturalch (wtor współczów, o wmarach (( wtor

Bardziej szczegółowo

Ruch po równi pochyłej

Ruch po równi pochyłej Sławomir Jemielit Ruch po równi pochłej Z równi pochłej o kącie nachlenia do poziomu α zsuwa się ciało o masie m. Jakie jest przspieszenie ciała, jeśli współcznnik tarcia ciała o równię wnosi f? W jakich

Bardziej szczegółowo

PAWEŁ SZEPTYŃSKI RYSZARD B. PĘCHERSKI

PAWEŁ SZEPTYŃSKI RYSZARD B. PĘCHERSKI PAWŁ SZPTYŃSI RYSZARD B. PĘCHRSI Rud Metale R57 nr 4 UD 6.7:59.4:59.89.: :59.:669-4:6.77:669- PROPOZYCJA NOWGO RYTRIUM PLASTYCZNOŚCI DLA BLACH ORTOTROPOWYCH Z UWZGLĘDNINIM ASYMTRII ZARSU SPRĘŻYSTGO W artule

Bardziej szczegółowo

T. Hofman, Wykłady z Termodynamiki technicznej i chemicznej, Wydział Chemiczny PW, kierunek: Technologia chemiczna, sem.

T. Hofman, Wykłady z Termodynamiki technicznej i chemicznej, Wydział Chemiczny PW, kierunek: Technologia chemiczna, sem. . Hofma Wyłady z ermodyam techczej chemczej Wydzał Chemczy PW erue: echologa chemcza sem.3 215/216 WYKŁAD 3-4. D. Blase reatorów chemczych E. II zasada termodyam F. Kosewecje zasad termodyam D. BILANE

Bardziej szczegółowo

Zadanie 3. (2 pkt) Uzupełnij zapis, podając liczbę masową i atomową produktu przemiany oraz jego symbol chemiczny. Th... + α

Zadanie 3. (2 pkt) Uzupełnij zapis, podając liczbę masową i atomową produktu przemiany oraz jego symbol chemiczny. Th... + α Zadanie: 1 (2 pkt) Określ liczbę atomową pierwiastka powstającego w wyniku rozpadów promieniotwórczych izotopu radu 223 88Ra, w czasie których emitowane są 4 cząstki α i 2 cząstki β. Podaj symbol tego

Bardziej szczegółowo

Reakcje jądrowe dr inż. Romuald Kędzierski

Reakcje jądrowe dr inż. Romuald Kędzierski Reakcje jądrowe dr inż. Romuald Kędzierski Wybuch bomby Ivy Mike (fot. National Nuclear Security Administration/Nevada Site Office, domena publiczna) Przemiany jądrowe 1. Spontaniczne (niewymuszone) związane

Bardziej szczegółowo

Zestaw zadań 4: Przestrzenie wektorowe i podprzestrzenie. Liniowa niezależność. Sumy i sumy proste podprzestrzeni.

Zestaw zadań 4: Przestrzenie wektorowe i podprzestrzenie. Liniowa niezależność. Sumy i sumy proste podprzestrzeni. Zestaw zadań : Przestrzene wektorowe podprzestrzene. Lnowa nezależność. Sumy sumy proste podprzestrzen. () Wykazać, że V = C ze zwykłym dodawanem jako dodawanem wektorów operacją mnożena przez skalar :

Bardziej szczegółowo

SYSTEMY ROZMYTO-NEURONOWE REALIZUJĄCE RÓŻNE SPOSOBY ROZMYTEGO WNIOSKOWANIA

SYSTEMY ROZMYTO-NEURONOWE REALIZUJĄCE RÓŻNE SPOSOBY ROZMYTEGO WNIOSKOWANIA POLIECHIK CZĘSOCHOWSK KEDR IŻYIERII KOMPUEROWEJ PRC DOKORSK SYSEMY ROZMYO-EUROOWE RELIZUJĄCE RÓŻE SPOSOY ROZMYEGO WIOSKOWI Roert owc Promotor: dr h. ż. Dut Rutows rof. dzw. P.Cz. Częstochow 999 eszm chcłm

Bardziej szczegółowo

Spalanie. 1. Skład paliw. 1.1. Paliwa gazowe (1) kmol C. kmol H 2. gdzie: H. , itd. udziały molowe składników paliwa w gazie. suchym. kmol.

