OBLICZANIE TERMINU REALIZACJI PRZEDSIĘWZIĘĆ BUDOWLANYCH METODĄ CCPM NA PODSTAWIE MULTIPLIKATYWNEGO MODELU CZASU TRWANIA CZYNNOŚCI

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "OBLICZANIE TERMINU REALIZACJI PRZEDSIĘWZIĘĆ BUDOWLANYCH METODĄ CCPM NA PODSTAWIE MULTIPLIKATYWNEGO MODELU CZASU TRWANIA CZYNNOŚCI"

Transkrypt

1 Dane bibliograficzne o arykule: hp://mieczyslaw_polonski.users.sggw.pl/mppublikacje Mieczysław POŁOŃSKI 1 OBLICZANIE TERMIN REALIZACJI PRZEDSIĘWZIĘĆ BDOWLANYCH METODĄ CCPM NA PODSTAWIE MLTIPLIKATYWNEGO MODEL CZAS TRWANIA CZYNNOŚCI 1. Wsęp Od kilku la meoda CCPM znajduje coraz szersze zasosowanie w planowaniu przedsięwzięć [,3,6]. Ze względu na specyfikę i złożoność harmonogramów sieciowych sosowanych w planowaniu obieków budowlanych możliwość prakycznego sosowania meody CCPM wymaga jednak rozwiązania szeregu problemów akich jak np. konieczność uwzględniania nieypowych relacji między zadaniami, uwzględniania w obliczeniach kilku czynności począkowych i/lub końcowych czy erminów dyrekywnych. Konieczność rozważenia ych elemenów przy opracowywaniu meodyki wykonywania obliczeń erminu i prawdopodobieńswa zakończenia przedsięwzięcia w meodzie CCPM wynika głównie z ich bezpośredniego wpływu na przebieg ścieżki kryycznej a ym samym lokalizację buforów czasu i ich wielkość. Problem sposobu wyznaczania wielkości buforów (niezależnie od ich rodzajów i lokalizacji) ma zasadnicze znaczenie dla osaecznych wyników obliczeń erminu zakończenia danego przedsięwzięcia i jego prawdopodobieńswa dorzymania. Twórca meody sosowania buforów w sieciach zależności E. Goldra nie sprecyzował dokładnie meodyki wyznaczania ich wielkości []. W lieraurze można spokać różne, mniej lub bardziej uzasadnione eoreycznie propozycje [4,7]. W niniejszym arykule wskazano na meodę obliczania wielkości buforów oparą na założeniu, że czas rwania czynności pojedynczego zadania podlega rozkładowi logarymiczno-normalnemu. Wyprowadzono wzory umożliwiające wykonanie akich obliczeń oraz zamieszczono przykład obliczeniowy wyznaczenia erminu realizacji robó konkrenego obieku budowlanego.. Podsawy eoreyczne Jednym z podsawowych paramerów wpływających na osaeczny wynik obliczeń jes yp rozkładu czasu wykonania pojedynczego zadania. Pomimo, że ma on ak zasadnicze znaczenie dla wyników dalszych obliczeń, jes on rudny do jednoznacznego określenia. W lieraurze i prakyce inżynierskiej zakłada się najczęściej rozkład: bea, bea-pert, normalny, rójkąny, rzadziej logarymiczno-normalny, równomierny czy wykładniczy. 1 Dr hab. inż., prof. nadzw. SGGW, Wydział Inżynierii i Kszałowania Środowiska,

2 Przyjmowane ypy rozkładów wynikają bądź z założeń szeroko znanej meody PERT (rozkłady bea, bea-pert), bądź próby wykonania obliczeń na prosych i dobrze znanych rozkładach (rozkład rójkąny czy normalny). Zdaniem auora, waro przy wykonywaniu ych obliczeń rozważyć rozkład logarymiczno-normalny (zwany eż lognormalnym). Genezą ego ypu rozkładu jes przyjęcie założenia, że kszał rozkładu i jego charakerysyczne paramery podlegają mechanizmowi muliplikaywnemu, a więc wynikają z iloczynu licznych czynników losowych wpływające na rozparywaną zmienną losową. W wyniku ego założenia uzyskuje się rozkład niesymeryczny, prawoskośny, w kórym zmienna losowa ma rozkład lognormalny, podczas gdy jej logarym podlega rozkładowi normalnemu. Podana charakerysyka rozkładu dobrze pasuje do rozkładu czasu pojedynczego zadania, na kórą wpływa liczna grupa czynników losowych a wspomniana prawoskośność rozkładu dobrze pasuje do przewidywanego rozkładu czasu rwania pojedynczej czynności, gdyż prakyka wskazuje, że znacznie częściej mamy do czynienia z jej opóźnieniem niż przyśpieszeniem. Wykonanie obliczeń wielkości buforów wymaga znajomości dwóch paramerów każdego zadania: warości średniej m oraz odchylenia sandardowego δ. Warość średnią czasu czynności w rozkładzie lognormalnym określa wzór [1] : ln m 0,5 exp (1) gdzie m warość średnia czasu zadania, 0,5 - kwanyl 0,5 czasu czynności, δ ln - kwadra odchylenia sandardowego logarymu czasu czynności. W celu wyznaczenia parameru δ ln zosanie zasosowany wzór na odchylenie sandardowe w rozkładzie normalnym δ obliczane na podsawie znajomości dwóch kwanyli. W ym wypadku założono, że drugim znanym kwanylem jes kwanyl, jednak podobny wzór można wyprowadzić dla dowolnego innego kwanyla. 0,5 () gdzie - kwanyl czasu czynności, 0,5 - kwanyl 0,5 czasu czynności, - warość dysrybuany sandardowego rozkładu normalnego N(0,1) dla prawdopodobieńswa. Na podsawie wzoru () i założeń rozkładu lognormalnego można zauważyć, że a poszukiwana warość średnia m ln ln( ) ln( 0,5) (3) ln m 0,5 exp (4) 0,5

3 gdzie m warość średnia czasu zadania o rozkładzie lognormalnym, a pozosałe użye symbole opisano we wzorach (1) i (). Wyznaczenie wielkości buforów czasu wymaga również znajomości odchylenia sandardowego zmiennej losowej podlegającej rozkładowi lognormalnemu. Można je wyznaczyć z nasępującego wzoru [1]: 0,5 exp ( ln) 0,5 exp( ln) (5) co po przekszałceniach prowadzi do wzoru 0,5 (exp( ln )) (exp( ln (6) gdzie δ - kwadra odchylenia sandardowego czasu rwania czynności o rozkładzie lognormalnym a pozosałe użye symbole opisano we wzorach (1) i (). Rozważając rozkład erminu zakończenia dowolnego ciągu czynności nasępujących kolejno po sobie (np. ścieżki kryycznej lub jej fragmenu) odwołujemy się do wierdzenia cenralnego (granicznego), na mocy kórego przyjmujemy, że rozkład sumy niezależnych zmiennych losowych (o dowolnym rozkładzie) zbliża się do rozkładu normalnego w miarę, jak liczba ych zmiennych losowych rośnie. Należy również podkreślić, że nawe gdy liczba rozparywanych zmiennych jes ylko umiarkowanie duża, o jeśli żadna ze zmiennych nie dominuje nad pozosałymi i o ile e zmienne nie są w wysokim sopniu zależne, rozkład ich sumy będzie bliski rozkładowi normalnemu [1]. Wiadomo również, że przy małej liczbie zmiennych rozkład sumy ych zmiennych bliższy będzie rozkładowi -Sudena niż rozkładowi normalnemu. Ponieważ przy wyznaczaniu warości buforów częso mamy do czynienia z syuacja, gdy ciąg czynności, na podsawie kórego wyznaczamy warość bufora nie jes zby liczny, waro zbadać jaki wpływ na końcowy wynik obliczeń ma przyjęcie jednego z ych dwóch ypów rozkładów. Wiedząc, że ermin zakończenia ciągu czynności podlega rozkładowi normalnemu N (m T, δ T ) o paramerach ) 1) k m T mi, i 1 T i k 1 i (7) gdzie k - liczba czynności w rozparywanym ciągu. można wyznaczyć ermin zakończenia ego ciągu na określonym poziomie prawdopodobieńswa. I ak np. zakładając poziom prawdopodobieńswa równy ermin zakończenia ciągu czynności z ym prawdopodobieńswem wynosi: k i 1 i 1 k i T0,9 mi (8)

