E5. KONDENSATOR W OBWODZIE PRĄDU STAŁEGO

Wielkość: px
Rozpocząć pokaz od strony:

Download "E5. KONDENSATOR W OBWODZIE PRĄDU STAŁEGO"

Transkrypt

1 E5. KONDENSATOR W OBWODZIE PRĄDU STAŁEGO Marek Pękała i Jadwiga Szydłowska Procesy rozładowania kondensaora i drgania relaksacyjne w obwodach RC należą do szerokiej klasy procesów relaksacyjnych. Procesy relaksacyjne przeprowadzają układ do sanu równowagi rwałej lub nierwałej o niższej energii a dokładniej o niższym poencjale ermodynamicznym. Procesy relaksacyjne są procesami nieodwracalnymi, w kórych nasępuje częściowa dyssypacja (rozproszenie) energii poprzez zamianę jej na ciepło. Szybkość procesów y dy relaksacyjnych jes y d proporcjonalna do odchylenia od sanu równowagi y() i dlaego szybkość maleje sopniowo w czasie aż do osiągnięcia sanu równowagi, gdy y( k ) =. Procesy relaksacyjne są ogólnie y y e opisywane przez funkcje wykładnicze (Rys. 1). Rozładowanie kondensaora opisuje funkcja y y exp. Rys.1 gdzie y() i y są np. ładunkiem Q() na kondensaorze a paramer nazywa się czasem relaksacji, po kórym warość funkcji exp maleje e = razy. ROZŁADOWANIE KONDENSATORA Zgodnie z drugim prawem Kirchhoffa po zamknięciu klucza K w obwodzie prądu sałego (Rys. 2) jednorazowo ładują się okładki kondensaora C. Podczas ładowania w gałęzi z kondensaorem płynie prąd ładowania zanikający w czasie. W chwili gdy na okładkach zgromadzi się ładunek Q =C prąd en zanika, ponieważ prąd nie przepływa przez kondensaor a ylko ładuje okładki kondensaora. Rys. 2 Po owarciu klucza odłączona zosaje siła elekromooryczna i w prawej części układu nasępuje rozładowanie kondensaora przez opornik R i rozproszenie energii. Zgodnie z drugim prawem Kirchhoffa Q C IR + V K C R (1) A I

2 2 gdzie C Q i IR opisują chwilowe spadki napięcia odpowiednio na kondensaorze C i na dq oporniku R. Uwzględniając, że I osanie równanie można zapisać d Q dq R. (2) C d Po rozdzieleniu zmiennych dq 1 d (3) Q RC oznaczając iloczyn RC = po scałkowaniu orzymujemy rozwiązanie Q Q exp C exp (4) opisujące chwilowe warości ładunku na kondensaorze w funkcji czasu. Chwilowe warości napięcia na kondensaorze opisuje Q U exp exp (5) C Uwzględniając prawo Ohma I exp I exp (6) R orzymujemy funkcję wykładniczą opisująca naężenie prądu rozładowania kondensaora w obwodzie RC. Cel Celem ćwiczenia jes doświadczalne wyznaczenie i analiza paramerów opisujących rozładowanie kondensaora, akich jak: krzywa rozładowania, czyli zależność I(), ładunek naładowanego kondensaora wyznaczony z krzywej rozładowania, czas relaksacji obwodu i jego zależność od oporu rozładowania i pojemności kondensaora. Wymagania Prawa Ohma i Kirchhoffa, siła elekromooryczna, napięcie, naężenie prądu. Kondensaor: pojemność, ładunek, energia. Obwód RC: ładowanie i rozładowanie kondensaora, czas relaksacji. Mierniki prądu i napięcia. Lieraura R. Resnick, D. Halliday Fizyka.2; D. Halliday, R. Resnick, J. Walker Fizyka.3; E. M Purcell Elekryczność i magneyzm; om II, H. Szydłowski, Pracownia fizyczna; A. Piekara, Elekryczność i magneyzm, PWN, K. Zboiński Laboraorium z fizyki; R. Nowak - Saysyka dla fizyków, PWN 22 + ćwiczenia.

3 3 Opis układu Układ pomiarowy do badania prądu rozładowania kondensaora składa się z zasilacza napięcia sałego, opornika, kondensaora dekadowego, mikroamperomierza i opornika dekadowego. Czas mierzy się soperem. Wykonanie ćwiczenia (Uwaga: napięcie zasilania włącza asysen.) Krzywą rozładowania kondensaora worzy się mierząc chwilowe warości naężenia prądu rozładowania kondensaora I(). 1. Przed rozpoczęciem pomiarów należy ak wypoziomować galwanomer, żeby wskaźnik znalazł się na zerze. 2. Korzysając z płyki monażowej łączymy obwód według schemau przedsawionego na rysunku Pojemność elekryczną kondensaora C dekadowego i warość oporu w układzie wybiera asysen. 4. Napięcie zasilacza należy usawić ak, żeby począkowe naężenie prądu rozładowania I było równe 1 działkom w wybranym zakresie mikroamperomierza, np. 2, 5, 1, 2 A. 5. Zapisujemy pojemność kondensaora C, napięcie zasilacza i wybrany zakres mikroamperomierza. Zakres 1 działek amperomierza odpowiada pełnemu wybranemu zakresowi, np. 2, 5, 1, 2 A. 6. Owierając klucz mierzymy soperem czas, w ciągu kórego naężenie prądu od począkowej warości I (równej 1 działek) maleje co 1 działek do zera, czyli od 1 do 9 działek, od 1 do 8 działek i..d. 7. Dla kilku punków (np. rzech) krzywej rozładowania mierzymy czas rzykronie. Warian pojemnościowy (przy sałym oporze rozładowania R) Żeby zbadać zależność czasu relaksacji (C) od pojemności, pomiary krzywej rozładowania (jak w 5 i 6) wykonuje się przy ej samej warości oporu rozładowania R (w płycie monażowej) dla kilku pojemności C i oraz dla nieznanego kondensaora C X. Warian oporowy (przy sałej pojemności C) Żeby zbadać zależność czasu relaksacji (R) od oporu rozładowania, mierzy się krzywe rozładowania (jak w 5 i 6) przy sałej pojemności C (np. 1-5 F lub nieznana pojemność C X ) dla : - kilku różnych oporów R D wybranych przy pomocy zewnęrznego opornika dekadowego (zamias oporników płyy monażowej), - lub kilku różnych oporów R na płycie monażowej. Sprawozdanie - Opracowanie wyników I. Cel ćwiczenia, II. Króki opis meody pomiarowej, III. Króki, ogólny opis analizy wyników pomiarowych, zależności maemayczne, IV. Opracowanie wyników: Krzywa rozładowania I() a) Dla każdego zbioru wyników doświadczalnych I() wykonujemy wykresy krzywej rozładowania kondensaora I() na papierze milimerowym lub sosując programy