Spalanie. 1. Skład paliw. 1.1. Paliwa gazowe (1) kmol C. kmol H 2. gdzie: H. , itd. udziały molowe składników paliwa w gazie. suchym. kmol. Salae / 1 Salae Salae jet zybko rzebegającym roceem utleaa ołączoym z ydzelaem ę ceła. Salau z reguły toarzyzy emja śatła. Podtaoym eratkam alym alach ą ęgel odór. W ale moża yróżć część alą ealy balat.

Bardziej szczegółowo

Zasady budowania prognoz ekonometrycznych

Zasady budowania prognoz ekonometrycznych Zasad budowania prognoz ekonometrcznch Klasczne założenia teorii predkcji 1. Znajomość modelu kształtowania się zmiennej prognozowanej Znajomość postaci analitcznej wstępującch zależności międz zmiennmi

Bardziej szczegółowo

Wpływ zamiany typów elektrowni wiatrowych o porównywalnych parametrach na współpracę z węzłem sieciowym

Wpływ zamiany typów elektrowni wiatrowych o porównywalnych parametrach na współpracę z węzłem sieciowym Wpływ zamiany typów eletrowni wiatrowych o porównywalnych parametrach na współpracę z węzłem sieciowym Grzegorz Barzy Paweł Szwed Instytut Eletrotechnii Politechnia Szczecińsa 1. Wstęp Ostatnie ila lat,

Bardziej szczegółowo

Portfele zawierające walor pozbawiony ryzyka. Elementy teorii rynku kapitałowego

Portfele zawierające walor pozbawiony ryzyka. Elementy teorii rynku kapitałowego Portel nwestycyjny ćwczena Na podst. Wtold Jurek: Konstrukcja analza rozdzał 5 dr chał Konopczyńsk Portele zawerające walor pozbawony ryzyka. lementy teor rynku kaptałowego 1. Pożyczane penędzy amy dwa

Bardziej szczegółowo

FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2010, Oeconomica 280 (59), 13 20

FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2010, Oeconomica 280 (59), 13 20 FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Fola Pomer. Unv. Technol. Stetn. 2010, Oeconomca 280 (59), 13 20 Iwona Bą, Agnesza Sompolsa-Rzechuła LOGITOWA ANALIZA OSÓB UZALEŻNIONYCH OD ŚRODKÓW

Bardziej szczegółowo

Rozwiązywanie ram płaskich wyznaczanie reakcji i wykresów sił przekrojowych 7

Rozwiązywanie ram płaskich wyznaczanie reakcji i wykresów sił przekrojowych 7 ozwiązwanie ram płaskich wznaczanie reakcji i wkresów sił przekrojowch 7 Obciążenie ram płaskiej, podobnie jak w przpadku beek rozdział 6, mogą stanowić sił skupione, moment skupione oraz obciążenia ciągłe

Bardziej szczegółowo

OPTYMALIZACJA KOSZTÓW PRZEBUDOWY PORTFELA JAKO ZADANIE TRANSPORTOWE. 1. Problem badawczy

OPTYMALIZACJA KOSZTÓW PRZEBUDOWY PORTFELA JAKO ZADANIE TRANSPORTOWE. 1. Problem badawczy B A D A N I A O P E R A C Y J N E I D E C Y Z J E Nr 2 2004 Krzysztof PIASECKI* OPTYALIZACJA KOSZTÓW PRZEBUDOWY PORTFELA JAKO ZADANIE TRANSPORTOWE Wszyste oszty generowane przez prowze malerse są włączone

Bardziej szczegółowo

Zjawisko Comptona opis pół relatywistyczny

Zjawisko Comptona opis pół relatywistyczny FOTON 33, Lato 06 7 Zjawisko Comtona ois ół relatywistyczny Jerzy Ginter Wydział Fizyki UW Zderzenie fotonu ze soczywającym elektronem Przy omawianiu dualizmu koruskularno-falowego jako jeden z ięknych

Bardziej szczegółowo

STATYKA. Cel statyki. Prof. Edmund Wittbrodt

STATYKA. Cel statyki. Prof. Edmund Wittbrodt STATYKA Cel statyk Celem statyk jest zastąpee dowolego układu sł ym, rówoważym układem sł, w tym układem złożoym z jedej tylko sły jedej pary sł (redukcja do sły mometu główego) lub zbadae waruków, jake

