Podstawowe charakterystyki niezawodności. sem. 8. Niezawodność elementów i systemów, Komputerowe systemy pomiarowe 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Podstawowe charakterystyki niezawodności. sem. 8. Niezawodność elementów i systemów, Komputerowe systemy pomiarowe 1"

Transkrypt

1 Podsawowe charakerysyki niezawodności sem. 8. Niezawodność elemenów i sysemów, Kompuerowe sysemy pomiarowe 1

2 Wsęp Niezawodność o prawdopodobieńswo pewnych zdarzeń Inensywność uszkodzeń λ wyraŝa prawdopodobieńswo wysąpienia uszkodzenia w ciągu jednoski czasu pracy w określonych warunkach Saysyka maemayczna daje nam moŝliwość wyznaczenia jedynie esymaorów, a jak jes warość rzeczywisa nie wiemy Esymaor inensywności uszkodzeń - przedział ufności, kóry z określonym prawdopodobieńswem β zawiera warość rzeczywisą λ P { d g λ λ λ } β 2

3 P { d g λ λ λ } β λ d, λ g - dolna i górna granica przedziału ufności, β - poziom ufności, zwykle 0,6 lub 0,9 odzaj elemenu Połączenia luowane Połączenia owijane Kondensaory ezysory objęościowe ezysory warswowe Tranzysory krzemowe Mikroukłady analogowe Mikroukłady cyfrowe λ [x /h] 0,01 0,001 0,1 2 0,05 0,02 0,08 0,8 0,3 0,1 3

4 Podsawowe charakerysyki niezawodności Liczbowe - liczbowe, - funkcyjne. Obieky nienaprawialne 10 6 godzin ,6 dni 117,04 la FIT średni czas pracy do uszkodzenia uszkodzenie/10 9 godzin /10 6 godzin Failured in ime T niezawodność jako prawdopodobieńswo T m n m liczba poprawnie pracujących wyrobów czasie T, n liczba wyrobów, kóre rozpoczęły pracę w momencie 0 wykres eliabiliy 4

5 Z T wskaźnik uszkodzeń Z T n m n m liczba poprawnie pracujących wyrobów czasie T, n liczba wyrobów, kóre rozpoczęły pracę w momencie 0 wykres Liczba uszkodzeń odniesiona do czasu % uszkodzeń/10 6 godzin /10 9 godzin Failure rae 5

6 W normach podawane są Wadliwość dopuszczalna AQL/1000 h Liczba uszkodzeń, kóra moŝe wysąpić po 1000 godzin Acceped qualiy limi Wadliwość dyskwalifikująca LTPD/1000 h Liczba uszkodzeń, kóra dyskwalifikuje oszacowany wskaźnik Lo Tolerance Percen Defecive Badania konrolne Mil-S Mil-M

7 zadziej sosowane wskaźniki Średnie ryzyko uszkodzenia w czasie eksploaacji 1 n n i 1 * i µ n - liczba obieków, i * - czasy kolejnych uszkodzeń. Wariancja i odchylenie sandardowe 1 n 2 * 2 σ i µ σ n 1 i 1 σ 2 7

8 Przykład n 10 i i * µ 76 σ 1135 σ 37 8

9 Wskaźniki funkcyjne - dysrybuana czasu poprawnej pracy F, - funkcja gęsości uszkodzeń f, - funkcja inensywności uszkodzeń funkcja ryzyka λ, - funkcja niezawodności. Dysrybuana czasu poprawnej pracy F F P [ < 1 ] uszkodzenie wyrobu nasąpi nie później niŝ w chwili 1 Funkcja niezawodności P [ 1 ] Funkcja gęsości uszkodzeń f 1 F uszkodzenie wyrobu nasąpi nie wcześniej niŝ w chwili 1 f df d d d określa szybkość zmian liczby uszkodzonych wyrobów w obserwowanej populacji 9

10 Dysrybuana i funkcja niezawodności mogą być wyraŝone przez funkcję gęsości uszkodzeń F f u du f u 0 du Prawdopodobieńswo, Ŝe wyrób uszkodzi się w przedziale [, + ] wynosi f, przy załoŝeniu, Ŝe jes małe P[ < + ] f 10

11 Funkcja inensywności uszkodzeń funkcja ryzyka λ Pobieramy do badań próbę reprezenaywną składającą się z n wyrobów NaleŜy znaleźć prawdopodobieńswo zdarzenia, Ŝe wyrób, kóry pracował od rozpoczęcia badań 0 uległ uszkodzeniu w przedziale czasu [, + ] P [, ] Z definicji prawdopodobieńswo jes sosunkiem liczby zdarzeń elemenarnych do ogólnej liczby zdarzeń Liczba zdarzeń elemenarnych - n f kaŝdy z wyrobów moŝe ulec uszkodzeniu w przedziale [, + ] Ogólna liczba zdarzeń elemenarnych - n 11

12 12 Wobec ego prawdopodobieńswo zdarzenia moŝna zapisać jako: f n f n P ], [ Funkcja inensywności uszkodzeń jes definiowana jako prawdopodobieńswo zdarzenia losowego uszkodzenia wyrobu w przedziale czasu [, + ] odniesione do czasu rwania przedziału ], [ f f P λ

13 13 ZaleŜności d d d df f f λ d d f λ d d λ f d d przy załoŝeniu, Ŝe 0 1 ] exp[ 0 du u λ

14 Okres Ŝycia wyrobów obieków nienaprawialnych Krzywa siodłowa Krzywa wannowa Krzywa sosowana od la 50. XX wieku Trzy okresy Ŝycia: na podsawie analizy czasu Ŝycia lamp elekronowych i pierwszych maszyn cyfrowych I okres uszkodzeń wczesnych, uszkodzeniu ulegają wyroby o złej jakości, wadliwe, II - okres normalnej eksploaacji, liczba uszkodzeń jes sała, uszkodzenia są przypadkowe, wynikające z przeciąŝeń, niepoprawnych warunków pracy, III okres zuŝycia 14

15 Obecnie wzorem określającym przebieg funkcji ryzyka jes krzywa grzbieowa Podział jes podobny, ale okres uszkodzeń wczesnych moŝe mieć róŝny przebieg wykres 15

16 Charakerysyki obieków naprawialnych odnawialnych 1. Obieky z pomijalnym czasem odnowy 2. Obieky z isonym czasem odnowy 1. Obieky z pomijalnym czasem odnowy Liczbowe Średni czas pracy między uszkodzeniami w określonym czasie T MTBF Mean Time beween Failure Średni czas pracy do uszkodzeń w określonym czasie T MTTF Mean Time o Failure MTTF m m gdzie: m liczba uszkodzeń w czasie T, i - i - y czas do uszkodzenia 16

17 MTBF Średni czas międzyawaryjny Przykład Zasosowanie do określenia Ŝywoności wardych dysków MTBF wynosi godzin określony dla danej serii dysków MTBF 200 ysięcy godzin, czyli prawdopodobieńswo uszkodzenia dysku w ciągu roku jes równe około 4,5% godzin: dni : ,4 la 23,4 100% 1-4,27% Mamy 22 dyski 1 dysk w ciągu roku moŝe ulec uszkodzeniu, - pracuje 24 godziny JeŜeli pracuje mniej, o. 17