4 gdzie T - ermin zakończenia ciągu k czynności z prawdopodobieńswem 0.9, mi - średni czasy rwania i-ej czynności, δ i - kwadra odchylenia sandardowego czasu i-ej czynności, - warość dysrybuany sandardowego rozkładu normalnego N(0,1) dla prawdopodobieńswa, k - liczba rozparywanych czynności w ciągu. Przy małej liczbie czynności w ciągu (k) warość zmiennej sandaryzowanej powinna raczej być odczyana z rozkładu -Sudena (dla k-1 liczby sopni swobody), gdyż rozkład en lepiej opisuje rozkład badanego parameru, w ym wypadku łącznego czasu rwania ciągu rozparywanych czynności. Meoda CCPM zakłada skracanie czynności. Chcąc obliczyć czasy rwania poszczególnych zadań z określonym prawdopodobieńswem wysąpienia (określone kwanyle) należy wyprowadzić właściwy wzór. W przypadku rozkładu normalnego kwanyl czasu czynności o prawdopodobieńswie p można obliczyć ze wzoru p 5 (9) 0, p gdzie p kwanyl p czasu rwania zadania, δ - odchylenie sandardowe czasu rwania czynności, p - warość dysrybuany sandardowego rozkładu normalnego N(0,1) dla prawdopodobieńswa p. Pamięając, że w rozkładzie lognormalnym rozkładowi normalnemu podlegają logarymy zmiennej losowej, zakładając, że do obliczenia odchylenia sandardowego δ zasosowano kwanyle czasu czynności 0,5 i, wykorzysując wzór (), oraz korzysając z definicji logarymu można obliczyć: exp( 5 ) 1 p p 0, = exp p ln ln( 0, 5) (10) 0,5 Zakładając A p oraz przekszałcając powyższy wzór orzymujemy p (11) exp ( A ln( ) ln( 0,5) ln( 0, 5)) gdzie p kwanyl p czasu rwania zadania o rozkładzie lognormalnym, p - warość dysrybuany sandardowego rozkładu normalnego N(0,1) dla prawdopodobieńswa p. 3. Przykład obliczeniowy Poniżej zamieszczone zosały wyniki obliczeń wykonane na podsawie przykładowego harmonogramu sieciowego obieku budowlanego. Inwesycją dla jakiej zosał sporządzony harmonogram w prezenowanym przykładzie jes rozbudowa i modernizacja gminnej oczyszczalnia ścieków w Baranowie [8]. Harmonogram pierwony liczył 66 zadań. Z uwagi jednak na możliwość prezenacji danych objęych obliczeniami dokonano jego agregacji i skrócenia ylko do pewnego fragmenu sieci, kóry jednak zosał ak dobrany, by reprezenował najbardziej złożony echnologicznie i organizacyjnie fragmen robó.

5 Ograniczono się w en sposób do 41 czynności i rzech punków konrolnych (bez buforów) (rys. 1). W srukurze sieci wsawiono 5 buforów: 3 bufory zasilające (BZ1, BZ, BZ3), jeden bufor wspomagający na ścieżce kryycznej (BWP1) oraz bufor projeku (BP) na końcu ścieżki kryycznej [5]. Liczba i rodzaje buforów zosały dobrane na podsawie srukury analizowanej sieci zależności. Na rysunku grubymi ramkami zosały zaznaczone zadania leżące na ścieżce kryycznej. Sieć zależności zosała opracowana w programie MS Projec. W abeli (1) zamieszczono zesawienie zadań z powyższej sieci wraz z podsawowymi danymi porzebnymi do dalszej analizy. Termin zakończenia całego przedsięwzięcia przy czasach wyniósł 9 dni a 0,5 136 dni. Rys. 1. Wybrany fragmen sieci z zaznaczoną ścieżką kryyczną i lokalizacją buforów Założono, że przyjęe wsępnie czasy rwania czynności ( ) zosały określone przez wykonawcę z prawdopodobieńswem i podlegają rozkładowi lognormalnemu. Nasępnie oszacowano czasy rwania zadań 0,5, kórych prawdopodobieńswo określono na 0,5 (ab. 1). Dysponując dwoma kwanylami czasu rwania każdej czynności na podsawie wzoru (4) obliczono warości średnie czasu wszyskich zadań a na podsawie wzoru (6) wyznaczono kwadray odchylenia sandardowego ego czasu. Z kolei znając kwanyle 0,5 i czasu czynności na podsawie wzoru (11) policzono dowolne inne kwanyle. W dalszych rozważaniach brano pod uwagę kwanyle o prawdopodobieńswie: 0,55; 0,60; 0,65; 0,70 i 0,80. Kolejnym eapem obliczeń było wyznaczenie erminów ukończenia całego przedsięwzięcia oraz wyznaczonych ciągów chronionych poszczególnymi buforami z założonym prawdopodobieńswem. W przykładzie przyjęo prawdopodobieńswo dorzymania wyznaczonych erminów na poziomie. Za rozkład końcowy ciągu czynności przyjmowano rozkład normalny N (m T, δ T ) o paramerach wyznaczonych na podsawie wzoru (7) lub -Sudena o liczbie sopni swobody k-1, gdzie k jes liczbą czynności o czasie rwania większym od zera w analizowanym ciągu. W abeli zesawiono ciągi czynności chronione poszczególnymi buforami, a w abeli 3 przykładowe wyniki obliczeń dla bufora BZ1. Wszyskie obliczenia wykonano w arkuszu kalkulacyjnym Excel. Zbudowano szablon, w kórym wysarczyło wsawić czasy 0,5 i czynności na podsawie kórych, liczono wielkość danego bufora a wszyskie poszukiwane warości obliczane były auomaycznie. Czas bufora obliczono jako różnicę między erminem zakończenia całego ciągu z prawdopodobieńswem, a sumą czasów czynności przyjęych dla danego kwanyla.

6 Tabela 1. Zesawienie czynności wybranego fragmenu sieci zależności ID 0,5 Poprzedniki ID 0,5 Poprzedniki ID 0,5 Poprzedniki Całość ;37;33; ; ; ; ; Tabela. Zesawienie buforów i ciągów czynności chronionych ymi buforami Lp Bufor Chroniony ciąg czynności ID Liczba czynności ciągu Liczba czyn. ciągu > 0 1 BZ1 9;10;11;1;13;14; BZ 18;19;0;1;; BZ3 34;35;38;39;40;41; BWP1 ;3;5;6;7;8;5;6;7;8;9;30;31; BP 17;45;47; Tabela 3. Przykład obliczeń wielkości bufora BZ1 dla rozkładu czasu chronionego ciągu normalnego i -Sudena oraz różnych kwanyli czasu czynności ego ciągu ID czyn. 0,5 m δ 0,55 0,60 0,65 0,70 0, ,48 1,817 3, 3,3 3,5 3,7 4, , ,93 5,5 7, 9,0 31,0 36, ,496 7,67 6,3 6,6 7,0 7,4 8, ,496 7,67 6,3 6,6 7,0 7,4 8, ,158 0,455 1,1 1,1 1, 1,3 1, ,000 0,000 1,0 1,0 1,0 1,0 1, ,496 7,67 6,3 6,6 7,0 7,4 8,4 Suma ,96 3,365 49,7 5,6 55,7 59, 68, Czas bufora przy czasach czyn. 0,50 m 0,55 0,60 0,65 0,70 0,80 Typ rozkładu: normalny 4,1 19, 1,4 18,6 15,4 11,9,9 Typ rozkładu: -Sudena 34,0 9,0 31,3 8,4 5,3 1,8 1,8 Termin zakończenia ciągu z prawdopodobieńswem dla roz. Normalnego 71,1 Termin zakończenia ciągu z prawdopodobieńswem dla roz. -Sudena 81,0 Po przeprowadzeniu podobnych obliczeń dla wszyskich buforów wykonano obliczenia sieci zależności w programie MS Projec. W każdym analizowanym wariancie wsawiano po zaokrągleniu do całych dni czasy wszyskich czynności dla badanego kwanyla oraz czasy buforów odpowiadające danemu kwanylowi i założonemu ypowi rozkładu końcowego czasu: normalnemu lub -Sudena. Osaeczne wyniki obliczeń zesawiono w abeli 4.

7 Tabela 4. Terminy zakończenia całego przedsięwzięcia, prawdopodobieńswa ich dorzymania oraz procenowe skrócenie dla różnych czasów czynności i dwóch ypów rozkładu czasu rwania badanego ciągu: normalnego i -Sudena Lp Kwanyl czasu czynnosci Czasy buforów BZ1 BZ BWP1 BZ3 BP Rozkład erminu końcowe. ciągu Ter. zak całego przed. % skrócenie całego przeds. Prawdop. erminu końcowego wg rozkładu norm. 1 m ,416 0,000 m Norm ,803 3 m T-S , ,37 0, , Norm , , T-S , ,358 0, , Norm , , T-S , ,475 0, , Norm , , T-S , ,671 0, , Norm , , T-S , ,787 0, , Norm , , T-S Podsumowanie i wnioski Łącznie wykonano 18 warianów obliczeń analizowanej sieci zależności. We wszyskich badanych warianach ścieżka kryyczna nie zmieniła swego położenia. Kolejne wariany obliczono dla m i kwanyli czasu zadań: 0,50; 0,55,0,60, 065 i 070 w ym samym schemacie: z buforami równymi 0 (dla porównania), oraz buforami wyznaczonymi dla rozkładu końcowego normalnego i -Sudena. Analizując wyniki podane w abeli (4) należy zauważyć, że czasy rwania zadań i buforów były zaokrąglane do całych dni, co w niewielkim sopniu wpłynęło na uzyskane dane. Przeprowadzone obliczenia pozwalają na wyciągnięcie nasępujących wniosków: do wyznaczenia paramerów opisujących przebieg rozkładu lognormalnego czasu rwania zadania wysarczy znajomość dwóch kawanyli ego czasu, isony wpływ na końcowy ermin zakończenia ciągu (szczególnie przy małej liczbie czynności ciągu) ma zakładany yp rozkładu czasu całego ciągu (normalny lub - Sudena), erminy zakończenia przedsięwzięcia wyznaczone dla ego samego poziomu prawdopodobieńswa na podsawie rozkładu -Sudena są w każdym przypadku dłuższe niż dla rozkładu normalnego, zasosowanie proponowanego modelu wyznaczania czasów zadań i buforów pozwala na skrócenie czasu całego analizowanego przedsięwzięcia dla rozkładu normalnego o około 5%, a dla rozkładu -Sudena o około 17%, przyjęy sposób wyznaczania wielkości buforów w zależności od założonego kwanyla czasu rwania czynności pozwala przyjąć mniej lub bardziej agresywny warian -S.