4 4 kompuerowe. Dla kilku punków pomiarowych na wykresie zaznaczamy błąd pomiaru czasu i błąd pomiaru naężenia prądu (mikroamperomierz ma klasę 1). Ładunek Q b) Ładunek Q zgromadzony na kondensaorze obliczamy z krzywych rozładowania I() sosując jedną z meod: całkową*, graficzną** lub wagową***. * Meoda całkowa programy kompuerowe pozwalają scałkować powierzchnię pod krzywą rozładowania. W naszym przypadku powierzchnia a odpowiada ładunkowi Q, kóry odpłynął z kondensaora. **Meoda graficzna - (H. Szydłowski - Pracownia fizyczna, PWN) - Pole ograniczone przez oś czasu -, oś prądu - I oraz krzywą rozładowania - I() dzielimy na przybliżone rapezy o podsawach równoległych do osi pionowej i obliczamy sumę pól rapezów. (Jeżeli rapezy mają równe wysokości, obliczenie upraszcza się poprzez odpowiednie (!) sumowanie połówek podsaw rapezów.) Uwzględniając, jakiemu ładunkowi elekrycznemu odpowiada, np. 1 cm 2 na wykresie, obliczamy ładunek zgromadzony na kondensaorze Q. (Wpływ niedokładności wynikającej z sumowania elemenów powierzchni pod krzywą I() dla, można ograniczyć biorąc pod uwagę, że po czasie, np. = 3 ( = czas relaksacji) z kondensaora odpływa 95 % ładunku). ***Meoda wagowa - Wycinamy pole ograniczone przez oś czasu -, oś prądu -I oraz krzywą rozładowania I(). Z ego samego papieru wycinamy eż, np. 1 dcm 2. Porównanie wagi obu wycinków pozwala określić powierzchnię pod krzywą I(). Uwzględniając, jakiemu ładunkowi elekrycznemu odpowiada, np. 1 cm 2 na wykresie, obliczamy ładunek zgromadzony na kondensaorze Q. Ładunek Q wyznaczony z krzywej rozładowania należy porównać z ładunkiem obliczonym jako Q = C. I Wykres ln I c) W celu sprawdzenia, że naężenie prądu rozładowania kondensaora maleje wykładniczo w czasie zgodnie z wyrażeniem I I exp I exp RC I logarymujemy obusronnie wyrażenie exp i orzymujemy liniową funkcję czasu I I( ) 1 1 ln A I, gdzie A. Z danych doświadczalnych obliczamy i rysujemy wykres I ln I (ręcznie lub kompuerowo) w zależności od czasu dla każdego zbioru wyników doświadczalnych. Czas relaksacji = RC I d) Z wykresu ln wyznaczamy współczynnik nachylenia oraz błąd współczynnika I nachylenia A ± A meodą najmniejszych kwadraów.

5 5 e) Dla każdej krzywej rozładowania obliczamy czas relaksacji ( =1/A) oraz błąd (z (1/ A) A meody propagacji błędu) jako: A. 2 A A f) Dla pomiarów wykonanych przy sałym oporze rozładowania R (warian pojemnościowy) wykonujemy wykres czasu relaksacji (C) w funkcji pojemności kondensaora C (sprawdzając zależność = RC). Meodą najmniejszych kwadraów wyznaczamy opór rozładowania R R równy nachyleniu prosej (C). g) Dla pomiarów wykonanych przy sałej pojemności C (warian oporowy) wykonujemy wykres czasu relaksacji (R) w funkcji dekadowego oporu rozładowania R D i (sprawdzając zależność = RC) z nachylenia prosej wyznaczamy pojemność C± C (meodą najmniejszych kwadraów). Nieznany kondensaor C X h) Nieznaną pojemność kondensaora C X ± C X obliczamy przy pomocy jednej z poniższych meod: - przy pomocy ładunku Q X wyznaczonego w b) i napięcia zasilacza, - przy pomocy czasu relaksacji = RC wyznaczonego w e) i oporu rozładowania R wyznaczonego w f) - (warian pojemnościowy), -. przy pomocy czasu relaksacji = RC wyznaczonego w e) i użyego oporu dekadowego R D - (warian oporowy). i) Wyniki zbieramy w abeli podając: pojemność, napięcie zasilacza, pojemność kondensaora dekadowego C, ładunek naładowanego kondensaora Q Q, ładunek obliczony Q = C, współczynnik nachylenia A ± A, czas relaksacji ±, opór rozładowania R ± R, pojemność nieznanego kondensaora C X ± C X. j) Jeżeli powyższe wyniki nie zosały oparzone odpowiednim komenarzem, sprawozdanie kończymy podsumowującymi wnioskami i porównaniem z przewidywaniami.

( 3 ) Kondensator o pojemności C naładowany do różnicy potencjałów U posiada ładunek: q = C U. ( 4 ) Eliminując U z równania (3) i (4) otrzymamy: =

( 3 ) Kondensator o pojemności C naładowany do różnicy potencjałów U posiada ładunek: q = C U. ( 4 ) Eliminując U z równania (3) i (4) otrzymamy: = ROZŁADOWANIE KONDENSATORA I. el ćwiczenia: wyznaczenie zależności napięcia (i/lub prądu I ) rozładowania kondensaora w funkcji czasu : = (), wyznaczanie sałej czasowej τ =. II. Przyrządy: III. Lieraura:

Bardziej szczegółowo

Wyznaczanie krzywej ładowania kondensatora

Wyznaczanie krzywej ładowania kondensatora Ćwiczenie E10 Wyznaczanie krzywej ładowania kondensatora E10.1. Cel ćwiczenia Celem ćwiczenia jest zbadanie przebiegu procesu ładowania kondensatora oraz wyznaczenie stałej czasowej szeregowego układu.

Bardziej szczegółowo

E1. OBWODY PRĄDU STAŁEGO WYZNACZANIE OPORU PRZEWODNIKÓW I SIŁY ELEKTROMOTORYCZNEJ ŹRÓDŁA

E1. OBWODY PRĄDU STAŁEGO WYZNACZANIE OPORU PRZEWODNIKÓW I SIŁY ELEKTROMOTORYCZNEJ ŹRÓDŁA E1. OBWODY PRĄDU STŁEGO WYZNCZNIE OPORU PRZEWODNIKÓW I SIŁY ELEKTROMOTORYCZNEJ ŹRÓDŁ tekst opracowała: Bożena Janowska-Dmoch Prądem elektrycznym nazywamy uporządkowany ruch ładunków elektrycznych wywołany

Bardziej szczegółowo

Ć W I C Z E N I E N R E-9

Ć W I C Z E N I E N R E-9 INSTYTT FIZYKI WYDZIAŁ INŻYNIERII PRODKJI I TEHNOLOGII MATERIAŁÓW POLITEHNIKA ZĘSTOHOWSKA PRAOWNIA ELEKTRYZNOŚI I MAGNETYZM Ć W I Z E N I E N R E-9 DRGANIA RELAKSAYJNE I. Zagadnienia do przesudiowania

Bardziej szczegółowo

Podstawy elektrotechniki

Podstawy elektrotechniki Wydział Mechaniczno-Energeyczny Podsawy elekroechniki Prof. dr hab. inż. Juliusz B. Gajewski, prof. zw. PWr Wybrzeże S. Wyspiańskiego 27, 50-370 Wrocław Bud. A4 Sara kołownia, pokój 359 Tel.: 7 320 320

