GENERALISED TRANSMISSION MODEL OF FIRST ORDER PARAMETRIC SECTION

Wielkość: px
Rozpocząć pokaz od strony:

Download "GENERALISED TRANSMISSION MODEL OF FIRST ORDER PARAMETRIC SECTION"

Transkrypt

1 ELEKTRYKA 212 Zeszy 3-4 ( ) Ro LVIII Aa PIWOWAR Jausz WALCZAK Isyu Eleroechii i Iformayi Poliechia Śląsa w Gliwicach MODEL TRANSMISYJNY UOGÓLNIONEJ SEKCJI LTV PIERWSZEGO RZĘDU Sreszczeie. W aryule opisao model secji parameryczej (azywaej secją LTV liear ime varyig) pierwszego rzędu órej paramer zmieia się ieoresowo. Secje aie saowić mogą elemey bardziej złożoych sruur filrów parameryczych Wyprowadzoo wzór pozwalający wyzaczyć odpowiedź secji a dowole wymuszeie będące sygałem o ograiczoej mocy średiej. Uzysae wyii zilusrowao przyładem. Słowa luczowe: LTV uogólioa secja paramerycza GENERALISED TRANSMISSION MODEL OF FIRST ORDER PARAMETRIC SECTION Summary. This paper preses a model of he firs order firs order parameric secio furher called LTV secio wih o-periodically variable parameer. Those sysems are used as pars of more complex parameric filers. A formula describig filer respose o ay sigal wih fiie average power has bee deermied. Obaied resuls have bee illusraed by a example. Keywords: LTV geeralized parameric secio 1. WPROWADZENIE Modele rasmisyje uładów SISO (rys. 1) opisywae są [1] operacją P odwzorowującą sygały wejściowe x() uładu w sygały wyjściowe y(). Rys. 1. Model rasmisyjy uładu SISO Fig. 1. The rasmissio model of SISO sysem

2 98 A. Piwowar J. Walcza Sygały e ależą do defiiowaych w róży sposób przesrzei sygałowych. W dziedziie czasu dla uładów o zmieych w czasie paramerach LTV (ag. liear ime varyig) azywaych rówież uładami parameryczymi operację P saowią: rówaia sau uładu splo parameryczy oreśloy wzorem: h() impulsowa fucja przejścia uładu. y( ) h( ) x( )d (1) Opis rasmisyjy uładu z wyorzysaiem splou (1) umożliwia wyzaczeie odpowiedzi uładu y() a dowole wymuszeie x() jeśli ylo zaa jes fucja h(). Wyzaczeiem impulsowej fucji przejścia uładów LTV opisaych rówaiem: y' ( ) ( ) y( ) x( ) (2) () fucja parameryzująca azywaych secjami pierwszego rzędu a aże secji wyższych rzędów poświęcoa jes w dużej mierze praca [3]. Przyjęo am że fucja () jes oreśloa jedym ze wzorów: ( ) g Ce g R ( g g 1 ) C e R C C R (3) R. (4) Fucje parameryzujące (3) (4) saowią jedyie pewie podzbiór przesrzei L 2 ) (przy pomiięciu sładia ) ie są oe zaem reprezeacjami dowolej fucji o sończoej eergii. Moża wyazać [4] że dowolą fucję () L 2 ) moża aprosymować szeregiem: przy czym: p ( ) C e C p C (5) g 1 N N1 j * C C e C C A jb p * (6) j p p (7) Warui poprawej aprosymacji dla sończoej liczby wyrazów szeregu (5) oreśla wzór: Re N p (8) zaem liczby p umiejscowioe muszą być w lewej półpłaszczyźie Gaussa rys. 2.

3 Model rasmisyjy uogólioej 99 Rys. 2. Kofiguracja rzeczywisych o i zespoloych x współczyiów p Fig. 2. The cofiguraio of real o ad complex x of coefficies p W aryule opisao uogólioy (w sosuu do modeli rozparywaych w pracy [3]) model secji pierwszego rzędu opisaej rówaiem (2) z fucją parameryzującą: ( ) g e ( Acos( 1 ) Bsi( 1 )) (9) p j C A 2 C cos B 2 C si 1 e j będącą szczególym przypadiem zależości (5) dla N=1. (1) 2. MODEL SEKCJI Rozwiązaia rówaia (2) w posaci zamięej są zae [5]. Dla zerowego waruu począowego rozwiązaia e oreśla wzór: y ( ( ) ( )) ( ) e x( ) d (11) ( ) ( ) d. (12) Wyorzysując wzory (9) (12) i porówując zależości (1) (11) uzysuje się zależość oreślającą model secji w posaci splou (1): y( ) e g ( ) ( ) exp[- ] ( ) exp[ ] e x( )d (13)

4 1 A. Piwowar J. Walcza przy czym: ( A ( ) (14) 1 B )si( 1 ) ( A B1) cos( 1 ) oraz impulsową fucję przejścia uładu w posaci: Wzory (13) i (15) saowią peły model rasmisyjy uogólioej secji parameryczej pierwszego rzędu ze zmieym paramerem oreśloym zależością (9). 3. ODPOWIEDŹ SEKCJI LTV NA DOWOLNE WYMUSZENIE Aalizując ajbardziej ogóly przypade wymuszeń będących elemeami przesrzei Hilbera L 2 ( ) lub L 2 (T) moża wyazać że dowoly sygał będący elemeem ych przesrzei moża aprosymować szeregiem: x( ) F ( ) F R (16) { ()} baza przesrzei Hilbera. W ym przypadu odpowiedź badaej secji a wymuszeie (16) oreśla wzór: y g ( ) ( ) exp[- ] ( )exp[ ] h ( ) e e. (15) ( )exp[- ] g g ( )exp[- ] ( ) e e F e e ( )d (17) Rozparzoy zosaie ajprosszy przypade odpowiedzi secji y() (por. rys. 5) a wymuszeie posaci sou jedosowego x()=1(). Wyorzysując sończeie wymiarowe przybliżeie fucji espoecjalej wysępującej we wzorze (17) fucyjym szeregiem Taylora: e ( ) exp( ) N e ( 1) ( ) (18)! oraz uwzględiając przyjęą wyżej posać wymuszeia uzysuje się zależość opisującą odpowiedź uładu a so jedosowy o posaci:

5 Model rasmisyjy uogólioej 11 g N ( )exp[- ] g e y( ) e e e ( 1) ( ) d. (19)! Wzór (17) moża aże wyorzysać do wyzaczaia odpowiedzi secji a wiele iych wysępujących w prayce wymuszeń. PRZYKŁAD Dla secji opisaej rówaiem (2) fucję parameryzującą oreśla wzór (7). Przebiegi fucji parameryzującej poazao a rys. 3. Rys. 3. Przebiegi fucji parameryzujących ) Fig. 3. Examples of waveforms of parameric fucios () Przyładową odpowiedź impulsową (dla uładu z fucją parameryzującą 3 ()) poazao a rys. 4.

6 12 A. Piwowar J. Walcza Rys. 4. Impulsowa fucja przejścia uładu LTV secji ze zmieym paramerem 3 () Fig. 4. The impulse respose of parameric sysem wih variable parameer 3 () Odpowiedź secji a wymuszeie w posaci sou jedosowego poazao a rys. 5. Na rysuu ym poazao rówież odpowiedź secji sacjoarej LTI (()= g ) a o samo wymuszeie. Rys. 5. Odpowiedź soowa badaej secji Fig. 5. The sep resposes of firs order parameric secios 4. PODSUMOWANIE Opracoway model aaliyczy doloprzepusowej secji parameryczej pierwszego rzędu z ieoresowo zmieym paramerem umożliwia wyzaczaie odpowiedzi secji a dowole wymuszeie w posaci sygałów o ograiczoej mocy i o sończoej eergii.