Bardziej szczegółowo

Oddziaływanie cząstek z materią

Oddziaływanie cząstek z materią Oddziaływanie cząstek z materią Trzy główne typy mechanizmów reprezentowane przez Ciężkie cząstki naładowane (cięższe od elektronów) Elektrony Kwanty gamma Ciężkie cząstki naładowane (miony, p, cząstki

Bardziej szczegółowo

Do Szczegółowych Zasad Prowadzenia Rozliczeń Transakcji przez KDPW_CCP

Do Szczegółowych Zasad Prowadzenia Rozliczeń Transakcji przez KDPW_CCP Załączni nr Do Szczegółowych Zasad Prowadzenia Rozliczeń Transacji rzez KDPW_CCP Wyliczanie deozytów zabezieczających dla rynu asowego (ozycje w acjach i obligacjach) 1. Definicje Ileroć w niniejszych

Bardziej szczegółowo

Poniższe eseje zostały opublikowane w Encyklopedii Szkolnej - Fizyka, która została wydana w marcu 2006 r. przez:

Poniższe eseje zostały opublikowane w Encyklopedii Szkolnej - Fizyka, która została wydana w marcu 2006 r. przez: Poniższe eseje zostały opubliowane w Encylopedii Szolnej - Fizya, tóra została wydana w marcu 6 r przez: Wydawnictwo Zielona Sowa Sp z o o PL--45 Kraów, ul Wadowica 8A, POLAND Tel/Fax: +(48-) 66-694; Tel:

Bardziej szczegółowo

Wykład 13 Druga zasada termodynamiki

Wykład 13 Druga zasada termodynamiki Wyład 3 Druga zasada termodynamii Entroia W rzyadu silnia Carnota z gazem dosonałym otrzymaliśmy Q =. (3.) Q Z tego wzoru wynia, że wielość Q Q = (3.) dla silnia Carnota jest wielością inwariantną (niezmienniczą).

Bardziej szczegółowo

JEDNOWYMIAROWA ZMIENNA LOSOWA

JEDNOWYMIAROWA ZMIENNA LOSOWA JEDNOWYMIAROWA ZMIENNA LOSOWA Nech E będze zborem zdarzeń elemetarych daego dośwadczea. Fucję X(e) przyporządowującą ażdemu zdarzeu elemetaremu e E jedą tylo jedą lczbę X(e)=x azywamy ZMIENNĄ LOSOWĄ. Przyład:

Bardziej szczegółowo

LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ

LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ INSTRUKCJA LABORATORYJNA Temat ćwczena: BADANIE POPRAWNOŚCI OPISU STANU TERMICZNEGO POWIETRZA PRZEZ RÓWNANIE

Bardziej szczegółowo

Wyznaczanie długości fali świetlnej za pomocą spektrometru siatkowego

Wyznaczanie długości fali świetlnej za pomocą spektrometru siatkowego Politechnia Łódza FTIMS Kierune: Informatya ro aademici: 2008/2009 sem. 2. Termin: 16 III 2009 Nr. ćwiczenia: 413 Temat ćwiczenia: Wyznaczanie długości fali świetlnej za pomocą spetrometru siatowego Nr.

Bardziej szczegółowo

Fizyka jądrowa cz. 2. Reakcje jądrowe. Teraz stałem się Śmiercią, niszczycielem światów. Robert Oppenheimer

Fizyka jądrowa cz. 2. Reakcje jądrowe. Teraz stałem się Śmiercią, niszczycielem światów. Robert Oppenheimer Barcelona, Espania, May 204 W-29 (Jaroszewicz) 24 slajdy Na podstawie prezentacji prof. J. Rutkowskiego Reakcje jądrowe Fizyka jądrowa cz. 2 Teraz stałem się Śmiercią, niszczycielem światów Robert Oppenheimer

Bardziej szczegółowo

Powtórzenie na kolokwium nr 4. Dynamika punktu materialnego

Powtórzenie na kolokwium nr 4. Dynamika punktu materialnego Powtórzenie na olowiu nr 4 Dynaia puntu aterialnego 1 zadanie dynaii: znany jest ruh, szuay siły go wywołująej. Znane funje opisująe trajetorię ruhu różnizujey i podstawiay do równań ruhu. 2 zadanie dynaii:

Bardziej szczegółowo

EKONOMETRIA I Spotkanie 1, dn. 05.10.2010

EKONOMETRIA I Spotkanie 1, dn. 05.10.2010 EKONOMETRIA I Spotkane, dn. 5..2 Dr Katarzyna Beń Program ramowy: http://www.sgh.waw.pl/nstytuty/e/oferta_dydaktyczna/ekonometra_stacjonarne_nest acjonarne/ Zadana, dane do zadań, ważne nformacje: http://www.e-sgh.pl/ben/ekonometra