Bardziej szczegółowo

Ć W I C Z E N I E N R E-5

Ć W I C Z E N I E N R E-5 NSTYTUT FZYK WYDZAŁ NŻYNER PRODUKCJ TECHNOLOG MATERAŁÓW POLTECHNKA CZĘSTOCHOWSKA PRACOWNA ELEKTRYCZNOŚC MAGNETYZMU Ć W C Z E N E N R E-5 POMAR POJEMNOŚC KONDENSATORA METODĄ ROZŁADOWANA . Zagadnienia do

Bardziej szczegółowo

ĆWICZENIE NR 43 U R I (1)

ĆWICZENIE NR 43 U R I (1) ĆWCZENE N 43 POMY OPO METODĄ TECHNCZNĄ Cel ćwiczenia: wyznaczenie warości oporu oporników poprzez pomiary naężania prądu płynącego przez opornik oraz napięcia na oporniku Wsęp W celu wyznaczenia warości

Bardziej szczegółowo

13 K A T E D R A F I ZYKI S T O S O W AN E J

13 K A T E D R A F I ZYKI S T O S O W AN E J 3 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A P O D S T A W E L E K T R O T E C H N I K I I E L E K T R O N I K I Ćw. 3. Wyznaczenie elementów L C metoda rezonansu Wprowadzenie Obwód złożony

Bardziej szczegółowo

Ćw. 27. Wyznaczenie elementów L C metoda rezonansu

Ćw. 27. Wyznaczenie elementów L C metoda rezonansu 7 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A F I Z Y K I Ćw. 7. Wyznaczenie elementów L C metoda rezonansu Wprowadzenie Obwód złożony z połączonych: kondensatora C cewki L i opornika R

Bardziej szczegółowo

BADANIE PROCESÓW ŁADOWANIA I ROZŁADOWANIA KONDENSATORA

BADANIE PROCESÓW ŁADOWANIA I ROZŁADOWANIA KONDENSATORA BADANIE PROCESÓW ŁADOWANIA I ROZŁADOWANIA KONDENSATORA Cel ćwiczenia: wyznaczenie przebiegów ładowania i rozładowania kondensatora oraz wyznaczenie stałej czasowej układów RC. Zagadnienia: prawa Ohma i

Bardziej szczegółowo

Drgania elektromagnetyczne obwodu LCR

Drgania elektromagnetyczne obwodu LCR Ćwiczenie 61 Drgania elekromagneyczne obwodu LCR Cel ćwiczenia Obserwacja drgań łumionych i przebiegów aperiodycznych w obwodzie LCR. Pomiar i inerpreacja paramerów opisujących obserwowane przebiegi napięcia

Bardziej szczegółowo

LABORATORIUM PODSTAW ELEKTRONIKI PROSTOWNIKI

LABORATORIUM PODSTAW ELEKTRONIKI PROSTOWNIKI ZESPÓŁ LABORATORIÓW TELEMATYKI TRANSPORTU ZAKŁAD TELEKOMUNIKJI W TRANSPORCIE WYDZIAŁ TRANSPORTU POLITECHNIKI WARSZAWSKIEJ LABORATORIUM PODSTAW ELEKTRONIKI INSTRUKCJA DO ĆWICZENIA NR 5 PROSTOWNIKI DO UŻYTKU

Bardziej szczegółowo

Pracownia pomiarów i sterowania Ćwiczenie 4 Badanie ładowania i rozładowywania kondensatora

Pracownia pomiarów i sterowania Ćwiczenie 4 Badanie ładowania i rozładowywania kondensatora Małgorzata Marynowska Uniwersytet Wrocławski, I rok Fizyka doświadczalna II stopnia Prowadzący: dr M. Grodzicki Data wykonania ćwiczenia: 17.03.2015 Pracownia pomiarów i sterowania Ćwiczenie 4 Badanie

Bardziej szczegółowo

ĆWICZENIE 4 Badanie stanów nieustalonych w obwodach RL, RC i RLC przy wymuszeniu stałym

ĆWICZENIE 4 Badanie stanów nieustalonych w obwodach RL, RC i RLC przy wymuszeniu stałym ĆWIZENIE 4 Badanie sanów nieusalonych w obwodach, i przy wymuszeniu sałym. el ćwiczenia Zapoznanie się z rozpływem prądów, rozkładem w sanach nieusalonych w obwodach szeregowych, i Zapoznanie się ze sposobami

Bardziej szczegółowo

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO ĆWICZENIE 53 PRAWO OHMA DLA PRĄDU PRZEMIENNEGO Cel ćwiczenia: wyznaczenie wartości indukcyjności cewek i pojemności kondensatorów przy wykorzystaniu prawa Ohma dla prądu przemiennego; sprawdzenie prawa

Bardziej szczegółowo

SPRAWDZANIE SŁUSZNOŚCI PRAWA OHMA DLA PRĄDU STAŁEGO

SPRAWDZANIE SŁUSZNOŚCI PRAWA OHMA DLA PRĄDU STAŁEGO SPRWDZNE SŁSZNOŚC PRW OHM DL PRĄD STŁEGO Cele ćwiczenia: Doskonalenie umiejętności posługiwania się miernikami elektrycznymi (stała miernika, klasa miernika, optymalny zakres wychyleń). Zapoznanie się

Bardziej szczegółowo

Analiza zderzeń dwóch ciał sprężystych

Analiza zderzeń dwóch ciał sprężystych Ćwiczenie M5 Analiza zderzeń dwóch ciał sprężystych M5.1. Cel ćwiczenia Celem ćwiczenia jest pomiar czasu zderzenia kul stalowych o różnych masach i prędkościach z nieruchomą, ciężką stalową przeszkodą.

Bardziej szczegółowo

WYDZIAŁ.. LABORATORIUM FIZYCZNE

WYDZIAŁ.. LABORATORIUM FIZYCZNE W S E i Z W WASZAWE WYDZAŁ.. LABOATOUM FZYCZNE Ćwiczenie Nr 10 Temat: POMA OPOU METODĄ TECHNCZNĄ. PAWO OHMA Warszawa 2009 Prawo Ohma POMA OPOU METODĄ TECHNCZNĄ Uporządkowany ruch elektronów nazywa się

Bardziej szczegółowo

BADANIE PROCESÓW ŁADOWANIA I ROZŁADOWANIA KONDENSATORA

BADANIE PROCESÓW ŁADOWANIA I ROZŁADOWANIA KONDENSATORA ĆWIENIE 65 BADANIE PESÓW ŁADWANIA I ŁADWANIA KNDENSATA el ćwiczenia: Wyznaczenie przebiegów ładowania i rozładowania kondensatora oraz wyznaczenie stałej czasowej układów agadnienia: prawa hma i Kirchhoffa,

Bardziej szczegółowo

Analiza zderzeń dwóch ciał sprężystych

Analiza zderzeń dwóch ciał sprężystych Ćwiczenie M5 Analiza zderzeń dwóch ciał sprężystych M5.1. Cel ćwiczenia Celem ćwiczenia jest pomiar czasu zderzenia kul stalowych o różnych masach i prędkościach z nieruchomą, ciężką stalową przeszkodą.