8 harmonogramu przez rozłożenie proporcji pomiędzy sumą czasów czynności a wielkością buforów, muliplikaywny charaker rozkładu lognormalnego i jego prawoskośna charakerysyka dobrze odwzorowuje rozkład czasu rwania pojedynczego zadania. Lieraura [1] Benjamin J. R., Cornell C. A., Rachunek prawdopodobieńswa, saysyka maemayczna i eoria decyzji dla inżynierów, WNT, Warszawa, [] Goldra E., Łańcuch kryyczny, Wyd. WERBEL, Warszawa, 000. [3] Hajducki Z., Rogalska., Shorening he realisaion ime of building projecs wih applicaion of heory of consrains and criical chain scheduling, Journal of Civil Engineering and Managemen, 004, Vol. X, Suppl., s [4] Milian Z., Meoda określania rozkładu czasu realizacji przedsięwzięć budowlanych w acyklicznych sieciach sochasycznych, Poliechnika Krakowska, 006. [5] Połoński M., Pruszyński K., Lokalizacja buforów czasu w meodzie łańcucha kryycznego w harmonogramach robó budowlanych (cz. I) - podsawy eoreyczne. Przegląd budowlany, 008, No., s [6] Raz T., Barnes R., Dvir D., A criical look a Criical Chain Projec Managemen, Projec Managemen Journal, 003, Vol. 34, No. 4, s [7] Sępień P., Ścieżka projeku - suma zadań, [8] Szulc M., Harmonogram sieciowy rozbudowy i modernizacji oczyszczalni ścieków w Baranowie, maszynopis, SGGW, 008. ESTIMETING COMPLETION DATE OF BILDING PROJECTS SCHEDLES BASED ON CCPM METHOD AND MLTIPLICATIVE FNCTION OF TIME DRATION OF TASK This paper is devoed o buffer esimaing in Criical Chain Projec Managemen (CCPM) of building projec. A grea deal of aenion was focused on he probabiliy disribuion of he ask duraion. I is assumed ha probabiliy densiy funcion of random variables which represen duraions of he ask is lognormal. In he paper are proposed formulas and fundamenals elemens o analysis ime duraions of asks which are conneced wih various ypes of buffers. In he second par of he aricle heoreical divagaions were suppored by calculaed example based on a real building schedule.

WYZNACZANIE WIELKOŚCI BUFORÓW CZASU I TERMINU ZAKOŃCZENIA PRZEDSIĘWZIĘCIA W HARMONOGRAMACH BUDOWLANYCH

WYZNACZANIE WIELKOŚCI BUFORÓW CZASU I TERMINU ZAKOŃCZENIA PRZEDSIĘWZIĘCIA W HARMONOGRAMACH BUDOWLANYCH Dane bibliograficzne o artykule: http://mieczyslaw_polonski.users.sggw.pl/mppublikacje Mieczysław POŁOŃSKI* Kamil PRUSZYŃSKI * harmonogramy budowlane, metoda łańcucha krytycznego, metoda CCPM, bufor czasu

Bardziej szczegółowo

Analiza rynku projekt

Analiza rynku projekt Analiza rynku projek A. Układ projeku 1. Srona yułowa Tema Auor 2. Spis reści 3. Treść projeku 1 B. Treść projeku 1. Wsęp Po co? Na co? Dlaczego? Dlaczego robię badania? Jakimi meodami? Dla Kogo o jes

Bardziej szczegółowo

Pobieranie próby. Rozkład χ 2

Pobieranie próby. Rozkład χ 2 Graficzne przedsawianie próby Hisogram Esymaory przykład Próby z rozkładów cząskowych Próby ze skończonej populacji Próby z rozkładu normalnego Rozkład χ Pobieranie próby. Rozkład χ Posać i własności Znaczenie

Bardziej szczegółowo

PROGNOZOWANIE I SYMULACJE. mgr Żaneta Pruska. Ćwiczenia 2 Zadanie 1

PROGNOZOWANIE I SYMULACJE. mgr Żaneta Pruska. Ćwiczenia 2 Zadanie 1 PROGNOZOWANIE I SYMULACJE mgr Żanea Pruska Ćwiczenia 2 Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X, wyrażona w ysiącach wyprodukowanych i dosarczonych szuk firmie Bea,

Bardziej szczegółowo

E k o n o m e t r i a S t r o n a 1. Nieliniowy model ekonometryczny

E k o n o m e t r i a S t r o n a 1. Nieliniowy model ekonometryczny E k o n o m e r i a S r o n a Nieliniowy model ekonomeryczny Jednorównaniowy model ekonomeryczny ma posać = f( X, X,, X k, ε ) gdzie: zmienna objaśniana, X, X,, X k zmienne objaśniające, ε - składnik losowy,

Bardziej szczegółowo

Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach ISSN 2083-8611 Nr 219 2015

Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach ISSN 2083-8611 Nr 219 2015 Sudia Ekonomiczne. Zeszyy Naukowe Uniwersyeu Ekonomicznego w Kaowicach ISSN 2083-86 Nr 29 205 Alicja Ganczarek-Gamro Uniwersye Ekonomiczny w Kaowicach Wydział Informayki i Komunikacji Kaedra Demografii

Bardziej szczegółowo

Politechnika Częstochowska Wydział Inżynierii Mechanicznej i Informatyki. Sprawozdanie #2 z przedmiotu: Prognozowanie w systemach multimedialnych

Politechnika Częstochowska Wydział Inżynierii Mechanicznej i Informatyki. Sprawozdanie #2 z przedmiotu: Prognozowanie w systemach multimedialnych Poliechnika Częsochowska Wydział Inżynierii Mechanicznej i Informayki Sprawozdanie #2 z przedmiou: Prognozowanie w sysemach mulimedialnych Andrzej Siwczyński Andrzej Rezler Informayka Rok V, Grupa IO II

Bardziej szczegółowo

ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1

ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1 ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1 mgr inż. Żanea Pruska Maeriał opracowany na podsawie lieraury przedmiou. Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X,

Bardziej szczegółowo

WNIOSKOWANIE STATYSTYCZNE

WNIOSKOWANIE STATYSTYCZNE Wnioskowanie saysyczne w ekonomerycznej analizie procesu produkcyjnego / WNIOSKOWANIE STATYSTYCZNE W EKONOMETRYCZNEJ ANAIZIE PROCESU PRODUKCYJNEGO Maeriał pomocniczy: proszę przejrzeć srony www.cyf-kr.edu.pl/~eomazur/zadl4.hml

Bardziej szczegółowo

Lokalizacja buforów czasu w metodzie łańcucha krytycznego w harmonogramach robót budowlanych (cz. II) praktyczne zastosowanie

Lokalizacja buforów czasu w metodzie łańcucha krytycznego w harmonogramach robót budowlanych (cz. II) praktyczne zastosowanie Lokalizacja buforów czasu w metodzie łańcucha krytycznego w harmonogramach robót budowlanych (cz. II) praktyczne zastosowanie Dr hab. inż. Mieczysław Połoński, mgr inż. Kamil Pruszyński, Szkoła Główna

Bardziej szczegółowo

Dane bibliograficzne o artykule:

Dane bibliograficzne o artykule: Dane bibliograficzne o artykule: http://mieczyslaw_polonski.users.sggw.pl/mppublikacje Mieczysław POŁOŃSKI Aneta ZIÓŁKOWSKA Katedra Geoinżynierii SGGW w Warszawie Department of Geotechnical Engineering

Bardziej szczegółowo

PROBLEM Z IDENTYFIKACJĄ ŁAŃCUCHA KRYTYCZNEGO I LOKALIZACJĄ BUFORÓW ZASILAJĄCYCH W HARMONOGRAMIE SIECIOWYM Z OGRANICZONĄ DOSTĘPNOŚCIĄ ZASOBU