18 2. Obieky z isonym czasem odnowy Współczynnik goowości echnicznej dyspozycyjności k g lim k g MTBF MTBF + MT gdzie: MT średni czas napraw Mean epair Time k prawdopodobieńswo, Ŝe w danej chwili wyrób obiek będzie zdany do pracy, i i y czas do uszkodzenia, czyli zmienna losowa 18

19 Funkcyjne Charakerysyka niezawodności wyrobów obieków odnawialnych funkcja odnowy H Definiowana jes jako oczekiwana liczba m odnów wyrobu obieku od momenu rozpoczęcia jego pracy do chwili Gęsość odnowy Λ szybkość narasania liczby dokonywanych odnów z upływem czasu pracy Λ dh d Związek między H i Λ moŝna zapisać: H Λ u 0 du 19

20 Charakerysyki niezawodnościowe wyrobów obieków pracujących na Ŝądanie Wyroby nieodnawialne Wyroby pracujące na Ŝądanie: - nieodnawialne, - odnawialne. P Ŝ prawdopodobieńswo pracy na Ŝądanie wykres P Ŝ jes zwykle funkcją monoonicznie malejącą, bo w wyrobie obiekcie zachodzą zmiany związane z procesami sarzenia, nawe jeŝeli wyrób nie pracuje. P Ŝ wyrobu obieku odnawialnego jes funkcją okresową. Dzięki naprawom uszkodzenia są usuwane, a więc i procesy sarzenia nie wysępują w sposób oczywisy. 20

21 Wyroby odnawialne wykres P Ŝo prawdopodobieńswo odmowy pracy Odnowa usuwa skuki uszkodzenia i P Ŝo po odnowie 1, P Ŝo wyrobu obieku odnawialnego jes funkcją okresową. Dzięki naprawom uszkodzenia są usuwane, a więc i procesy sarzenia nie wysępują w sposób oczywisy. W rzeczywisości efeky sarzenia mimo napraw eŝ wysępują i funkcja P Ŝo jes funkcją okresową, malejącą. wykres 21

Niezawodność elementów i systemów. Sem. 8 Komputerowe Systemy Elektroniczne, 2009/2010 1

Niezawodność elementów i systemów. Sem. 8 Komputerowe Systemy Elektroniczne, 2009/2010 1 Niezawodność elementów i systemów Sem. 8 Komputerowe Systemy Elektroniczne, 2009/2010 1 Niezawodność wyrobu (obiektu) to spełnienie wymaganych funkcji w określonych warunkach w ustalonym czasie Niezawodność

Bardziej szczegółowo

Funkcje charakteryzujące proces. Dr inż. Robert Jakubowski

Funkcje charakteryzujące proces. Dr inż. Robert Jakubowski Funkcje charakteryzujące proces eksploatacji Dr inż. Robert Jakubowski Niezawodność Niezawodność Rprawdopodobieństwo, że w przedziale czasu od do t cechy funkcjonalne statku powietrznego Ubędą się mieścić

Bardziej szczegółowo

POMIAR PARAMETRÓW SYGNAŁOW NAPIĘCIOWYCH METODĄ PRÓKOWANIA I CYFROWEGO PRZETWARZANIA SYGNAŁU

POMIAR PARAMETRÓW SYGNAŁOW NAPIĘCIOWYCH METODĄ PRÓKOWANIA I CYFROWEGO PRZETWARZANIA SYGNAŁU Pomiar paramerów sygnałów napięciowych. POMIAR PARAMERÓW SYGNAŁOW NAPIĘCIOWYCH MEODĄ PRÓKOWANIA I CYFROWEGO PRZEWARZANIA SYGNAŁU Cel ćwiczenia Poznanie warunków prawidłowego wyznaczania elemenarnych paramerów

Bardziej szczegółowo

W4 Eksperyment niezawodnościowy

W4 Eksperyment niezawodnościowy W4 Eksperyment niezawodnościowy Henryk Maciejewski Jacek Jarnicki Jarosław Sugier www.zsk.iiar.pwr.edu.pl Badania niezawodnościowe i analiza statystyczna wyników 1. Co to są badania niezawodnościowe i

Bardziej szczegółowo

NIEZAWODNOŚĆ URZĄDZEŃ ELEKTRONICZNYCH

NIEZAWODNOŚĆ URZĄDZEŃ ELEKTRONICZNYCH NIEZAWODNOŚĆ URZĄDZEŃ ELEKTRONICZNYCH Wersja skrócona. Podstawy projektowania III 1 PODSTAWOWE POJĘCIA ZWIĄZANE Z NIEZAWODNOŚCIĄ URZĄDZEŃ Niezawodność jest właściwością wyrobu poniewaŝ przez pojęcie jakości

Bardziej szczegółowo

Pobieranie próby. Rozkład χ 2

Pobieranie próby. Rozkład χ 2 Graficzne przedsawianie próby Hisogram Esymaory przykład Próby z rozkładów cząskowych Próby ze skończonej populacji Próby z rozkładu normalnego Rozkład χ Pobieranie próby. Rozkład χ Posać i własności Znaczenie

Bardziej szczegółowo

rok 2006/07 Jacek Jarnicki,, Kazimierz Kapłon, Henryk Maciejewski

rok 2006/07 Jacek Jarnicki,, Kazimierz Kapłon, Henryk Maciejewski Projekt z niezawodności i diagnostyki systemów cyfrowych rok 2006/07 Jacek Jarnicki,, Kazimierz Kapłon, Henryk Maciejewski Cel projektu Celem projektu jest: 1. Poznanie metod i napisanie oprogramowania

Bardziej szczegółowo

Statystyka hydrologiczna i prawdopodobieństwo zjawisk hydrologicznych.

Statystyka hydrologiczna i prawdopodobieństwo zjawisk hydrologicznych. Statystyka hydrologiczna i prawdopodobieństwo zjawisk hydrologicznych. Statystyka zajmuje się prawidłowościami zaistniałych zdarzeń. Teoria prawdopodobieństwa dotyczy przewidywania, jak często mogą zajść

Bardziej szczegółowo

Zmienne losowe ciągłe i ich rozkłady

Zmienne losowe ciągłe i ich rozkłady Statystyka i opracowanie danych W3 Zmienne losowe ciągłe i ich rozkłady Dr Anna ADRIAN Paw B5, pok47 adan@agh.edu.pl Plan wykładu Rozkład Poissona. Zmienna losowa ciągła Dystrybuanta i funkcja gęstości

Bardziej szczegółowo

ZAKŁAD SAMOLOTÓW I ŚMIGŁOWCÓW

ZAKŁAD SAMOLOTÓW I ŚMIGŁOWCÓW ZAKŁAD SAMOLOTÓW I ŚMIGŁOWCÓW NK315 EKSPLOATACJA STATKÓW LATAJĄCYCH dr inż. Kamila Kustroń dr inż. Kamila Kustroń ZAKŁAD SAMOLOTÓW I ŚMIGŁOWCÓW NK315 EKSPLOATACJA STATKÓW LATAJĄCYCH 1. Wykład wprowadzający

Bardziej szczegółowo

Cechy eksploatacyjne statku. Dr inż. Robert Jakubowski

Cechy eksploatacyjne statku. Dr inż. Robert Jakubowski Cechy eksploatacyjne statku powietrznego Dr inż. Robert Jakubowski Własności i właściwości SP Cechy statku technicznego, które są sformułowane w wymaganiach taktyczno-technicznych, konkretyzują się w jego

