O pewnym algorytmie rozwiązującym problem optymalnej alokacji zasobów. Cezary S. Zaremba*, Leszek S. Zaremba ** WPROWADZENIE

Wielkość: px
Rozpocząć pokaz od strony:

Download "O pewnym algorytmie rozwiązującym problem optymalnej alokacji zasobów. Cezary S. Zaremba*, Leszek S. Zaremba ** WPROWADZENIE"

Transkrypt

1 O pewnym algorymie rozwiązującym problem opymalnej alokacji zasobów Cezary S. Zaremba*, Leszek S. Zaremba ** WPROWADZENIE W kierowaniu firmą Zarząd częso saje wobec problemu rozdysponowania (alokacji) zasobami firmy kórą kieruje (pieniędzmi, czasem, powierzchnią magazynową, ładownością samochodów ransporowych, ip.), kóre z naury rzeczy wysępują w firmach w ograniczonych ilościach. Jak zobaczymy poniżej, z zagadnieniami ego ypu spoykają się eż indywidualni decydenci, na przykład sudenci planujący przygoowanie się do sesji egzaminacyjnej kiedy o podsawowym zasobem jakim dysponują obok swych zdolności jes czas. Będziemy prezenować różnorakie przykłady zasosowań badań operacyjnych w podejmowaniu decyzji w przedsiębiorswie, począwszy od najławiejszych zagadnień do najrudniejszych. Rozpoczniemy od zdefiniowania klasycznego problemu opymalnej alokacji zasobów (przykład ), kórego sformułowanie można znaleźć między innymi w [, rozdział 4.4] i [,sr. Rozdział 0.4]. Nasępnie sformułujemy zagadnienie nieco rudniejsze (przykład ), po czym przedsawimy program obliczeniowy w języku Java pod nazwą Problem kóry rozwiąże przykład i będzie w sanie rozwiązać wiele innych na ym samym poziomie ogólności. W przykładzie pokażemy jak zwiększyć sosowalność Problemu na inne podobne zagadnienia. W rozdziale sformułujemy ak zwane uogólnione zagadnienie opymalnej alokacji zasobów opisane przez (5)-(6), po czym zilusrujemy je 6-ma różnorakimi zadaniami decyzyjnymi (przykłady 4-9), będącymi szczególnym przypadkiem ego uogólnionego zagadnienia. Jego rozwiązanie pozosawimy jako problem owary do rozwiazania w nasępnym arykule. Z uogólnionymi zagadnieniami opymalnej aloka- * Cezary S. Zaremba ukończył sudia licencjackie w WSZ-POU oraz magiserskie w Universiy College London ** Leszek S. Zaremba jes profesorem w WSZ-POU

2 cji zasobów czyenik może spokać się na przykład w [, rozdziały 0.5 i.] oraz [, rozdz. 0.4]. ROZDZIAŁ. OPTYMALNA ALOKACJA KAPITAŁU FINANSOWEGO Rozpocznijmy od zdefinowania klasycznego (sandardowego) zagadnienia opymalnej alokacji zasobów, ak jak zrobiono o w przykładzie 5 z [, sr. 960]. Przykład [por.,sr.960] Pan Finco ma $6000 do zainwesowania w projeky, przy czym usalił że kwoy d, d, d, jakie będzie inwesował w e projeky będą wielo- kronościami $000. Wszyskie e projeky przynosić będą zyski (lub sray) przez ą samą ilość la. Tabela podaje warości NPV (zwane w dalszej części przychodami) dla każdego z ych projeków zgodnie ze wzorami () r d ) = 7d, r d ) = d 7, r d ) = 4d 5, co ilusruje poniższa projek # ( + ( + Tabela ( + kosz (w ys. dolarów) przychód = NPV(w ys. dolarów ) przy czym funkcja r ( ) określa przychody z projeku, r ( ) z projeku, zaś r ( ) d z projeku. Zgodnie z reścią zadania musi być jeszcze spełniona równość () d + d + d 6. = Zagadnienie kóre pragnie rozwiązać pan Finco polega więc na maksymalizacji sumy przychodów, co zapisujemy w posaci () max{ r d ) + r ( d ) + r ( ) } ( d przy zachowaniu warunku (). Przejdźmy eraz do nieco rudniejszego zagadnienia opisanego w przykładzie, kóry podobnie jak przykład, rozwiążemy w ym rozdziale za pomocą programu d d

3 obliczeniowego pod nazwą Problem, kóry zosał specjalnie napisany na porzeby niniejszego arykułu. Przykład Pan Finco ma $7000 do zainwesowania. Posanowił skoncenrować się na maksimum 4 projekach spośród 5 dosępnych do realizacji, przy czym usalił że kwoa jaką będzie inwesował w kórykolwiek z 5 projeków będzie wielokronością $000. Wszyskie e projeky przynosić będą zyski (sray) przez ą samą ilość la. Tabela podaje warości NPV (zwane w dalszej części przychodami) dla każdego z ych 5 projeków w zależności od zainwesowanej w nie dziś kwoy kapiału. Zagadnienie kóre pragnie rozwiązać pan Finco polega na maksymalizacji sumy przychodów wynikłych ze zrealizowanych projeków (minimum projek, maksimum 4 projeky), na kóre łącznie nie może wydać więcej niż $7000. Wielkości kóre wysępują w ej abeli zosały wybrane przypadkowo, zaś meoda rozwiązania zaprezenowana w ym arykule pracuje równie dobrze na ych danych, jak i na każdych innych. Tabela : Koszy oraz przychody z 5 projeków kosz (w ys. dolarów) projek # przychód = NPV (w ys. dolarów) Jak widać z abeli, jeżeli pan F. zainwesuje $4000 w projek o warość dodana z ego projeku (reprezenowana przez NPV) i zwana przez nas również przychodem wyniesie $5000, pozosawiając $000 do rozlokowania w pozosałe projeky. Gdyby e $4000 pan F. zainwesował w projek, o jego przychód wyniósłby $6000, pozosawiając również $000 do alokacji w inne projeky, np. $000 w projek 4 oraz $000 w projek, co łącznie dałoby mu $0000. Z kolei

4 4 przeznaczając cały budże ylko w jeden projek, pan F. usyskać może maksymalnie $4000. Rozumując w en prosy sposób jes szansza że nie pomylimy się i znajdziemy rozwiązanie opymalne w/w problemu decyzyjnego. Gdy jednak ilość wierszy (projeków) rośnie, podobnie jak ilość kolumn, meoda a saje się coraz bardziej zawodna i musi być zasąpiona przez niezawodną meodę obliczeniową. W ym celu zaproponujemy program obliczeniowy Problem napisany w języku Java, kóry wyświelać będzie abelę danych wyjściowych, najlepsze rozwiązanie, drugie najlepsze rozwiązanie oraz kilka dodakowych informacji. Poszukiwania opymalnej alokacji kapiału podzielimy na 4 fazy. W -ej fazie obliczeń ograniczamy się do zainwesowania w jeden projek całej kwoy $7000 gdyż może się zdarzyć że aki właśnie sposób inwesowania przyniesie najlepszy rezula; proponujemy aby czyelnik zasanowił się eraz kórą liczbę z abeli należy zmienić (można o zrobić na kilka sposobów) aby zainwesowanie całej kwoy $7000 w jeden projek rzeczywiście przyniosło największy przychód ze wszyskich możliwych sposobów alokacji $7000 w,, lub 4 projeky. Zaem, w -ej fazie program nasz wybierze maksymalną liczbę z osaniej kolumny. W rozparywanym przykładzie będzie o liczba 4 odpowiadająca projekowi #, co oznacza że uzyskany przychód z projeku # wyniesie $4000. Oznaczymy ą liczbę przez Max, zaś -ą największą przez Max. Przypomnijmy eraz wzór z kombinaoryki i rachunku prawdopodobieńswa, kóry mówi iż wszyskich podzbiorów k-elemenowych w zbiorze n-elemenowym jes n n! (4) =, k k!( n k)! gdzie n!(czyaj: n silnia) oznacza iloczyn kolejnych liczb nauralnych od do n. W -ej fazie obliczeń rozważamy inwesowanie w dowolne projeky spośród wszyskich (5 w ym przypadku), alokując najpierw kwoę $000 w jeden z ych projeków oraz $6000 w drugi projek, dzięki czemu łączna suma nakładów inwesycyjnych wyniosie $7000. Powyższy wybór dwóch kolumn oznaczymy króko przez -