PROBLEM Z IDENTYFIKACJĄ ŁAŃCUCHA KRYTYCZNEGO I LOKALIZACJĄ BUFORÓW ZASILAJĄCYCH W HARMONOGRAMIE SIECIOWYM Z OGRANICZONĄ DOSTĘPNOŚCIĄ ZASOBU Dane bibliograficzne o artykule: http://mieczyslaw_polonski.users.sggw.pl/mppublikacje Mieczysław POŁOŃSKI 1 PROBLEM Z IDENTYFIKACJĄ ŁAŃCUCHA KRYTYCZNEGO I LOKALIZACJĄ BUFORÓW ZASILAJĄCYCH W HARMONOGRAMIE

Bardziej szczegółowo

Dobór przekroju żyły powrotnej w kablach elektroenergetycznych

Dobór przekroju żyły powrotnej w kablach elektroenergetycznych Dobór przekroju żyły powronej w kablach elekroenergeycznych Franciszek pyra, ZPBE Energopomiar Elekryka, Gliwice Marian Urbańczyk, Insyu Fizyki Poliechnika Śląska, Gliwice. Wsęp Zagadnienie poprawnego

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki Poliechnika Gdańska Wydział Elekroechniki i Auomayki Kaedra Inżynierii Sysemów Serowania Podsawy Auomayki Repeyorium z Podsaw auomayki Zadania do ćwiczeń ermin T15 Opracowanie: Kazimierz Duzinkiewicz,

Bardziej szczegółowo

EKONOMETRIA wykład 2. Prof. dr hab. Eugeniusz Gatnar.

EKONOMETRIA wykład 2. Prof. dr hab. Eugeniusz Gatnar. EKONOMERIA wykład Prof. dr hab. Eugeniusz Ganar eganar@mail.wz.uw.edu.pl Przedziały ufności Dla paramerów srukuralnych modelu: P bˆ j S( bˆ z prawdopodobieńswem parameru b bˆ S( bˆ, ( m j j j, ( m j b

Bardziej szczegółowo

ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI

ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XIII/3, 202, sr. 253 26 ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI Adam Waszkowski Kaedra Ekonomiki Rolnicwa i Międzynarodowych Sosunków

Bardziej szczegółowo

WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH

WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH SaSof Polska, el. 12 428 43 00, 601 41 41 51, info@sasof.pl, www.sasof.pl WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH Joanna Maych, Krajowy Depozy Papierów

Bardziej szczegółowo

licencjat Pytania teoretyczne:

licencjat Pytania teoretyczne: Plan wykładu: 1. Wiadomości ogólne. 2. Model ekonomeryczny i jego elemeny 3. Meody doboru zmiennych do modelu ekonomerycznego. 4. Szacownie paramerów srukuralnych MNK. Weryfikacja modelu KMNK 6. Prognozowanie

Bardziej szczegółowo

PROGRAMOWY GENERATOR PROCESÓW STOCHASTYCZNYCH LEVY EGO

PROGRAMOWY GENERATOR PROCESÓW STOCHASTYCZNYCH LEVY EGO POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 69 Elecrical Engineering 0 Janusz WALCZAK* Seweryn MAZURKIEWICZ* PROGRAMOWY GENERATOR PROCESÓW STOCHASTYCZNYCH LEVY EGO W arykule opisano meodę generacji

Bardziej szczegółowo

Rys Wykres kosztów skrócenia pojedynczej czynności. k 2. Δk 2. k 1 pp. Δk 1 T M T B T A

Rys Wykres kosztów skrócenia pojedynczej czynności. k 2. Δk 2. k 1 pp. Δk 1 T M T B T A Ostatnim elementem przykładu jest określenie związku pomiędzy czasem trwania robót na planowanym obiekcie a kosztem jego wykonania. Związek ten określa wzrost kosztów wykonania realizacji całego przedsięwzięcia

Bardziej szczegółowo

PROGNOZOWANIE I SYMULACJE EXCEL 2 PROGNOZOWANIE I SYMULACJE EXCEL AUTOR: ŻANETA PRUSKA

PROGNOZOWANIE I SYMULACJE EXCEL 2 PROGNOZOWANIE I SYMULACJE EXCEL AUTOR: ŻANETA PRUSKA 1 PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: mgr inż. ŻANETA PRUSKA DODATEK SOLVER 2 Sprawdzić czy w zakładce Dane znajduję się Solver 1. Kliknij przycisk Microsof Office, a nasępnie kliknij przycisk Opcje

Bardziej szczegółowo

DOBÓR PRZEKROJU ŻYŁY POWROTNEJ W KABLACH ELEKTROENERGETYCZNYCH

DOBÓR PRZEKROJU ŻYŁY POWROTNEJ W KABLACH ELEKTROENERGETYCZNYCH Franciszek SPYRA ZPBE Energopomiar Elekryka, Gliwice Marian URBAŃCZYK Insyu Fizyki Poliechnika Śląska, Gliwice DOBÓR PRZEKROJU ŻYŁY POWROTNEJ W KABLACH ELEKTROENERGETYCZNYCH. Wsęp Zagadnienie poprawnego

Bardziej szczegółowo

Katedra Geoinżynierii SGGW w Warszawie Department of Geotechnical Engineering WULS SGGW

Katedra Geoinżynierii SGGW w Warszawie Department of Geotechnical Engineering WULS SGGW Mieczysław POŁOŃSKI, Aneta ZIÓŁKOWSKA Katedra Geoinżynierii SGGW w Warszawie Department of Geotechnical Engineering WULS SGGW Wyznaczenie buforów czasu i terminu zakończenia przedsięwzięcia dla obiektu

Bardziej szczegółowo

Management Systems in Production Engineering No 4(20), 2015

Management Systems in Production Engineering No 4(20), 2015 EKONOMICZNE ASPEKTY PRZYGOTOWANIA PRODUKCJI NOWEGO WYROBU Janusz WÓJCIK Fabryka Druu Gliwice Sp. z o.o. Jolana BIJAŃSKA, Krzyszof WODARSKI Poliechnika Śląska Sreszczenie: Realizacja prac z zakresu przygoowania

Bardziej szczegółowo

Alicja Ganczarek Akademia Ekonomiczna w Katowicach. Analiza niezależności przekroczeń VaR na wybranym segmencie rynku energii

Alicja Ganczarek Akademia Ekonomiczna w Katowicach. Analiza niezależności przekroczeń VaR na wybranym segmencie rynku energii DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Akademia Ekonomiczna w Kaowicach Analiza

Bardziej szczegółowo

DYNAMIKA KONSTRUKCJI

DYNAMIKA KONSTRUKCJI 10. DYNAMIKA KONSTRUKCJI 1 10. 10. DYNAMIKA KONSTRUKCJI 10.1. Wprowadzenie Ogólne równanie dynamiki zapisujemy w posaci: M d C d Kd =P (10.1) Zapis powyższy oznacza, że równanie musi być spełnione w każdej

Bardziej szczegółowo

PROPOZYCJA NOWEJ METODY OKREŚLANIA ZUŻYCIA TECHNICZNEGO BUDYNKÓW

PROPOZYCJA NOWEJ METODY OKREŚLANIA ZUŻYCIA TECHNICZNEGO BUDYNKÓW Udosępnione na prawach rękopisu, 8.04.014r. Publikacja: Knyziak P., "Propozycja nowej meody określania zuzycia echnicznego budynków" (Proposal Of New Mehod For Calculaing he echnical Deerioraion Of Buildings),

Bardziej szczegółowo

O PEWNYCH KRYTERIACH INWESTOWANIA W OPCJE NA AKCJE

O PEWNYCH KRYTERIACH INWESTOWANIA W OPCJE NA AKCJE MEODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH om XIII/3, 01, sr 43 5 O EWNYCH KRYERIACH INWESOWANIA W OCJE NA AKCJE omasz Warowny Kaedra Meod Ilościowych w Zarządzaniu oliechnika Lubelska e-mail: warowny@pollubpl

Bardziej szczegółowo

LABORATORIUM PODSTAWY ELEKTRONIKI Badanie Bramki X-OR

LABORATORIUM PODSTAWY ELEKTRONIKI Badanie Bramki X-OR LORTORIUM PODSTWY ELEKTRONIKI adanie ramki X-OR 1.1 Wsęp eoreyczny. ramka XOR ramka a realizuje funkcję logiczną zwaną po angielsku EXLUSIVE-OR (WYŁĄZNIE LU). Polska nazwa brzmi LO. Funkcję EX-OR zapisuje

Bardziej szczegółowo

PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK

PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK 1 PROGNOZOWANIE I SYMULACJE 2 hp://www.oucome-seo.pl/excel2.xls DODATEK SOLVER WERSJE EXCELA 5.0, 95, 97, 2000, 2002/XP i 2003. 3 Dodaek Solver jes dosępny w menu Narzędzia. Jeżeli Solver nie jes dosępny