Bardziej szczegółowo

Rachunek kosztów. Sem. 8 Komputerowe Systemy Elektroniczne, 2009/2010. Alicja Konczakowska 1

Rachunek kosztów. Sem. 8 Komputerowe Systemy Elektroniczne, 2009/2010. Alicja Konczakowska 1 Rachunek kosztów Sem. 8 Komputerowe Systemy Elektroniczne, 2009/2010 Alicja Konczakowska 1 Rachunek kosztów Na decyzję klienta o zakupie wyrobu wpływa koszt nabycia (cena wyrobu ) oraz oczekiwany koszt

Bardziej szczegółowo

EKSPLOATACJA SYSTEMÓW TECHNICZNYCH

EKSPLOATACJA SYSTEMÓW TECHNICZNYCH Jan Kaźmierczak EKSPLOATACJA SYSTEMÓW TECHNICZNYCH dla studentów kierunków: ZARZĄDZANIE Gliwice, 1999 SPIS TREŚCI 1. WPROWADZENIE... 7 2. PRZEGLĄD PODSTAWOWYCH PROBLEMÓW EKSPLOATACJI SYSTEMÓW TECHNICZNYCH...

Bardziej szczegółowo

WYDZIAŁ MECHANICZNY ENERGETYKI I LOTNICTWA WYKŁAD

WYDZIAŁ MECHANICZNY ENERGETYKI I LOTNICTWA WYKŁAD POLITECHNIKA WARSZAWSKA WYDZIAŁ MECHANICZNY ENERGETYKI I LOTNICTWA WYKŁAD 3 dr inż. Kamila Kustroń Warszawa, 10 marca 2015 24 lutego: Wykład wprowadzający w interdyscyplinarną tematykę eksploatacji statków

Bardziej szczegółowo

LABORATORIUM PODSTAWY ELEKTRONIKI Badanie Bramki X-OR

LABORATORIUM PODSTAWY ELEKTRONIKI Badanie Bramki X-OR LORTORIUM PODSTWY ELEKTRONIKI adanie ramki X-OR 1.1 Wsęp eoreyczny. ramka XOR ramka a realizuje funkcję logiczną zwaną po angielsku EXLUSIVE-OR (WYŁĄZNIE LU). Polska nazwa brzmi LO. Funkcję EX-OR zapisuje

Bardziej szczegółowo

Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT. Anna Rajfura 1

Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT. Anna Rajfura 1 Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT Anna Rajfura 1 Przykład wprowadzający Wiadomo, Ŝe 40% owoców ulega uszkodzeniu podczas pakowania automatycznego.

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA. rachunek prawdopodobieństwa

STATYSTYKA MATEMATYCZNA. rachunek prawdopodobieństwa STATYSTYKA MATEMATYCZNA rachunek prawdopodobieństwa treść Zdarzenia losowe pojęcie prawdopodobieństwa prawo wielkich liczb zmienne losowe rozkłady teoretyczne zmiennych losowych Zanim zajmiemy się wnioskowaniem

Bardziej szczegółowo

Nr zadania Σ Punkty:

Nr zadania Σ Punkty: Kolokwim z krs Modele saysyczne niezawodności sysemów ROZWIĄZANIA Do wykonania jes 5 zadań. W smie, można zyskać 5 pnków. Na napisanie kolokwim mają Pańswo 7 min. Proszę wykonywać każde zadanie na osobnej

Bardziej szczegółowo

Zmienne losowe ciągłe i ich rozkłady

Zmienne losowe ciągłe i ich rozkłady Rachunek Prawdopodobieństwa i Statystyka - W3 Zmienne losowe ciągłe i ich rozkłady Dr Anna ADRIAN Paw B5, pok47 adan@agh.edu.pl Plan wykładu Zmienna losowa ciągła Dystrybuanta i unkcja gęstości rozkładu

Bardziej szczegółowo

WSPÓŁCZYNNIK GOTOWOŚCI SYSTEMU LOKOMOTYW SPALINOWYCH SERII SM48

WSPÓŁCZYNNIK GOTOWOŚCI SYSTEMU LOKOMOTYW SPALINOWYCH SERII SM48 TECHNIKA TRANSPORTU SZYNOWEGO Andrzej MACIEJCZYK, Zbigniew ZDZIENNICKI WSPÓŁCZYNNIK GOTOWOŚCI SYSTEMU LOKOMOTYW SPALINOWYCH SERII SM48 Streszczenie W artykule wyznaczono współczynniki gotowości systemu

Bardziej szczegółowo

Niepewność metody FMEA. Wprowadzenie 2005-12-28

Niepewność metody FMEA. Wprowadzenie 2005-12-28 5-1-8 Niepewność metody FMEA Wprowadzenie Doskonalenie produkcji metodą kolejnych kroków odbywa się na drodze analizowania przyczyn niedociągnięć, znajdowania miejsc powstawania wad, oceny ich skutków,

Bardziej szczegółowo

Rachunek Prawdopodobieństwa i Statystyka

Rachunek Prawdopodobieństwa i Statystyka Rachunek Prawdopodobieństwa i Statystyka W 2. Probabilistyczne modele danych Zmienne losowe. Rozkład prawdopodobieństwa i dystrybuanta. Wartość oczekiwana i wariancja zmiennej losowej Dr Anna ADRIAN Zmienne

Bardziej szczegółowo

Matura z matematyki?- MATURALNIE, Ŝe ZDAM! Zadania treningowe klasa I III ETAP

Matura z matematyki?- MATURALNIE, Ŝe ZDAM! Zadania treningowe klasa I III ETAP Matura z matematyki?- MATURALNIE, Ŝe ZDAM! Zadania treningowe klasa I III ETAP I Zadania zamknięte (pkt) Zadanie Liczba - jest miejscem zerowym funkcji liniowej = x + B. f ( x) = x C. f ( x) = x + D. f

Bardziej szczegółowo

PODSTAWY OCENY WSKAŹNIKÓW ZAWODNOŚCI ZASILANIA ENERGIĄ ELEKTRYCZNĄ

PODSTAWY OCENY WSKAŹNIKÓW ZAWODNOŚCI ZASILANIA ENERGIĄ ELEKTRYCZNĄ Andrzej Purczyński PODSTAWY OCENY WSKAŹNIKÓW ZAWODNOŚCI ZASILANIA ENERGIĄ ELEKTRYCZNĄ Materiały szkolenia technicznego, Jakość energii elektrycznej i jej rozliczanie, Poznań Tarnowo Podgórne II/2008, ENERGO-EKO-TECH

Bardziej szczegółowo

Krzysztof Piontek Weryfikacja modeli Blacka-Scholesa dla opcji na WIG20

Krzysztof Piontek Weryfikacja modeli Blacka-Scholesa dla opcji na WIG20 Akademia Ekonomiczna im. Oskara Langego we Wrocławiu Wydział Zarządzania i Informayki Kaedra Inwesycji Finansowych i Zarządzania Ryzykiem Krzyszof Pionek Weryfikacja modeli Blacka-Scholesa oraz AR-GARCH