7 Model rasmisyjy uogólioej 13 Odpowiedzi impulsowe secji parameryczych są fucjami ie ylo czasu (ja w przypadu lasyczych secji sacjoarych) zależą aże od momeu podaia wymuszeia a wejście uładu. Zmiaa paramerów ma wpływ a szał przebiegu odpowiedzi impulsowej. W saie usaloym filry LTV zachowują się ja lasycze filry sacjoare. Korzyścią sosowaia filrów LTV jes możliwość poprawy dyamii przez odpowiedi dobór przebiegu zmieości fucji parameryzującej. BIBLIOGRAFIA 1. Descoer C. A. Vidyasager M.: Feedbac Sysems: Ipu-Oupu Properies. Academic Press New Yor D Agelo H.: Liear Time-Varyig Sysems. Aalysis ad Syhesis. Ally ad Baco Ic. Boso Piwowar A.: Aalysis of parameric sysems wih firs ad secod order secios. PhD hesis Gliwice Clleme P. R.: O compleeess of basis fucio used for sigal aalysis. SIAM Reviev 1963 Vol. 5 No. 2 p Polyai A. D. Zaisev V. F.: Hadboo of exac soluios for ordiary differeial equaios. 2d Ediio Chapma & Hall/CRC Boca Rao 23. Wpłyęło do Redacji dia 1 grudia 212 r. Receze: Prof. dr hab. iż. Maria Paso Dr iż. Aa PIWOWAR Poliechia Śląsa Isyu Eleroechii i Iformayi ul. Aademica Gliwice Tel. (32) ; Aa.Piwowar@polsl.pl Prof. dr hab. iż. Jausz WALCZAK Poliechia Śląsa Isyu Eleroechii i Iformayi ul. Aademica Gliwice Tel. (32) ; Jausz.Walcza@polsl.pl

Charakterystyki czasowe i częstotliwościowe układów automatyki. Podczas ćwiczenia poruszane będą następujące zagadnienia:

Charakterystyki czasowe i częstotliwościowe układów automatyki. Podczas ćwiczenia poruszane będą następujące zagadnienia: Warszawa 7 Cel ćwiczeia rachuowego Podczas ćwiczeia poruszae będą asępujące zagadieia: obliczaie odpowiedzi impulsowej i soowej uładu; wyzaczeia charaerysy częsoliwościowych (ampliudowo-fazowej oraz logarymiczej:

Bardziej szczegółowo

PREZENTACJA MODULACJI ASK W PROGRAMIE MATCHCAD

PREZENTACJA MODULACJI ASK W PROGRAMIE MATCHCAD POZA UIVE RSIY OF E CHOLOGY ACADE MIC JOURALS o 76 Electrical Egieerig 3 Jaub PĘKSIŃSKI* Grzegorz MIKOŁAJCZAK* Jausz KOWALSKI** PREZEACJA MODULACJI ASK W PROGRAMIE MACHCAD W artyule autorzy przedstawili

Bardziej szczegółowo

Sygnały pojęcie i klasyfikacja, metody opisu.

Sygnały pojęcie i klasyfikacja, metody opisu. Sygały pojęcie i klasyfikacja, meody opisu. Iformacja przekazywaa jes za pośredicwem sygałów, kóre przeoszą eergię. Sygał jes o fukcja czasowa dowolej wielkości o charakerze eergeyczym, w kórym moża wyróżić

Bardziej szczegółowo

ZAAWANSOWANE TECHNIKI PRZETWARZANIA SYGNAŁÓW W TELEKOMUNIKACJI LABORATORIUM

ZAAWANSOWANE TECHNIKI PRZETWARZANIA SYGNAŁÓW W TELEKOMUNIKACJI LABORATORIUM POLITCHNIKA WARSZAWSKA WYDZIAŁ LKTRONIKI I TCHNIK INFORMACYJNYCH INSTYTUT TLKOMUNIKACJI ZAAWANSOWAN TCHNIKI PRZTWARZANIA SYGNAŁÓW W TLKOMUNIKACJI LABORATORIUM ĆWICZNI NR RPRZNTACJA ORTOGONALNA SYGNAŁÓW.

Bardziej szczegółowo

TRANZYSTORY POLOWE JFET I MOSFET

TRANZYSTORY POLOWE JFET I MOSFET POLTECHNKA RZEZOWKA Kaedra Podsaw Elekroiki srukcja Nr5 F 00/003 sem. lei TRANZYTORY POLOWE JFET MOFET Cel ćwiczeia: Pomiar podsawowych charakerysyk i wyzaczeie paramerów określających właściwości razysora

Bardziej szczegółowo

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE PODSTAWOWYCH CZŁONÓW LINIOWYCH UKŁADÓW AUTOMATYKI

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE PODSTAWOWYCH CZŁONÓW LINIOWYCH UKŁADÓW AUTOMATYKI CHARAKERYSYKI CZĘSOLIWOŚCIOWE PODSAWOWYCH CZŁONÓW LINIOWYCH UKŁADÓW AUOMAYKI Do podstawowych form opisu dyamii elemetów automatyi (oprócz rówań różiczowych zaliczamy trasmitację operatorową s oraz trasmitację

Bardziej szczegółowo

Funkcja generująca rozkład (p-two)

Funkcja generująca rozkład (p-two) Fucja geerująca rozład (p-wo Defiicja: Fucją geerującą rozład (prawdopodobieńswo (FGP dla zmieej losowej przyjmującej warości całowie ieujeme, azywamy: [ ] g E P Twierdzeie: (o jedozaczości Jeśli i są

Bardziej szczegółowo

Teoria sterowania 1 Temat ćwiczenia nr 7a: Synteza parametryczna układów regulacji.

Teoria sterowania 1 Temat ćwiczenia nr 7a: Synteza parametryczna układów regulacji. eoria serowania ema ćwiczenia nr 7a: Syneza parameryczna uładów regulacji. Celem ćwiczenia jes orecja zadanego uładu regulacji wyorzysując nasępujące meody: ryerium ampliudy rezonansowej, meodę ZiegleraNicholsa

Bardziej szczegółowo

Symulacyjna metoda doboru optymalnych parametrów w prognostycznych modelach wygładzania wykładniczego

Symulacyjna metoda doboru optymalnych parametrów w prognostycznych modelach wygładzania wykładniczego Zbigiew Tarapaa Symulacyja meoda doboru opymalych paramerów w progosyczych modelach wygładzaia wyładiczego Wydział Cybereyi Wojsowej Aademii Techiczej w Warszawie Sreszczeie W aryule zaprezeowao symulacyją

Bardziej szczegółowo

APROKSYMACJA I INTERPOLACJA. funkcja f jest zbyt skomplikowana; użycie f w dalszej analizie problemu jest trudne

APROKSYMACJA I INTERPOLACJA. funkcja f jest zbyt skomplikowana; użycie f w dalszej analizie problemu jest trudne APROKSYMACJA I INTERPOLACJA Przybliżeie fucji f(x) przez ią fucję g(x) fucja f jest zbyt sompliowaa; użycie f w dalszej aalizie problemu jest trude fucja f jest zaa tylo tabelaryczie; wymagaa jest zajomość

Bardziej szczegółowo

Dwumian Newtona. Agnieszka Dąbrowska i Maciej Nieszporski 8 stycznia 2011

Dwumian Newtona. Agnieszka Dąbrowska i Maciej Nieszporski 8 stycznia 2011 Dwumia Newtoa Agiesza Dąbrowsa i Maciej Nieszporsi 8 styczia Wstęp Wzory srócoego możeia, tóre pozaliśmy w gimazjum (x + y x + y (x + y x + xy + y (x + y 3 x 3 + 3x y + 3xy + y 3 x 3 + y 3 + 3xy(x + y

