OKREŚLANIE PARZYSTOŚCI LICZB W RESZTOWYM SYSTEMIE LICZBOWYM Z WYKORZYSTANIEM KONWERSJI DO SYSTEMU Z MIESZANYMI PODSTAWAMI

Wielkość: px
Rozpocząć pokaz od strony:

Download "OKREŚLANIE PARZYSTOŚCI LICZB W RESZTOWYM SYSTEMIE LICZBOWYM Z WYKORZYSTANIEM KONWERSJI DO SYSTEMU Z MIESZANYMI PODSTAWAMI"

Transkrypt

1 POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 76 Electrcal Engneerng 2013 Mrosław PLEBANEK* OKREŚLANIE PARZYSTOŚCI LICZB W RESZTOWYM SYSTEMIE LICZBOWYM Z WYKORZYSTANIEM KONWERSJI DO SYSTEMU Z MIESZANYMI PODSTAWAMI W artykule przedstawono etodę konwersj lczb z systeu resztowego do systeu z eszany podstawa. Następne zaprezentowano dwe etody konwersj lczb z systeu z eszany podstawa do systeu dzesętnego, oraz etodę określana parzystośc porównywana lczb zapsanych w systee z eszany podstawa. 1. WSTĘP Resztowy syste lczbowy (ang. the Resdue Nuber Syste, RNS) został stworzony w celu przyspeszena oblczeń arytetycznych w układach elektronk. Jego zaletą jest ożlwość wykonywana dodawana, nożena dzelena z ponęce przeneseń. Z kole operacje take jak dzelene lub porównywane lczb są znaczne trudnejsze do realzacj nż w systeach wagowych. Przykładowo porównane dwóch lczb w systee wagowy polega na sprawdzenu wartośc cyfr dla najbardzej znaczących wag, w RNS ne da sę w prosty sposób porównać lczb na podstawe ch reprezentacj. Najłatwejszy sposobe porównana dwóch lczb w RNS jest ch konwersja do systeu wagowego np.: przy poocy chńskego twerdzena o resztach (ang. Chnese Render Theore, CRT) porównane wyznaczonych lczb. Ze względu na czasochłonność konwersj rozpoczęto badana nad nny etoda porównywana lczb w RNS. Jedną z etod jest etoda wykorzystująca funkcję rdzena [2]. Z kole w artykule [3] opsana jest etoda porównywana lczb oparta o wykorzystane tablc parzystośc. O le etoda jest szybka prosta tablce parzystośc ogą osągać znaczne rozary co oże prowadzć do znacznych opóźneń oraz wzrostu nakładów sprzętowych. W artykule przedstawono etodę określana parzystośc porównywana dwóch lczb wykorzystującą konwersję lczb z RNS do MRS. * Poltechnka Gdańska.

2 128 Mrosław Plebanek 2. RESZTOWY SYSTEM LICZBOWY - RNS Nech B = { 1, 2,..., n } będze zbore para względne perwszych odułów, zwany bazą, oraz nech n M =. W systee resztowy, = 1 określony przez bazę B, każda lczba X z zakresu [0, M) jest jednoznaczne x = X dla reprezentowana przez wektor (x 1, x 2,..., x n ), gdze każdego1< n jest najnejszą neujeną resztą z dzelena lczby X przez oduł. 3. SYSTEM RESZTOWY Z MIESZANYMI PODSTAWAMI - MRS MRS jest systee wagowy, który został przedstawony w [1]. Lczba X z zakresu określonego przez bazę RNS, a reprezentację w MRS w postac: n 1 X= a n +...+a a 2 1 +a 1 = a n P n +...+a 3 P 3 +a 2 P 2 +a 1 P 1 = 1 (1) gdze: a 1,..., a n - są cyfra MRS, przy czy 0 a <, P 1,..., P n - są kolejny waga MRS, zdefnowany jako P 1 = 1 oraz n 1. Reprezentacja lczby w MRS określona jest jako (a n, a n 1,..., a 1 ) gdze a n jest cyfrą MRS stojącą przy najbardzej znaczącej wadze. Każda lczba z zakresu określonego przez RNS a dokładne jedną reprezentację w MRS. Syste dzesętny jest szczególny przypadke MRS, w który wszystke = 10. Zaleta MRS są: ożlwość porównywana lczb przy poocy prostych technk (porównywane wartośc odpowadających sobe lczb MRS), konwersja z RNS do MRS jest operacją szybszą prostszą w pleentacj nż CRT (brak konecznośc oblczana X od M ). P n = = 1 4. KONWERSJA Z RNS DO MRS Wektor (x 1, x 2,..., x n ) jest reprezentacją lczby X w RNS o baze B = { 1, 2,..., n }. Konwersję lczby X, do MRS przeprowadza sę w następujący sposób a 1 = X = x jest resztą dla 1. zaczynając od wyznaczena a 1. 1