Bardziej szczegółowo

Zadanie projektowe: Niezawodność i diagnostyka układów cyfrowych

Zadanie projektowe: Niezawodność i diagnostyka układów cyfrowych Bartłomiej Piekarski 76 Data utworzenia:.6.r. Łukasz Tkacz 73 Łukasz Przywarty 78 Zadanie projektowe: Niezawodność i diagnostyka układów cyfrowych Temat: Ocena niezawodności systemu pomiarowego typu 'z3'

Bardziej szczegółowo

Wykład 6. Badanie dynamiki zjawisk

Wykład 6. Badanie dynamiki zjawisk Wykład 6 Badanie dynamiki zjawisk Krzywa wieża w Pizie 1 2 3 4 5 6 7 8 9 10 11 12 13 y 4,9642 4,9644 4,9656 4,9667 4,9673 4,9688 4,9696 4,9698 4,9713 4,9717 4,9725 4,9742 4,9757 Szeregiem czasowym nazywamy

Bardziej szczegółowo

PROGNOZOWANIE ZUŻYCIA CIEPŁEJ I ZIMNEJ WODY W SPÓŁDZIELCZYCH ZASOBACH MIESZKANIOWYCH

PROGNOZOWANIE ZUŻYCIA CIEPŁEJ I ZIMNEJ WODY W SPÓŁDZIELCZYCH ZASOBACH MIESZKANIOWYCH STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 15 Barbara Baóg Iwona Foryś PROGNOZOWANIE ZUŻYCIA CIEPŁEJ I ZIMNEJ WODY W SPÓŁDZIELCZYCH ZASOBACH MIESZKANIOWYCH Wsęp Koszy dosarczenia wody

Bardziej szczegółowo

WYZNACZANIE CECH PUNKTOWYCH SYGNAŁÓW POMIAROWYCH

WYZNACZANIE CECH PUNKTOWYCH SYGNAŁÓW POMIAROWYCH PODSTAWY SYGNAŁÓW POMIAROWYCH I METROLOGII WYZNACZANIE CECH PUNKTOWYCH SYGNAŁÓW POMIAROWYCH WSTĘP TEORETYCZNY Sygnałem nazywamy przebieg dowolnej wielkości fizycznej mogącej być nośnikiem informacji Opis

Bardziej szczegółowo

Jakub Wierciak Zagadnienia jakości i niezawodności w projektowaniu. Zagadnienia niezawodności w procesie projektowania

Jakub Wierciak Zagadnienia jakości i niezawodności w projektowaniu. Zagadnienia niezawodności w procesie projektowania Jakub Wierciak Zagadnienia jakości i niezawodności w projektowaniu Zagadnienia niezawodności w procesie projektowania Produkty tradycyjne i nowoczesne Środki pomocnicze w projektowaniu pomoc specjalistów

Bardziej szczegółowo

Rozkłady zmiennych losowych

Rozkłady zmiennych losowych Rozkłady zmiennych losowych Wprowadzenie Badamy pewną zbiorowość czyli populację pod względem występowania jakiejś cechy. Pobieramy próbę i na podstawie tej próby wyznaczamy pewne charakterystyki. Jeśli

Bardziej szczegółowo

ZASTOSOWANIE TEORII MASOWEJ OBSŁUGI DO MODELOWANIA SYSTEMÓW TRANSPORTOWYCH

ZASTOSOWANIE TEORII MASOWEJ OBSŁUGI DO MODELOWANIA SYSTEMÓW TRANSPORTOWYCH Pior KISIELEWSKI, Łukasz SOBOTA ZASTOSOWANIE TEORII MASOWEJ OBSŁUGI DO MODELOWANIA SYSTEMÓW TRANSPORTOWYCH W arykule przedsawiono zasosowanie eorii masowej obsługi do analizy i modelowania wybranych sysemów

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA Zadanie 0.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 0 4 p k 1/3 1/6 1/ obliczyć EX, D X. (odp. 4/3;

Bardziej szczegółowo

POMIARY CZĘSTOTLIWOŚCI I PRZESUNIĘCIA FAZOWEGO SYGNAŁÓW OKRESOWYCH. Cel ćwiczenia. Program ćwiczenia

POMIARY CZĘSTOTLIWOŚCI I PRZESUNIĘCIA FAZOWEGO SYGNAŁÓW OKRESOWYCH. Cel ćwiczenia. Program ćwiczenia Pomiary częsoliwości i przesunięcia fazowego sygnałów okresowych POMIARY CZĘSOLIWOŚCI I PRZESUNIĘCIA FAZOWEGO SYGNAŁÓW OKRESOWYCH Cel ćwiczenia Poznanie podsawowych meod pomiaru częsoliwości i przesunięcia

Bardziej szczegółowo

zamówienia w terminie 25 dni od momentu podpisania umowy. 2. Wykonawca zobowiązuje się dostarczyć i

zamówienia w terminie 25 dni od momentu podpisania umowy. 2. Wykonawca zobowiązuje się dostarczyć i Strona 1 z 5 Poznań: Przedmiotem zamówienia jest zakup i dostawa 20 komputerów przenośnych - laptopów wraz z torbami oraz 4 sztuk zestawów komputerowych wraz z monitorem i drukarką dla Sądu Okręgowego

Bardziej szczegółowo

Metody statystyczne kontroli jakości i niezawodności Lekcja II: Niezawodność systemów. Charakterystyki niezawodności.

Metody statystyczne kontroli jakości i niezawodności Lekcja II: Niezawodność systemów. Charakterystyki niezawodności. Metody statystyczne kontroli jakości i niezawodności Lekcja II: Niezawodność systemów. Charakterystyki niezawodności. Wydział Matematyki Politechniki Wrocławskiej Wprowadzenie Czym jest niezawodność? (ang.

Bardziej szczegółowo

Nr sprawy AZP-250-PKC-P14-02/09 Zał. Nr 7. UMOWA nr.

Nr sprawy AZP-250-PKC-P14-02/09 Zał. Nr 7. UMOWA nr. Nr sprawy AZP-250-PKC-P14-02/09 Zał. Nr 7 UMOWA nr. zawarta w dniu.. r. między..(nazwa Dostawcy). (adres Dostawcy), NIP., REGON.. - zwanym dalej Wykonawcą - reprezentowanym przez: 1... a Katolickim Uniwersytetem

Bardziej szczegółowo

Model logistycznego wsparcia systemu eksploatacji środków transportu

Model logistycznego wsparcia systemu eksploatacji środków transportu Poliechnika Wrocławska Insyu Konsrukcji i Eksploaacji Maszyn Zakład Logisyki i Sysemów Transporowych Rozprawa dokorska Model logisycznego wsparcia sysemu eksploaacji środków ransporu Rapor serii: PRE nr

Bardziej szczegółowo

Niezawodność i diagnostyka projekt

Niezawodność i diagnostyka projekt Niezawodność i diagnostyka projekt Jacek Jarnicki Henryk Maciejewski Zajęcia wprowadzające 1. Cel zajęć projektowych 2. Etapy realizacji projektu 3. Tematy zadań do rozwiązania 4. Podział na grupy, wybór

Bardziej szczegółowo

A B. 2 5 8 18 2 x x x 5 x x 8 x 18

A B. 2 5 8 18 2 x x x 5 x x 8 x 18 Narzędzia modelowania niezawodności 1 Arkusz kalkulacyjny - jest to program zbudowany na schemacie relacyjnych baz danych. Relacje pomiędzy dwiema (lub więcej) cechami można zapisać na kilka sposobów.