5 5 6. Kolejnym wyborem będzie w ej fazie -5, nasępnie -4, co jak zobaczymy póź- niej wyczerpie wszyskie możliwości. Program nasz wybiera więc po jednej liczbie z kolumny -ej i 6-ej, kóre nie znajdują się w ym samym wierszu, czyli reprezenują różne projeky. Wszyskich sposobów wybrania ych liczb, czyli projeków spośród 5 będzie jak wiemy ze wzoru (4) 5 5! 4 5 = = =!(5 )! ( ) ( ) 0 = 0. Na przykład, jeśli wybierzemy przychód z kolumny oraz przychód 4 z kolumny 6, i dodamy je do siebie, o orzymując łącznie $7000 akualizujemy warość Max, oraz Max. Posępujemy ak przy każdej nowej uzyskanej sumie, a więc 0 razy w ym eapie. Nasępnie program przechodzi do kolejnego eapu, w kórym dokonuje wyboru -5, czyli wybiera kolumnę i kolumnę 5. I ym razem program wybierze 0 różnych par liczb z ych dwóch kolumn, zsumuje e pary i za każdym razem uaku- alni warości liczb Max i Max. W kolejnym eapie ej samej fazy program obliczeniowy wybiera kolumnę i 4, posępując ak samo jak poprzednio. Na ym kończy się faza -a ponieważ wybór 4-, podobnie jak wybór 5- nie może już wnieść nic nowego. Wynika o sąd, że wybieranie 0 par liczb z kolumn i 4 i sumowanie ich jes ym samym co wybieranie 0 liczb z kolumn 4 i i sumowanie ich. W -ej fazie obliczeń program koncenruje się na wyborze kolumn (nakła- dów inwesycyjnych) kóre łącznie pochłoną $7000. Rozpoczyna od alokacji 5--, czyli wybiera liczby po jednej z kolumn 5-ej, -ej i -ej, ak aby e liczby odpowia- dały różnym projekom ( wierszom). Można o zrobić na 5 5! 4 5 = = =!(5 )! ( ) ( ) 0 = 0 sposobów, za każdym razem sumując e liczby i akualniając warość liczb Max i Max. W kolejnym kroku program przechodzi do kolumn 4--, wybierając na 0 sposobów liczby, sumuje je i uakualnia Max i Max. Jedną z ych sum będzie 0

6 6 jako suma liczb 6(z 4-ej kolumny), 8(z -ej kolumny) oraz 6(z -ej kolumny), z czego wynika iż Max 0. W kolejnym kroku -ej fazy program przechodzi do kolumn -- (wybór kolumn 4-- nie miałby sensu ponieważ były już rozparywane kolumny 4--). Program ponownie wybiera na 0 sposobów liczby z kolumny -ej, -ej oraz -ej ak aby liczby e były z różnych wierszy, sumuje je i uakualnia dwie największe sumy. Pozosaje jeszcze rozparzyć w en sam sposób kolumny -- gdyż wszykie inne układy kolumn zosały już rozparzone, np. układ --, układ --, id. W 4-ej fazie obliczeń program koncenruje się na wyborze 4-ech kolumn (nakładów inwesycyjnych) kóre łącznie pochłoną $7000. Rozpoczyna od alokacji 4- --, poem zajmuje się alokacją ---, nasępnie ---, co wyczerpuje wszyskie możliwości. Rozpoczynając od alokacji $4000, $000, $000 i $000 w 4 różne projeky spśród 5, wybieramy 4 liczby po jednej z kolumn 4-ej, -ej, -ej i -ej ak aby e liczby odpowiadały 4 różnym projekom (4 różnym wierszom). Można o zrobić na 5 5! = = = = 5 4 4!(5 4)! ( 4) sposobów, za każdym razem sumując e 4 liczby i uakualniając Max oraz Max. W kolejnym dwóch krokach odpowiadających alokacjom --- oraz --- nasz program posępuje analogicznie, kończąc obliczenia. Wyniki końcowe, jak i cząskowe przeprowadzonych obliczeń uzyskane w Prob- lemie są do obejrzenia w dwóch poniższych inerfejsach.

7 7 Waro podkreślić, że chociaż Problem zosał napisany przy założeniu iż kwoy pieniężne do zainwesowania w rozparywane projeky wzrasają o 000 zł (od ys. zł do 7 ys. zł w omówionym wyżej przypadku), o prosy zabieg dopisania brakujących kolumn pozwala sprowadzić każdy inny przykład do akiego sformułowania kóre rozwiązuje Problem. Zilusrujmy o poniżej.

8 8 Przykład Treśc zagadnienia jes a sama co w przykładzie, lecz są inne przychody z 5 projeków. Dane są one w poniższej abeli. projek # 4 5 Tabela kosz (w ys. dolarów) przychód = NPV (w ys. dolarów) By zasosować program obliczeniowy Problem, zasąpmy abelę poniższą abelą. Tabela 4 kosz (w ys. dolarów) projek # przychód = NPV (w ys. dolarów) W -ej fazie obliczeń ograniczamy się do inwesowania całej kwoy $000 w jeden projek. Z obliczeń wynika że najlepiej zainwesować 000$ w projek # (przychód $8000) i o jes akualna warość liczby Max. W -ej fazie obliczeń rozważamy inwesowanie w dowolne projeky spośród wszyskich. Po przeprowadzeniu obliczeń dowiadujemy się że najlepiej zainwesować $0000 w projek #

9 9 (przychód $000) oraz $000 w projek # (przychód $000) co daje łącznie $4000. W akim razie akualną warością Max będzie $4000. W -ej fazie obliczeń program koncenruje się na wyborze kolumn. Z obliczeń wynika że najlepiej zainwesować $9000 w projek # (przychód $0000), $000 w projek # (przychód $7000) oraz $000 w projek # (przychód $000). Uakualniona warość Max wynosi więc $0000. Jes o jednocześnie jak się wkróce okaże drugi najlepszy wynik. W 4-ej osaniej fazie obliczeń program koncenruje się na wyborze 4 kolumn. Po przeprowadzeniu obliczeń dowiadujemy się że najlepiej zainwesować $8000 w projek # (przychód $5000), $000 w projek # (przychód $7000), $000 w projek # (przychód $000) oraz $000 w projek #4 (przychód $6000), co daje końcową warość Max = $000. Jes o zarazem najlepszy wynik (najwyższy przychód) z alokacji posiadanego kapiału $000 uzyskany poprzez program obliczeniowy Problem. ROZDZIAŁ : UOGÓLNIONE ZAGADNIENIE ALOKACJI ZASOBÓW Zdefiniujemy eraz (por. [, sr.964]) na czym polega uogólnione zagadnienie alokacji zasobów. Maemaycznie ujmując, chodzi o (5) max r ( d ) gdy T =

10 0 T (6) = = g ( d ) w, kóre redukuje się do sandardowego zagadnienia alokacji jeśli wszyskie funkcje g (d), T, są dane wzorami (d) = d. Gdy ponado T =, r (d) dane są wzora- g mi (), zaś w = 6, orzymujemy przykład 5 z [, sr. 960]. Zagadnienie (5)-(6) jes na yle ogólne iż prezenuje za jednym razem wiele wydawałoby się różnych zagadnień decyzyjnych. Opiszemy eraz 6 z nich (przykłady 5-0), z kórych 4 pochodzą z [, sr. 964]. Przykład 4 (znany jako plecakowy problem - knapsack problem) Turysa wybiera się w góry na wycieczkę z plecakiem. Rozważa co włożyć do plecaka, biorąc pod uwagę piżamy, ręczniki, szczokę do zębów, kanapki z wędliną, kanapki z serem, koszule, ip.) Wszyskich różnych rodzajów przedmioów jes T. Każdy ręcznik, ręczniki, kanapka z serem, kanapki z serem, ip. generuje pewną użyeczność (benifi) dla urysy, jednocześnie, waży pewną ilość kg. Turysa uznał żę maksymalna waga plecaka wynosić może w = 40 kg. Widać że jes o szczególny przypadek uogólnionego problemu opymalnej alokacji zasobów (zasobem jes u powierzchnia w plecaku przeliczana na kg), jeśli g (d) oznaczać będzie wagę przed- miou wzięego do plecaka w ilości d szuk, zaś r (d) określa benifi z yułu wzięcia do plecaka d szuk przedmiou rodzaju. Przykład 5 (przeprowadzka z Białegosoku do Warszawy) Kowalscy przeprowadzają się z Białegosoku do Warszawy. Ponieważ z jednej srony wynajęcie dużego środka ransporu kóry by przewiózł ich wszyskie meble za jednym razem jes koszowne, a z drugiej srony ich kuzyn kóry dysponuje niedużym samochodem ransporowym zaoferował przewiezienie ich mebli w -óch urach(dziś i za ygodnie) za opłaą kóra pokrywa jedynie koszy paliwa, Kowalscy zdecydowali się na jego oferę. Doradź im w jaki sposób mają zabrać w pierszej urze jak najbardziej porzebne meble i urządzenia kuchenne kóre im wysarczą przez ygodnie, a z drugiej srony zmieszczą się na kuzyna ciężarówce, co oznacza że suma objęości przedmioów kóre wezmą z sobą w -ej urze nie przekroczy pojemności jego ciężarówki, czyli 0