3 Określane parzystośc lczb w resztowy systee lczbowy a 2 x2 a1 = 1 1 (lcznk nożony przez nwersję ultplkatywną anownka). Poneważ a 1 = X, stąd X a 1 = 0 wyznaczene wynku X a 1. Co za ty dze, ożlwe jest 1 1 bezpośredno w RNS. 1 Oblczena są kontynuowane dla kolejnych a = wyznaczena wszystkch cyfr MRS. Ponższy przykład lustruje opsane powyżej zależnośc. X Tabela 4.1. Konwersja lczby z systeu RNS do MRS 1 aż do

4 130 Mrosław Plebanek Konwersja lczby z systeu MRS do dzesętnego Do przeprowadzena konwersj koneczne jest wykonane n 1 operacj dodawana tyle sao operacj nożena, gdze n to lość cyfr MRS w reprezentacj lczby X. Zaletą zaprezentowanej etody są nsk stopeń skoplkowana, krótk czas oblczeń brak konecznośc wykonywana czasochłonnych operacj odulo Alternatywna etoda konwersj z MRS do systeu dzesętnego Znając oduły RNS, które zostały użyte do określena wag MRS podczas MRC, konwersję lczby z MRS do systeu dzesętnego ożna przeprowadzć w oparcu o wyrażene ((((((((a 5 ) 4 ) + a 4 ) 3 ) + a 3 ) 2 ) + a 2 ) 1 ) + a 1 = X. Przykład Znana jest reprezentacja lczby X w MRS X MRS (0, 0, 4, 14, 1). Wadoo, że RNS, z którego wykonano MRC posada bazę B = 1, 2, 3, 4, 5 } = {17, 19, 23, 29, 31} Wyznacz wartość X w systee dzesętny. Tabela 4.2. Wyznaczane wartośc dzesętnej lczby na podstawe jej reprezentacj w MRS

5 Określane parzystośc lczb w resztowy systee lczbowy Ilość operacj konecznych do wykonana jest taka saa jak w etodze zaprezentowanej w [1]. Zaleta zaprezentowanej etody są nske nakłady sprzętowe oraz brak konecznośc przechowywana w ROM wag MRS, wystarczy znajoość odułów bazy RNS użytych podczas MRC. Wadą jest brak ożlwośc wykonana wszystkch operacj nożena nezależne od sebe, a następne dodana otrzyanych loczynów jak a to ejsce w [1]. 5. OKREŚLANIE PARZYSTOŚCI W SYSTEMIE LICZBOWYM Z MIESZANYMI PODSTAWAMI Wedząc, że na podstawe (1) wartość lczby X w MRS określona jest jako n X = a P =1 zate jej parzystość ożna określć na podstawe wyrażena n X 2 = a P 2 =1 2 Przyjując, że X 2 = 0 oznacza lczbę parzystą oraz X 2 = 1 neparzystą. Wyrażene to ożna zrealzować przy poocy układu kobnacyjnego przedstawonego na rysunku 5.1. Rys Układ do wyznaczana parzystośc lczb zapsanych w MRS Przedstawona etoda pozwala na szybke oblczene parzystośc lczby, jeżel znana jest jej reprezentacja w MRS. Zaletą etody jest brak konecznośc wykonywana operacj odulo M, jak a to ejsce w CRT, lub w funkcj rdzena [4].