Bardziej szczegółowo

Drgania relaksacyjne w obwodzie RC

Drgania relaksacyjne w obwodzie RC Politechnika Łódzka FTIMS Kierunek: Informatyka rok akademicki: 2008/2009 sem. 2. grupa II Termin: 21 IV 2009 Nr. ćwiczenia: 311 Temat ćwiczenia: Drgania relaksacyjne w obwodzie RC Nr. studenta: 5 Nr.

Bardziej szczegółowo

Ćwiczenie 1 Metody pomiarowe i opracowywanie danych doświadczalnych.

Ćwiczenie 1 Metody pomiarowe i opracowywanie danych doświadczalnych. Ćwiczenie 1 Metody pomiarowe i opracowywanie danych doświadczalnych. Ćwiczenie ma następujące części: 1 Pomiar rezystancji i sprawdzanie prawa Ohma, metoda najmniejszych kwadratów. 2 Pomiar średnicy pręta.

Bardziej szczegółowo

Drgania relaksacyjne w obwodzie RC

Drgania relaksacyjne w obwodzie RC Politechnika Łódzka FTIMS Kierunek: Informatyka rok akademicki: 2008/2009 sem. 2. Termin: 18 V 2009 Nr. Ćwiczenia: 311 Temat Ćwiczenia: Drgania relaksacyjne w obwodzie RC Nr. studenta:... Nr. albumu: 150875

Bardziej szczegółowo

Wyznaczanie składowej poziomej natężenia pola magnetycznego Ziemi za pomocą busoli stycznych

Wyznaczanie składowej poziomej natężenia pola magnetycznego Ziemi za pomocą busoli stycznych Ćwiczenie E12 Wyznaczanie składowej poziomej natężenia pola magnetycznego Ziemi za pomocą busoli stycznych E12.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie wartości składowej poziomej natężenia pola

Bardziej szczegółowo

Temat: Wyznaczanie charakterystyk baterii słonecznej.

Temat: Wyznaczanie charakterystyk baterii słonecznej. Ćwiczenie Nr 356 Tema: Wyznaczanie charakerysyk baerii słonecznej. I. Lieraura. W. M. Lewandowski Proekologiczne odnawialne źródła energii, WNT, 007 (www.e-link.com.pl). Ćwiczenia laboraoryjne z fizyki

Bardziej szczegółowo

FIZYKA LABORATORIUM prawo Ohma

FIZYKA LABORATORIUM prawo Ohma FIZYKA LABORATORIUM prawo Ohma dr hab. inż. Michał K. Urbański, Wydział Fizyki Politechniki Warszawskiej, pok 18 Gmach Fizyki, murba@if.pw.edu.pl www.if.pw.edu.pl/ murba strona Wydziału Fizyki www.fizyka.pw.edu.pl

Bardziej szczegółowo

E12. Mostek Wheatstona wyznaczenie oporu właściwego

E12. Mostek Wheatstona wyznaczenie oporu właściwego E1. Mostek Wheatstona wyznaczenie oporu właściwego Marek Pękała Wstęp Zgodnie z prawem Ohma natężenie I prądu płynącego przez przewodnik / opornik jest proporcjonalne do napięcia przyłożonego do jego końców.

Bardziej szczegółowo

Metodę poprawnie mierzonego prądu powinno się stosować do pomiaru dużych rezystancji, tzn. wielokrotnie większych od rezystancji amperomierza: (4)

Metodę poprawnie mierzonego prądu powinno się stosować do pomiaru dużych rezystancji, tzn. wielokrotnie większych od rezystancji amperomierza: (4) OBWODY JEDNOFAZOWE POMIAR PRĄDÓW, NAPIĘĆ. Obwody prądu stałego.. Pomiary w obwodach nierozgałęzionych wyznaczanie rezystancji metodą techniczną. Metoda techniczna pomiaru rezystancji polega na określeniu

Bardziej szczegółowo

Rozładowanie kondensatora

Rozładowanie kondensatora Coach T-0 Rozładowanie kondensaora I. Cel ćwiczenia: wyznaczenie zależności napięcia na kondensaorze C podczas jego rozładowania w funkcji czasu : = (), wyznaczenie sałej czasowej τ =. II. Przyrządy: III.

Bardziej szczegółowo

Generator. R a. 2. Wyznaczenie reaktancji pojemnościowej kondensatora C. 2.1 Schemat układu pomiarowego. Rys Schemat ideowy układu pomiarowego

Generator. R a. 2. Wyznaczenie reaktancji pojemnościowej kondensatora C. 2.1 Schemat układu pomiarowego. Rys Schemat ideowy układu pomiarowego PROTOKÓŁ POMAROWY LABORATORUM OBWODÓW SYGNAŁÓW ELEKTRYCZNYCH Grupa Podgrupa Numer ćwiczenia 3 Nazwisko i imię Data wykonania ćwiczenia Prowadzący ćwiczenie Podpis Data oddania sprawozdania Temat BADANA

Bardziej szczegółowo

Drgania relaksacyjne (pomiar pojemności)

Drgania relaksacyjne (pomiar pojemności) Drgania relaksacyjne (pomiar pojemności) I. el ćwiczenia: zapoznanie z działaniem oraz własnościami najprosszej dwuelekrodowej lampy gazowej neonówki II. Przyrządy: płyka pomiarowa, kondensaor dekadowy,

Bardziej szczegółowo

Katedra Elektrotechniki Teoretycznej i Informatyki

Katedra Elektrotechniki Teoretycznej i Informatyki Katedra lektrotechniki Teoretycznej i Informatyki Laboratorium Teorii Obwodów Przedmiot: lektrotechnika teoretyczna Numer ćwiczenia: 1 Temat: Liniowe obwody prądu stałego, prawo Ohma i prawa Kirchhoffa

Bardziej szczegółowo

07 K AT E D R A FIZYKI STOSOWA N E J

07 K AT E D R A FIZYKI STOSOWA N E J 07 K AT E D R A FIZYKI STOSOWA N E J P R A C O W N I A P O D S T A W E L E K T R O T E C H N I K I I E L E K T R O N I K I Ćw. 7a. Pomiary w układzie szeregowym RLC Wprowadzenie Prąd zmienny płynący w

Bardziej szczegółowo

Ćwiczenie nr 254. Badanie ładowania i rozładowywania kondensatora. Ustawiony prąd ładowania I [ ma ]: t ł [ s ] U ł [ V ] t r [ s ] U r [ V ] ln(u r )

Ćwiczenie nr 254. Badanie ładowania i rozładowywania kondensatora. Ustawiony prąd ładowania I [ ma ]: t ł [ s ] U ł [ V ] t r [ s ] U r [ V ] ln(u r ) Nazwisko... Data... Wydział... Imię... Dzień tyg.... Godzina... Ćwiczenie nr 254 Badanie ładowania i rozładowywania kondensatora Numer wybranego kondensatora: Numer wybranego opornika: Ustawiony prąd ładowania