11 merów sześciennych. Każdemu meblowi i urządzeniu (zosały one ponumerowane od do n), jak również grupie mebli i urzadzeń ego samego rodzaju kóre mają prze- wieść do Warszawy przyporządkowali określoną użyeczność, kórą oznaczymy przez r i ( d i ), gdzie d i oznacza ilość mebli czy urządzeń ypu i, i n. W sumie będzie o zagadnienie (5)-(6), gdzie g i ( d i ) oznaczają objęość d i urządzeń ypu i. Przykład 6 (opymalne zaplanowanie przygoowywania się sudena do sesji egzami- nacyjnej) Suden ma do zdania egzaminy z T przedmioów. Ze swego doychczasowego doświadczenia wie jak wyniki egzaminów kóre ma zdawać z każdego z ych przed- mioów zależeć bedą od ilości godzin kóre przeznaczy na przygoowanie się do nich. Niesey, ilość czasu kóra mu pozosała nie wysarcza aby uzyskać maksymalnie wysokie oceny ze wszyskich ych przedmioów. Aby sprowadzić o zagadnienie decyzyjne do problemu (5)-(6), niech r (d) oznacza sopień (liczony w punkach od 0 do 00) kóry uzyska suden gdy przeznaczy d godzin na przygoowywanie się do egzaminu z ego przedmiou. Ponado, jeśli g (d) = d, zaś w jes ilością godzin jaką dysponuje (jes o jego zasób), o nierówność (6), czyli w ym przypadku nierówność (7) = = T d w, oznaczać będzie że łącznie na przygoowywanie się do wszyskich egzaminów su- den ma co najwyżej w godzin. Warunek (5) oznacza naomias że chodzi u o maksymalizację sumy ocen ze wszyskich egzaminów, czyli mówiąc równowżnie, chodzi o maksymalizację liczby (8) r ( d ) / T T = reprezenującą średnią ocenę ze wszyskich egzaminów. Przykład 7 Zagadnienie polega na przydzieleniu (alokacji) sprzedawców produku D (kórzy są zasobem firmy ABC) do T regionów znając zarówno koszy g ( x ) wysłania x sprze-

12 dawców do regionu, jak i wielkość sprzedaży r ) jaką oni am uzyskają. Chodzi więc o maksymalizację przychodów ze sprzedaży r ( x ), przy zachowaniu ograni- T czenia = = ( x g ( x ) w, gdzie w jes budżeem firmy ABC na dany rok. T = Przykład 8 Zagadnienie o mają rozwiązać władze powiau kórym podlega T placówek sraży pożarnej działających w regionach, T. Chodzi o usalenie jaką ilość wozów srażackich (oznaczmy ę ilość przez x ) powinna posiadać placówka w regionie aby w całym powiecie maksymalizować ilość przypadków pożarów w ciągu ygodnia do kórych samochód srażacki wyrusza w czasie krószym niż minua od orzymania informacji o pożarze, wiedząc że ilośc a w rejonie wynosi r ). Przy podjęciu decyzji władze powiau muszą wziąść pod uwagę że ygodniowy kosz urzymania x samochodów srażackich w rejonie wynosi g ). Chodzi więc o maksymalizację T = r ( x ), przy zachowaniu ograniczenia = = T ( x ponownie mamy do czynienia z zagadnieniem ypu (5)-(6). ( x g ( x ) w, gdzie w jes budżeem, czyli Przykład 9 Pan Michał posiada środki w wysokości $0000 do zainwesowania, mając do dyspozycji nasępujące możliwości inwesycyjne. Doradź mu jakie ilości pakieów akcji poszczególnych spółek giełdowych powinien kupić (pakie = 00 akcji) aby w opymalny sposób dokonać alokacji swego kapiału. Tabela 5: Możliwości inwesycyjne oraz oczekiwany zysk Kosz nabycia 00 akcji Oczekiwany zysk Spółka A $,000 $500 Spółka B $4,000 $700 Spółka C $5,000 $800

13 W ym przykładzie chodzi o aki wybór ilości pakieów ( d pakieów akcji spółki A, d pakieów akcji spółki B oraz d pakieów akcji spółki C) aby maksymalizować oczekiwane zyski wynikające z kupna akcji spółek A, B, C. Tabela 5 podaje zyski z zakupu jednego pakieu akcji. Widzimy że dla spółki A oczekiwany zysk z zakupu jednego pakieu akcji wynosi r () 500, dla spółki B równy jes r () 700, zaś w = = przypadku spółki C oczekiwany zysk wynosi r () 800. Ponieważ zyski są propor- = cjonalne do ilości zakupionych pakieów akcji, zachodzą równości: (9) r d) = d * (), r d) = d * (), r d) = d * (), ( r ( r ( r gdzie d oznacza ilość pakieów akcji. Maemaycznie ujmując, pojawia się zaem nas- ępujący problem opymalizacyjny: (0) max{ r d ) + r ( d ) + r ( ) } gdy spełnione są ograniczenia budżeowe ( d () g d ) + g ( d ) + g ( d ) 0000, ( o znaczy, koszy nabycia d pakieów akcji spółki A, d pakieów akcji spółki B oraz d pakieów akcji spółki C nie mogą przewyższać kwoy $0000. W ym przyk- ładzie koszy g ( ), g ( ), g ( ) spełniają warunek (9), o znaczy są proporcjonal- d d d ne do ilości zakupionych pakieów akcji, dzięki czemu możemy (0)-() zapisać w posaci () max{ 500d + 700d + 800d } gdy () 000d d d Rozwiązanie W ym prosym przykładzie odpowiedź można zgadnąć. Widać że zmaksymalizu- jemy oczekiwany zysk gdy d =, d =, zaś d = 0, uzyskując $7000 = *500 + * *800. Zachęcamy czyelnika aby sam wymyślił kilka podobnych przykładów. Lieraura. B. Guzik, Ekonomeria i Badania Operacyjne, Wydawnicwo Akademii Ekonomicznej w Poznaniu, Poznań, 999.

14 4. E. Ignasiak, Badania Operacyjne, PWE, Warszawa, W. Winson, Operaions Research: Applicaions and Algorihms, PWS-Ken Publi- shing Company, 99.

Rozwiązanie uogólnionego problemu optymalnej alokacji zasobów. Cezary S. Zaremba*, Leszek S. Zaremba ** WPROWADZENIE

Rozwiązanie uogólnionego problemu optymalnej alokacji zasobów. Cezary S. Zaremba*, Leszek S. Zaremba ** WPROWADZENIE Rozwiązanie uogólnionego problemu opymalnej alokacji zasobów Cezary S. Zaremba*, Leszek S. Zaremba ** WPROWADZENIE Niniejszy arykuł rozwiązuje problem owary posawiony w [4], dzięki czemu będzie można znaleźć

Bardziej szczegółowo

1 z 6 2015-08-17 20:41

1 z 6 2015-08-17 20:41 Algorytm rozwiązujący problem optymalnej alokacji zasobów dr hab. Leszek S. Zaremba Profesor w POU, kierownik w Katedrze Metod Ilościowych w Finansach w POU Cezary S. Zaremba Absolwent studiów licencjackich

Bardziej szczegółowo

BEZRYZYKOWNE BONY I LOKATY BANKOWE ALTERNATYWĄ DLA PRZYSZŁYCH EMERYTÓW. W tym krótkim i matematycznie bardzo prostym artykule pragnę osiągnąc 3 cele:

BEZRYZYKOWNE BONY I LOKATY BANKOWE ALTERNATYWĄ DLA PRZYSZŁYCH EMERYTÓW. W tym krótkim i matematycznie bardzo prostym artykule pragnę osiągnąc 3 cele: 1 BEZRYZYKOWNE BONY I LOKATY BANKOWE ALTERNATYWĄ DLA PRZYSZŁYCH EMERYTÓW Leszek S. Zaremba (Polish Open Universiy) W ym krókim i maemaycznie bardzo prosym arykule pragnę osiągnąc cele: (a) pokazac że kupowanie

Bardziej szczegółowo

Matematyka finansowa 20.03.2006 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXVIII Egzamin dla Aktuariuszy z 20 marca 2006 r.

Matematyka finansowa 20.03.2006 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXVIII Egzamin dla Aktuariuszy z 20 marca 2006 r. Komisja Egzaminacyjna dla Akuariuszy XXXVIII Egzamin dla Akuariuszy z 20 marca 2006 r. Część I Maemayka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minu 1 1. Ile

Bardziej szczegółowo

System zielonych inwestycji (GIS Green Investment Scheme)

System zielonych inwestycji (GIS Green Investment Scheme) PROGRAM PRIORYTETOWY Tyuł programu: Sysem zielonych inwesycji (GIS Green Invesmen Scheme) Część 6) SOWA Energooszczędne oświelenie uliczne. 1. Cel programu Ograniczenie lub uniknięcie emisji dwulenku węgla

Bardziej szczegółowo

E k o n o m e t r i a S t r o n a 1. Nieliniowy model ekonometryczny

E k o n o m e t r i a S t r o n a 1. Nieliniowy model ekonometryczny E k o n o m e r i a S r o n a Nieliniowy model ekonomeryczny Jednorównaniowy model ekonomeryczny ma posać = f( X, X,, X k, ε ) gdzie: zmienna objaśniana, X, X,, X k zmienne objaśniające, ε - składnik losowy,

Bardziej szczegółowo

Matematyka ubezpieczeń życiowych 25.01.2003 r.