Bardziej szczegółowo

21. CAŁKA KRZYWOLINIOWA NIESKIEROWANA. x = x(t), y = y(t), a < t < b,

21. CAŁKA KRZYWOLINIOWA NIESKIEROWANA. x = x(t), y = y(t), a < t < b, CAŁA RZYWOLINIOWA NIESIEROWANA rzywą o rówaiach parameryczych: = (), y = y(), a < < b, azywamy łukiem regularym (gładkim), gdy spełioe są asępujące waruki: a) fukcje () i y() mają ciągłe pochode, kóre

Bardziej szczegółowo

Wytrzymałość śruby wysokość nakrętki

Wytrzymałość śruby wysokość nakrętki Wyzymałość śuby wysoość aęi Wpowazeie zej Wie Działająca w śubie siła osiowa jes pzeoszoa pzez zeń i zwoje gwiu. owouje ozciągaie lub ścisaie zeia śuby, zgiaie i ściaie zwojów gwiu oaz wywołuje acisi a

Bardziej szczegółowo

Techniczne Aspekty Zapewnienia Jakości

Techniczne Aspekty Zapewnienia Jakości Istytut Techologii Maszy i Automatyzacji Politechii Wrocławsiej Pracowia Metrologii i Badań Jaości Wrocław, dia Ro i ierue studiów. Grupa (dzień tygodia i godzia rozpoczęcia zajęć) Techicze Aspety Zapewieia

Bardziej szczegółowo

Wykład 7. Przestrzenie metryczne zwarte. x jest ciągiem Cauchy ego i posiada podciąg zbieżny. Na mocy

Wykład 7. Przestrzenie metryczne zwarte. x jest ciągiem Cauchy ego i posiada podciąg zbieżny. Na mocy Wyład 7 Przestrzeie metrycze zwarte Defiicja 8 (przestrzei zwartej i zbioru zwartego Przestrzeń metryczą ( ρ X azywamy zwartą jeśli ażdy ciąg elemetów tej przestrzei posiada podciąg zbieży (do putu tej

Bardziej szczegółowo

Wykład FIZYKA I. 2. Kinematyka punktu materialnego. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 2. Kinematyka punktu materialnego.  Dr hab. inż. Władysław Artur Woźniak Dr hab. iż. Władysław Arur Woźiak Wykład FIZYKA I. Kiemayka puku maerialego Dr hab. iż. Władysław Arur Woźiak Isyu Fizyki Poliechiki Wrocławskiej hp://www.if.pwr.wroc.pl/~woziak/fizyka1.hml Dr hab. iż.

Bardziej szczegółowo

Wyższe momenty zmiennej losowej

Wyższe momenty zmiennej losowej Wyższe momety zmieej losowej Deiicja: Mometem m rzędu azywamy wartość oczeiwaą ucji h( dla dysretej zm. losowej oraz ucji h( dla ciągłej zm. losowej: m E P m E ( d Deiicja: Mometem cetralym µ rzędu dla

Bardziej szczegółowo

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie Metrologia: miary dokładości dr iż. Paweł Zalewski Akademia Morska w Szczeciie Miary dokładości: Najczęściej rozkład pomiarów w serii wokół wartości średiej X jest rozkładem Gaussa: Prawdopodobieństwem,

Bardziej szczegółowo

Wzór Taylora. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski

Wzór Taylora. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski Wzór Taylora Szeregi potęgowe Matematyka Studium doktorackie KAE SGH Semestr leti 8/9 R. Łochowski Graica fukcji w pukcie Niech f: R D R, R oraz istieje ciąg puktów D, Fukcja f ma w pukcie graicę dowolego

Bardziej szczegółowo

WYKŁAD nr 2. to przekształcenie (1.4) zwane jest przekształceniem całkowym Laplace a

WYKŁAD nr 2. to przekształcenie (1.4) zwane jest przekształceniem całkowym Laplace a WYKŁAD r. Elemey rachuku operaorowego Podawą rachuku operaorowego je zw. przekzałceie Laplace a, mające poać przekzałceia całkowego, przyporządkowujące fukcjom pewe owe fukcje, iego argumeu. Mówi ię, że

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych 9.10.2006 r. Zadanie 1. Rozważamy proces nadwyżki ubezpieczyciela z czasem dyskretnym postaci: n

Matematyka ubezpieczeń majątkowych 9.10.2006 r. Zadanie 1. Rozważamy proces nadwyżki ubezpieczyciela z czasem dyskretnym postaci: n Maemayka ubezpieczeń mająkowych 9.0.006 r. Zadaie. Rozważamy proces adwyżki ubezpieczyciela z czasem dyskreym posaci: U = u + c S = 0... S = W + W +... + W W W W gdzie zmiee... są iezależe i mają e sam

Bardziej szczegółowo

UKŁADY RÓWNAŃ LINOWYCH

UKŁADY RÓWNAŃ LINOWYCH Ekoeergetyka Matematyka. Wykład 4. UKŁADY RÓWNAŃ LINOWYCH Defiicja (Układ rówań liiowych, rozwiązaie układu rówań) Układem m rówań liiowych z iewiadomymi,,,, gdzie m, azywamy układ rówań postaci: a a a

Bardziej szczegółowo

n k n k ( ) k ) P r s r s m n m n r s r s x y x y M. Przybycień Rachunek prawdopodobieństwa i statystyka

n k n k ( ) k ) P r s r s m n m n r s r s x y x y M. Przybycień Rachunek prawdopodobieństwa i statystyka Wyższe momety zmieej losowej Deiicja: Mometem m rzędu azywamy wartość oczeiwaą ucji h() dla dysretej zm. losowej oraz ucji h() dla ciągłej zm. losowej: m E P m E ( ) d Deiicja: Mometem cetralym µ rzędu

Bardziej szczegółowo

t - kwantyl rozkładu t-studenta rzędu p o f stopniach swobody

t - kwantyl rozkładu t-studenta rzędu p o f stopniach swobody ZJAZD ANALIZA DANYCH CIĄGŁYCH ramach zajęć będą badae próbki pochodzące z poplacji w kórych badaa cecha ma rozkład ormaly N(μ σ). Na zajęciach będą: - wyzaczae przedziały fości dla warości średiej i wariacji

Bardziej szczegółowo

REZERWOWANIE W SYSTEMACH DYNAMICZNEGO POZYCJONOWANIA STATKÓW WSPIERAJĄCYCH EKSPLORACJĘ DNA MORSKIEGO

REZERWOWANIE W SYSTEMACH DYNAMICZNEGO POZYCJONOWANIA STATKÓW WSPIERAJĄCYCH EKSPLORACJĘ DNA MORSKIEGO REZERWOWANIE W SYSTEMACH DYNAMICZNEGO POZYCJONOWANIA STATKÓW WSPIERAJĄCYCH EKSPLORACJĘ DNA MORSKIEGO Leszek CHYBOWSKI, Gzegoz NICEWICZ Pzedsiębioswo Amaoskie Pee Döhle, Hambug, Niemcy Isyu Nauk Podsawowych

Bardziej szczegółowo

Ćwiczenia rachunkowe TEST ZGODNOŚCI χ 2 PEARSONA ROZKŁAD GAUSSA

Ćwiczenia rachunkowe TEST ZGODNOŚCI χ 2 PEARSONA ROZKŁAD GAUSSA Aaliza iepewości pomiarowych w esperymetach fizyczych Ćwiczeia rachuowe TEST ZGODNOŚCI χ PEARSONA ROZKŁAD GAUSSA UWAGA: Na stroie, z tórej pobrałaś/pobrałeś istrucję zajduje się gotowy do załadowaia arusz

Bardziej szczegółowo

201. a 1 a 2 a 3...a n a 2 1 +a 2 2 +a a 2 n n a 4 1 +a 4 2 +a a 4 n n. a1 + a 2 + a a n 204.