Bardziej szczegółowo

C d u. Po podstawieniu prądu z pierwszego równania do równania drugiego i uporządkowaniu składników lewej strony uzyskuje się:

C d u. Po podstawieniu prądu z pierwszego równania do równania drugiego i uporządkowaniu składników lewej strony uzyskuje się: Zadanie. Obliczyć przebieg napięcia na pojemności C w sanie przejściowym przebiegającym przy nasępującej sekwencji działania łączników: ) łączniki Si S są oware dla < 0, ) łącznik S zamyka się w chwili

Bardziej szczegółowo

Badanie rozkładu pola magnetycznego przewodników z prądem

Badanie rozkładu pola magnetycznego przewodników z prądem Ćwiczenie E7 Badanie rozkładu pola magnetycznego przewodników z prądem E7.1. Cel ćwiczenia Prąd elektryczny płynący przez przewodnik wytwarza wokół niego pole magnetyczne. Ćwiczenie polega na pomiarze

Bardziej szczegółowo

ε (1) ε, R w ε WYZNACZANIE SIŁY ELEKTROMOTOTYCZNEJ METODĄ KOMPENSACYJNĄ

ε (1) ε, R w ε WYZNACZANIE SIŁY ELEKTROMOTOTYCZNEJ METODĄ KOMPENSACYJNĄ WYZNACZANIE SIŁY ELEKTROMOTOTYCZNEJ METODĄ KOMPENSACYJNĄ I. Cel ćwiczenia: wyznaczanie metodą kompensacji siły elektromotorycznej i oporu wewnętrznego kilku źródeł napięcia stałego. II. Przyrządy: zasilacz

Bardziej szczegółowo

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO ĆWICZENIE 53 PRAWO OHMA DLA PRĄDU PRZEMIENNEGO Cel ćwiczenia: wyznaczenie wartości indukcyjności cewek i pojemności kondensatorów przy wykorzystaniu prawa Ohma dla prądu przemiennego; sprawdzenie prawa

Bardziej szczegółowo

Laboratorium Fizyki WTiE Politechniki Koszalińskiej. Ćw. nr 26. Wyznaczanie pojemności kondensatora metodą drgań relaksacyjnych

Laboratorium Fizyki WTiE Politechniki Koszalińskiej. Ćw. nr 26. Wyznaczanie pojemności kondensatora metodą drgań relaksacyjnych z 5 Laboratorium Fizyki WTiE Politechniki Koszalińskiej Ćw. nr 26. Wyznaczanie pojemności kondensatora metodą drgań relaksacyjnych. el ćwiczenia Poznanie jednej z metod wyznaczania pojemności zalecanej

Bardziej szczegółowo

Ćwiczenie 12 Temat: Prawa Kirchhoffa w obwodach prądu stałego. Cel ćwiczenia

Ćwiczenie 12 Temat: Prawa Kirchhoffa w obwodach prądu stałego. Cel ćwiczenia Ćwiczenie 12 Temat: Prawa Kirchhoffa w obwodach prądu stałego. Cel ćwiczenia Wyrobienie umiejętności łączenia obwodów elektrycznych rozgałęzionych oraz sprawdzenie praw prądu stałego. Czytanie schematów

Bardziej szczegółowo

SPRAWDZENIE PRAWA OHMA POMIAR REZYSTANCJI METODĄ TECHNICZNĄ

SPRAWDZENIE PRAWA OHMA POMIAR REZYSTANCJI METODĄ TECHNICZNĄ Laboratorium Podstaw Elektroniki Marek Siłuszyk Ćwiczenie M 4 SPWDZENE PW OHM POM EZYSTNCJ METODĄ TECHNCZNĄ opr. tech. Mirosław Maś niwersytet Przyrodniczo - Humanistyczny Siedlce 2013 1. Wstęp Celem ćwiczenia

Bardziej szczegółowo

Ćwiczenie nr 43: HALOTRON

Ćwiczenie nr 43: HALOTRON Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko 1. 2. Temat: Data wykonania Data oddania Zwrot do popr. Rok Grupa Zespół Nr ćwiczenia Data oddania Data zaliczenia OCENA Ćwiczenie nr 43: HALOTRON Cel

Bardziej szczegółowo

Ile wynosi całkowite natężenie prądu i całkowita oporność przy połączeniu równoległym?

Ile wynosi całkowite natężenie prądu i całkowita oporność przy połączeniu równoległym? Domowe urządzenia elektryczne są często łączone równolegle, dzięki temu każde tworzy osobny obwód z tym samym źródłem napięcia. Na podstawie poszczególnych rezystancji, można przewidzieć całkowite natężenie

Bardziej szczegółowo

BADANIE ELEKTRYCZNEGO OBWODU REZONANSOWEGO RLC

BADANIE ELEKTRYCZNEGO OBWODU REZONANSOWEGO RLC Ćwiczenie 45 BADANE EEKTYZNEGO OBWOD EZONANSOWEGO 45.. Wiadomości ogólne Szeregowy obwód rezonansowy składa się z oporu, indukcyjności i pojemności połączonych szeregowo i dołączonych do źródła napięcia

Bardziej szczegółowo

Badanie funktorów logicznych TTL - ćwiczenie 1

Badanie funktorów logicznych TTL - ćwiczenie 1 adanie funkorów logicznych TTL - ćwiczenie 1 1. Cel ćwiczenia Zapoznanie się z podsawowymi srukurami funkorów logicznych realizowanych w echnice TTL (Transisor Transisor Logic), ich podsawowymi paramerami

Bardziej szczegółowo

Wyznaczanie cieplnego współczynnika oporności właściwej metali

Wyznaczanie cieplnego współczynnika oporności właściwej metali Politechnika Łódzka FTIMS Kierunek: Informatyka rok akademicki: 2008/2009 sem. 2. grupa II Termin: 5 V 2009 Nr. ćwiczenia: 303 Temat ćwiczenia: Wyznaczanie cieplnego współczynnika oporności właściwej metali

Bardziej szczegółowo

3.2 Wyznaczanie pojemności kondensatora metodą rozładowania(e11)

3.2 Wyznaczanie pojemności kondensatora metodą rozładowania(e11) Wyznaczanie pojemności kondensatora metodą rozładowania(e) 37 3.2 Wyznaczanie pojemności kondensatora metodą rozładowania(e) Celem ćwiczenia jest wyznaczenie pojemności kondensatora i ładunku na nim zgromadzonego

Bardziej szczegółowo

Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie 1. Połączenia szeregowe oraz równoległe elementów RC

Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie 1. Połączenia szeregowe oraz równoległe elementów RC Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie ĆWICZENIE Połączenia szeregowe oraz równoległe elementów C. CEL ĆWICZENIA Celem ćwiczenia jest praktyczno-analityczna ocena wartości

Bardziej szczegółowo

Ćwiczenie 375. Badanie zależności mocy promieniowania cieplnego od temperatury. U [V] I [ma] R [ ] R/R 0 T [K] P [W] ln(t) ln(p)

Ćwiczenie 375. Badanie zależności mocy promieniowania cieplnego od temperatury. U [V] I [ma] R [ ] R/R 0 T [K] P [W] ln(t) ln(p) 1 Nazwisko... Data... Wydział... Imię... Dzień tyg.... Godzina... Ćwiczenie 375 Badanie zależności mocy promieniowania cieplnego od temperatury = U [V] I [ma] [] / T [K] P [W] ln(t) ln(p) 1.. 3. 4. 5.