Matematyka ubezpieczeń życiowych 25.01.2003 r. Maemayka ubezpieczeń życiowych 25.01.2003 r. 1.. Dany jes wiek całkowiy x. Nasępujące prawdopodobieńswa przeżycia: g= 2p x + 1/3, h= 2p x + 1/ 2, j= 2p x + 3/4 obliczono sosując inerpolację zakładającą,

Bardziej szczegółowo

PROPOZYCJA NOWEJ METODY OKREŚLANIA ZUŻYCIA TECHNICZNEGO BUDYNKÓW

PROPOZYCJA NOWEJ METODY OKREŚLANIA ZUŻYCIA TECHNICZNEGO BUDYNKÓW Udosępnione na prawach rękopisu, 8.04.014r. Publikacja: Knyziak P., "Propozycja nowej meody określania zuzycia echnicznego budynków" (Proposal Of New Mehod For Calculaing he echnical Deerioraion Of Buildings),

Bardziej szczegółowo

Harmonogram czyszczenia z osadów sieci wymienników ciepła w trakcie eksploatacji instalacji na przykładzie destylacji rurowo-wieżowej

Harmonogram czyszczenia z osadów sieci wymienników ciepła w trakcie eksploatacji instalacji na przykładzie destylacji rurowo-wieżowej Mariusz Markowski, Marian Trafczyński Poliechnika Warszawska Zakład Aparaury Przemysłowe ul. Jachowicza 2/4, 09-402 Płock Harmonogram czyszczenia z osadów sieci wymienników ciepła w rakcie eksploaaci insalaci

Bardziej szczegółowo

WNIOSKOWANIE STATYSTYCZNE

WNIOSKOWANIE STATYSTYCZNE Wnioskowanie saysyczne w ekonomerycznej analizie procesu produkcyjnego / WNIOSKOWANIE STATYSTYCZNE W EKONOMETRYCZNEJ ANAIZIE PROCESU PRODUKCYJNEGO Maeriał pomocniczy: proszę przejrzeć srony www.cyf-kr.edu.pl/~eomazur/zadl4.hml

Bardziej szczegółowo

Analiza i Zarządzanie Portfelem cz. 6 R = Ocena wyników zarządzania portfelem. Pomiar wyników zarządzania portfelem. Dr Katarzyna Kuziak

Analiza i Zarządzanie Portfelem cz. 6 R = Ocena wyników zarządzania portfelem. Pomiar wyników zarządzania portfelem. Dr Katarzyna Kuziak Ocena wyników zarządzania porelem Analiza i Zarządzanie Porelem cz. 6 Dr Kaarzyna Kuziak Eapy oceny wyników zarządzania porelem: - (porolio perormance measuremen) - Przypisanie wyników zarządzania porelem

Bardziej szczegółowo

Dobór przekroju żyły powrotnej w kablach elektroenergetycznych

Dobór przekroju żyły powrotnej w kablach elektroenergetycznych Dobór przekroju żyły powronej w kablach elekroenergeycznych Franciszek pyra, ZPBE Energopomiar Elekryka, Gliwice Marian Urbańczyk, Insyu Fizyki Poliechnika Śląska, Gliwice. Wsęp Zagadnienie poprawnego

Bardziej szczegółowo

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 690 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 51 2012

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 690 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 51 2012 ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 690 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 51 2012 MAŁGORZATA WASILEWSKA PORÓWNANIE METODY NPV, DRZEW DECYZYJNYCH I METODY OPCJI REALNYCH W WYCENIE PROJEKTÓW

Bardziej szczegółowo

Matematyka A, kolokwium, 15 maja 2013 rozwia. ciem rozwia

Matematyka A, kolokwium, 15 maja 2013 rozwia. ciem rozwia Maemayka A kolokwium maja rozwia zania Należy przeczyać CA LE zadanie PRZED rozpocze ciem rozwia zywania go!. Niech M. p. Dowieść że dla każdej pary liczb ca lkowiych a b isnieje aka para liczb wymiernych

Bardziej szczegółowo

Stała potencjalnego wzrostu w rachunku kapitału ludzkiego

Stała potencjalnego wzrostu w rachunku kapitału ludzkiego 252 Dr Wojciech Kozioł Kaedra Rachunkowości Uniwersye Ekonomiczny w Krakowie Sała poencjalnego wzrosu w rachunku kapiału ludzkiego WSTĘP Prowadzone do ej pory badania naukowe wskazują, że poencjał kapiału

Bardziej szczegółowo

WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH

WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH SaSof Polska, el. 12 428 43 00, 601 41 41 51, info@sasof.pl, www.sasof.pl WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH Joanna Maych, Krajowy Depozy Papierów

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6 8 września 005 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Pior Fiszeder Uniwersye Mikołaja Kopernika

Bardziej szczegółowo

Analiza metod oceny efektywności inwestycji rzeczowych**

Analiza metod oceny efektywności inwestycji rzeczowych** Ekonomia Menedżerska 2009, nr 6, s. 119 128 Marek Łukasz Michalski* Analiza meod oceny efekywności inwesycji rzeczowych** 1. Wsęp Podsawowymi celami przedsiębiorswa w długim okresie jes rozwój i osiąganie

Bardziej szczegółowo

Sprawujesz osobistą opiekę nad dzieckiem? Przeczytaj koniecznie!

Sprawujesz osobistą opiekę nad dzieckiem? Przeczytaj koniecznie! Sprawujesz osobisą opiekę nad dzieckiem? Przeczyaj koniecznie! Czy z yułu sprawowania osobisej opieki nad dzieckiem podlegasz ubezpieczeniom społecznym i zdrowonemu Od 1 września 2013 r. osoba sprawująca

Bardziej szczegółowo

O PEWNYCH KRYTERIACH INWESTOWANIA W OPCJE NA AKCJE

O PEWNYCH KRYTERIACH INWESTOWANIA W OPCJE NA AKCJE MEODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH om XIII/3, 01, sr 43 5 O EWNYCH KRYERIACH INWESOWANIA W OCJE NA AKCJE omasz Warowny Kaedra Meod Ilościowych w Zarządzaniu oliechnika Lubelska e-mail: warowny@pollubpl

Bardziej szczegółowo

MODELOWANIE WŁASNOŚCI SZEREGÓW STÓP ZWROTU SKOŚNOŚĆ ROZKŁADÓW

MODELOWANIE WŁASNOŚCI SZEREGÓW STÓP ZWROTU SKOŚNOŚĆ ROZKŁADÓW Krzyszof Pionek Kaedra Inwesycji Finansowych i Ubezpieczeń Akademia Ekonomiczna we Wrocławiu MODELOWANIE WŁASNOŚCI SZEREGÓW STÓP ZWROTU SKOŚNOŚĆ ROZKŁADÓW Wprowadzenie Współczesne zarządzanie ryzykiem

Bardziej szczegółowo

Wyzwania praktyczne w modelowaniu wielowymiarowych procesów GARCH

Wyzwania praktyczne w modelowaniu wielowymiarowych procesów GARCH Krzyszof Pionek Akademia Ekonomiczna we Wrocławiu Wyzwania prakyczne w modelowaniu wielowymiarowych procesów GARCH Wsęp Od zaproponowania przez Engla w 1982 roku jednowymiarowego modelu klasy ARCH, modele

Bardziej szczegółowo

REGULAMIN FUNDUSZU ROZLICZENIOWEGO

REGULAMIN FUNDUSZU ROZLICZENIOWEGO REGULAMIN FUNDUSZU ROZLICZENIOEGO przyjęy uchwałą nr 10/60/98 Rady Nadzorczej Krajowego Depozyu Papierów arościowych S.A. z dnia 28 września 1998 r., zawierdzony decyzją Komisji Papierów arościowych i

Bardziej szczegółowo

Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych.

Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych. Równania różniczkowe. Lisa nr 2. Lieraura: N.M. Mawiejew, Meody całkowania równań różniczkowych zwyczajnych. W. Krysicki, L. Włodarski, Analiza Maemayczna w Zadaniach, część II 1. Znaleźć ogólną posać

Bardziej szczegółowo

Analiza rynku projekt

Analiza rynku projekt Analiza rynku projek A. Układ projeku 1. Srona yułowa Tema Auor 2. Spis reści 3. Treść projeku 1 B. Treść projeku 1. Wsęp Po co? Na co? Dlaczego? Dlaczego robię badania? Jakimi meodami? Dla Kogo o jes

Bardziej szczegółowo

z graniczną technologią

z graniczną technologią STUDIA OECOOMICA POSAIESIA 23, vol., no. (25) Uniwersye Ekonomiczny w Poznaniu, Wydział Informayki i Gospodarki Elekronicznej, Kaedra Ekonomii Maemaycznej emil.panek@ue.poznan.pl iesacjonarny model von

Bardziej szczegółowo

EFEKTYWNOŚĆ INWESTYCJI MODERNIZACYJNYCH. dr inż. Robert Stachniewicz

EFEKTYWNOŚĆ INWESTYCJI MODERNIZACYJNYCH. dr inż. Robert Stachniewicz EFEKTYWNOŚĆ INWESTYCJI MODERNIZACYJNYCH dr inż. Rober Sachniewicz METODY OCENY EFEKTYWNOŚCI PROJEKTÓW INWESTYCYJNYCH Jednymi z licznych celów i zadań przedsiębiorswa są: - wzros warości przedsiębiorswa

Bardziej szczegółowo

Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA?

Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA? /9/ Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład --9 Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów

Bardziej szczegółowo

LABORATORIUM PODSTAWY ELEKTRONIKI Badanie Bramki X-OR

LABORATORIUM PODSTAWY ELEKTRONIKI Badanie Bramki X-OR LORTORIUM PODSTWY ELEKTRONIKI adanie ramki X-OR 1.1 Wsęp eoreyczny. ramka XOR ramka a realizuje funkcję logiczną zwaną po angielsku EXLUSIVE-OR (WYŁĄZNIE LU). Polska nazwa brzmi LO. Funkcję EX-OR zapisuje

Bardziej szczegółowo

Analiza efektywności kosztowej w oparciu o wskaźnik dynamicznego kosztu jednostkowego

Analiza efektywności kosztowej w oparciu o wskaźnik dynamicznego kosztu jednostkowego TRANSFORM ADVICE PROGRAMME Invesmen in Environmenal Infrasrucure in Poland Analiza efekywności koszowej w oparciu o wskaźnik dynamicznego koszu jednoskowego dr Jana Rączkę Warszawa, 13.06.2002 2 Spis reści

Bardziej szczegółowo

Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach ISSN 2083-8611 Nr 219 2015

Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach ISSN 2083-8611 Nr 219 2015 Sudia Ekonomiczne. Zeszyy Naukowe Uniwersyeu Ekonomicznego w Kaowicach ISSN 2083-86 Nr 29 205 Alicja Ganczarek-Gamro Uniwersye Ekonomiczny w Kaowicach Wydział Informayki i Komunikacji Kaedra Demografii

Bardziej szczegółowo

Struktura sektorowa finansowania wydatków na B+R w krajach strefy euro

Struktura sektorowa finansowania wydatków na B+R w krajach strefy euro Rozdział i. Srukura sekorowa finansowania wydaków na B+R w krajach srefy euro Rober W. Włodarczyk 1 Sreszczenie W arykule podjęo próbę oceny srukury sekorowej (sekor przedsiębiorsw, sekor rządowy, sekor

Bardziej szczegółowo

Prowadzisz lub będziesz prowadzić działalność gospodarczą? Przeczytaj koniecznie!

Prowadzisz lub będziesz prowadzić działalność gospodarczą? Przeczytaj koniecznie! Prowadzisz lub będziesz prowadzić działalność gospodarczą? Przeczyaj koniecznie! Jeseś osobą prowadzącą pozarolniczą działalność, jeśli: prowadzisz pozarolniczą działalność gospodarczą na podsawie przepisów

Bardziej szczegółowo

Komputerowa analiza przepływów turbulentnych i indeksu Dow Jones

Komputerowa analiza przepływów turbulentnych i indeksu Dow Jones Kompuerowa analiza przepływów urbulennych i indeksu Dow Jones Rafał Ogrodowczyk Pańswowa Wyższa Szkoła Zawodowa w Chełmie Wiesław A. Kamiński Uniwersye Marii Curie-Skłodowskie w Lublinie W badaniach porównano

Bardziej szczegółowo

Ocena efektywności procedury Congruent Specyfication dla małych prób

Ocena efektywności procedury Congruent Specyfication dla małych prób 243 Zeszyy Naukowe Wyższej Szkoły Bankowej we Wrocławiu Nr 20/2011 Wyższa Szkoła Bankowa w Toruniu Ocena efekywności procedury Congruen Specyficaion dla małych prób Sreszczenie. Procedura specyfikacji

Bardziej szczegółowo

Prognozowanie średniego miesięcznego kursu kupna USD

Prognozowanie średniego miesięcznego kursu kupna USD Prognozowanie średniego miesięcznego kursu kupna USD Kaarzyna Halicka Poliechnika Białosocka, Wydział Zarządzania, Kaedra Informayki Gospodarczej i Logisyki, e-mail: k.halicka@pb.edu.pl Jusyna Godlewska

Bardziej szczegółowo

Analiza danych DRZEWA DECYZYJNE. Drzewa decyzyjne. Entropia. http://zajecia.jakubw.pl/ test 1 dopełnienie testu 1

Analiza danych DRZEWA DECYZYJNE. Drzewa decyzyjne. Entropia. http://zajecia.jakubw.pl/ test 1 dopełnienie testu 1 Analiza danych Drzewa decyzyjne. Enropia. Jakub Wróblewski jakubw@pjwsk.edu.pl hp://zajecia.jakubw.pl/ DRZEWA DECYZYJNE Meoda reprezenacji wiedzy (modelowania ablic decyzyjnych). Pozwala na przejrzysy

Bardziej szczegółowo

dr inż. MARCIN MAŁACHOWSKI Instytut Technik Innowacyjnych EMAG

dr inż. MARCIN MAŁACHOWSKI Instytut Technik Innowacyjnych EMAG dr inż. MARCIN MAŁACHOWSKI Insyu Technik Innowacyjnych EMAG Wykorzysanie opycznej meody pomiaru sężenia pyłu do wspomagania oceny paramerów wpływających na możliwość zaisnienia wybuchu osiadłego pyłu węglowego

Bardziej szczegółowo

ZARZĄDZANIE KOSZTAMI UTRZYMANIA GOTÓWKI W ODDZIAŁACH BANKU KOMERCYJNEGO

ZARZĄDZANIE KOSZTAMI UTRZYMANIA GOTÓWKI W ODDZIAŁACH BANKU KOMERCYJNEGO ZARZĄDZANIE KOSZTAMI UTRZYMANIA GOTÓWKI W ODDZIAŁACH BANKU KOMERCYJNEGO Sreszczenie Michał Barnicki Poliechnika Śląska, Wydział Oranizacji i Zarządzania Monika Odlanicka-Poczobu Poliechnika Śląska, Wydział

Bardziej szczegółowo

METODA SYMPLEKS. Maciej Patan. Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski

METODA SYMPLEKS. Maciej Patan. Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski METODA SYMPLEKS Maciej Patan Uniwersytet Zielonogórski WSTĘP Algorytm Sympleks najpotężniejsza metoda rozwiązywania programów liniowych Metoda generuje ciąg dopuszczalnych rozwiązań x k w taki sposób,

Bardziej szczegółowo

DOBÓR PRZEKROJU ŻYŁY POWROTNEJ W KABLACH ELEKTROENERGETYCZNYCH

DOBÓR PRZEKROJU ŻYŁY POWROTNEJ W KABLACH ELEKTROENERGETYCZNYCH Franciszek SPYRA ZPBE Energopomiar Elekryka, Gliwice Marian URBAŃCZYK Insyu Fizyki Poliechnika Śląska, Gliwice DOBÓR PRZEKROJU ŻYŁY POWROTNEJ W KABLACH ELEKTROENERGETYCZNYCH. Wsęp Zagadnienie poprawnego

Bardziej szczegółowo

Efekty agregacji czasowej szeregów finansowych a modele klasy Sign RCA

Efekty agregacji czasowej szeregów finansowych a modele klasy Sign RCA Joanna Górka * Efeky agregacji czasowej szeregów finansowych a modele klasy Sign RCA Wsęp Wprowadzenie losowego parameru do modelu auoregresyjnego zwiększa możliwości aplikacyjne ego modelu, gdyż pozwala

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych 9.10.2006 r. Zadanie 1. Rozważamy proces nadwyżki ubezpieczyciela z czasem dyskretnym postaci: n

Matematyka ubezpieczeń majątkowych 9.10.2006 r. Zadanie 1. Rozważamy proces nadwyżki ubezpieczyciela z czasem dyskretnym postaci: n Maemayka ubezpieczeń mająkowych 9.0.006 r. Zadaie. Rozważamy proces adwyżki ubezpieczyciela z czasem dyskreym posaci: U = u + c S = 0... S = W + W +... + W W W W gdzie zmiee... są iezależe i mają e sam

Bardziej szczegółowo

Wyższa Szkoła Marketingu i Zarządzania w Lesznie

Wyższa Szkoła Marketingu i Zarządzania w Lesznie Wyższa Szkoła Markeingu i Zarządzania w Lesznie MATERIAŁY ROBOCZE NA ZAJĘCIA Z PRZEDMIOTU BIZNES PLAN Opracowali: dr Jacek Kowalewski mgr Kazimierz Linowski Leszno 2008 2 S P I S T R E Ś C I WPROWADZENIE.