Bardziej szczegółowo

POMIAR PARAMETRÓW SYGNAŁOW NAPIĘCIOWYCH METODĄ PRÓKOWANIA I CYFROWEGO PRZETWARZANIA SYGNAŁU

POMIAR PARAMETRÓW SYGNAŁOW NAPIĘCIOWYCH METODĄ PRÓKOWANIA I CYFROWEGO PRZETWARZANIA SYGNAŁU Pomiar paramerów sygnałów napięciowych. POMIAR PARAMERÓW SYGNAŁOW NAPIĘCIOWYCH MEODĄ PRÓKOWANIA I CYFROWEGO PRZEWARZANIA SYGNAŁU Cel ćwiczenia Poznanie warunków prawidłowego wyznaczania elemenarnych paramerów

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6 8 września 005 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Pior Fiszeder Uniwersye Mikołaja Kopernika

Bardziej szczegółowo

PROGNOZOWANIE ZUŻYCIA CIEPŁEJ I ZIMNEJ WODY W SPÓŁDZIELCZYCH ZASOBACH MIESZKANIOWYCH

PROGNOZOWANIE ZUŻYCIA CIEPŁEJ I ZIMNEJ WODY W SPÓŁDZIELCZYCH ZASOBACH MIESZKANIOWYCH STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 15 Barbara Baóg Iwona Foryś PROGNOZOWANIE ZUŻYCIA CIEPŁEJ I ZIMNEJ WODY W SPÓŁDZIELCZYCH ZASOBACH MIESZKANIOWYCH Wsęp Koszy dosarczenia wody

Bardziej szczegółowo

E5. KONDENSATOR W OBWODZIE PRĄDU STAŁEGO

E5. KONDENSATOR W OBWODZIE PRĄDU STAŁEGO E5. KONDENSATOR W OBWODZIE PRĄDU STAŁEGO Marek Pękała i Jadwiga Szydłowska Procesy rozładowania kondensaora i drgania relaksacyjne w obwodach RC należą do szerokiej klasy procesów relaksacyjnych. Procesy

Bardziej szczegółowo

A C T A U N I V E R S I T A T I S N I C O L A I C O P E R N I C I EKONOMIA XLIII nr 2 (2012)

A C T A U N I V E R S I T A T I S N I C O L A I C O P E R N I C I EKONOMIA XLIII nr 2 (2012) A C T A U N I V E R S I T A T I S N I C O L A I C O P E R N I C I EKONOMIA XLIII nr 2 (2012) 211 220 Pierwsza wersja złożona 25 października 2011 ISSN Końcowa wersja zaakcepowana 3 grudnia 2012 2080-0339

Bardziej szczegółowo

ĆWICZENIE 4 Badanie stanów nieustalonych w obwodach RL, RC i RLC przy wymuszeniu stałym

ĆWICZENIE 4 Badanie stanów nieustalonych w obwodach RL, RC i RLC przy wymuszeniu stałym ĆWIZENIE 4 Badanie sanów nieusalonych w obwodach, i przy wymuszeniu sałym. el ćwiczenia Zapoznanie się z rozpływem prądów, rozkładem w sanach nieusalonych w obwodach szeregowych, i Zapoznanie się ze sposobami

Bardziej szczegółowo

Ocena płynności wybranymi metodami szacowania osadu 1

Ocena płynności wybranymi metodami szacowania osadu 1 Bogdan Ludwiczak Wprowadzenie Ocena płynności wybranymi meodami szacowania osadu W ubiegłym roku zaszły znaczące zmiany doyczące pomiaru i zarządzania ryzykiem bankowym. Są one konsekwencją nowowprowadzonych

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap szkolny 5 listopada 2013 Czas 90 minut

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap szkolny 5 listopada 2013 Czas 90 minut Wojewódzki Konkurs Maemayczny dla uczniów gimnazjów. Eap szkolny 5 lisopada 2013 Czas 90 minu ZADANIA ZAMKNIĘTE Zadanie 1. (1 punk) Liczby A = 0, 99, B = 0, 99 2, C = 0, 99 3, D = 0, 99, E=0, 99 1 usawiono

Bardziej szczegółowo

Parytet stóp procentowych a premia za ryzyko na przykładzie kursu EURUSD

Parytet stóp procentowych a premia za ryzyko na przykładzie kursu EURUSD Parye sóp procenowych a premia za ryzyko na przykładzie kursu EURUD Marcin Gajewski Uniwersye Łódzki 4.12.2008 Parye sóp procenowych a premia za ryzyko na przykładzie kursu EURUD Niezabazpieczony UIP)

Bardziej szczegółowo

Podstawowe charakterystyki niezawodności. sem. 8. Niezawodność elementów i systemów, Komputerowe systemy pomiarowe 1

Podstawowe charakterystyki niezawodności. sem. 8. Niezawodność elementów i systemów, Komputerowe systemy pomiarowe 1 Podsawowe charakerysyki niezawodności sem. 8. Niezawodność elemenów i sysemów, Kompuerowe sysemy pomiarowe 1 Wsęp Niezawodność o prawdopodobieńswo pewnych zdarzeń Inensywność uszkodzeń λ wyraŝa prawdopodobieńswo

Bardziej szczegółowo

Wykład 6. Badanie dynamiki zjawisk

Wykład 6. Badanie dynamiki zjawisk Wykład 6 Badanie dynamiki zjawisk Krzywa wieża w Pizie 1 2 3 4 5 6 7 8 9 10 11 12 13 y 4,9642 4,9644 4,9656 4,9667 4,9673 4,9688 4,9696 4,9698 4,9713 4,9717 4,9725 4,9742 4,9757 Szeregiem czasowym nazywamy

Bardziej szczegółowo

ZASTOSOWANIE METODY OBLICZEŃ UPROSZCZONYCH DO WYZNACZANIA CZASU JAZDY POCIĄGU NA SZLAKU

ZASTOSOWANIE METODY OBLICZEŃ UPROSZCZONYCH DO WYZNACZANIA CZASU JAZDY POCIĄGU NA SZLAKU PRACE NAUKOWE POLITECHNIKI WARSZAWSKIEJ z. 87 Transpor 01 Jarosław Poznański Danua Żebrak Poliechnika Warszawska, Wydział Transporu ZASTOSOWANIE METODY OBLICZEŃ UPROSZCZONYCH DO WYZNACZANIA CZASU JAZDY

Bardziej szczegółowo

Metody prognozowania: Szeregi czasowe. Dr inż. Sebastian Skoczypiec. ver Co to jest szereg czasowy?

Metody prognozowania: Szeregi czasowe. Dr inż. Sebastian Skoczypiec. ver Co to jest szereg czasowy? Meody prognozowania: Szeregi czasowe Dr inż. Sebasian Skoczypiec ver. 11.20.2009 Co o jes szereg czasowy? Szereg czasowy: uporządkowany zbiór warości badanej cechy lub warości określonego zjawiska, zaobserwowanych

Bardziej szczegółowo

Harmonogramowanie robót budowlanych z wykorzystaniem metody CCPM Construction schedule using CCPM method

Harmonogramowanie robót budowlanych z wykorzystaniem metody CCPM Construction schedule using CCPM method Kamil PRUSZYŃSKI Katedra Geoinżynierii SGGW w Warszawie Department of Geotechnical Engineering WULS SGGW Harmonogramowanie robót budowlanych z wykorzystaniem metody CCPM Construction schedule using CCPM

Bardziej szczegółowo

Pomiar ryzyka odchylenia od benchmarku w warunkach zmiennej w czasie strategii inwestycyjnej OFE - kotynuacja. Wojciech Otto Uniwersytet Warszawski

Pomiar ryzyka odchylenia od benchmarku w warunkach zmiennej w czasie strategii inwestycyjnej OFE - kotynuacja. Wojciech Otto Uniwersytet Warszawski Pomiar ryzyka odchylenia od benchmarku w warunkach zmiennej w czasie sraegii inwesycyjnej OFE - koynuacja Wojciech Oo Uniwersye Warszawski Refera przygoowany na Ogólnopolską Konferencję Naukową Zagadnienia

Bardziej szczegółowo

Dendrochronologia Tworzenie chronologii

Dendrochronologia Tworzenie chronologii Dendrochronologia Dendrochronologia jes nauką wykorzysującą słoje przyrosu rocznego drzew do określania wieku (daowania) obieków drewnianych (budynki, przedmioy). Analizy różnych paramerów słojów przyrosu

Bardziej szczegółowo

SZACOWANIE MODELU RYNKOWEGO CYKLU ŻYCIA PRODUKTU

SZACOWANIE MODELU RYNKOWEGO CYKLU ŻYCIA PRODUKTU B A D A N I A O P E R A C J N E I D E C Z J E Nr 2 2006 Bogusław GUZIK* SZACOWANIE MODELU RNKOWEGO CKLU ŻCIA PRODUKTU Przedsawiono zasadnicze podejścia do saysycznego szacowania modelu rynkowego cyklu

Bardziej szczegółowo

Kombinowanie prognoz. - dlaczego należy kombinować prognozy? - obejmowanie prognoz. - podstawowe metody kombinowania prognoz

Kombinowanie prognoz. - dlaczego należy kombinować prognozy? - obejmowanie prognoz. - podstawowe metody kombinowania prognoz Noaki do wykładu 005 Kombinowanie prognoz - dlaczego należy kombinować prognozy? - obejmowanie prognoz - podsawowe meody kombinowania prognoz - przykłady kombinowania prognoz gospodarki polskiej - zalecenia