201. a 1 a 2 a 3...a n a 2 1 +a 2 2 +a a 2 n n a 4 1 +a 4 2 +a a 4 n n. a1 + a 2 + a a n 204. Liczby rzeczywiste dodatie a 1, a 2, a 3,...a spełiają waruek a 1 +a 2 +a 3 +...+a =. Wpisać w kratkę zak lub i udowodić podaą ierówość bez korzystaia z gotowych twierdzeń (moża korzystać z wcześiejszych

Bardziej szczegółowo

> Elektroniczne czasopismo naukowe z dziedziny logistyki <

> Elektroniczne czasopismo naukowe z dziedziny logistyki < hp://www.logform.e LogForm > Eleroicze czasopismo aowe z dziedziy logisyi < ISSN 734-459X 006 Vol. Isse No LOALIZAJA ZAASÓW W SIEI DYSRYBUJI Saisław rzyżaia Isy Logisyi i Magazyowaia, ozań, olsa SRESZZENIE.

Bardziej szczegółowo

1. Element nienaprawialny, badania niezawodności. Model matematyczny elementu - dodatnia zmienna losowa T, określająca czas życia elementu

1. Element nienaprawialny, badania niezawodności. Model matematyczny elementu - dodatnia zmienna losowa T, określająca czas życia elementu Badaia iezawodościowe i saysycza aaliza ich wyików. Eleme ieaprawialy, badaia iezawodości Model maemayczy elemeu - dodaia zmiea losowa T, określająca czas życia elemeu Opis zmieej losowej - rozkład, lub

Bardziej szczegółowo

Pierwiastki z liczby zespolonej. Autorzy: Agnieszka Kowalik

Pierwiastki z liczby zespolonej. Autorzy: Agnieszka Kowalik Pierwiastki z liczby zespoloej Autorzy: Agieszka Kowalik 09 Pierwiastki z liczby zespoloej Autor: Agieszka Kowalik DEFINICJA Defiicja : Pierwiastek z liczby zespoloej Niech będzie liczbą aturalą. Pierwiastkiem

Bardziej szczegółowo

Józef Borkowski. Metody interpolacji widma i metoda LIDFT w estymacji parametrów sygnału wieloczęstotliwościowego

Józef Borkowski. Metody interpolacji widma i metoda LIDFT w estymacji parametrów sygnału wieloczęstotliwościowego Józef Borowsi Metody iterpolacji widma i metoda LIDFT w estymacji parametrów sygału wieloczęstotliwościowego Oficya Wydawicza Politechii Wrocławsiej Wrocław 0 ecezeci yszard MAKOWSKI Tomasz ZIELIŃSKI Opracowaie

Bardziej szczegółowo

Rekursja 2. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak

Rekursja 2. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak Rekursja Materiały pomocicze do wykładu wykładowca: dr Magdalea Kacprzak Rozwiązywaie rówań rekurecyjych Jedorode liiowe rówaia rekurecyje Twierdzeie Niech k będzie ustaloą liczbą aturalą dodatią i iech

Bardziej szczegółowo

, gdzie b 4c 0 oraz n, m ( 2). 2 2 b b b b b c b x bx c x x c x x

, gdzie b 4c 0 oraz n, m ( 2). 2 2 b b b b b c b x bx c x x c x x Meody aeaycze w echologii aeriałów Uwaga: Proszę paięać, że a zajęciach obowiązuje akże zajoość oówioych w aeriałach przykładów!!! CAŁKOWANIE FUNKCJI WYMIERNYCH Fukcją wyierą azyway fukcję posaci P ( )

Bardziej szczegółowo

Wyznaczanie immitancji i ocena odkształcającego charakteru dwójników pasywnych o okresowo zmiennych parametrach

Wyznaczanie immitancji i ocena odkształcającego charakteru dwójników pasywnych o okresowo zmiennych parametrach Radosław KŁOSŃSK Uiwersytet Zieloogórski, stytut Metrologii Elektryczej Wyzaczaie immitacji i ocea odkształcającego charakteru dwójików pasywych o okresowo zmieych parametrach Streszczeie. Przedmiotem

Bardziej szczegółowo

Niepewności pomiarowe

Niepewności pomiarowe Niepewości pomiarowe Obserwacja, doświadczeie, pomiar Obserwacja zjawisk fizyczych polega a badaiu ych zjawisk w warukach auralych oraz a aalizie czyików i waruków, od kórych zjawiska e zależą. Waruki

Bardziej szczegółowo

tek zauważmy, że podobnie jak w dziedzinie rzeczywistej wprowadzamy dla funkcji zespolonych zmiennej rzeczywistej pochodne wyższych rze

tek zauważmy, że podobnie jak w dziedzinie rzeczywistej wprowadzamy dla funkcji zespolonych zmiennej rzeczywistej pochodne wyższych rze R o z d z i a l III RÓWNANIA RÓŻNICZKOWE LINIOWE WYŻSZYCH RZE DÓW 12. Rówaie różiczowe liiowe -tego rze du Na pocza te zauważmy, że podobie ja w dziedziie rzeczywistej wprowadzamy dla fucji zespoloych

Bardziej szczegółowo

MATEMATYCZNY MODEL PĘTLI HISTEREZY MAGNETYCZNEJ

MATEMATYCZNY MODEL PĘTLI HISTEREZY MAGNETYCZNEJ ELEKTRYKA 014 Zeszyt 1 (9) Rok LX Krzysztof SZTYMELSKI, Marian PASKO Politechnika Śląska w Gliwicach MATEMATYCZNY MODEL PĘTLI ISTEREZY MAGNETYCZNEJ Streszczenie. W artykule został zaprezentowany matematyczny

Bardziej szczegółowo

C d u. Po podstawieniu prądu z pierwszego równania do równania drugiego i uporządkowaniu składników lewej strony uzyskuje się:

C d u. Po podstawieniu prądu z pierwszego równania do równania drugiego i uporządkowaniu składników lewej strony uzyskuje się: Zadanie. Obliczyć przebieg napięcia na pojemności C w sanie przejściowym przebiegającym przy nasępującej sekwencji działania łączników: ) łączniki Si S są oware dla < 0, ) łącznik S zamyka się w chwili

Bardziej szczegółowo

Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek

Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek Zajdowaie pozostałych pierwiastków liczby zespoloej, gdy zay jest jede pierwiastek 1 Wprowadzeie Okazuje się, że gdy zamy jede z pierwiastków stopia z liczby zespoloej z, to pozostałe pierwiastki możemy

Bardziej szczegółowo

Układ regulacji ze sprzężeniem od stanu

Układ regulacji ze sprzężeniem od stanu Uład reglacji ze sprzężeniem od san 1. WSĘP Jednym z celów sosowania ład reglacji owarego, zamnięego jes szałowanie dynamii obie serowania. Jeżeli obie opisany jes równaniami san, o dynamia obie jes jednoznacznie

Bardziej szczegółowo

Podprzestrzenie macierzowe

Podprzestrzenie macierzowe Podprzestrzeie macierzowe Defiicja: Zakresem macierzy AŒ mâ azywamy podprzestrzeń R(A) przestrzei m geerowaą przez zakres fukcji ( ) : m f x = Ax ( A) { Ax x } = Defiicja: Zakresem macierzy A Œ âm azywamy

Bardziej szczegółowo

Podprzestrzenie macierzowe

Podprzestrzenie macierzowe Podprzestrzeie macierzowe Defiicja: Zakresem macierzy AŒ mâ azywamy podprzestrzeń R(A) przestrzei m geerowaą przez zakres fukcji : m f x = Ax RAAx x Defiicja: Zakresem macierzy A Œ âm azywamy podprzestrzeń

Bardziej szczegółowo

Analiza obwodów elektrycznych z przebiegami stochastycznymi. Dariusz Grabowski

Analiza obwodów elektrycznych z przebiegami stochastycznymi. Dariusz Grabowski Aliz obwodów elekryczych z przebiegmi sochsyczymi Driusz Grbowski Pl wysąpiei Sochsycze modele sygłów Procesy sochsycze Przekszłcei procesów sochsyczych przez ukłdy liiowe Ciągłość i różiczkowlość sochsycz