Bardziej szczegółowo

Funkcje Tablicowe podstawy

Funkcje Tablicowe podstawy Funkcje Tablicowe podstawy Funkcje Tablicowe są dość rzadko używane w biznesie, a pomocne przede wszystkim w przypadku zaawansowanych obliczeń matematycznych i statystycznych. Lekcja ta ograniczy się tylko

Bardziej szczegółowo

Wykład VII. Kryptografia Kierunek Informatyka - semestr V. dr inż. Janusz Słupik. Gliwice, 2014. Wydział Matematyki Stosowanej Politechniki Śląskiej

Wykład VII. Kryptografia Kierunek Informatyka - semestr V. dr inż. Janusz Słupik. Gliwice, 2014. Wydział Matematyki Stosowanej Politechniki Śląskiej Wykład VII Kierunek Informatyka - semestr V Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2014 c Copyright 2014 Janusz Słupik Problem pakowania plecaka System kryptograficzny Merklego-Hellmana

Bardziej szczegółowo

Europejska opcja kupna akcji calloption

Europejska opcja kupna akcji calloption Europejska opcja kupna akcji callopion Nabywca holder: prawo kupna long posiion jednej akcji w okresie epiraiondae po cenie wykonania eercise price K w zamian za opłaę C Wysawca underwrier: obowiązek liabiliy

Bardziej szczegółowo

SZACOWANIE MODELU RYNKOWEGO CYKLU ŻYCIA PRODUKTU

SZACOWANIE MODELU RYNKOWEGO CYKLU ŻYCIA PRODUKTU B A D A N I A O P E R A C J N E I D E C Z J E Nr 2 2006 Bogusław GUZIK* SZACOWANIE MODELU RNKOWEGO CKLU ŻCIA PRODUKTU Przedsawiono zasadnicze podejścia do saysycznego szacowania modelu rynkowego cyklu

Bardziej szczegółowo

ZASTOSOWANIE METODY OBLICZEŃ UPROSZCZONYCH DO WYZNACZANIA CZASU JAZDY POCIĄGU NA SZLAKU

ZASTOSOWANIE METODY OBLICZEŃ UPROSZCZONYCH DO WYZNACZANIA CZASU JAZDY POCIĄGU NA SZLAKU PRACE NAUKOWE POLITECHNIKI WARSZAWSKIEJ z. 87 Transpor 01 Jarosław Poznański Danua Żebrak Poliechnika Warszawska, Wydział Transporu ZASTOSOWANIE METODY OBLICZEŃ UPROSZCZONYCH DO WYZNACZANIA CZASU JAZDY

Bardziej szczegółowo

Przykładowy arkusz egzaminacyjny I - poziom podstawowy - wersja A

Przykładowy arkusz egzaminacyjny I - poziom podstawowy - wersja A Przykładowy arkusz egzaminacyjny I - poziom podstawowy - wersja A Zadanie. (3 pkt.) Rozwiąż równanie:. Zadanie 2. (3 pkt.) Zadanie 3. (3 pkt.) Obok, na wykresie kołowym, przedstawiono procentowy udział

Bardziej szczegółowo

PROJEKT nr 1 Projekt spawanego węzła kratownicy. Sporządził: Andrzej Wölk

PROJEKT nr 1 Projekt spawanego węzła kratownicy. Sporządził: Andrzej Wölk PROJEKT nr 1 Projek spawanego węzła kraownicy Sporządził: Andrzej Wölk Projek pojedynczego węzła spawnego kraownicy Siły: 1 = 10 3 = -10 Kąy: α = 5 o β = 75 o γ = 75 o Schema węzła kraownicy Dane: Grubość

Bardziej szczegółowo

Zarządzanie ryzykiem. Lista 3

Zarządzanie ryzykiem. Lista 3 Zaządzanie yzykiem Lisa 3 1. Oszacowano nasępujący ozkład pawdopodobieńswa dla sóp zwou z akcji A i B (Tabela 1). W chwili obecnej Akcja A ma waość ynkową 70, a akcja B 50 zł. Ile wynosi pięciopocenowa

Bardziej szczegółowo

MODELOWANIE EFEKTU DŹWIGNI W FINANSOWYCH SZEREGACH CZASOWYCH

MODELOWANIE EFEKTU DŹWIGNI W FINANSOWYCH SZEREGACH CZASOWYCH Krzyszof Pionek Kaedra Inwesycji Finansowych i Ubezpieczeń Akademia Ekonomiczna we Wrocławiu Wsęp MODELOWANIE EFEKTU DŹWIGNI W FINANSOWYCH SZEREGACH CZASOWYCH Nowoczesne echniki zarządzania ryzykiem rynkowym

Bardziej szczegółowo

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 690 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 51 2012

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 690 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 51 2012 ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 690 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 51 2012 GRZEGORZ MICHALSKI POZIOM ZAANGAŻOWANIA KAPITAŁU W ZAPASACH W ORGANIZACJACH NON-PROFIT * Wprowadzenie

Bardziej szczegółowo

Obszary zainteresowań (ang. area of interest - AOI) jako metoda analizy wyników badania eye tracking

Obszary zainteresowań (ang. area of interest - AOI) jako metoda analizy wyników badania eye tracking Inerfejs użykownika - Kansei w prakyce 2009 107 Obszary zaineresowań (ang. area of ineres - AOI) jako meoda analizy wyników badania eye racking Pior Jardanowski, Agencja e-biznes Symeria Ul. Wyspiańskiego

Bardziej szczegółowo

Estymacja stopy NAIRU dla Polski *

Estymacja stopy NAIRU dla Polski * Michał Owerczuk * Pior Śpiewanowski Esymacja sopy NAIRU dla Polski * * Sudenci, Szkoła Główna Handlowa, Sudenckie Koło Naukowe Ekonomii Teoreycznej przy kaedrze Ekonomii I. Auorzy będą bardzo wdzięczni

Bardziej szczegółowo

LINIA DŁUGA Konspekt do ćwiczeń laboratoryjnych z przedmiotu TECHNIKA CYFROWA

LINIA DŁUGA Konspekt do ćwiczeń laboratoryjnych z przedmiotu TECHNIKA CYFROWA LINIA DŁUGA Z Z, τ e u u Z L l Konspek do ćwiczeń laboraoryjnych z przedmiou TECHNIKA CYFOWA SPIS TEŚCI. Definicja linii dłuiej... 3. Schema zasępczy linii dłuiej przedsawiony za pomocą elemenów o sałych

Bardziej szczegółowo

SIEĆ BAYESOWSKA JAKO NARZĘDZIE POZYSKIWANIA WIEDZY Z EKONOMICZNEJ BAZY DANYCH

SIEĆ BAYESOWSKA JAKO NARZĘDZIE POZYSKIWANIA WIEDZY Z EKONOMICZNEJ BAZY DANYCH ZESZYTY NAUKOWE POLITECHNIKI BIAŁOSTOCKIEJ 2007 Informayka Zeszy 2 Joanna Olbryś 1 SIEĆ BAYESOWSKA JAKO NARZĘDZIE POZYSKIWANIA WIEDZY Z EKONOMICZNEJ BAZY DANYCH Sreszczenie: Proces decyzyjny w inwesowaniu

Bardziej szczegółowo

wagi cyfry 7 5 8 2 pozycje 3 2 1 0

wagi cyfry 7 5 8 2 pozycje 3 2 1 0 Wartość liczby pozycyjnej System dziesiętny W rozdziale opiszemy pozycyjne systemy liczbowe. Wiedza ta znakomicie ułatwi nam zrozumienie sposobu przechowywania liczb w pamięci komputerów. Na pierwszy ogień

Bardziej szczegółowo

OCENA ATRAKCYJNOŚCI INWESTYCYJNEJ AKCJI NA PODSTAWIE CZASU PRZEBYWANIA W OBSZARACH OGRANICZONYCH KRZYWĄ WYKŁADNICZĄ

OCENA ATRAKCYJNOŚCI INWESTYCYJNEJ AKCJI NA PODSTAWIE CZASU PRZEBYWANIA W OBSZARACH OGRANICZONYCH KRZYWĄ WYKŁADNICZĄ Tadeusz Czernik Daniel Iskra Uniwersye Ekonomiczny w Kaowicach Kaedra Maemayki Sosowanej adeusz.czernik@ue.kaowice.pl daniel.iskra@ue.kaowice.pl OCEN TRKCYJNOŚCI INWESTYCYJNEJ KCJI N PODSTWIE CZSU PRZEBYWNI

Bardziej szczegółowo

ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI

ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XIII/3, 202, sr. 253 26 ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI Adam Waszkowski Kaedra Ekonomiki Rolnicwa i Międzynarodowych Sosunków

Bardziej szczegółowo

Ruch płaski. Bryła w ruchu płaskim. (płaszczyzna kierująca) Punkty bryły o jednakowych prędkościach i przyspieszeniach. Prof.

Ruch płaski. Bryła w ruchu płaskim. (płaszczyzna kierująca) Punkty bryły o jednakowych prędkościach i przyspieszeniach. Prof. Ruch płaski Ruchem płaskim nazywamy ruch, podczas kórego wszyskie punky ciała poruszają się w płaszczyznach równoległych do pewnej nieruchomej płaszczyzny, zwanej płaszczyzną kierującą. Punky bryły o jednakowych

Bardziej szczegółowo

1.1. Bezpośrednie transformowanie napięć przemiennych

1.1. Bezpośrednie transformowanie napięć przemiennych Rozdział Wprowadzenie.. Bezpośrednie ransformowanie napięć przemiennych Bezpośrednie ransformowanie napięć przemiennych jes formą zmiany paramerów wielkości fizycznych charakeryzujących energię elekryczną

Bardziej szczegółowo

Alternatywny model pomiaru kapitału ludzkiego An alternative model of measuring human capital

Alternatywny model pomiaru kapitału ludzkiego An alternative model of measuring human capital Zeszyy Naukowe UNIWERSYTETU PRZYRODNICZO-HUMANISTYCZNEGO w SIEDLCACH Seria: Adminisracja i Zarządzanie Nr 105 2015 dr Wojciech Kozioł 1 Uniwersye Ekonomiczny w Krakowie, Kaedra Rachunkowości Alernaywny

Bardziej szczegółowo

O EFEKTACH ZASTOSOWANIA PEWNEJ METODY WYZNACZANIA PROGNOZ JAKOŚCIOWYCH ZMIAN CEN AKCJI W WARUNKACH KRYZYSU FINANSOWEGO 2008 ROKU