Bardziej szczegółowo

ĆWICZENIE 7 WYZNACZANIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA. Wprowadzenie

ĆWICZENIE 7 WYZNACZANIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA. Wprowadzenie ĆWICZENIE 7 WYZNACZIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA Wprowadzenie Ciało drgające w rzeczywisym ośrodku z upływem czasu zmniejsza ampliudę drgań maleje energia mechaniczna

Bardziej szczegółowo

Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym

Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym Ćwiczenie 11A Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym 11A.1. Zasada ćwiczenia W ćwiczeniu mierzy się przy pomocy wagi siłę elektrodynamiczną, działającą na odcinek przewodnika

Bardziej szczegółowo

POMIAR INDUKCJI MAGNETYCZNEJ ZA POMOCĄ FLUKSOMETRU

POMIAR INDUKCJI MAGNETYCZNEJ ZA POMOCĄ FLUKSOMETRU Ćwiczenie 56 E. Dudziak POMIAR INDUKCJI MAGNETYCZNEJ ZA POMOCĄ FLUKSOMETRU Cel ćwiczenia: pomiar fluksomerem indukcji maneycznej sałeo pola maneyczneo między nabieunnikami elekromanesu. Zaadnienia: indukcja

Bardziej szczegółowo

Wyznaczanie współczynnika sprężystości sprężyn i ich układów

Wyznaczanie współczynnika sprężystości sprężyn i ich układów Ćwiczenie 63 Wyznaczanie współczynnika sprężystości sprężyn i ich układów 63.1. Zasada ćwiczenia W ćwiczeniu określa się współczynnik sprężystości pojedynczych sprężyn i ich układów, mierząc wydłużenie

Bardziej szczegółowo

Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDALNEGO

Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDALNEGO Politechnika Gdańska Wydział Elektrotechniki i Automatyki 1. Wstęp st. stacjonarne I st. inżynierskie, Mechatronika (WM) Laboratorium Elektrotechniki Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDALNEGO

Bardziej szczegółowo

PRACOWNIA ELEKTRONIKI

PRACOWNIA ELEKTRONIKI PRACOWNIA ELEKTRONIKI Tema ćwiczenia: BADANIE MULTIWIBRATORA UNIWERSYTET KAZIMIERZA WIELKIEGO W BYDGOSZCZY INSTYTUT TECHNIKI. 2. 3. Imię i Nazwisko 4. Daa wykonania Daa oddania Ocena Kierunek Rok sudiów

Bardziej szczegółowo

Podstawy fizyki sezon 2 7. Układy elektryczne RLC

Podstawy fizyki sezon 2 7. Układy elektryczne RLC Podstawy fizyki sezon 2 7. Układy elektryczne RLC Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Układ RC

Bardziej szczegółowo

Ć W I C Z E N I E N R M-2

Ć W I C Z E N I E N R M-2 INSYU FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I ECHNOLOGII MAERIAŁÓW POLIECHNIKA CZĘSOCHOWSKA PRACOWNIA MECHANIKI Ć W I C Z E N I E N R M- ZALEŻNOŚĆ OKRESU DRGAŃ WAHADŁA OD AMPLIUDY Ćwiczenie M-: Zależność

Bardziej szczegółowo

Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła prostego

Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła prostego Ćwiczenie M6 Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła prostego M6.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie przyspieszenia ziemskiego poprzez analizę ruchu wahadła prostego. M6..

Bardziej szczegółowo

Wyznaczanie wielkości oporu elektrycznego różnymi metodami

Wyznaczanie wielkości oporu elektrycznego różnymi metodami Wyznaczanie wielkości oporu elektrycznego różnymi metodami Obowiązkowa znajomość zagadnień: Co to jest prąd elektryczny, napięcie i natężenie prądu? Co to jest opór elektryczny i od czego zależy? Prawo

Bardziej szczegółowo

Obwody liniowe. Sprawdzanie praw Kirchhoffa

Obwody liniowe. Sprawdzanie praw Kirchhoffa POLTECHNK ŚLĄSK WYDZŁ NŻYNER ŚRODOWSK ENERGETYK NSTYTT MSZYN RZĄDZEŃ ENERGETYCZNYCH LBORTORM ELEKTRYCZNE Obwody liniowe. Sprawdzanie praw Kirchhoffa (E 2) Opracował: Dr inż. Włodzimierz OGLEWCZ 3 1. Cel

Bardziej szczegółowo

Badanie krzywej rozładowania kondensatora. Pojemność zastępcza układu kondensatorów.

Badanie krzywej rozładowania kondensatora. Pojemność zastępcza układu kondensatorów. E Badanie krzywej rozładowania kondensatora Pojemność zastępcza układu kondensatorów elem ćwiczenia jest obserwacja rozładowywania kondensatorów o różnej pojemności, powiązanie wyników tych obserwacji

Bardziej szczegółowo

WYZNACZANIE PRACY WYJŚCIA ELEKTRONÓW Z LAMPY KATODOWEJ

WYZNACZANIE PRACY WYJŚCIA ELEKTRONÓW Z LAMPY KATODOWEJ INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA FIZYKI CIAŁA STAŁEGO Ć W I C Z E N I E N R FCS - WYZNACZANIE PRACY WYJŚCIA ELEKTRONÓW Z LAMPY

Bardziej szczegółowo

( ) ( ) ( τ) ( t) = 0

( ) ( ) ( τ) ( t) = 0 Obliczanie wraŝliwości w dziedzinie czasu... 1 OBLICZANIE WRAśLIWOŚCI W DZIEDZINIE CZASU Meoda układu dołączonego do obliczenia wraŝliwości układu dynamicznego w dziedzinie czasu. Wyznaczane będą zmiany

Bardziej szczegółowo

Ćwiczenie 4 Badanie ładowania i rozładowania kondensatora

Ćwiczenie 4 Badanie ładowania i rozładowania kondensatora Karolina Kruk 276656 Ćwiczenie 4 Badanie ładowania i rozładowania kondensatora Wstęp teoretyczny. Kondensator tworzą dwa przewodniki-okładziny lub elektrody, które rozdzielono dielektrykiem. Jeżeli do

Bardziej szczegółowo

Sygnały zmienne w czasie

Sygnały zmienne w czasie Sygnały zmienne w czasie a) b) c) A = A = a A = f(+) d) e) A d = A = A sinω / -A -A ys.. odzaje sygnałów: a)sały, b)zmienny, c)okresowy, d)przemienny, e)sinusoidalny Sygnały zmienne okresowe i ich charakerysyczne