Bardziej szczegółowo

POMIAR MOCY OBIEKTÓW O EKSTREMALNIE MAŁYM WSPÓŁCZYNNIKU MOCY

POMIAR MOCY OBIEKTÓW O EKSTREMALNIE MAŁYM WSPÓŁCZYNNIKU MOCY Prace Nauowe Insyuu Maszyn, Napędów i Pomiarów Elerycznych Nr 63 Poliechnii Wrocławsiej Nr 63 Sudia i Maeriały Nr 9 009 Grzegorz KOSOBUDZKI* pomiar mocy błąd pomiaru, współczynni mocy POMIAR MOCY OBIEKÓW

Bardziej szczegółowo

Statystyka Inżynierska

Statystyka Inżynierska aysyka Iżyierska dr hab. iż. Jacek Tarasik AG WFiI 4 Wykład 5 TETOWANIE IPOTEZ TATYTYCZNYC ipoezy saysycze ipoezą saysyczą azywamy każde przypszczeie doyczące iezaego rozkład o prawdziwości lb fałszywości

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW BADANIE ODKSZTAŁCEŃ SPRĘŻYNY ŚRUBOWEJ Opracował: Dr iż. Grzegorz

Bardziej szczegółowo

Schrödingera. Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok

Schrödingera. Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok Wykład 0: Rówaie Schrödigera Dr iż. Zbigiew Szklarski Kaedra Elekroiki paw. C- pok.3 szkla@agh.edu.pl hp://layer.uci.agh.edu.pl/z.szklarski/ Rówaie Schrödigera jedo z podsawowych rówań ierelaywisyczej

Bardziej szczegółowo

ELEMENTY SYSTEMÓW KOLEJKOWYCH

ELEMENTY SYSTEMÓW KOLEJKOWYCH .Kowalsi Wybrae zagadieia z rocesów sochasyczych EEMENTY SYSTEMÓW KOEJKOWYCH WYBRANE ZAGADNIENIA uca Kowalsi Warszawa 8 .Kowalsi Sysemy Obsługi ieraura:.kowalsi, maeriały dydaycze z rocesów sochasyczych.

Bardziej szczegółowo

TIME-FREQUENCY RESPONSES OF PARALLEL CONNECTION OF PARAMETRIC SECTIONS

TIME-FREQUENCY RESPONSES OF PARALLEL CONNECTION OF PARAMETRIC SECTIONS ELEKTRYKA 29 Zszy 2 21 Ro LV Aa PIWOWAR Jausz WALZAK Isyu Elroc Iformay Polca Śląsa w Glwcac TIME-FREQUENY RESPONSES OF PARALLEL ONNETION OF PARAMETRI SETIONS Summary. I s papr mod for drmg frqucy rsposs

Bardziej szczegółowo

ROCZNIKI INŻYNIERII BUDOWLANEJ ZESZYT 7/2007 Komisja Inżynierii Budowlanej Oddział Polskiej Akademii Nauk w Katowicach

ROCZNIKI INŻYNIERII BUDOWLANEJ ZESZYT 7/2007 Komisja Inżynierii Budowlanej Oddział Polskiej Akademii Nauk w Katowicach ROZNIKI INŻYNIERII BUDOWLANEJ ZESZYT 7/007 Komisja Inżynierii Budowlanej Oddział Polskiej Akademii Nauk w Kaowicach WYZNAZANIE PARAMETRÓW FUNKJI PEŁZANIA DREWNA W UJĘIU LOSOWYM * Kamil PAWLIK Poliechnika

Bardziej szczegółowo

Numeryczny opis zjawiska zaniku

Numeryczny opis zjawiska zaniku FOTON 8, iosa 05 7 Numeryczy opis zjawiska zaiku Jerzy Giter ydział Fizyki U Postawieie problemu wielu zagadieiach z różych działów fizyki spotykamy się z astępującym problemem: zmiay w czasie t pewej

Bardziej szczegółowo

Twierdzenia o funkcjach ciągłych

Twierdzenia o funkcjach ciągłych Automatya i Robotya Aaliza Wyład 5 dr Adam Ćmiel cmiel@aghedupl Twierdzeia o ucjach ciągłych Tw (Weierstrassa Jeżeli ucja : R [ R jest ciągła a [, to ograiczoa i : ( sup ( i ( i ( [, Dowód Ograiczoość

Bardziej szczegółowo

Przełączanie diody. Stan przejściowy pomiędzy stanem przewodzenia diod, a stanem nieprzewodzenia opisuje się za pomocą parametru/ów czasowego/ych.

Przełączanie diody. Stan przejściowy pomiędzy stanem przewodzenia diod, a stanem nieprzewodzenia opisuje się za pomocą parametru/ów czasowego/ych. Przełączaie diody 1. Trochę eorii a przejściowy pomiędzy saem przewodzeia diod, a saem ieprzewodzeia opisuje się za pomocą parameru/ów czasowego/ych. Mamy więc ajprosszy eleme półprzewodikowy (dwójik),

Bardziej szczegółowo

Wyznaczyć prędkości punktów A i B

Wyznaczyć prędkości punktów A i B Wyzaczaie prędkości i przyspieszeia puku ciała w ruchu płaskim (a) Wyzaczyć prędkości puków i Dae: rad/s; ε 0; 5 cm; 5 cm 48 mechaika echicza kiemayka 3 Wyzaczaie prędkości i przyspieszeia puku ciała w

Bardziej szczegółowo

COLLEGIUM MAZOVIA INNOWACYJNA SZKOŁA WYŻSZA WYDZIAŁ NAUK STOSOWANYCH. Kierunek: Finanse i rachunkowość. Robert Bąkowski Nr albumu: 9871

COLLEGIUM MAZOVIA INNOWACYJNA SZKOŁA WYŻSZA WYDZIAŁ NAUK STOSOWANYCH. Kierunek: Finanse i rachunkowość. Robert Bąkowski Nr albumu: 9871 COLLEGIUM MAZOVIA INNOWACYJNA SZKOŁA WYŻSZA WYDZIAŁ NAUK STOSOWANYCH Kieruek: Fiase i rachukowość Robert Bąkowski Nr albumu: 9871 Projekt: Badaie statystycze cey baryłki ropy aftowej i wartości dolara

Bardziej szczegółowo

Metody Podejmowania Decyzji

Metody Podejmowania Decyzji Metody Podejmowaia Decyzji Wzrost liczby absolwetów w Politechice Wrocławsiej a ieruach o luczowym zaczeiu dla gospodari opartej a wiedzy r UDA-POKL.04.0.0-00-065/09-0 Recezet: Prof. dr hab. iż. Ja Iżyowsi

Bardziej szczegółowo

Teoria Sygnałów. II Inżynieria Obliczeniowa. Wykład 13

Teoria Sygnałów. II Inżynieria Obliczeniowa. Wykład 13 Toria Sygałów II Iżyiria Oblicziowa Wyład 3 Filtr adaptacyjy dostraja się do zmiych waruów pracy. Filtr tai posiadają dwa sygały wjściow. Pirwszym jst sygał poddaway filtracji x(). Drugim ta zway sygał

Bardziej szczegółowo

Czas trwania obligacji (duration)

Czas trwania obligacji (duration) Czas rwaia obligacji (duraio) Do aalizy ryzyka wyikającego ze zmia sóp proceowych (szczególie ryzyka zmiay cey) wykorzysuje się pojęcie zw. średiego ermiu wykupu obligacji, zwaego rówież czasem rwaia obligacji

Bardziej szczegółowo

LOKALNA ANALIZA CZĘSTOTLIWOŚCIOWA SYGNAŁÓW. 1. Definicja 2. Okna 3. Transformacja Gabora. Spis treści

LOKALNA ANALIZA CZĘSTOTLIWOŚCIOWA SYGNAŁÓW. 1. Definicja 2. Okna 3. Transformacja Gabora. Spis treści LOKALNA ANALIZA CZĘSOLIWOŚCIOWA SYGNAŁÓW. Deinicja. Okna 3. ransormacja Gabora Spis reści Analiza czasoo-częsoliościoa sygnału moy Ampliuda.. andrzej 35_m.av -. 3 4 5 6 7 8 9 D 4. 3.5 D 3. DW D3 D4.5..5

Bardziej szczegółowo

FILTRY FILTR. - dziedzina pracy filtru = { t, f, ω } Filtr przekształca w sposób poŝądany sygnał wejściowy w sygnał wyjściowy: Filtr: x( ) => y( ).