6 132 Mrosław Plebanek 6. PORÓWNYWANIE LICZB W RNS Z WYKORZYSTANIEM KONWERSJI DO MRS Zaprezentowane w artykule etody konwersj lczb z RNS do MRS określana ch parzystośc ogą zostać wykorzystane do porównywana lczb określonych przy poocy ch reprezentacj w RNS. W artykule [5] przedstawono dwe etody porównywana lczb w RNS wykorzystujące funkcję rdzena do określana parzystośc lczb na podstawe ch reprezentacj w RNS. Jedna z zaprezentowanych etod pozwala na porównywana lczb, gdy baza RNS składa sę z odułów neparzystych Metoda porównywana lczb w RNS z bazą złożoną z odułów neparzystych Zaprezentowany algoryt oparto o dwa twerdzena [1] o parzystośc, w przypadku, gdy oduły RNS są para względne perwsze. Twerdzene 1: Nech X Y są tej saej parzystośc Z = X Y. X Y <=>Z jest lczbą parzystą, X < Y <=> Z jest neparzystą lczbą. Twerdzene 2: Nech X Y są różnej parzystośc Z = X Y. X Y <=>Z jest lczbą neparzystą, X < Y <=> Z jest parzystą lczbą. Wynk algorytu jest poprawny tylko, gdy lczby X Y są tego saego znaku, stąd koneczność sprawdzena ch znaku przed rozpoczęce oblczeń. 1. Oblczyć Z = X Y. 2. Wyznaczyć X 2, Y 2, 2 Z. X 2 = Y. Jeżel obe lczby są tej saej parzystośc, wynk porównana przyjuje wartość 1, w przecwny wypadku wynk porównana przyjuje wartość 0. Z z wynke porównana X 2 Y 2 wyznaczony w punkce 3. Jeżel obe wartośc są sobe równe, wynk porównana a wartość 0, co oznacza, że X Y, w przecwny przypadku wynk porównana przyjuje wartość 1, co oznacza, że X < Y. 3. Sprawdzć, czy 2 4. Porównać 2 Algoryt zaprezentowany w [5] ożna przedstawć w postac scheatu blokowego:

7 Określane parzystośc lczb w resztowy systee lczbowy Rys Scheat układu porównywana lczb w RNS o baze z oduła neparzysty W [5] zaproponowano aby wartość parzystośc była wyznaczana przy poocy funkcj rdzena, aczkolwek dużo efektywnejszą etodą jest wykorzystane konwersj lczb do MRS wyznaczene ch parzystośc przy poocy zaprezentowanej wcześnej etody. Tego typu rozwązane jest znaczne bardzej proste w realzacj ze względu na brak konecznośc wykonywana operacj odulo M, która występuje podczas wyznaczana wartośc funkcj rdzena oraz, co za ty dze, znaczne nejszy pozo skoplkowana układu realzującego algoryt porównywana lczb Metoda porównywana lczb na podstawe reprezentacj RNS Porównane dwóch lczb o reprezentacj w MRS ożna przeprowadzć porównując edzy sobą cyfry MRS obu lczb określone dla tej saej wag zaczynając od cyfry stojącej przy najwększej wadze. Operacja porównana wyaga użyca n+1 koparatorów, gdze n jest loścą cyfr MRS w reprezentacj. Przyjując (x 1, x 2,..., x n ) oraz (y 1, y 2,..., y n ) jako reprezentacje odpowedno X Y w RNS oraz P1, P2,..., Pn jako kolejne wag MRS. Gdze Pn >... > P2 > P1. Algoryt porównywana lczb w systeach resztowych z użyce konwersj do MRS a postać: 1. Przeprowadzć konwersję RNS MRS dla obu lczb X Y. 2. Sprawdzć czy x n > y n. Jeżel tak, to X > Y. W przecwny przypadku przejść do kolejnego punktu 3,. 3. Sprawdzć czy x n 1 > y n 1. Jeżel tak, to X > Y. W przecwny przypadku przejść do kolejnego punktu.