Bardziej szczegółowo

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 690 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 51 2012

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 690 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 51 2012 ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 690 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 51 2012 MAŁGORZATA WASILEWSKA PORÓWNANIE METODY NPV, DRZEW DECYZYJNYCH I METODY OPCJI REALNYCH W WYCENIE PROJEKTÓW

Bardziej szczegółowo

EFEKT DŹWIGNI NA GPW W WARSZAWIE WPROWADZENIE

EFEKT DŹWIGNI NA GPW W WARSZAWIE WPROWADZENIE Paweł Kobus, Rober Pierzykowski Kaedra Ekonomerii i Informayki SGGW e-mail: pawel.kobus@saysyka.info EFEKT DŹWIGNI NA GPW W WARSZAWIE Sreszczenie: Do modelowania asymerycznego wpływu dobrych i złych informacji

Bardziej szczegółowo

SYMULACYJNA ANALIZA PRODUKCJI ENERGII ELEKTRYCZNEJ I CIEPŁA Z ODNAWIALNYCH NOŚNIKÓW W POLSCE

SYMULACYJNA ANALIZA PRODUKCJI ENERGII ELEKTRYCZNEJ I CIEPŁA Z ODNAWIALNYCH NOŚNIKÓW W POLSCE SYMULACYJNA ANALIZA PRODUKCJI ENERGII ELEKTRYCZNEJ I CIEPŁA Z ODNAWIALNYCH NOŚNIKÓW W POLSCE Janusz Sowiński, Rober Tomaszewski, Arur Wacharczyk Insyu Elekroenergeyki Poliechnika Częsochowska Aky prawne

Bardziej szczegółowo

METODY STATYSTYCZNE W FINANSACH

METODY STATYSTYCZNE W FINANSACH METODY STATYSTYCZNE W FINANSACH Krzyszof Jajuga Akademia Ekonomiczna we Wrocławiu, Kaedra Inwesycji Finansowych i Ubezpieczeń Wprowadzenie W osanich kilkunasu laach na świecie obserwuje się dynamiczny

Bardziej szczegółowo

Prognozowanie średniego miesięcznego kursu kupna USD

Prognozowanie średniego miesięcznego kursu kupna USD Prognozowanie średniego miesięcznego kursu kupna USD Kaarzyna Halicka Poliechnika Białosocka, Wydział Zarządzania, Kaedra Informayki Gospodarczej i Logisyki, e-mail: k.halicka@pb.edu.pl Jusyna Godlewska

Bardziej szczegółowo

PORÓWNANIE DYSKONTOWYCH WSKAŹNIKÓW OCENY OPŁACALNOŚCI EKONOMICZNEJ INWESTYCJI NA WYBRANYM PRZYKŁADZIE

PORÓWNANIE DYSKONTOWYCH WSKAŹNIKÓW OCENY OPŁACALNOŚCI EKONOMICZNEJ INWESTYCJI NA WYBRANYM PRZYKŁADZIE POZA UIVE RSITY OF TE CHOLOGY ACADE MIC JOURALS o 86 Elecrical Engineering 2016 Jusyna MICHALAK* PORÓWAIE DYSKOTOWYCH WSKAŹIKÓW OCEY OPŁACALOŚCI EKOOMICZEJ IWESTYCJI A WYBRAYM PRZYKŁADZIE W arykule przedsawiono

Bardziej szczegółowo

TESTOWANIE EGZOGENICZNOŚCI ZMIENNYCH W MODELACH EKONOMETRYCZNYCH

TESTOWANIE EGZOGENICZNOŚCI ZMIENNYCH W MODELACH EKONOMETRYCZNYCH STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 15 Mariusz Doszyń TESTOWANIE EGZOGENICZNOŚCI ZMIENNYCH W MODELACH EKONOMETRYCZNYCH Od pewnego czasu w lieraurze ekonomerycznej pojawiają się

Bardziej szczegółowo

Wykład 6. Badanie dynamiki zjawisk

Wykład 6. Badanie dynamiki zjawisk Wykład 6 Badanie dynamiki zjawisk TREND WYODRĘBNIANIE SKŁADNIKÓW SZEREGU CZASOWEGO 1. FUNKCJA TRENDU METODA ANALITYCZNA 2. ŚREDNIE RUCHOME METODA WYRÓWNYWANIA MECHANICZNEGO średnie ruchome zwykłe średnie

Bardziej szczegółowo

Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych.

Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych. Równania różniczkowe. Lisa nr 2. Lieraura: N.M. Mawiejew, Meody całkowania równań różniczkowych zwyczajnych. W. Krysicki, L. Włodarski, Analiza Maemayczna w Zadaniach, część II 1. Znaleźć ogólną posać

Bardziej szczegółowo

KONCEPCJA WARTOŚCI ZAGROŻONEJ VaR (VALUE AT RISK)

KONCEPCJA WARTOŚCI ZAGROŻONEJ VaR (VALUE AT RISK) KONCEPCJA WARTOŚCI ZAGROŻONEJ VaR (VALUE AT RISK) Kaarzyna Kuziak Akademia Ekonomiczna we Wrocławiu, Kaedra Inwesycji Finansowych i Ubezpieczeń Wprowadzenie W 1994 roku insyucja finansowa JP Morgan opublikowała

Bardziej szczegółowo

Wykład 5 Elementy teorii układów liniowych stacjonarnych odpowiedź na dowolne wymuszenie

Wykład 5 Elementy teorii układów liniowych stacjonarnych odpowiedź na dowolne wymuszenie Wykład 5 Elemeny eorii układów liniowych sacjonarnych odpowiedź na dowolne wymuszenie Prowadzący: dr inż. Tomasz Sikorski Insyu Podsaw Elekroechniki i Elekroechnologii Wydział Elekryczny Poliechnika Wrocławska

Bardziej szczegółowo

Komputerowa analiza przepływów turbulentnych i indeksu Dow Jones

Komputerowa analiza przepływów turbulentnych i indeksu Dow Jones Kompuerowa analiza przepływów urbulennych i indeksu Dow Jones Rafał Ogrodowczyk Pańswowa Wyższa Szkoła Zawodowa w Chełmie Wiesław A. Kamiński Uniwersye Marii Curie-Skłodowskie w Lublinie W badaniach porównano

Bardziej szczegółowo

WYBRANE TESTY NIEOBCIĄŻONOŚCI MIAR RYZYKA NA PRZYKŁADZIE VALUE AT RISK

WYBRANE TESTY NIEOBCIĄŻONOŚCI MIAR RYZYKA NA PRZYKŁADZIE VALUE AT RISK Przemysław Jeziorski Uniwersye Ekonomiczny w Kaowicach Wydział Informayki i Komunikacji Zakład Demografii i Saysyki Ekonomicznej przemyslaw.jeziorski@ue.kaowice.pl WYBRANE TESTY NIEOBCIĄŻONOŚCI MIAR RYZYKA

Bardziej szczegółowo

Rys.1. Podstawowa klasyfikacja sygnałów

Rys.1. Podstawowa klasyfikacja sygnałów Kaedra Podsaw Sysemów echnicznych - Podsawy merologii - Ćwiczenie 1. Podsawowe rodzaje i ocena sygnałów Srona: 1 1. CEL ĆWICZENIA Celem ćwiczenia jes zapoznanie się z podsawowymi rodzajami sygnałów, ich

Bardziej szczegółowo

Badanie funktorów logicznych TTL - ćwiczenie 1

Badanie funktorów logicznych TTL - ćwiczenie 1 adanie funkorów logicznych TTL - ćwiczenie 1 1. Cel ćwiczenia Zapoznanie się z podsawowymi srukurami funkorów logicznych realizowanych w echnice TTL (Transisor Transisor Logic), ich podsawowymi paramerami

Bardziej szczegółowo

O pewnym algorytmie rozwiązującym problem optymalnej alokacji zasobów. Cezary S. Zaremba*, Leszek S. Zaremba ** WPROWADZENIE

O pewnym algorytmie rozwiązującym problem optymalnej alokacji zasobów. Cezary S. Zaremba*, Leszek S. Zaremba ** WPROWADZENIE O pewnym algorymie rozwiązującym problem opymalnej alokacji zasobów Cezary S. Zaremba*, Leszek S. Zaremba ** WPROWADZENIE W kierowaniu firmą Zarząd częso saje wobec problemu rozdysponowania (alokacji)

Bardziej szczegółowo

Jacek Kwiatkowski Magdalena Osińska. Procesy zawierające stochastyczne pierwiastki jednostkowe identyfikacja i zastosowanie.