Bardziej szczegółowo

Laboratorium Podstaw Elektrotechniki i Elektroniki

Laboratorium Podstaw Elektrotechniki i Elektroniki Politechnika Gdańska Wydział Elektrotechniki i utomatyki 1. Wstęp st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 3 OBWODY LINIOWE PĄDU SINUSOIDLNEGO

Bardziej szczegółowo

42. Prąd stały. Prawa, twierdzenia, metody obliczeniowe

42. Prąd stały. Prawa, twierdzenia, metody obliczeniowe Prąd stały. Prawa, twierdzenia, metody obliczeniowe 42. Prąd stały. Prawa, twierdzenia, metody obliczeniowe Celem ćwiczenia jest doświadczalne sprawdzenie praw obowiązujących w obwodach prądu stałego,

Bardziej szczegółowo

Laboratorium Podstaw Elektrotechniki i Elektroniki

Laboratorium Podstaw Elektrotechniki i Elektroniki Politechnika Gdańska Wydział Elektrotechniki i utomatyki 1) Wstęp st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDLNEGO

Bardziej szczegółowo

2 K A T E D R A F I ZYKI S T O S O W AN E J

2 K A T E D R A F I ZYKI S T O S O W AN E J 2 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A P O D S T A W E L E K T R O T E C H N I K I I E L E K T R O N I K I Ćw. 2. Łączenie i pomiar pojemności i indukcyjności Wprowadzenie Pojemność

Bardziej szczegółowo

Sprawdzanie prawa Ohma i wyznaczanie wykładnika w prawie Stefana-Boltzmanna

Sprawdzanie prawa Ohma i wyznaczanie wykładnika w prawie Stefana-Boltzmanna Sprawdzanie prawa Ohma i wyznaczanie wykładnika w prawie Stefana-Boltzmanna Wprowadzenie. Prawo Stefana Boltzmanna Φ λ nm Rys.1. Prawo Plancka. Pole pod każdą krzywą to całkowity strumień: Φ c = σs T 4

Bardziej szczegółowo

PRACOWNIA FIZYCZNA I

PRACOWNIA FIZYCZNA I Skrypt do laboratorium PRACOWNIA FIZYCZNA I Ćwiczenie 2: Wyznaczanie czasu zderzenia dwóch ciał. Opracowanie: mgr Tomasz Neumann Gdańsk, 2011 Projekt Przygotowanie i realizacja kierunku inżynieria biomedyczna

Bardziej szczegółowo

E12. Wyznaczanie parametrów użytkowych fotoogniwa

E12. Wyznaczanie parametrów użytkowych fotoogniwa 1/5 E12. Wyznaczanie parametrów użytkowych fotoogniwa Celem ćwiczenia jest poznanie podstaw zjawiska konwersji energii świetlnej na elektryczną, zasad działania fotoogniwa oraz wyznaczenie jego podstawowych

Bardziej szczegółowo

Badanie zjawiska rezonansu elektrycznego w obwodzie RLC

Badanie zjawiska rezonansu elektrycznego w obwodzie RLC Politechnika Łódzka FTIMS Kierunek: Informatyka rok akademicki: 2008/2009 sem. 2. grupa II Termin: 21 IV 2009 Nr. ćwiczenia: 321 Temat ćwiczenia: Badanie zjawiska rezonansu elektrycznego w obwodzie RLC

Bardziej szczegółowo

Pomiar indukcji pola magnetycznego w szczelinie elektromagnesu

Pomiar indukcji pola magnetycznego w szczelinie elektromagnesu Ćwiczenie E5 Pomiar indukcji pola magnetycznego w szczelinie elektromagnesu E5.1. Cel ćwiczenia Celem ćwiczenia jest pomiar siły elektrodynamicznej (przy pomocy wagi) działającej na odcinek przewodnika

Bardziej szczegółowo

Wykład FIZYKA II. 2. Prąd elektryczny. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA II. 2. Prąd elektryczny.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA II 2. Prąd elektryczny Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ UCH ŁADUNKÓW Elektrostatyka zajmowała się ładunkami

Bardziej szczegółowo

1 Ćwiczenia wprowadzające

1 Ćwiczenia wprowadzające 1 W celu prawidłowego wykonania ćwiczeń w tym punkcie należy posiłkować się wiadomościami umieszczonymi w instrukcji punkty 1.1.1. - 1.1.4. oraz 1.2.2. 1.1 Rezystory W tym ćwiczeniu należy odczytać wartość

Bardziej szczegółowo

Badanie transformatora

Badanie transformatora Ćwiczenie 14 Badanie transformatora 14.1. Zasada ćwiczenia Transformator składa się z dwóch uzwojeń, umieszczonych na wspólnym metalowym rdzeniu. Do jednego uzwojenia (pierwotnego) przykłada się zmienne

Bardziej szczegółowo

Katedra Energetyki. Laboratorium Podstaw Elektrotechniki i Elektroniki

Katedra Energetyki. Laboratorium Podstaw Elektrotechniki i Elektroniki 1 Katedra Energetyki Laboratorium Podstaw Elektrotechniki i Elektroniki Temat ćwiczenia: POMIARY PODSTAWOWYCH WIELKOŚCI ELEKTRYCZNYCH W OBWODACH PRĄDU STAŁEGO (obwód 3 oczkowy) 2 1. POMIARY PRĄDÓW I NAPIĘĆ

Bardziej szczegółowo

symbol miernika amperomierz woltomierz omomierz watomierz mierzona

symbol miernika amperomierz woltomierz omomierz watomierz mierzona ZADANIA ELEKTROTECHNIKA KLASA II 1. Uzupełnij tabelkę: nazwa symbol miernika amperomierz woltomierz omomierz ----------------- watomierz ----------------- wielkość mierzona jednostka - nazwa symbol jednostki

Bardziej szczegółowo

Badanie transformatora

Badanie transformatora Ćwiczenie E9 Badanie transformatora E9.1. Cel ćwiczenia Transformator składa się z dwóch uzwojeń, umieszczonych na wspólnym metalowym rdzeniu. W ćwiczeniu przykładając zmienne napięcie do uzwojenia pierwotnego

Bardziej szczegółowo

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys. Ćwiczenie M- Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego. Cel ćwiczenia: pomiar przyśpieszenia ziemskiego przy pomocy wahadła fizycznego.. Przyrządy: wahadło rewersyjne, elektroniczny

Bardziej szczegółowo

Ćwiczenie: "Pomiary rezystancji przy prądzie stałym"

Ćwiczenie: Pomiary rezystancji przy prądzie stałym Ćwiczenie: "Pomiary rezystancji przy prądzie stałym" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki.