8 134 Mrosław Plebanek 4. Operacja 3. jest powtarzana dla kolejnych wag aż do ostatnej wag P 1 o najnejszej wartośc. 5. Sprawdzć czy x 1 > y 1. Jeżel tak, to X > Y. W przecwny wypadku X Y. Zaleta etody są, nsk pozo skoplkowana, brak konecznośc wykonywana operacj odulo oraz sprawdzana parzystośc lczb. Z kole wadą jest koneczność wykonywana konwersj do MRS. 7. PODSUMOWANIE. W artykule zaprezentowano etodę konwersj z RNS do MRS oraz dwe etody wyznaczana wartośc lczb w systee dzesętny na podstawe ch reprezentacj w MRS. Przedstawono etodę określana parzystośc lczb na podstawe ch reprezentacj w MRS oraz przedstawono dwe etody porównywana lczb. LITERATURA [1] N. S. Szabo, R. I. Tanaka. Resdue Arthetc and ts Applcatons to Coputer Technology. NY McGraw-Hll, [2] D. Mller, R. Altschul, J. Kng, J. Polky. Analyss of the Resdue Class Core Functon of Akushsk, Brucev and Pak. Resdue Nuber Syste Arthetc: Modern Applcatons n Dgtal Sgnal Processng, IEEE Press, pp , [3] J. Chang, M. Lu. A General Dvson Algorth for Resdue Nuber Systes. Proceedngs of the 10th IEEE Syposu Coputer Arthetc on June 1991, s [4] D. Mller, J. Polky, J. Kng. A Survey of Recent Sovet Developents n Resdue Nuber Systes. 26th Mdwest Sypodu on Crcuts and Systes, 1983, s , Perodcals. [5] M. Plebanek, Z. Ulan, M. Ożarowsk. Porównywane lczb w resztowy systee lczbowy z wykorzystane parzystośc, Metody Inforatyk Stosowanej, PAN , s PARITY DETECTION IN RESIDUE NUMBER SYSTEM, WITH USE OF MIXED RADIX SYSTEM CONVERSION Converson ethod between RNS and MRS nuerc systes was presented n artcle. Also two ethods of converson fro MRS to decal syste and algorths of party detecton n MRS are shown. At last two ethods of coparson of nubers n MRS are presented.

Zapis informacji, systemy pozycyjne 1. Literatura Jerzy Grębosz, Symfonia C++ standard. Harvey M. Deitl, Paul J. Deitl, Arkana C++. Programowanie.

Zapis informacji, systemy pozycyjne 1. Literatura Jerzy Grębosz, Symfonia C++ standard. Harvey M. Deitl, Paul J. Deitl, Arkana C++. Programowanie. Zaps nformacj, systemy pozycyjne 1 Lteratura Jerzy Grębosz, Symfona C++ standard. Harvey M. Detl, Paul J. Detl, Arkana C++. Programowane. Zaps nformacj w komputerach Wszystke elementy danych przetwarzane

Bardziej szczegółowo

Twierdzenie Bezouta i liczby zespolone Javier de Lucas. Rozwi azanie 2. Z twierdzenia dzielenia wielomianów, mamy, że

Twierdzenie Bezouta i liczby zespolone Javier de Lucas. Rozwi azanie 2. Z twierdzenia dzielenia wielomianów, mamy, że Twerdzene Bezouta lczby zespolone Javer de Lucas Ćwczene 1 Ustal dla których a, b R można podzelć f 1 X) = X 4 3X 2 + ax b przez f 2 X) = X 2 3X+2 Oblcz a b Z 5 jeżel zak ladamy, że f 1 f 2 s a welomanam