FILTRY FILTR. - dziedzina pracy filtru = { t, f, ω } Filtr przekształca w sposób poŝądany sygnał wejściowy w sygnał wyjściowy: Filtr: x( ) => y( ). FILTRY Sygał wejściowy FILTR y( ) F[x( )] Sygał wyjściowy - dziedzia pracy filtru { t, f, } Filtr przekształca w sposób poŝąday sygał wejściowy w sygał wyjściowy: Filtr: x( ) > y( ). Działaie filtru moŝe

Bardziej szczegółowo

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH POMIAR FIZYCZNY Pomiar bezpośredi to doświadczeie, w którym przy pomocy odpowiedich przyrządów mierzymy (tj. porówujemy

Bardziej szczegółowo

Analiza wyników symulacji i rzeczywistego pomiaru zmian napięcia ładowanego kondensatora

Analiza wyników symulacji i rzeczywistego pomiaru zmian napięcia ładowanego kondensatora Aaliza wyików symulacji i rzeczywistego pomiaru zmia apięcia ładowaego kodesatora Adrzej Skowroński Symulacja umożliwia am przeprowadzeie wirtualego eksperymetu. Nie kostruując jeszcze fizyczego urządzeia

Bardziej szczegółowo

WOJSKOWA AKADEMIA TECHNICZNA im. Jarosława Dąbrowskiego ZAKŁAD AWIONIKI I UZBROJENIA LOTNICZEGO

WOJSKOWA AKADEMIA TECHNICZNA im. Jarosława Dąbrowskiego ZAKŁAD AWIONIKI I UZBROJENIA LOTNICZEGO WOJSKOWA AKADEMIA ECHNICZNA im. Jaroława Dąbrowiego ZAKŁAD AWIONIKI I UZBROJENIA LONICZEGO Przedmiot: PODSAWY AUOMAYKI (tudia tacjoare I topia) ĆWICZENIE RACHUNKOWE Nr 3 CHARAKERYSYKI CZASOWE I CZĘSOLIWOŚCIOWE

Bardziej szczegółowo

LABORATORIUM SYGNAŁÓW I SYSTEMÓW. Ćwiczenie 1

LABORATORIUM SYGNAŁÓW I SYSTEMÓW. Ćwiczenie 1 POLIECHNIKA WARSZAWSKA INSYU RADIOELEKRONIKI ZAKŁAD RADIOKOMUNIKACJI LABORAORIUM SYGNAŁÓW I SYSEMÓW Ćwiczenie ema: MODELE CZĘSOLIWOŚCIOWE SYGNAŁÓW Opracowała: mgr inż. Kajeana Snope Warszawa Cel ćwiczenia

Bardziej szczegółowo

KADD Metoda najmniejszych kwadratów

KADD Metoda najmniejszych kwadratów Metoda ajmiejszych kwadratów Pomiary bezpośredie o rówej dokładości o różej dokładości średia ważoa Pomiary pośredie Zapis macierzowy Dopasowaie prostej Dopasowaie wielomiau dowolego stopia Dopasowaie

Bardziej szczegółowo

Rachunek różniczkowy funkcji wielu zmiennych

Rachunek różniczkowy funkcji wielu zmiennych Automatya i Robotya Aaliza Wyład dr Adam Ćmiel cmiel@agh.edu.pl Rachue różiczowy fucji wielu zmieych W olejych wyładach uogólimy pojęcia rachuu różiczowego i całowego fucji jedej zmieej a przypade fucji

Bardziej szczegółowo

PROGRAMOWY GENERATOR PROCESÓW STOCHASTYCZNYCH LEVY EGO

PROGRAMOWY GENERATOR PROCESÓW STOCHASTYCZNYCH LEVY EGO POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 69 Elecrical Engineering 0 Janusz WALCZAK* Seweryn MAZURKIEWICZ* PROGRAMOWY GENERATOR PROCESÓW STOCHASTYCZNYCH LEVY EGO W arykule opisano meodę generacji

Bardziej szczegółowo

Ćwiczenia nr 5. TEMATYKA: Regresja liniowa dla prostej i płaszczyzny

Ćwiczenia nr 5. TEMATYKA: Regresja liniowa dla prostej i płaszczyzny TEMATYKA: Regresja liiowa dla prostej i płaszczyzy Ćwiczeia r 5 DEFINICJE: Regresja: metoda statystycza pozwalająca a badaie związku pomiędzy wielkościami daych i przewidywaie a tej podstawie iezaych wartości

Bardziej szczegółowo

Rozkład Poissona. I. Cel ćwiczenia. Obowiązujący zakres materiału. Podstawy teoretyczne. Opracował: Roman Szatanik

Rozkład Poissona. I. Cel ćwiczenia. Obowiązujący zakres materiału. Podstawy teoretyczne. Opracował: Roman Szatanik Opracował: Roma Szatai Rozład Poissoa I. Cel ćwiczeia Zapozaie ze statystyczym sposobem opisu zagadień związaych z promieiowaiem jądrowym oraz z rozładami statystyczymi stosowaymi w fizyce jądrowej. Pratycze

Bardziej szczegółowo

Ł ś ą ś ż ą Ż ż ż ó ó ó ó ś ą ą Ś ą ą ó ą ś Ż ą ż ż ż ą ą Ś ą ą ą ż ś ą ó ą Ę ą ą ś ą ą ó ś ą ś Ą ż ż ą ą Ś ą Ż ą ż Ł ó ą ś ą ó ó Ę ą ą Ś ą ą ó ą ą ż ś ą ą Ę ż Ąą ą ś ą ą ą ą ś Ż ó ą ą ż ż ą ą Ś ą Ę ó

Bardziej szczegółowo

Kanał K1 (prosty) Kanał K2 (zwrotny) (kanał bez szumów ) Rys. 1. Schemat blokowy ISTS jak i faza φ 0

Kanał K1 (prosty) Kanał K2 (zwrotny) (kanał bez szumów ) Rys. 1. Schemat blokowy ISTS jak i faza φ 0 wwwpwepupozapl Aaolij Płaoow Isyu Sysemów Eleroiczych Poliechia Warszawsa Nowowiejsa 5/9, -665, Warszawa e-mail: pla@isepwedupl 5 Pozańsie Warszay Teleomuiacyje Pozań 8-9 grudia 5 WYSOKOEEKTYWNE ITERACYJNE

Bardziej szczegółowo

Zadania z Matematyka 2 - SIMR 2008/ szeregi zadania z rozwiązaniami. n 1. n n. ( 1) n n. n n + 4

Zadania z Matematyka 2 - SIMR 2008/ szeregi zadania z rozwiązaniami. n 1. n n. ( 1) n n. n n + 4 Zadaia z Matematyka - SIMR 00/009 - szeregi zadaia z rozwiązaiami. Zbadać zbieżość szeregu Rozwiązaie: 0 4 4 + 6 0 : Dla dostateczie dużych 0 wyrazy szeregu są ieujeme 0 a = 4 4 + 6 0 0 Stosujemy kryterium

Bardziej szczegółowo

INSTYTUT ENERGOELEKTRYKI POLITECHNIKI WROCŁAWSKIEJ Raport serii SPRAWOZDANIA Nr LABORATORIUM PODSTAW AUTOMATYKI INSTRUKCJA LABORATORYJNA