Bardziej szczegółowo

Matematyka finansowa 20.03.2006 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXVIII Egzamin dla Aktuariuszy z 20 marca 2006 r.

Matematyka finansowa 20.03.2006 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXVIII Egzamin dla Aktuariuszy z 20 marca 2006 r. Komisja Egzaminacyjna dla Akuariuszy XXXVIII Egzamin dla Akuariuszy z 20 marca 2006 r. Część I Maemayka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minu 1 1. Ile

Bardziej szczegółowo

MODELOWANIE NIEZAWODNOŚCI SYSTEMU SYGNALIZACJI WŁAMANIA I NAPADU

MODELOWANIE NIEZAWODNOŚCI SYSTEMU SYGNALIZACJI WŁAMANIA I NAPADU Inż. Małgorzata MROZEK Dr inż. Grzegorz SAWICKI Wojskowa Akademia Techniczna DOI: 10.17814/mechanik.2015.7.274 MODELOWANIE NIEZAWODNOŚCI SYSTEMU SYGNALIZACJI WŁAMANIA I NAPADU Streszczenie: W artykule

Bardziej szczegółowo

Przykład 1 ceny mieszkań

Przykład 1 ceny mieszkań Przykład ceny mieszkań Przykład ceny mieszkań Model ekonometryczny zaleŝności ceny mieszkań od metraŝu - naleŝy do klasy modeli nieliniowych. - weryfikację empiryczną modelu przeprowadzono na przykładzie

Bardziej szczegółowo

I jest narzędziem służącym do porównywania rozproszenia dwóch zmiennych. Używamy go tylko, gdy pomiędzy zmiennymi istnieje logiczny związek

I jest narzędziem służącym do porównywania rozproszenia dwóch zmiennych. Używamy go tylko, gdy pomiędzy zmiennymi istnieje logiczny związek ZADANIA statystyka opisowa i CTG 1. Dokonano pomiaru stężenia jonów azotanowych w wodzie μg/ml 1 0.51 0.51 0.51 0.50 0.51 0.49 0.52 0.53 0.50 0.47 0.51 0.52 0.53 0.48 0.59 0.50 0.52 0.49 0.49 0.50 0.49

Bardziej szczegółowo

Konspekt. Piotr Chołda 10 stycznia Modelowanie niezawodności systemów złożonych

Konspekt. Piotr Chołda 10 stycznia Modelowanie niezawodności systemów złożonych Konspekt Piotr Chołda 0 stycznia 207 Modelowanie niezawodności systemów złożonych. Obiekty naprawialne. Czas (do) wystąpienia uszkodzenia (time to failure, T TF ), prawdopodobieństwo przeżycia (probability

Bardziej szczegółowo

Wykład 6. Badanie dynamiki zjawisk

Wykład 6. Badanie dynamiki zjawisk Wykład 6 Badanie dynamiki zjawisk TREND WYODRĘBNIANIE SKŁADNIKÓW SZEREGU CZASOWEGO 1. FUNKCJA TRENDU METODA ANALITYCZNA 2. ŚREDNIE RUCHOME METODA WYRÓWNYWANIA MECHANICZNEGO średnie ruchome zwykłe średnie

Bardziej szczegółowo

Estymacja przedziałowa - przedziały ufności dla średnich. Wrocław, 5 grudnia 2014

Estymacja przedziałowa - przedziały ufności dla średnich. Wrocław, 5 grudnia 2014 Estymacja przedziałowa - przedziały ufności dla średnich Wrocław, 5 grudnia 2014 Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja Przedziałem ufności dla paramertu

Bardziej szczegółowo

ANALIZA BIPOLARNEGO DYNAMICZNEGO MODELU DIAGNOSTYCZNEGO MONITOROWANIA WYPOSAśENIA ELEKTRYCZNEGO SAMOCHODU

ANALIZA BIPOLARNEGO DYNAMICZNEGO MODELU DIAGNOSTYCZNEGO MONITOROWANIA WYPOSAśENIA ELEKTRYCZNEGO SAMOCHODU LOGITRANS - VII KONFERENCJA NAUKOWO-TECHNICZNA LOGISTYKA, SYSTEMY TRANSPORTOWE, BEZPIECZEŃSTWO W TRANSPORCIE Radosław GAD 1 Moniorowanie diagnosyczne, model dynamiczny, diagnosyka pojazdowa ANALIZA BIPOLARNEGO

Bardziej szczegółowo

Metody rachunku kosztów Metoda rachunku kosztu działań Podstawowe pojęcia metody ABC Kalkulacja obiektów kosztowych metodą ABC Zasobowy rachunek

Metody rachunku kosztów Metoda rachunku kosztu działań Podstawowe pojęcia metody ABC Kalkulacja obiektów kosztowych metodą ABC Zasobowy rachunek Meody rachunku koszów Meoda rachunku koszu Podsawowe pojęcia meody ABC Kalkulacja obieków koszowych meodą ABC Zasobowy rachunek koszów Kalkulacja koszów meodą ABC podsawową informacja dla rachunkowości

Bardziej szczegółowo

ELEMENTÓW PODANYCH W PN-EN i PN-EN

ELEMENTÓW PODANYCH W PN-EN i PN-EN PORÓWNANIE METOD OCENY NIEUSZKADZALNOŚCI ELEMENTÓW PODANYCH W PN-EN 6508- i PN-EN 680-2 prof. dr inż. Tadeusz MISSALA Przemysłowy Instytut Automatyki i Pomiarów, 02-486 Warszawa Al. Jerozolimskie 202 tel.

Bardziej szczegółowo

Parytet stóp procentowych a premia za ryzyko na przykładzie kursu EURUSD

Parytet stóp procentowych a premia za ryzyko na przykładzie kursu EURUSD Parye sóp procenowych a premia za ryzyko na przykładzie kursu EURUD Marcin Gajewski Uniwersye Łódzki 4.12.2008 Parye sóp procenowych a premia za ryzyko na przykładzie kursu EURUD Niezabazpieczony UIP)

Bardziej szczegółowo

Urząd Dozoru Technicznego. RAMS Metoda wyboru najlepszej opcji projektowej. Ryszard Sauk. Departament Certyfikacji i Oceny Zgodności Wyrobów

Urząd Dozoru Technicznego. RAMS Metoda wyboru najlepszej opcji projektowej. Ryszard Sauk. Departament Certyfikacji i Oceny Zgodności Wyrobów Urząd Dozoru Technicznego RAMS Metoda wyboru najlepszej opcji projektowej Ryszard Sauk Departament Certyfikacji i Oceny Zgodności Wyrobów Plan Prezentacji Wstęp Pojęcia podstawowe Etapy RAMS Etapy projektu

Bardziej szczegółowo

Literatura. Leitner R., Zacharski J., Zarys matematyki wyŝszej dla studentów, cz. III.

Literatura. Leitner R., Zacharski J., Zarys matematyki wyŝszej dla studentów, cz. III. Literatura Krysicki W., Bartos J., Dyczka W., Królikowska K, Wasilewski M., Rachunek Prawdopodobieństwa i Statystyka Matematyczna w Zadaniach, cz. I. Leitner R., Zacharski J., Zarys matematyki wyŝszej

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych 6.04.2009 r.