O EFEKTACH ZASTOSOWANIA PEWNEJ METODY WYZNACZANIA PROGNOZ JAKOŚCIOWYCH ZMIAN CEN AKCJI W WARUNKACH KRYZYSU FINANSOWEGO 2008 ROKU Arykuł opublikowany w: Rynki kapiałowe a koniunkura gospodarcza, red. A. Szablewski, R. Wójcikowski, Wydawnicwo Poliechniki Łódzkiej, Łódź 009, s. 95-07 Doroa Wiśniewska Uniwersye Ekonomiczny w Poznaniu

Bardziej szczegółowo

DOKUMENT ROBOCZY KOMISJI

DOKUMENT ROBOCZY KOMISJI RADA UNII ROPEJSKIEJ Bruksela, 23 maja 2007 r. (25.05) (OR. en) Międzyinsyucjonalny numer referencyjny: 2006/0039 (CNS) 9851/07 ADD 2 FIN 239 RESPR 5 CADREFIN 32 ADDENDUM 2 DO NOTY DO PUNKTU I/A Od: Sekrearia

Bardziej szczegółowo

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Politechnika Poznańska Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Joanna Józefowska POZNAŃ 2010/11 Spis treści Rozdział 1. Metoda programowania dynamicznego........... 5

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODEE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Joanna Małgorzaa andmesser Szkoła Główna

Bardziej szczegółowo

Jednofazowe przekształtniki DC AC i AC DC z eliminacją składowej podwójnej częstotliwości po stronie DC

Jednofazowe przekształtniki DC AC i AC DC z eliminacją składowej podwójnej częstotliwości po stronie DC Akademia Górniczo-Hunicza im. Sanisława Saszica w Krakowie Wydział Elekroechniki, Auomayki, Informayki i Inżynierii Biomedycznej Kaedra Energoelekroniki i Auomayki Sysemów Przewarzania Energii Auorefera

Bardziej szczegółowo

PROGNOZOWANIE W ZARZĄDZANIU PRZEDSIĘBIORSTWEM

PROGNOZOWANIE W ZARZĄDZANIU PRZEDSIĘBIORSTWEM PROGNOZOWANIE W ZARZĄDZANIU PRZEDSIĘBIORSTWEM prof. dr hab. Paweł Dimann 1 Znaczenie prognoz w zarządzaniu firmą Zarządzanie firmą jes nieusannym procesem podejmowania decyzji, kóry może być zdefiniowany

Bardziej szczegółowo

Wykład z modelowania matematycznego. Zagadnienie transportowe.

Wykład z modelowania matematycznego. Zagadnienie transportowe. Wykład z modelowania matematycznego. Zagadnienie transportowe. 1 Zagadnienie transportowe zostało sformułowane w 1941 przez F.L.Hitchcocka. Metoda rozwiązania tego zagadnienia zwana algorytmem transportowymópracowana

Bardziej szczegółowo

ANALIZA, PROGNOZOWANIE I SYMULACJA EXCEL AUTOR: MARTYNA KUPCZYK ANALIZA, PROGNOZOWANIE I SYMULACJA EXCEL AUTOR: MARTYNA KUPCZYK

ANALIZA, PROGNOZOWANIE I SYMULACJA EXCEL AUTOR: MARTYNA KUPCZYK ANALIZA, PROGNOZOWANIE I SYMULACJA EXCEL AUTOR: MARTYNA KUPCZYK 1 ANALIZA, PROGNOZOWANIE I SYMULACJA 2 POBRAĆ Z INTERNETU Plaforma WSL on-line Nazwisko prowadzącego Maryna Kupczyk Folder z nazwą przedmiou - Analiza, prognozowanie i symulacja Plik o nazwie Baza do ćwiczeń

Bardziej szczegółowo

Badania trakcyjne samochodu.

Badania trakcyjne samochodu. Uniwersye Technologiczno-Humanisyczny im. Kazimierza Pułaskiego w Radomiu Wydział Mechaniczny Insyu Eksploaacji Pojazdów i Maszyn Budowa samochodów i eoria ruchu Insrukcja do ćwiczenia Badania rakcyjne

Bardziej szczegółowo

Optymalizacja parametrów w strategiach inwestycyjnych dla event-driven tradingu dla odczytu Australia Employment Change

Optymalizacja parametrów w strategiach inwestycyjnych dla event-driven tradingu dla odczytu Australia Employment Change Raport 4/2015 Optymalizacja parametrów w strategiach inwestycyjnych dla event-driven tradingu dla odczytu Australia Employment Change autor: Michał Osmoła INIME Instytut nauk informatycznych i matematycznych

Bardziej szczegółowo

OeconomiA copernicana. Małgorzata Madrak-Grochowska, Mirosława Żurek Uniwersytet Mikołaja Kopernika w Toruniu

OeconomiA copernicana. Małgorzata Madrak-Grochowska, Mirosława Żurek Uniwersytet Mikołaja Kopernika w Toruniu OeconomiA copernicana 2011 Nr 4 Małgorzaa Madrak-Grochowska, Mirosława Żurek Uniwersye Mikołaja Kopernika w Toruniu TESTOWANIE PRZYCZYNOWOŚCI W WARIANCJI MIĘDZY WYBRANYMI INDEKSAMI RYNKÓW AKCJI NA ŚWIECIE

Bardziej szczegółowo

Użyteczność bezpośredniej likwidacji szkód (BLS) dla klientów zakładów ubezpieczeń

Użyteczność bezpośredniej likwidacji szkód (BLS) dla klientów zakładów ubezpieczeń Sanisław Garska 1 Ubezpieczeniowy Fundusz Gwarancyjny Użyeczność bezpośredniej likwidacji szkód (LS) dla klienów zakładów ubezpieczeń Sreszczenie Wprowadzeniu bezpośredniej likwidacji szkód jako produku

Bardziej szczegółowo

WSTĘP ZAŁOŻENIA DO PROJEKTU

WSTĘP ZAŁOŻENIA DO PROJEKTU UNIWERSYTET ZIELONOGÓRSKI WYDZIAŁ ZARZĄDZANIA Przykład analizy opłacalności przedsięwzięcia inwestycyjnego WSTĘP Teoria i praktyka wypracowały wiele metod oceny efektywności przedsięwzięć inwestycyjnych.

Bardziej szczegółowo

PROGNOZOWANIE ZUŻYCIA CIEPŁEJ I ZIMNEJ WODY W SPÓŁDZIELCZYCH ZASOBACH MIESZKANIOWYCH

PROGNOZOWANIE ZUŻYCIA CIEPŁEJ I ZIMNEJ WODY W SPÓŁDZIELCZYCH ZASOBACH MIESZKANIOWYCH STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 15 Barbara Baóg Iwona Foryś PROGNOZOWANIE ZUŻYCIA CIEPŁEJ I ZIMNEJ WODY W SPÓŁDZIELCZYCH ZASOBACH MIESZKANIOWYCH Wsęp Koszy dosarczenia wody

Bardziej szczegółowo

EFEKTYWNOŚĆ INWESTYCJI W ZAPASY W OPODATKOWANYCH I NIE OPODATKOWANYCH ORGANIZACJACH 1

EFEKTYWNOŚĆ INWESTYCJI W ZAPASY W OPODATKOWANYCH I NIE OPODATKOWANYCH ORGANIZACJACH 1 GRZEGORZ MICHALSKI EFEKTYWNOŚĆ INWESTYCJI W ZAPASY W OPODATKOWANYCH I NIE OPODATKOWANYCH ORGANIZACJACH 1 1. Wsęp Organizacje, mogą działać jako opodakowane przedsiębiorswa działające na zasadach komercyjnych

Bardziej szczegółowo

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Optymalizacja

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Optymalizacja Politechnika Wrocławska, Wydział Informatyki i Zarządzania Optymalizacja Dla podanych niżej problemów decyzyjnych (zad.1 zad.5) należy sformułować zadania optymalizacji, tj.: określić postać zmiennych

Bardziej szczegółowo

Szybkość reakcji chemicznej jest proporcjonalna do iloczynu stężeń. reagentów w danej chwili. n A + m B +... p C + r D +... v = k 1 C A n C B m...

Szybkość reakcji chemicznej jest proporcjonalna do iloczynu stężeń. reagentów w danej chwili. n A + m B +... p C + r D +... v = k 1 C A n C B m... 9 KINETYKA CHEMICZNA Zagadnienia eoreyczne Prawo działania mas. Szybość reacji chemicznych. Reacje zerowego, pierwszego i drugiego rzędu. Cząseczowość i rzędowość reacji chemicznych. Czynnii wpływające

Bardziej szczegółowo

PROGNOZOWANIE. Ćwiczenia 2. mgr Dawid Doliński

PROGNOZOWANIE. Ćwiczenia 2. mgr Dawid Doliński Ćwiczenia 2 mgr Dawid Doliński Modele szeregów czasowych sały poziom rend sezonowość Y Y Y Czas Czas Czas Modele naiwny Modele średniej arymeycznej Model Browna Modele ARMA Model Hola Modele analiyczne

Bardziej szczegółowo

Transakcje insiderów a ceny akcji spółek notowanych na Giełdzie Papierów Wartościowych w Warszawie S.A.