Jacek Kwiatkowski Magdalena Osińska. Procesy zawierające stochastyczne pierwiastki jednostkowe identyfikacja i zastosowanie. DYNAMICZNE MODELE EKONOMETRYCZNE Jacek Kwiakowski Magdalena Osińska Uniwersye Mikołaja Kopernika Procesy zawierające sochasyczne pierwiaski jednoskowe idenyfikacja i zasosowanie.. Wsęp Większość lieraury

Bardziej szczegółowo

TRANZYSTORY POLOWE JFET I MOSFET

TRANZYSTORY POLOWE JFET I MOSFET POLTECHNKA RZEZOWKA Kaedra Podsaw Elekroiki srukcja Nr5 F 00/003 sem. lei TRANZYTORY POLOWE JFET MOFET Cel ćwiczeia: Pomiar podsawowych charakerysyk i wyzaczeie paramerów określających właściwości razysora

Bardziej szczegółowo

Podstawy Elektroniki dla Elektrotechniki

Podstawy Elektroniki dla Elektrotechniki AGH Kaedra Elekroniki Podsawy Elekroniki dla Elekroechniki Klucze Insrukcja do ćwiczeń symulacyjnych (5a) Insrukcja do ćwiczeń sprzęowych (5b) Ćwiczenie 5a, 5b 2015 r. 1 1. Wsęp. Celem ćwiczenia jes ugrunowanie

Bardziej szczegółowo

Matematyka finansowa 20.03.2006 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXVIII Egzamin dla Aktuariuszy z 20 marca 2006 r.

Matematyka finansowa 20.03.2006 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXVIII Egzamin dla Aktuariuszy z 20 marca 2006 r. Komisja Egzaminacyjna dla Akuariuszy XXXVIII Egzamin dla Akuariuszy z 20 marca 2006 r. Część I Maemayka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minu 1 1. Ile

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 2007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Pior Fiszeder Uniwersye Mikołaja Kopernika

Bardziej szczegółowo

KONCEPCJA MONITOROWANIA ZUŻYCIA BUFORÓW CZASU W HARMONOGRAMIE BUDOWLANYM

KONCEPCJA MONITOROWANIA ZUŻYCIA BUFORÓW CZASU W HARMONOGRAMIE BUDOWLANYM KONCEPCJA MONITOROWANIA ZUŻYCIA BUFORÓW CZASU W HARMONOGRAMIE BUDOWLANYM Kamil PRUSZYŃSKI Wydział Budownictwa i Inżynierii Środowiska, Szkoła Główna Gospodarstwa Wiejskiego, ul. Nowoursynowska 166, 02-787

Bardziej szczegółowo

Europejska opcja kupna akcji calloption

Europejska opcja kupna akcji calloption Europejska opcja kupna akcji callopion Nabywca holder: prawo kupna long posiion jednej akcji w okresie epiraiondae po cenie wykonania eercise price K w zamian za opłaę C Wysawca underwrier: obowiązek liabiliy

Bardziej szczegółowo

ZASTOSOWANIE TEORII MASOWEJ OBSŁUGI DO MODELOWANIA SYSTEMÓW TRANSPORTOWYCH

ZASTOSOWANIE TEORII MASOWEJ OBSŁUGI DO MODELOWANIA SYSTEMÓW TRANSPORTOWYCH Pior KISIELEWSKI, Łukasz SOBOTA ZASTOSOWANIE TEORII MASOWEJ OBSŁUGI DO MODELOWANIA SYSTEMÓW TRANSPORTOWYCH W arykule przedsawiono zasosowanie eorii masowej obsługi do analizy i modelowania wybranych sysemów

Bardziej szczegółowo

Akademia Ekonomiczna im. Oskara Langego we Wrocławiu Katedra Inwestycji Finansowych i Ubezpieczeń

Akademia Ekonomiczna im. Oskara Langego we Wrocławiu Katedra Inwestycji Finansowych i Ubezpieczeń Krzyszof Pionek Akademia Ekonomiczna im. Oskara Langego we Wrocławiu Kaedra Inwesycji Finansowych i Ubezpieczeń Przegląd i porównanie meod oceny modeli VaR Wsęp - Miara VaR Warość zagrożona (warość narażona

Bardziej szczegółowo

WPŁYW TYPU ROZKŁADU CZASU TRWANIA CZYNNOŚCI NA WYNIKI ANALIZY RYZYKA W PLANOWANIU REALIZACJI PRZEDSIĘWZIĘĆ

WPŁYW TYPU ROZKŁADU CZASU TRWANIA CZYNNOŚCI NA WYNIKI ANALIZY RYZYKA W PLANOWANIU REALIZACJI PRZEDSIĘWZIĘĆ Dane bibliograficzne o artykule: http://mieczyslaw_polonski.users.sggw.pl/mppublikacje mgr inż. Wojciech Bogusz dr hab. inż. Mieczysław Połoński, prof. SGGW mgr inż. Kamil Pruszyński Szkoła Główna Gospodarstwa

Bardziej szczegółowo

MODELOWANIE PROCESU OBSŁUGI STATKÓW POWIETRZNYCH

MODELOWANIE PROCESU OBSŁUGI STATKÓW POWIETRZNYCH LOGITRANS - VII KONFERENCJA NAUKOWO-TECHNICZNA LOGISTYKA, SYSTEMY TRANSPORTOWE, BEZPIECZEŃSTWO W TRANSPORCIE Arur KIERZKOWSKI 1 Saek powierzny, proces obsługi, modelownie procesów ransporowych MODELOWANIE

Bardziej szczegółowo

Zarządzanie ryzykiem. Lista 3

Zarządzanie ryzykiem. Lista 3 Zaządzanie yzykiem Lisa 3 1. Oszacowano nasępujący ozkład pawdopodobieńswa dla sóp zwou z akcji A i B (Tabela 1). W chwili obecnej Akcja A ma waość ynkową 70, a akcja B 50 zł. Ile wynosi pięciopocenowa

Bardziej szczegółowo

Analiza metod oceny efektywności inwestycji rzeczowych**

Analiza metod oceny efektywności inwestycji rzeczowych** Ekonomia Menedżerska 2009, nr 6, s. 119 128 Marek Łukasz Michalski* Analiza meod oceny efekywności inwesycji rzeczowych** 1. Wsęp Podsawowymi celami przedsiębiorswa w długim okresie jes rozwój i osiąganie

Bardziej szczegółowo

MODELOWANIE WŁASNOŚCI SZEREGÓW STÓP ZWROTU SKOŚNOŚĆ ROZKŁADÓW

MODELOWANIE WŁASNOŚCI SZEREGÓW STÓP ZWROTU SKOŚNOŚĆ ROZKŁADÓW Krzyszof Pionek Kaedra Inwesycji Finansowych i Ubezpieczeń Akademia Ekonomiczna we Wrocławiu MODELOWANIE WŁASNOŚCI SZEREGÓW STÓP ZWROTU SKOŚNOŚĆ ROZKŁADÓW Wprowadzenie Współczesne zarządzanie ryzykiem

Bardziej szczegółowo

POWIĄZANIA POMIĘDZY KRÓTKOOKRESOWYMI I DŁUGOOKRESOWYMI STOPAMI PROCENTOWYMI W POLSCE

POWIĄZANIA POMIĘDZY KRÓTKOOKRESOWYMI I DŁUGOOKRESOWYMI STOPAMI PROCENTOWYMI W POLSCE Anea Kłodzińska, Poliechnika Koszalińska, Zakład Ekonomerii POWIĄZANIA POMIĘDZY KRÓTKOOKRESOWYMI I DŁUGOOKRESOWYMI STOPAMI PROCENTOWYMI W POLSCE Sopy procenowe w analizach ekonomicznych Sopy procenowe

Bardziej szczegółowo

Analiza efektywności kosztowej w oparciu o wskaźnik dynamicznego kosztu jednostkowego

Analiza efektywności kosztowej w oparciu o wskaźnik dynamicznego kosztu jednostkowego TRANSFORM ADVICE PROGRAMME Invesmen in Environmenal Infrasrucure in Poland Analiza efekywności koszowej w oparciu o wskaźnik dynamicznego koszu jednoskowego dr Jana Rączkę Warszawa, 13.06.2002 2 Spis reści

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych 9.10.2006 r. Zadanie 1. Rozważamy proces nadwyżki ubezpieczyciela z czasem dyskretnym postaci: n

Matematyka ubezpieczeń majątkowych 9.10.2006 r. Zadanie 1. Rozważamy proces nadwyżki ubezpieczyciela z czasem dyskretnym postaci: n Maemayka ubezpieczeń mająkowych 9.0.006 r. Zadaie. Rozważamy proces adwyżki ubezpieczyciela z czasem dyskreym posaci: U = u + c S = 0... S = W + W +... + W W W W gdzie zmiee... są iezależe i mają e sam

Bardziej szczegółowo

Harmonogram czyszczenia z osadów sieci wymienników ciepła w trakcie eksploatacji instalacji na przykładzie destylacji rurowo-wieżowej

Harmonogram czyszczenia z osadów sieci wymienników ciepła w trakcie eksploatacji instalacji na przykładzie destylacji rurowo-wieżowej Mariusz Markowski, Marian Trafczyński Poliechnika Warszawska Zakład Aparaury Przemysłowe ul. Jachowicza 2/4, 09-402 Płock Harmonogram czyszczenia z osadów sieci wymienników ciepła w rakcie eksploaaci insalaci