Matematyka ubezpieczeń majątkowych 6.04.2009 r. Matematyka ubezpieczeń majątkowych 6.04.009 r. Zadanie. Niech N oznacza liczbę szkód zaszłych w ciągu roku z pewnego ubezpieczenia z czego: M to liczba szkód zgłoszonych przed końcem tego roku K to liczba

Bardziej szczegółowo

Analiza zdolności procesu

Analiza zdolności procesu Analiza zdolności - przegląd Analiza zdolności procesu Zdolność procesu dla danych alternatywnych Obliczanie DPU, DPM i DPMO. Obliczanie poziomu sigma procesu. Zdolność procesu dla danych liczbowych Obliczanie

Bardziej szczegółowo

Instrukcja obsługi panelu dla realizatorów programu Zdrowy Kraków

Instrukcja obsługi panelu dla realizatorów programu Zdrowy Kraków Instrukcja obsługi panelu dla realizatorów programu Zdrowy Kraków www.krakow.zdrowemiasto.com 1 Logowanie: W celu otrzymania dostępu do formularzy naleŝy zalogować się do portalu (www.krakow.zdrowemiasto.com).

Bardziej szczegółowo

Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn

Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn Wykład 10 Estymacja przedziałowa - przedziały ufności dla średniej Wrocław, 21 grudnia 2016r Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja 10.1 Przedziałem

Bardziej szczegółowo

Wykład 10 (12.05.08). Testowanie hipotez w rodzinie rozkładów normalnych przypadek nieznanego odchylenia standardowego

Wykład 10 (12.05.08). Testowanie hipotez w rodzinie rozkładów normalnych przypadek nieznanego odchylenia standardowego Wykład 10 (12.05.08). Testowanie hipotez w rodzinie rozkładów normalnych przypadek nieznanego odchylenia standardowego Przykład Cena metra kwadratowego (w tys. zł) z dla 14 losowo wybranych mieszkań w

Bardziej szczegółowo

Zarządzanie eksploatacją w elektroenergetyce

Zarządzanie eksploatacją w elektroenergetyce Zarządzanie eksploatacją w elektroenergetyce dr inŝ. Szczepan Moskwa Energetyka jądrowa we współczesnej elektroenergetyce Studium podyplomowe, Jaworzno 2009/2010 Bezpieczeństwo energetyczne Definiuje je

Bardziej szczegółowo

KOMPUTEROWE SYSTEMY POMIAROWE

KOMPUTEROWE SYSTEMY POMIAROWE KOMPUTEROWE SYSTEMY POMIAROWE Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMST - ITwE Semestr zimowy Wykład nr 2 Prawo autorskie Niniejsze

Bardziej szczegółowo

OBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA. z wykorzystaniem programu obliczeniowego Q maxp

OBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA. z wykorzystaniem programu obliczeniowego Q maxp tel.: +48 662 635 712 Liczba stron: 15 Data: 20.07.2010r OBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA z wykorzystaniem programu obliczeniowego Q maxp DŁUGIE

Bardziej szczegółowo

Podstawy niezawodności Bases of reliability. Elektrotechnika II stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

Podstawy niezawodności Bases of reliability. Elektrotechnika II stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny) Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/13

Bardziej szczegółowo

Egzamin ze Statystyki, Studia Licencjackie Stacjonarne czerwiec 2007 Temat A

Egzamin ze Statystyki, Studia Licencjackie Stacjonarne czerwiec 2007 Temat A (imię, nazwisko, nr albumu).. Przy rozwiązywaniu zadań, jeśli to konieczne, naleŝy przyjąć poziom istotności 0,01 i współczynnik ufności 0,95. Zadanie 1 W 005 roku przeprowadzono badanie ankietowe, którego

Bardziej szczegółowo

LEĆ FMEA FMEA ZAMIAST. Analiza FMEA. Tomasz Greber tomasz@greber.com.pl. Opracował: Tomasz Greber (www.greber.com.pl)

LEĆ FMEA FMEA ZAMIAST. Analiza FMEA. Tomasz Greber tomasz@greber.com.pl. Opracował: Tomasz Greber (www.greber.com.pl) Tomasz Greber tomasz@greber.com.pl MYŚLE LEĆ ZAMIAST PŁACIĆ 1 Dlaczego? Konkurencja Przepisy Normy (ISO 9000, TS 16949 ) Wymagania klientów Koszty niezgodności 1 10 100 1000 Projektowanie Początek produkcji

Bardziej szczegółowo

PRZETWORNIKI C / A PODSTAWOWE PARAMETRY

PRZETWORNIKI C / A PODSTAWOWE PARAMETRY PRZETWORIKI C / A PODSTAWOWE PARAMETRY Rozdzielczość przetwornika C/A - Określa ją liczba - bitów słowa wejściowego. - Definiuje się ją równieŝ przez wartość związaną z najmniej znaczącym bitem (LSB),

Bardziej szczegółowo

Matematyka ubezpieczeń życiowych 25.01.2003 r.

Matematyka ubezpieczeń życiowych 25.01.2003 r. Maemayka ubezpieczeń życiowych 25.01.2003 r. 1.. Dany jes wiek całkowiy x. Nasępujące prawdopodobieńswa przeżycia: g= 2p x + 1/3, h= 2p x + 1/ 2, j= 2p x + 3/4 obliczono sosując inerpolację zakładającą,

Bardziej szczegółowo

ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW

ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW ODRZUCANIE WYNIKÓW OJEDYNCZYCH OMIARÓW W praktyce pomiarowej zdarzają się sytuacje gdy jeden z pomiarów odstaje od pozostałych. Jeżeli wykorzystamy fakt, że wyniki pomiarów są zmienną losową opisywaną

Bardziej szczegółowo

PROGNOZOWANIE I SYMULACJE. mgr Żaneta Pruska. Ćwiczenia 2 Zadanie 1

PROGNOZOWANIE I SYMULACJE. mgr Żaneta Pruska. Ćwiczenia 2 Zadanie 1 PROGNOZOWANIE I SYMULACJE mgr Żanea Pruska Ćwiczenia 2 Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X, wyrażona w ysiącach wyprodukowanych i dosarczonych szuk firmie Bea,

Bardziej szczegółowo

Modelowanie ryzyka kredytowego MODELOWANIE ZA POMOCA HAZARDU

Modelowanie ryzyka kredytowego MODELOWANIE ZA POMOCA HAZARDU Modelowanie ryzyka kredyowego MODELOWANIE ZA POMOCA PROCESU HAZARDU Mariusz Niewęgłowski Wydział Maemayki i Nauk Informacyjnych, Poliechniki Warszawskiej Warszawa 2014 hazardu Warszawa 2014 1 / 18 Proces

Bardziej szczegółowo

Pobieranie próbek owoców

Pobieranie próbek owoców Strona 1 z 5 1. Cel i zakres: Pobieranie próbek owoców Celem procedury jest określenie zasad pobierania próbek owoców. Procedura obowiązuje wszystkie osoby odpowiedzialne za wykonywanie tej czynności.