Transakcje insiderów a ceny akcji spółek notowanych na Giełdzie Papierów Wartościowych w Warszawie S.A. Agaa Srzelczyk Transakcje insiderów a ceny akcji spółek noowanych na Giełdzie Papierów Warościowych w Warszawie S.A. Wsęp Inwesorzy oczekują od każdej noowanej na Giełdzie Papierów Warościowych spółki

Bardziej szczegółowo

ĆWICZENIE NR 43 U R I (1)

ĆWICZENIE NR 43 U R I (1) ĆWCZENE N 43 POMY OPO METODĄ TECHNCZNĄ Cel ćwiczenia: wyznaczenie warości oporu oporników poprzez pomiary naężania prądu płynącego przez opornik oraz napięcia na oporniku Wsęp W celu wyznaczenia warości

Bardziej szczegółowo

SYMULACYJNA ANALIZA PRODUKCJI ENERGII ELEKTRYCZNEJ I CIEPŁA Z ODNAWIALNYCH NOŚNIKÓW W POLSCE

SYMULACYJNA ANALIZA PRODUKCJI ENERGII ELEKTRYCZNEJ I CIEPŁA Z ODNAWIALNYCH NOŚNIKÓW W POLSCE SYMULACYJNA ANALIZA PRODUKCJI ENERGII ELEKTRYCZNEJ I CIEPŁA Z ODNAWIALNYCH NOŚNIKÓW W POLSCE Janusz Sowiński, Rober Tomaszewski, Arur Wacharczyk Insyu Elekroenergeyki Poliechnika Częsochowska Aky prawne

Bardziej szczegółowo

Identyfikacja wahań koniunkturalnych gospodarki polskiej

Identyfikacja wahań koniunkturalnych gospodarki polskiej Rozdział i Idenyfikacja wahań koniunkuralnych gospodarki polskiej dr Rafał Kasperowicz Uniwersye Ekonomiczny w Poznaniu Kaedra Mikroekonomii Sreszczenie Celem niniejszego opracowania jes idenyfikacja wahao

Bardziej szczegółowo

TRANZYSTORY POLOWE JFET I MOSFET

TRANZYSTORY POLOWE JFET I MOSFET POLTECHNKA RZEZOWKA Kaedra Podsaw Elekroiki srukcja Nr5 F 00/003 sem. lei TRANZYTORY POLOWE JFET MOFET Cel ćwiczeia: Pomiar podsawowych charakerysyk i wyzaczeie paramerów określających właściwości razysora

Bardziej szczegółowo

ę Ł Ó ę ę ć ę ę ż ę ę Ź Ć ć ę ę ż ę ę Ł ć ż ż ć ć ź ć ę Ń ć ę ż ę ć ęż Ń ć ż ć ź ę ę ź ę ć ż ć Ź ż ę Ł Ż ż ć Ź ę Ń ż ć ę ę ż ę ę ć ę ż ż ż Ł ę żę ż ć ź ę Ó ć ć ż ć ę ę ę ę ę ć ę Źć ę ę ę ę ę ę ż ż ż ć

Bardziej szczegółowo

KONCEPCJA WARTOŚCI ZAGROŻONEJ VaR (VALUE AT RISK)

KONCEPCJA WARTOŚCI ZAGROŻONEJ VaR (VALUE AT RISK) KONCEPCJA WARTOŚCI ZAGROŻONEJ VaR (VALUE AT RISK) Kaarzyna Kuziak Akademia Ekonomiczna we Wrocławiu, Kaedra Inwesycji Finansowych i Ubezpieczeń Wprowadzenie W 1994 roku insyucja finansowa JP Morgan opublikowała

Bardziej szczegółowo

METODA ZDYSKONTOWANYCH SALD WOLNYCH PRZEPŁYWÓW PIENIĘŻNYCH

METODA ZDYSKONTOWANYCH SALD WOLNYCH PRZEPŁYWÓW PIENIĘŻNYCH METODA ZDYSONTOWANYCH SALD WOLNYCH PRZEPŁYWÓW PIENIĘŻNYCH W meodach dochodowych podsawową wielkością, kóa okeśla waość pzedsiębioswa są dochody jakie mogą być geneowane z powadzenia działalności gospodaczej

Bardziej szczegółowo

Krzysztof Piontek MODELOWANIE ZMIENNOŚCI STÓP PROCENTOWYCH NA PRZYKŁADZIE STOPY WIBOR

Krzysztof Piontek MODELOWANIE ZMIENNOŚCI STÓP PROCENTOWYCH NA PRZYKŁADZIE STOPY WIBOR Inwesycje finansowe i ubezpieczenia endencje świaowe a rynek polski Krzyszof Pionek Akademia Ekonomiczna we Wrocławiu MODELOWANIE ZMIENNOŚCI STÓP PROCENTOWYCH NA PRZYKŁADZIE STOPY WIBOR Wsęp Konieczność

Bardziej szczegółowo

Ekonometria - ćwiczenia 10

Ekonometria - ćwiczenia 10 Ekonometria - ćwiczenia 10 Mateusz Myśliwski Zakład Ekonometrii Stosowanej Instytut Ekonometrii Kolegium Analiz Ekonomicznych Szkoła Główna Handlowa 14 grudnia 2012 Wprowadzenie Optymalizacja liniowa Na

Bardziej szczegółowo

1.2.1 Ogólny algorytm podejmowania decyzji... 18. 1.2.2 Algorytm postępowania diagnostycznego... 23. 1.2.3 Analiza decyzyjna... 27

1.2.1 Ogólny algorytm podejmowania decyzji... 18. 1.2.2 Algorytm postępowania diagnostycznego... 23. 1.2.3 Analiza decyzyjna... 27 3 Spis reści Spis reści... 3 Użye oznaczenia... 7 Wsęp i założenia pracy... 9 1. Akualny san wiedzy medycznej i echnicznej związanej zagadnieniami analizy decyzyjnej w chorobach górnego odcinka przewodu

Bardziej szczegółowo

Dodatek Solver Teoria Dodatek Solver jest częścią zestawu poleceń czasami zwaną narzędziami analizy typu co-jśli (analiza typu co, jeśli?

Dodatek Solver Teoria Dodatek Solver jest częścią zestawu poleceń czasami zwaną narzędziami analizy typu co-jśli (analiza typu co, jeśli? Dodatek Solver Teoria Dodatek Solver jest częścią zestawu poleceń czasami zwaną narzędziami analizy typu co-jśli (analiza typu co, jeśli? : Proces zmieniania wartości w komórkach w celu sprawdzenia, jak

Bardziej szczegółowo

MODELE AUTOREGRESYJNE JAKO INSTRUMENT ZARZĄDZANIA ZAPASAMI NA PRZYKŁADZIE ELEKTROWNI CIEPLNEJ

MODELE AUTOREGRESYJNE JAKO INSTRUMENT ZARZĄDZANIA ZAPASAMI NA PRZYKŁADZIE ELEKTROWNI CIEPLNEJ Agaa MESJASZ-LECH * MODELE AUTOREGRESYJNE JAKO INSTRUMENT ZARZĄDZANIA ZAPASAMI NA PRZYKŁADZIE ELEKTROWNI CIEPLNEJ Sreszczenie W arykule przedsawiono wyniki analizy ekonomerycznej miesięcznych warości w

Bardziej szczegółowo

Algorytmy i struktury danych.

Algorytmy i struktury danych. Algorytmy i struktury danych. Wykład 4 Krzysztof M. Ocetkiewicz Krzysztof.Ocetkiewicz@eti.pg.gda.pl Katedra Algorytmów i Modelowania Systemów, WETI, PG Problem plecakowy mamy plecak o określonej pojemności

Bardziej szczegółowo

POWIĄZANIA POMIĘDZY KRÓTKOOKRESOWYMI I DŁUGOOKRESOWYMI STOPAMI PROCENTOWYMI W POLSCE

POWIĄZANIA POMIĘDZY KRÓTKOOKRESOWYMI I DŁUGOOKRESOWYMI STOPAMI PROCENTOWYMI W POLSCE Anea Kłodzińska, Poliechnika Koszalińska, Zakład Ekonomerii POWIĄZANIA POMIĘDZY KRÓTKOOKRESOWYMI I DŁUGOOKRESOWYMI STOPAMI PROCENTOWYMI W POLSCE Sopy procenowe w analizach ekonomicznych Sopy procenowe

Bardziej szczegółowo

ZAGADNIENIE TRANSPORTOWE

ZAGADNIENIE TRANSPORTOWE ZAGADNIENIE TRANSPORTOWE ZT jest specyficznym problemem z zakresu zastosowań programowania liniowego. ZT wykorzystuje się najczęściej do: optymalnego planowania transportu towarów, przy minimalizacji kosztów,

Bardziej szczegółowo

WYCENA KONTRAKTÓW FUTURES, FORWARD I SWAP

WYCENA KONTRAKTÓW FUTURES, FORWARD I SWAP Krzyszof Jajuga Kaedra Inwesycji Finansowych i Zarządzania Ryzykiem Uniwersye Ekonomiczny we Wrocławiu WYCENA KONRAKÓW FUURES, FORWARD I SWAP DWA RODZAJE SYMERYCZNYCH INSRUMENÓW POCHODNYCH Symeryczne insrumeny

Bardziej szczegółowo