Bardziej szczegółowo

Pomiar mocy i energii

Pomiar mocy i energii Zakład Napędów Weloźródłowych Instytut Maszyn Roboczych CęŜkch PW Laboratorum Elektrotechnk Elektronk Ćwczene P3 - protokół Pomar mocy energ Data wykonana ćwczena... Zespół wykonujący ćwczene: Nazwsko

Bardziej szczegółowo

Rys. 1. Temperatura punktu rosy na wykresie p-t dla wody.

Rys. 1. Temperatura punktu rosy na wykresie p-t dla wody. F-Pow wlot / Powetrze wlotne. Defncje odstawowe Powetrze wlotne jest roztwore (lub eszanną) owetrza sucheo wody w ostac: a) ary rzerzanej lub b) ary nasyconej suchej lub c) ary nasyconej suchej ły cekłej

Bardziej szczegółowo

Zestaw 0. 1 sin 2 x ; k) (arctg x) 0 = 1 ; l) (arcctg x) x 2 m) (arcsin x) 0 = p 1

Zestaw 0. 1 sin 2 x ; k) (arctg x) 0 = 1 ; l) (arcctg x) x 2 m) (arcsin x) 0 = p 1 Podstawowe wzor rachunku ró zniczkowego Zestaw. Rachunek ró zniczkow i ca kow a) (f () g ()) = f () g () + f () g () b) f (g ()) = f (g ()) g () f() c) g() = f ()g() f()g () d) ( n ) = n n g () e) (log

Bardziej szczegółowo

Zadanie 2. (1 pkt) Jądro izotopu U zawiera A. 235 neutronów. B. 327 nukleonów. C. 143 neutrony. D. 92 nukleony

Zadanie 2. (1 pkt) Jądro izotopu U zawiera A. 235 neutronów. B. 327 nukleonów. C. 143 neutrony. D. 92 nukleony Zadanie 1. (1 pkt) W jednym z naturalnych szeregów promieniotwórczych występują m.in. trzy izotopy polonu, których okresy półtrwania podano w nawiasach: Po-218 (T 1/2 = 3,1minuty), Po-214 (T 1/2 = 0,0016

Bardziej szczegółowo

Służą opisowi oraz przewidywaniu przyszłego kształtowania się zależności gospodarczych.

Służą opisowi oraz przewidywaniu przyszłego kształtowania się zależności gospodarczych. MODEL EOOMERYCZY MODEL EOOMERYCZY DEFIICJA Modl konomtrczn jst równanm matmatcznm (lub układm równao), któr przdstawa zasadncz powązana loścow pomędz rozpatrwanm zjawskam konomcznm., uwzględnającm tlko

Bardziej szczegółowo

Autorzy: Zbigniew Kąkol, Piotr Morawski

Autorzy: Zbigniew Kąkol, Piotr Morawski Rodzaje rozpadów jądrowych Autorzy: Zbigniew Kąkol, Piotr Morawski Rozpady jądrowe zachodzą zawsze (prędzej czy później) jeśli jądro o pewnej liczbie nukleonów znajdzie się w stanie energetycznym, nie

Bardziej szczegółowo

Entalpia swobodna (potencjał termodynamiczny)

Entalpia swobodna (potencjał termodynamiczny) Entalia swobodna otencjał termodynamiczny. Związek omiędzy zmianą entalii swobodnej a zmianami entroii Całkowita zmiana entroii wywołana jakimś rocesem jest równa sumie zmiany entroii układu i otoczenia:

Bardziej szczegółowo

Bada zaleŝno. nie zaleŝą. od ilości substancji. Funkcja stanu to taka wielkość. a mały y 10 cm, to: = F2 F 1 = 0,01 F 2.

Bada zaleŝno. nie zaleŝą. od ilości substancji. Funkcja stanu to taka wielkość. a mały y 10 cm, to: = F2 F 1 = 0,01 F 2. Zagadnena. Parametry stanu. Cśnene, słua ceczy (gazu) o wysokośc. Prawo rcmedesa.. emeratura. 4. Knetyczna teora w zastosowanu do gazu doskonałego.. Równane gazu doskonałego, zasady termodynamk (zerowa,

Bardziej szczegółowo