Bardziej szczegółowo

ZARZĄDZANIE SIECIAMI TELEKOMUNIKACYJNYMI

ZARZĄDZANIE SIECIAMI TELEKOMUNIKACYJNYMI Wykład jest przygotowany dla II semestru kierunku Elektronika i Telekomunikacja. Studia II stopnia Dr inŝ. Małgorzata Langer ZARZĄDZANIE SIECIAMI TELEKOMUNIKACYJNYMI Prezentacja multimedialna współfinansowana

Bardziej szczegółowo

Kinematyka W Y K Ł A D I. Ruch jednowymiarowy. 2-1 Przemieszczenie, prędkość. x = x 2 - x x t

Kinematyka W Y K Ł A D I. Ruch jednowymiarowy. 2-1 Przemieszczenie, prędkość. x = x 2 - x x t Wykład z fizyki. Pior Posmykiewicz W Y K Ł A D I Ruch jednowymiarowy Kinemayka Zaczniemy wykład z fizyki od badania przedmioów będących w ruchu. Dział fizyki, kóry zajmuje się badaniem ruchu ciał bez wnikania

Bardziej szczegółowo

Anna Szewczyk. Wydział Geodezji Górniczej i InŜynierii środowiska AGH

Anna Szewczyk. Wydział Geodezji Górniczej i InŜynierii środowiska AGH Anna Szewczyk Wydział Geodezji Górniczej i InŜynierii środowiska AGH Zastosowania biblioteki Genetics programu R The genetics Package Tytuł: Populacja genetyczna Wersja:1.2.0 Data utworzenia: 2005-11-09

Bardziej szczegółowo

J.Bajer, R.Iwanejko,J.Kapcia, Niezawodność systemów wodociagowych i kanalizacyjnych w zadaniach, Politechnika Krakowska, 123(2006).

J.Bajer, R.Iwanejko,J.Kapcia, Niezawodność systemów wodociagowych i kanalizacyjnych w zadaniach, Politechnika Krakowska, 123(2006). Większość zadań pochodzi z podręcznika: J.Bajer, R.Iwanejko,J.Kapcia, Niezawodność systemów wodociagowych i kanalizacyjnych w zadaniach, Politechnika Krakowska, 123(2006). Elementy nieodnawialne. Wskaźniki,

Bardziej szczegółowo

Konfiguracja parametrów sondy cyfrowo analogowej typu CS-26/RS/U

Konfiguracja parametrów sondy cyfrowo analogowej typu CS-26/RS/U Konfiguracja parametrów sondy cyfrowo analogowej typu CS-26/RS/U Ostrów Wielkopolski, 25.02.2011 1 Sonda typu CS-26/RS/U posiada wyjście analogowe napięciowe (0...10V, lub 0...5V, lub 0...4,5V, lub 0...2,5V)

Bardziej szczegółowo

Komputerowa Analiza Danych Doświadczalnych

Komputerowa Analiza Danych Doświadczalnych Komputerowa Analiza Danych Doświadczalnych dr inż. Adam Kisiel kisiel@if.pw.edu.pl pokój 117b (12b) 1 Materiały do wykładu Transparencje do wykładów: http://www.if.pw.edu.pl/~kisiel/kadd/kadd.html Literatura

Bardziej szczegółowo

licencjat Pytania teoretyczne:

licencjat Pytania teoretyczne: Plan wykładu: 1. Wiadomości ogólne. 2. Model ekonomeryczny i jego elemeny 3. Meody doboru zmiennych do modelu ekonomerycznego. 4. Szacownie paramerów srukuralnych MNK. Weryfikacja modelu KMNK 6. Prognozowanie

Bardziej szczegółowo

OPTYMALIZACJA PROCESU ROZPOZNAWANIA STANU TECHNICZNEGO POJAZDÓW

OPTYMALIZACJA PROCESU ROZPOZNAWANIA STANU TECHNICZNEGO POJAZDÓW Henryk TYLICKI OPTYMALIZACJA PROCESU ROZPOZNAWANIA STANU TECHNICZNEGO POJAZDÓW Optimisation of a vehicle's technical state assessment process Wstęp Maszyny w kaŝdej chwili znajdują się w pewnym określonym

Bardziej szczegółowo

Analiza niepewności pomiarów

Analiza niepewności pomiarów Teoria pomiarów Analiza niepewności pomiarów Zagadnienia statystyki matematycznej Dr hab. inż. Paweł Majda www.pmajda.zut.edu.pl Podstawy statystyki matematycznej Histogram oraz wielobok liczebności zmiennej

Bardziej szczegółowo

Matematyka finansowa i ubezpieczeniowa - 8 Wycena papierów wartościowych

Matematyka finansowa i ubezpieczeniowa - 8 Wycena papierów wartościowych Matematyka finansowa i ubezpieczeniowa - 8 Wycena papierów wartościowych W ujęciu probabilistycznym cena akcji w momencie t jest zmienną losową P t o pewnym (zwykle nieznanym) rozkładzie prawdopodobieństwa,

Bardziej szczegółowo

MODELOWANIE PROCESU OBSŁUGI STATKÓW POWIETRZNYCH

MODELOWANIE PROCESU OBSŁUGI STATKÓW POWIETRZNYCH LOGITRANS - VII KONFERENCJA NAUKOWO-TECHNICZNA LOGISTYKA, SYSTEMY TRANSPORTOWE, BEZPIECZEŃSTWO W TRANSPORCIE Arur KIERZKOWSKI 1 Saek powierzny, proces obsługi, modelownie procesów ransporowych MODELOWANIE

Bardziej szczegółowo

Dobór przekroju żyły powrotnej w kablach elektroenergetycznych

Dobór przekroju żyły powrotnej w kablach elektroenergetycznych Dobór przekroju żyły powronej w kablach elekroenergeycznych Franciszek pyra, ZPBE Energopomiar Elekryka, Gliwice Marian Urbańczyk, Insyu Fizyki Poliechnika Śląska, Gliwice. Wsęp Zagadnienie poprawnego

Bardziej szczegółowo

PROJEKT nr 1 Projekt spawanego węzła kratownicy. Sporządził: Andrzej Wölk

PROJEKT nr 1 Projekt spawanego węzła kratownicy. Sporządził: Andrzej Wölk PROJEKT nr 1 Projek spawanego węzła kraownicy Sporządził: Andrzej Wölk Projek pojedynczego węzła spawnego kraownicy Siły: 1 = 10 3 = -10 Kąy: α = 5 o β = 75 o γ = 75 o Schema węzła kraownicy Dane: Grubość

Bardziej szczegółowo

DOBÓR PRZEKROJU ŻYŁY POWROTNEJ W KABLACH ELEKTROENERGETYCZNYCH

DOBÓR PRZEKROJU ŻYŁY POWROTNEJ W KABLACH ELEKTROENERGETYCZNYCH Franciszek SPYRA ZPBE Energopomiar Elekryka, Gliwice Marian URBAŃCZYK Insyu Fizyki Poliechnika Śląska, Gliwice DOBÓR PRZEKROJU ŻYŁY POWROTNEJ W KABLACH ELEKTROENERGETYCZNYCH. Wsęp Zagadnienie poprawnego

Bardziej szczegółowo

Nowa metoda określania zasobów dyspozycyjnych i eksploatacyjnych

Nowa metoda określania zasobów dyspozycyjnych i eksploatacyjnych Instytut Meteorologii i Gospodarki Wodnej Centrum Edukacji Hydrologiczno - Meteorologicznej Beniamin Więzik Nowa metoda określania zasobów dyspozycyjnych i eksploatacyjnych SEMINARIUM Warszawa 6..2008

Bardziej szczegółowo

Wprowadzenie do estymacji rozkładów w SAS.