Bardziej szczegółowo

WARTOŚĆ ZAGROŻONA OPCJI EUROPEJSKICH SZACOWANA PRZEDZIAŁOWO. SYMULACJE

WARTOŚĆ ZAGROŻONA OPCJI EUROPEJSKICH SZACOWANA PRZEDZIAŁOWO. SYMULACJE Daniel Iskra Uniwersye Ekonomiczny w Kaowicach WARTOŚĆ ZAGROŻONA OPCJI EUROPEJSKICH SZACOWANA PRZEDZIAŁOWO. SYMULACJE Wprowadzenie Jednym z aspeków współczesnej ekonomii jes zarządzanie ryzykiem związanym

Bardziej szczegółowo

IMPLEMENTACJA WYBRANYCH METOD ANALIZY STANÓW NIEUSTALONYCH W ŚRODOWISKU MATHCAD

IMPLEMENTACJA WYBRANYCH METOD ANALIZY STANÓW NIEUSTALONYCH W ŚRODOWISKU MATHCAD Pior Jankowski Akademia Morska w Gdyni IMPLEMENTACJA WYBRANYCH METOD ANALIZY STANÓW NIEUSTALONYCH W ŚRODOWISKU MATHCAD W arykule przedsawiono możliwości (oraz ograniczenia) środowiska Mahcad do analizy

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODEE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Joanna Małgorzaa andmesser Szkoła Główna

Bardziej szczegółowo

Metody rachunku kosztów Metoda rachunku kosztu działań Podstawowe pojęcia metody ABC Kalkulacja obiektów kosztowych metodą ABC Zasobowy rachunek

Metody rachunku kosztów Metoda rachunku kosztu działań Podstawowe pojęcia metody ABC Kalkulacja obiektów kosztowych metodą ABC Zasobowy rachunek Meody rachunku koszów Meoda rachunku koszu Podsawowe pojęcia meody ABC Kalkulacja obieków koszowych meodą ABC Zasobowy rachunek koszów Kalkulacja koszów meodą ABC podsawową informacja dla rachunkowości

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6 8 września 2005 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Kaarzyna Kuziak Akademia Ekonomiczna

Bardziej szczegółowo

Marża zakupu bid (pkb) Marża sprzedaży ask (pkb)

Marża zakupu bid (pkb) Marża sprzedaży ask (pkb) Swap (IRS) i FRA Przykład. Sandardowy swap procenowy Dealer proponuje nasępujące sałe sopy dla sandardowej "plain vanilla" procenowej ransakcji swap. ermin wygaśnięcia Sopa dla obligacji skarbowych Marża

Bardziej szczegółowo

Ruch płaski. Bryła w ruchu płaskim. (płaszczyzna kierująca) Punkty bryły o jednakowych prędkościach i przyspieszeniach. Prof.

Ruch płaski. Bryła w ruchu płaskim. (płaszczyzna kierująca) Punkty bryły o jednakowych prędkościach i przyspieszeniach. Prof. Ruch płaski Ruchem płaskim nazywamy ruch, podczas kórego wszyskie punky ciała poruszają się w płaszczyznach równoległych do pewnej nieruchomej płaszczyzny, zwanej płaszczyzną kierującą. Punky bryły o jednakowych

Bardziej szczegółowo

z graniczną technologią

z graniczną technologią STUDIA OECOOMICA POSAIESIA 23, vol., no. (25) Uniwersye Ekonomiczny w Poznaniu, Wydział Informayki i Gospodarki Elekronicznej, Kaedra Ekonomii Maemaycznej emil.panek@ue.poznan.pl iesacjonarny model von

Bardziej szczegółowo

MODELOWANIE STRUKTURY TERMINOWEJ STÓP PROCENTOWYCH WYZWANIE DLA EKONOMETRII

MODELOWANIE STRUKTURY TERMINOWEJ STÓP PROCENTOWYCH WYZWANIE DLA EKONOMETRII KRZYSZTOF JAJUGA Akademia Ekonomiczna we Wrocławiu MODELOWANIE STRUKTURY TERMINOWEJ STÓP PROCENTOWYCH WYZWANIE DLA EKONOMETRII. Modele makroekonomiczne a modele sóp procenowych wprowadzenie Nie do podważenia

Bardziej szczegółowo

Analiza niezawodności lokomotywy spalinowej serii SM48

Analiza niezawodności lokomotywy spalinowej serii SM48 SZKODA Maciej 1 Analiza niezawodności lokomoywy spalinowej serii SM48 Analiza niezawodności, Wskaźniki niezawodnościowe, Lokomoywa SM48 Sreszczenie W arykule przedsawiono wyniki analizy niezawodności lokomoywy

Bardziej szczegółowo

PRACE ORYGINALNE. Wprowadzenie. Mieczysław POŁOŃSKI

PRACE ORYGINALNE. Wprowadzenie. Mieczysław POŁOŃSKI PRACE ORYGINALNE Przegląd Naukowy Inżynieria i Kształtowanie Środowiska nr 53, 2011: 163 173 (Prz. Nauk. Inż. Kszt. Środ. 53, 2011) Scientific Review Engineering and Environmental Sciences No 53, 2011:

Bardziej szczegółowo

ANALIZA ODPOWIEDZI UKŁADÓW KONSTRUKCYJNYCH NA WYMUSZENIE W POSTACI SIŁY O DOWOLNYM PRZEBIEGU CZASOWYM

ANALIZA ODPOWIEDZI UKŁADÓW KONSTRUKCYJNYCH NA WYMUSZENIE W POSTACI SIŁY O DOWOLNYM PRZEBIEGU CZASOWYM Budownicwo Mariusz Poński ANALIZA ODPOWIEDZI UKŁADÓW KONSTRUKCYJNYCH NA WYMUSZENIE W POSTACI SIŁY O DOWOLNYM PRZEBIEGU CZASOWYM Wprowadzenie Coraz większe ograniczenia czasowe podczas wykonywania projeków

Bardziej szczegółowo

Analiza czasowo-kosztowa

Analiza czasowo-kosztowa Analiza czasowo-kosztowa Aspekt ekonomiczny: należy rozpatrzyć techniczne możliwości skrócenia terminu wykonania całego przedsięwzięcia, w taki sposób aby koszty związane z jego realizacją były jak najniższe.

Bardziej szczegółowo

Analiza opłacalności inwestycji logistycznej Wyszczególnienie

Analiza opłacalności inwestycji logistycznej Wyszczególnienie inwesycji logisycznej Wyszczególnienie Laa Dane w ys. zł 2 3 4 5 6 7 8 Przedsięwzięcie I Program rozwoju łańcucha (kanału) dysrybucji przewiduje realizację inwesycji cenrum dysrybucyjnego. Do oceny przyjęo

Bardziej szczegółowo

Krzysztof Piontek MODELOWANIE ZMIENNOŚCI STÓP PROCENTOWYCH NA PRZYKŁADZIE STOPY WIBOR

Krzysztof Piontek MODELOWANIE ZMIENNOŚCI STÓP PROCENTOWYCH NA PRZYKŁADZIE STOPY WIBOR Inwesycje finansowe i ubezpieczenia endencje świaowe a rynek polski Krzyszof Pionek Akademia Ekonomiczna we Wrocławiu MODELOWANIE ZMIENNOŚCI STÓP PROCENTOWYCH NA PRZYKŁADZIE STOPY WIBOR Wsęp Konieczność

Bardziej szczegółowo

Struktura sektorowa finansowania wydatków na B+R w krajach strefy euro

Struktura sektorowa finansowania wydatków na B+R w krajach strefy euro Rozdział i. Srukura sekorowa finansowania wydaków na B+R w krajach srefy euro Rober W. Włodarczyk 1 Sreszczenie W arykule podjęo próbę oceny srukury sekorowej (sekor przedsiębiorsw, sekor rządowy, sekor

Bardziej szczegółowo

PROGNOZOWANIE. Ćwiczenia 2. mgr Dawid Doliński

PROGNOZOWANIE. Ćwiczenia 2. mgr Dawid Doliński Ćwiczenia 2 mgr Dawid Doliński Modele szeregów czasowych sały poziom rend sezonowość Y Y Y Czas Czas Czas Modele naiwny Modele średniej arymeycznej Model Browna Modele ARMA Model Hola Modele analiyczne

Bardziej szczegółowo

Ćwiczenia laboratoryjne - 4. Projektowanie i harmonogramowanie produkcji metoda CPM-COST. Logistyka w Hutnictwie Ćw. L. 4

Ćwiczenia laboratoryjne - 4. Projektowanie i harmonogramowanie produkcji metoda CPM-COST. Logistyka w Hutnictwie Ćw. L. 4 Ćwiczenia laboratoryjne - 4 Projektowanie i harmonogramowanie produkcji metoda CPM-COST Ćw. L. 4 Metody analizy sieciowej 1) Deterministyczne czasy trwania czynności są określane jednoznacznie (jedna liczba)

Bardziej szczegółowo