INSTYTUT ENERGOELEKTRYKI POLITECHNIKI WROCŁAWSKIEJ Raport serii SPRAWOZDANIA Nr LABORATORIUM PODSTAW AUTOMATYKI INSTRUKCJA LABORATORYJNA Na prawach rękopisu do użytku służbowego NYU ENERGOELERY OLEHN ROŁAEJ Raport serii RAOZANA Nr LABORAORUM OA AUOMAY NRUJA LABORAORYJNA EROANE RAĄ LNA Z YORZYANEM L Mirosław Łukowicz łowa kluczowe: sterowik

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 2B, lato 2015/16

Jarosław Wróblewski Analiza Matematyczna 2B, lato 2015/16 Egzami,.9.6, godz. :-5: Zadaie. ( puktów) Wyzaczyć wszystkie rozwiązaia rówaia z 4 = 4 w liczbach zespoloych. Zapisać wszystkie rozwiązaia w postaci kartezjańskiej (bez używaia fukcji trygoometryczych)

Bardziej szczegółowo

D:\materialy\Matematyka na GISIP I rok DOC\07 Pochodne\8A.DOC 2004-wrz-15, 17: Obliczanie granic funkcji w punkcie przy pomocy wzoru Taylora.

D:\materialy\Matematyka na GISIP I rok DOC\07 Pochodne\8A.DOC 2004-wrz-15, 17: Obliczanie granic funkcji w punkcie przy pomocy wzoru Taylora. D:\maerialy\Maemayka a GISIP I rok DOC\7 Pochode\8ADOC -wrz-5, 7: 89 Obliczaie graic fukcji w pukcie przy pomocy wzoru Taylora Wróćmy do wierdzeia Taylora (wzory (-( Tw Szczególie waża dla dalszych R rozważań

Bardziej szczegółowo

Metody numeryczne. Instytut Sterowania i Systemów Informatycznych Wydział Elektrotechniki, Informatyki i Telekomunikacji Uniwersytet Zielonogórski

Metody numeryczne. Instytut Sterowania i Systemów Informatycznych Wydział Elektrotechniki, Informatyki i Telekomunikacji Uniwersytet Zielonogórski Metody numeryczne Instytut Sterowania i Systemów Informatycznych Wydział Eletrotechnii, Informatyi i Teleomuniacji Uniwersytet Zielonogórsi Eletrotechnia stacjonarne-dzienne pierwszego stopnia z tyt. inżyniera

Bardziej szczegółowo

ANALIZA CZĘSTOTLIWOŚCIOWA SYGNAŁÓW. Spis treści

ANALIZA CZĘSTOTLIWOŚCIOWA SYGNAŁÓW. Spis treści ANALIZA CZĘSOLIWOŚCIOWA SYGNAŁÓW Spi reści. Dykree widmo ygałów okreowych. Związek między zeregiem i raormacją Fouriera 3. Waruki iieia i odwracalości raormacji Fouriera 4. Widma ygałów 5. Właości raormacji

Bardziej szczegółowo

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych (w zakresie materiału przedstawionego na wykładzie organizacyjnym)

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych (w zakresie materiału przedstawionego na wykładzie organizacyjnym) Podstawy opracowaia wyików pomiarów z elemetami aalizepewości pomiarowych (w zakresie materiału przedstawioego a wykładzie orgaizacyjym) Pomiary Wyróżiamy dwa rodzaje pomiarów: pomiar bezpośredi, czyli

Bardziej szczegółowo

FUNKCJE ZMIENNYCH LOSOWYCH. Uwagi o rozkładzie funkcji zmiennej losowej jednowymiarowej.

FUNKCJE ZMIENNYCH LOSOWYCH. Uwagi o rozkładzie funkcji zmiennej losowej jednowymiarowej. L.Kowals Fucje zmeych losowych FUNKCJE ZMIENNYCH LOSOWYCH Uwag o rozładze fucj zmeej losowej jedowymarowej. Jeśl - soowa, o fucj prawdopodobeńswa P( x ) p, g - dowola o fucja prawdopodobeńswa zmeej losowej

Bardziej szczegółowo

KOMBINATORYKA. Oznaczenia. } oznacza zbiór o elementach a, a2,..., an. Kolejność wypisania elementów zbioru nie odgrywa roli.

KOMBINATORYKA. Oznaczenia. } oznacza zbiór o elementach a, a2,..., an. Kolejność wypisania elementów zbioru nie odgrywa roli. KOMBINATORYKA Kombiatoryą azywamy dział matematyi zajmujący się zbiorami sończoymi oraz relacjami między imi. Kombiatorya w szczególości zajmuje się wyzaczaiem liczby elemetów zbiorów sończoych utworzoych

Bardziej szczegółowo

EKONOMETRIA. Liniowy model ekonometryczny (regresji) z jedną zmienną objaśniającą

EKONOMETRIA. Liniowy model ekonometryczny (regresji) z jedną zmienną objaśniającą EKONOMETRIA Tema wykładu: Liiowy model ekoomeryczy (regresji z jedą zmieą objaśiającą Prowadzący: dr iż. Zbigiew TARAPATA e-mail: Zbigiew.Tarapaa Tarapaa@isi.wa..wa.edu.pl hp:// zbigiew.arapaa.akcja.pl/p_ekoomeria/

Bardziej szczegółowo

DYNAMICZNA STATECZNOŚĆ SŁABYCH RÓWNAŃ UKŁADÓW CIĄGŁYCH DYNAMIC STABILITY OF CONTINUOUS SYSTEMS IN WEAK FORMULATION

DYNAMICZNA STATECZNOŚĆ SŁABYCH RÓWNAŃ UKŁADÓW CIĄGŁYCH DYNAMIC STABILITY OF CONTINUOUS SYSTEMS IN WEAK FORMULATION ANDRZEJ TYLIKOWSKI DYNAMICZNA STATECZNOŚĆ SŁABYCH RÓWNAŃ UKŁADÓW CIĄGŁYCH DYNAMIC STABILITY OF CONTINUOUS SYSTEMS IN WEAK FORMULATION Sreszczeie Absrac Niiejszy arykuł poświęcoy jes aalizie dyamiki układów

Bardziej szczegółowo

a 1, a 2, a 3,..., a n,...

a 1, a 2, a 3,..., a n,... III. Ciągi liczbowe. 1. Defiicja ciągu liczbowego. Defiicja 1.1. Ciągiem liczbowym azywamy fukcję a : N R odwzorowującą zbiór liczb aturalych N w zbiór liczb rzeczywistych R i ozaczamy przez { }. Używamy

Bardziej szczegółowo

Problemy niezawodnościowo-eksploatacyjne. dotyczące układów zasilających. elektronicznego systemu bezpieczeństwa.

Problemy niezawodnościowo-eksploatacyjne. dotyczące układów zasilających. elektronicznego systemu bezpieczeństwa. aua Problemy iezawodościowo-esploatacyje uładów zasilających eletroicze systemy bezpieczeństwa Waldemar Szulc Wyższa Szoła Meedżersa w Warszawie, Wydział Iformatyi Stosowaej i Techi Bezpieczeństwa Streszczeie:

Bardziej szczegółowo

WYKORZYSTANIE FILTRU CZĄSTECZKOWEGO W PROBLEMIE IDENTYFIKACJI UKŁADÓW AUTOMATYKI

WYKORZYSTANIE FILTRU CZĄSTECZKOWEGO W PROBLEMIE IDENTYFIKACJI UKŁADÓW AUTOMATYKI Piotr KOZIERSKI WYKORZYSTAIE FILTRU CZĄSTECZKOWEGO W PROBLEMIE IDETYFIKACJI UKŁADÓW AUTOMATYKI STRESZCZEIE W artyule przedstawioo sposób idetyfiacji parametryczej obietów ieliiowych zapisaych w przestrzei

Bardziej szczegółowo

PRZETWARZANIE SYGNAŁÓW ANALOGOWYCH NA SYGNAŁY CYFROWE

PRZETWARZANIE SYGNAŁÓW ANALOGOWYCH NA SYGNAŁY CYFROWE PRZETWARZANIE SYGNAŁÓW ANALOGOWYCH NA SYGNAŁY CYFROWE Si reści 1. Deiicja róbkowaia ygału. Twierdzeie Shaoa 3. Aliaig czyli uożamiaie 4. Przewarzaie obrazów aalogowych a dykree 1 Próbkowaie ygałów ag.