Wprowadzenie do estymacji rozkładów w SAS. Wprowadzenie do estymacji rozkładów w SAS Henryk.Maciejewski@pwr.wroc.pl 1 Plan Empiryczne modele niezawodności Estymacja parametryczna rozkładów zmiennych losowych Estymacja nieparametryczna Empiryczne

Bardziej szczegółowo

ŚWIADECTWO CHARAKTERYSTYKI ENERGETYCZNEJ

ŚWIADECTWO CHARAKTERYSTYKI ENERGETYCZNEJ Załącznik nr 4 Wzór świadectwa charakterystyki energetycznej dla budynku mieszkalnego. Strona tytułowa. ŚWIADECTWO CHARAKTERYSTYKI ENERGETYCZNEJ dla budynku mieszkalnego nr.. WaŜne do: Budynek oceniany:

Bardziej szczegółowo

Zadanie 1. są niezależne i mają rozkład z atomami: ( ),

Zadanie 1. są niezależne i mają rozkład z atomami: ( ), Zadanie. Zmienne losowe są niezależne i mają rozkład z atomami: ( ) ( ) i gęstością: ( ) na przedziale ( ). Wobec tego ( ) wynosi: (A) 0.2295 (B) 0.2403 (C) 0.2457 (D) 0.25 (E) 0.269 Zadanie 2. Niech:

Bardziej szczegółowo

Typowe błędy w analizie rynku nieruchomości przy uŝyciu metod statystycznych

Typowe błędy w analizie rynku nieruchomości przy uŝyciu metod statystycznych Typowe błędy w analizie rynku nieruchomości przy uŝyciu metod statystycznych Sebastian Kokot XXI Krajowa Konferencja Rzeczoznawców Majątkowych, Międzyzdroje 2012 Rzetelnie wykonana analiza rynku nieruchomości

Bardziej szczegółowo

Wykład 4. Plan: 1. Aproksymacja rozkładu dwumianowego rozkładem normalnym. 2. Rozkłady próbkowe. 3. Centralne twierdzenie graniczne

Wykład 4. Plan: 1. Aproksymacja rozkładu dwumianowego rozkładem normalnym. 2. Rozkłady próbkowe. 3. Centralne twierdzenie graniczne Wykład 4 Plan: 1. Aproksymacja rozkładu dwumianowego rozkładem normalnym 2. Rozkłady próbkowe 3. Centralne twierdzenie graniczne Przybliżenie rozkładu dwumianowego rozkładem normalnym Niech Y ma rozkład

Bardziej szczegółowo

WSTĘP DO ELEKTRONIKI

WSTĘP DO ELEKTRONIKI WSTĘP DO ELEKTRONIKI Część I Napięcie, naężenie i moc prądu elekrycznego Sygnały elekryczne i ich klasyfikacja Rodzaje układów elekronicznych Janusz Brzychczyk IF UJ Elekronika Dziedzina nauki i echniki

Bardziej szczegółowo

EFEKT DŹWIGNI NA GPW W WARSZAWIE WPROWADZENIE

EFEKT DŹWIGNI NA GPW W WARSZAWIE WPROWADZENIE Paweł Kobus, Rober Pierzykowski Kaedra Ekonomerii i Informayki SGGW e-mail: pawel.kobus@saysyka.info EFEKT DŹWIGNI NA GPW W WARSZAWIE Sreszczenie: Do modelowania asymerycznego wpływu dobrych i złych informacji

Bardziej szczegółowo

EKONOMETRIA wykład 2. Prof. dr hab. Eugeniusz Gatnar.

EKONOMETRIA wykład 2. Prof. dr hab. Eugeniusz Gatnar. EKONOMERIA wykład Prof. dr hab. Eugeniusz Ganar eganar@mail.wz.uw.edu.pl Przedziały ufności Dla paramerów srukuralnych modelu: P bˆ j S( bˆ z prawdopodobieńswem parameru b bˆ S( bˆ, ( m j j j, ( m j b

Bardziej szczegółowo

Egzamin ze statystyki, Studia Licencjackie Stacjonarne. TEMAT C grupa 1 Czerwiec 2007

Egzamin ze statystyki, Studia Licencjackie Stacjonarne. TEMAT C grupa 1 Czerwiec 2007 Egzamin ze statystyki, Studia Licencjackie Stacjonarne TEMAT C grupa 1 Czerwiec 2007 (imię, nazwisko, nr albumu).. Przy rozwiązywaniu zadań, jeśli to konieczne, naleŝy przyjąć poziom istotności 0,01 i

Bardziej szczegółowo

Analiza niezawodności lokomotywy spalinowej serii SM48

Analiza niezawodności lokomotywy spalinowej serii SM48 SZKODA Maciej 1 Analiza niezawodności lokomoywy spalinowej serii SM48 Analiza niezawodności, Wskaźniki niezawodnościowe, Lokomoywa SM48 Sreszczenie W arykule przedsawiono wyniki analizy niezawodności lokomoywy

Bardziej szczegółowo

WYKŁAD 2. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady

WYKŁAD 2. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady WYKŁAD 2 Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady Metody statystyczne metody opisu metody wnioskowania statystycznego syntetyczny liczbowy opis właściwości zbioru danych ocena

Bardziej szczegółowo

SPRAWDZIAN NR 1 ROBERT KOPERCZAK, ID studenta : k4342

SPRAWDZIAN NR 1 ROBERT KOPERCZAK, ID studenta : k4342 TECHNIKI ANALITYCZNE W BIZNESIE SPRAWDZIAN NR 1 Autor pracy ROBERT KOPERCZAK, ID studenta : k4342 Kraków, 22 Grudnia 2009 2 Spis treści 1 Zadanie 1... 3 1.1 Szereg rozdzielczy wag kobiałek.... 4 1.2 Histogram

Bardziej szczegółowo

OBLICZANIE TERMINU REALIZACJI PRZEDSIĘWZIĘĆ BUDOWLANYCH METODĄ CCPM NA PODSTAWIE MULTIPLIKATYWNEGO MODELU CZASU TRWANIA CZYNNOŚCI

OBLICZANIE TERMINU REALIZACJI PRZEDSIĘWZIĘĆ BUDOWLANYCH METODĄ CCPM NA PODSTAWIE MULTIPLIKATYWNEGO MODELU CZASU TRWANIA CZYNNOŚCI Dane bibliograficzne o arykule: hp://mieczyslaw_polonski.users.sggw.pl/mppublikacje Mieczysław POŁOŃSKI 1 OBLICZANIE TERMIN REALIZACJI PRZEDSIĘWZIĘĆ BDOWLANYCH METODĄ CCPM NA PODSTAWIE MLTIPLIKATYWNEGO

Bardziej szczegółowo

Zarządzanie i inżynieria jakości / Adam Hamrol. Warszawa, Spis treści

Zarządzanie i inżynieria jakości / Adam Hamrol. Warszawa, Spis treści Zarządzanie i inżynieria jakości / Adam Hamrol. Warszawa, 2017 Spis treści Wprowadzenie 11 1. O inżynierii jakości i zarządzaniu jakością 11 2. Zakres i układ książki 14 3. Komentarz terminologiczny 17

Bardziej szczegółowo

Rozkłady statystyk z próby

Rozkłady statystyk z próby Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny

Bardziej szczegółowo