Bardziej szczegółowo

Badanie transformatora

Badanie transformatora Ćwiczenie 14 Badanie transformatora 14.1. Zasada ćwiczenia Transformator składa się z dwóch uzwojeń, umieszczonych na wspólnym metalowym rdzeniu. Do jednego uzwojenia (pierwotnego) przykłada się zmienne

Bardziej szczegółowo

PODSTAWY ELEKTOTECHNIKI LABORATORIUM

PODSTAWY ELEKTOTECHNIKI LABORATORIUM PODSTAWY ELEKTOTECHNIKI LABORATORIUM AKADEMIA MORSKA Katedra Telekomunikacji Morskiej ĆWICZENIE 8 OBWODY PRĄDU STAŁEGO -PODSTAWOWE PRAWA 1. Cel ćwiczenia Doświadczalne zbadanie podstawowych praw teorii

Bardziej szczegółowo

KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów gimnazjów. Schemat punktowania zadań

KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów gimnazjów. Schemat punktowania zadań KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów gimnazjów 25 stycznia 204 r. zawody II stopnia (rejonowe) Schemat punktowania zadań Maksymalna liczba punktów 60 85% 5pkt Uwaga!. Za poprawne rozwiązanie zadania

Bardziej szczegółowo

Graficzne opracowanie wyników pomiarów 1

Graficzne opracowanie wyników pomiarów 1 GRAFICZNE OPRACOWANIE WYNIKÓW POMIARÓW Celem pomiarów jest bardzo często potwierdzenie związku lub znalezienie zależności między wielkościami fizycznymi. Pomiar polega na wyznaczaniu wartości y wielkości

Bardziej szczegółowo

Rozkład i Wymagania KLASA III

Rozkład i Wymagania KLASA III Rozkład i Wymagania KLASA III 10. Prąd Lp. Tema lekcji Wymagania konieczne 87 Prąd w mealach. Napięcie elekryczne opisuje przepływ w przewodnikach, jako ruch elekronów swobodnych posługuje się inuicyjnie

Bardziej szczegółowo

Wyznaczanie przenikalności magnetycznej i krzywej histerezy

Wyznaczanie przenikalności magnetycznej i krzywej histerezy Ćwiczenie E8 Wyznaczanie przenikalności magnetycznej i krzywej histerezy E8.1. Cel ćwiczenia Celem ćwiczenia jest pomiar zależności B(I) dla cewki z rdzeniem stalowym lub żelaznym, wykreślenie krzywej

Bardziej szczegółowo

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Temperaturowa charakterystyka termistora typu NTC

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Temperaturowa charakterystyka termistora typu NTC Katedra Chemii Fizycznej Uniwersytetu Łódzkiego Temperaturowa charakterystyka termistora typu NTC ćwiczenie nr 37 Opracowanie ćwiczenia: dr J. Woźnicka, dr S. elica Zakres zagadnień obowiązujących do ćwiczenia

Bardziej szczegółowo

1 K A T E D R A F I ZYKI S T O S O W AN E J

1 K A T E D R A F I ZYKI S T O S O W AN E J 1 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A P O D S T A W E L E K T R O T E C H N I K I I E L E K T R O N I K I Ćw. 1. Łączenie i pomiar oporu Wprowadzenie Prąd elektryczny Jeżeli w przewodniku

Bardziej szczegółowo

STAŁY PRĄD ELEKTRYCZNY

STAŁY PRĄD ELEKTRYCZNY STAŁY PRĄD ELEKTRYCZNY Natężenie prądu elektrycznego Wymuszenie w przewodniku różnicy potencjałów powoduje przepływ ładunków elektrycznych. Powszechnie przyjmuje się, że przepływający prąd ma taki sam

Bardziej szczegółowo

Grupa: Zespół: wykonał: 1 Mariusz Kozakowski Data: 3/11/2013 111B. Podpis prowadzącego:

Grupa: Zespół: wykonał: 1 Mariusz Kozakowski Data: 3/11/2013 111B. Podpis prowadzącego: Sprawozdanie z laboratorium elektroniki w Zakładzie Systemów i Sieci Komputerowych Temat ćwiczenia: Pomiary podstawowych wielkości elektrycznych: prawa Ohma i Kirchhoffa Sprawozdanie Rok: Grupa: Zespół:

Bardziej szczegółowo

Człowiek najlepsza inwestycja FENIKS

Człowiek najlepsza inwestycja FENIKS Człowiek najlepsza inwestycja FENIKS - długofalowy program odbudowy, popularyzacji i wspomagania fizyki w szkołach w celu rozwijania podstawowych kompetencji naukowo-technicznych, matematycznych i informatycznych

Bardziej szczegółowo

2.Rezonans w obwodach elektrycznych

2.Rezonans w obwodach elektrycznych 2.Rezonans w obwodach elektrycznych Celem ćwiczenia jest doświadczalne sprawdzenie podstawowych właściwości szeregowych i równoległych rezonansowych obwodów elektrycznych. 2.1. Wiadomości ogólne 2.1.1

Bardziej szczegółowo

Ćwiczenie nr 3 Sprawdzenie prawa Ohma.

Ćwiczenie nr 3 Sprawdzenie prawa Ohma. Ćwiczenie nr 3 Sprawdzenie prawa Ohma. 1. Cel ćwiczenia Celem ćwiczenia jest praktyczne wykazanie i potwierdzenie słuszności zależności określonych prawem Ohma. Zastosowanie prawa Ohma dla zmierzenia oporności

Bardziej szczegółowo

Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu

Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu Laboratorium Elektryczne Montaż Maszyn i Urządzeń Elektrycznych Instrukcja Laboratoryjna: Badanie ogniwa galwanicznego. Opracował: mgr inż.

Bardziej szczegółowo

Badanie diody półprzewodnikowej

Badanie diody półprzewodnikowej Instytut Fizyki ul Wielkopolska 5 70-45 Szczecin 2 Pracownia Elektroniki Badanie diody półprzewodnikowej Zakres materiału obowiązujący do ćwiczenia: (Oprac dr Radosław Gąsowski) półprzewodniki samoistne

Bardziej szczegółowo

DYNAMIKA KONSTRUKCJI

DYNAMIKA KONSTRUKCJI 10. DYNAMIKA KONSTRUKCJI 1 10. 10. DYNAMIKA KONSTRUKCJI 10.1. Wprowadzenie Ogólne równanie dynamiki zapisujemy w posaci: M d C d Kd =P (10.1) Zapis powyższy oznacza, że równanie musi być spełnione w każdej

Bardziej szczegółowo

Wartość średnia półokresowa prądu sinusoidalnego I śr : Analogicznie określa się wartość skuteczną i średnią napięcia sinusoidalnego:

Wartość średnia półokresowa prądu sinusoidalnego I śr : Analogicznie określa się wartość skuteczną i średnią napięcia sinusoidalnego: Ćwiczenie 27 Temat: Prąd przemienny jednofazowy Cel ćwiczenia: Rozróżnić parametry charakteryzujące przebieg prądu przemiennego, oszacować oraz obliczyć wartości wielkości elektrycznych w obwodach prądu

Bardziej szczegółowo

Podstawy elektrotechniki

Podstawy elektrotechniki Wydział Mechaniczno-Energeyczny Podsawy elekroechniki Prof. dr hab. inż. Juliusz B. Gajewski, prof. zw. PWr Wybrzeże S. Wyspiańskiego 27, 50-370 Wrocław Bud. A4 Sara kołownia, pokój 359 Tel.: 71 320 3201

Bardziej szczegółowo