Bardziej szczegółowo

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi.

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi. 3 Metody estymacj N ( µ, σ ) Wyzacz estymatory parametrów µ 3 Populacja geerala ma rozład ormaly mometów wyorzystując perwszy momet zwyły drug momet cetraly z prób σ metodą 3 Zmea losowa ma rozład geometryczy

Bardziej szczegółowo

2. Wybrane zagadnienia matematyki wykorzystywane do opisu liniowych układów automatyki

2. Wybrane zagadnienia matematyki wykorzystywane do opisu liniowych układów automatyki 4. Wybrae zagadieia maemayi wyorzyywae do oiu liiowych uładów auomayi.. Przezałceie alace a Wyorzyaie rzezałceia alace a do obliczeń zwae je rachuiem oeraorowym. Zaczeie rachuu oeraorowego w zaoowaiach

Bardziej szczegółowo

Statystyka opisowa. () Statystyka opisowa 24 maja / 8

Statystyka opisowa. () Statystyka opisowa 24 maja / 8 Część I Statystyka opisowa () Statystyka opisowa 24 maja 2010 1 / 8 Niech x 1, x 2,..., x będą wyikami pomiarów, p. temperatury, ciśieia, poziomu rzeki, wielkości ploów itp. Przykład 1: wyiki pomiarów

Bardziej szczegółowo

Zeszyty naukowe nr 9

Zeszyty naukowe nr 9 Zeszyty aukowe r 9 Wyższej Szkoły Ekoomiczej w Bochi 2011 Piotr Fijałkowski Model zależości otowań giełdowych a przykładzie otowań ołowiu i spółki Orzeł Biały S.A. Streszczeie Niiejsza praca opisuje próbę

Bardziej szczegółowo

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECI SKIEGO ODPOWIED NA PYTANIE PROFESORA RAUTSKAUKASA

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECI SKIEGO ODPOWIED NA PYTANIE PROFESORA RAUTSKAUKASA ZESZYTY NAUKOWE UNIWERSYTETU SZCZECI SKIEGO NR 394 PRACE KATEDRY EKONOMETRII I STATYSTYKI NR 15 2004 JÓZEF HOZER Uniwersye Szczeci ski ODPOWIED NA PYTANIE PROFESORA RAUTSKAUKASA 1. PYTANIE PROFESORA RAUTSKAUKASA

Bardziej szczegółowo

Ł Ś Ą ó ó ó ś ó ó ś ó ó ó ó ó Ó ś ó ś ó ó ś Ó ó Ó ś ó ś ó ó ó Ź ó ó ś ó ó ó ś ó ść ó ó ó Ą ó ś ó ó ó ś śó ó ó ź ó ó ś ó Ź ś ó ć ó ś Ę Ą ó ś óź ó ó ś ó ś Ę ó Ó ź ść ó ó ś ś ś Ó ó ź ó ś Ó ó ó ó ó ó ś Ó ó

Bardziej szczegółowo

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych Podstawy opracowaia wyików pomiarów z elemetami aalizepewości pomiarowych w zakresie materiału przedstawioego a wykładzie orgaizacyjym Pomiary Wyróżiamy dwa rodzaje pomiarów: pomiar bezpośredi, czyli doświadczeie,

Bardziej szczegółowo

LICZBY, RÓWNANIA, NIERÓWNOŚCI; DOWÓD INDUKCYJNY

LICZBY, RÓWNANIA, NIERÓWNOŚCI; DOWÓD INDUKCYJNY LICZBY, RÓWNANIA, NIERÓWNOŚCI; DOWÓD INDUKCYJNY Zgodie z dążeiami filozofii pitagorejsiej matematyzacja abstracyjego myśleia powia być dooywaa przy pomocy liczb. Soro ta, to liczby ależy tworzyć w miarę

Bardziej szczegółowo

f '. Funkcja h jest ciągła. Załóżmy, że ciąg (z n ) n 0, z n+1 = h(z n ) jest dobrze określony, tzn. n 0 f ' ( z n

f '. Funkcja h jest ciągła. Załóżmy, że ciąg (z n ) n 0, z n+1 = h(z n ) jest dobrze określony, tzn. n 0 f ' ( z n Metoda Newtoa i rówaie z = 1 Załóżmy, że fucja f :C C ma ciągłą pochodą. Dla (prawie) ażdej liczby zespoloej z 0 tworzymy ciąg (1) (z ) 0, z 1 = z f ( z ), ciąg te f ' (z ) będziemy azywać orbitą liczby

Bardziej szczegółowo

Tw: (O promieniu zbieżności R szeregu potęgowego ) Jeżeli istnieje granica. to R = ) ciąg liczb zespolonych

Tw: (O promieniu zbieżności R szeregu potęgowego ) Jeżeli istnieje granica. to R = ) ciąg liczb zespolonych Automatya i Rootya Aaliza Wyład dr Adam Ćmil cmil@agh.du.pl SZEREGI POTĘGOWE ( c ciąg licz zspoloych c ( z z - szrg potęgowy, gdzi ( c - ciąg współczyiów szrgu, z C - środ, ctrum (ustalo, z C - zmia. Dla

Bardziej szczegółowo

PRZETWORNIKI C/A 1. STRUKTURA PRZETWORNIKA C/A

PRZETWORNIKI C/A 1. STRUKTURA PRZETWORNIKA C/A PZETWON C/A. STTA PZETWONA C/A. PZETWON C/A NAPĘCOWE.. PZETWON NAPĘCOWE Z DZELNEM NAPĘCOWYM WYJŚCEM NAPĘCOWYM... Przetwori C/A z drabią rówoległą Deoder z N N N wy stawieia przełącziów dla sytuacji, gdy

Bardziej szczegółowo

Sterowanie Ciągłe. Używając Simulink a w pakiecie MATLAB, zasymulować układ z rysunku 7.1. Rys.7.1. Schemat blokowy układu regulacji.

Sterowanie Ciągłe. Używając Simulink a w pakiecie MATLAB, zasymulować układ z rysunku 7.1. Rys.7.1. Schemat blokowy układu regulacji. emat ćwiczenia nr 7: Synteza parametryczna uładów regulacji. Sterowanie Ciągłe Celem ćwiczenia jest orecja zadanego uładu regulacji wyorzystując następujące metody: ryterium amplitudy rezonansowej i metodę

Bardziej szczegółowo

PRZYKŁADY ROZWIAZAŃ STACJONARNEGO RÓWNANIA SCHRӦDINGERA. Ruch cząstki nieograniczony z klasycznego punktu widzenia. mamy do rozwiązania równanie 0,,

PRZYKŁADY ROZWIAZAŃ STACJONARNEGO RÓWNANIA SCHRӦDINGERA. Ruch cząstki nieograniczony z klasycznego punktu widzenia. mamy do rozwiązania równanie 0,, PRZYKŁADY ROZWIAZAŃ STACJONARNEGO RÓWNANIA SCHRӦDINGERA Ruch cząstki ieograiczoy z klasyczego puktu widzeia W tym przypadku V = cost, przejmiemy V ( x ) = 0, cząstka porusza się wzdłuż osi x. Rozwiązujemy

Bardziej szczegółowo