Bardziej szczegółowo

Laboratorium ochrony danych

Laboratorium ochrony danych Laboratorum ochrony danych Ćwczene nr Temat ćwczena: Cała skończone rozszerzone Cel dydaktyczny: Opanowane programowej metody konstruowana cał skończonych rozszerzonych GF(pm), poznane ch własnośc oraz

Bardziej szczegółowo

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych Zaawansowane metody numeryczne Komputerowa analza zagadneń różnczkowych 1. Układy równań lnowych P. F. Góra http://th-www.f.uj.edu.pl/zfs/gora/ semestr letn 2006/07 Podstawowe fakty Równane Ax = b, x,

Bardziej szczegółowo

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 2(88)/2012

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 2(88)/2012 ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW (88)/01 Hubert Sar, Potr Fundowcz 1 WYZNACZANIE ASOWEGO OENTU BEZWŁADNOŚCI WZGLĘDE OSI PIONOWEJ DLA SAOCHODU TYPU VAN NA PODSTAWIE WZORU EPIRYCZNEGO 1. Wstęp asowy moment

Bardziej szczegółowo

Realizacja logiki szybkiego przeniesienia w prototypie prądowym układu FPGA Spartan II

Realizacja logiki szybkiego przeniesienia w prototypie prądowym układu FPGA Spartan II obert Berezowsk Natala Maslennkowa Wydzał Elektronk Poltechnka Koszalńska ul. Partyzantów 7, 75-4 Koszaln Mchał Bałko Przemysław Sołtan ealzacja logk szybkego przenesena w prototype prądowym układu PG

Bardziej szczegółowo

Zaawansowane metody numeryczne

Zaawansowane metody numeryczne Wykład 9. jej modyfkacje. Oznaczena Będzemy rozpatrywać zagadnene rozwązana następującego układu n równań lnowych z n newadomym x 1... x n : a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x

Bardziej szczegółowo

WPŁYW PARAMETRÓW DYSKRETYZACJI NA NIEPEWNOŚĆ WYNIKÓW POMIARU OBIEKTÓW OBRAZU CYFROWEGO

WPŁYW PARAMETRÓW DYSKRETYZACJI NA NIEPEWNOŚĆ WYNIKÓW POMIARU OBIEKTÓW OBRAZU CYFROWEGO Walenty OWIECZKO WPŁYW PARAMETRÓW DYSKRETYZACJI A IEPEWOŚĆ WYIKÓW POMIARU OBIEKTÓW OBRAZU CYFROWEGO STRESZCZEIE W artykule przedstaono ynk analzy nepenośc pomaru ybranych cech obektu obrazu cyfroego. Wyznaczono

Bardziej szczegółowo

Metody badań kamienia naturalnego: Oznaczanie współczynnika nasiąkliwości kapilarnej

Metody badań kamienia naturalnego: Oznaczanie współczynnika nasiąkliwości kapilarnej Metody badań kaena naturalnego: Oznaczane współczynnka nasąklwośc kaplarnej 1. Zasady etody Po wysuszenu do stałej asy, próbkę do badana zanurza sę w wodze jedną z powerzchn (ngdy powerzchną obrabaną)

Bardziej szczegółowo

W praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np.

W praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np. Wykład 7 Uwaga: W praktyce często zdarza sę, że wynk obu prób możemy traktować jako wynk pomarów na tym samym elemence populacj np. wynk x przed wynk y po operacj dla tego samego osobnka. Należy wówczas

Bardziej szczegółowo

Analiza danych OGÓLNY SCHEMAT. http://zajecia.jakubw.pl/ Dane treningowe (znana decyzja) Klasyfikator. Dane testowe (znana decyzja)

Analiza danych OGÓLNY SCHEMAT. http://zajecia.jakubw.pl/ Dane treningowe (znana decyzja) Klasyfikator. Dane testowe (znana decyzja) Analza danych Dane trenngowe testowe. Algorytm k najblższych sąsadów. Jakub Wróblewsk jakubw@pjwstk.edu.pl http://zajeca.jakubw.pl/ OGÓLNY SCHEMAT Mamy dany zbór danych podzelony na klasy decyzyjne, oraz

Bardziej szczegółowo

STATECZNOŚĆ SKARP. α - kąt nachylenia skarpy [ o ], φ - kąt tarcia wewnętrznego gruntu [ o ],

STATECZNOŚĆ SKARP. α - kąt nachylenia skarpy [ o ], φ - kąt tarcia wewnętrznego gruntu [ o ], STATECZNOŚĆ SKARP W przypadku obektu wykonanego z gruntów nespostych zaprojektowane bezpecznego nachylena skarp sprowadza sę do przekształcena wzoru na współczynnk statecznośc do postac: tgφ tgα = n gdze:

Bardziej szczegółowo

APROKSYMACJA QUASIJEDNOSTAJNA

APROKSYMACJA QUASIJEDNOSTAJNA POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 73 Electrcal Engneerng 213 Jan PURCZYŃSKI* APROKSYMACJA QUASIJEDNOSTAJNA W pracy wykorzystano metodę aproksymacj średnokwadratowej welomanowej, przy

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH

STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH 1 Test zgodnośc χ 2 Hpoteza zerowa H 0 ( Cecha X populacj ma rozkład o dystrybuance F). Hpoteza alternatywna H1( Cecha X populacj

Bardziej szczegółowo

Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE

Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE Inormatyka Podstawy Programowana 06/07 Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE 6. Równana algebraczne. Poszukujemy rozwązana, czyl chcemy określć perwastk rzeczywste równana:

Bardziej szczegółowo

Zestaw zadań 4: Przestrzenie wektorowe i podprzestrzenie. Liniowa niezależność. Sumy i sumy proste podprzestrzeni.

Zestaw zadań 4: Przestrzenie wektorowe i podprzestrzenie. Liniowa niezależność. Sumy i sumy proste podprzestrzeni. Zestaw zadań : Przestrzene wektorowe podprzestrzene. Lnowa nezależność. Sumy sumy proste podprzestrzen. () Wykazać, że V = C ze zwykłym dodawanem jako dodawanem wektorów operacją mnożena przez skalar :

Bardziej szczegółowo

2012-10-11. Definicje ogólne

2012-10-11. Definicje ogólne 0-0- Defncje ogólne Logstyka nauka o przepływe surowców produktów gotowych rodowód wojskowy Utrzyywane zapasów koszty zwązane.n. z zarożene kaptału Brak w dostawach koszty zwązane.n. z przestoje w produkcj

Bardziej szczegółowo

Rozwiązywanie zadań optymalizacji w środowisku programu MATLAB

Rozwiązywanie zadań optymalizacji w środowisku programu MATLAB Rozwązywane zadań optymalzacj w środowsku programu MATLAB Zagadnene optymalzacj polega na znajdowanu najlepszego, względem ustalonego kryterum, rozwązana należącego do zboru rozwązań dopuszczalnych. Standardowe

Bardziej szczegółowo

ZAŁĄCZNIKI ROZPORZĄDZENIA DELEGOWANEGO KOMISJI

ZAŁĄCZNIKI ROZPORZĄDZENIA DELEGOWANEGO KOMISJI KOMISJA EUROPEJSKA Bruksela, dna 27.4.2018 C(2018) 2460 fnal ANNEXES 1 to 2 ZAŁĄCZNIKI do ROZPORZĄDZENIA DELEGOWANEGO KOMISJI w sprawe zany sprostowana rozporządzena delegowanego (UE) 2017/655 uzupełnającego

Bardziej szczegółowo

I. Elementy analizy matematycznej

I. Elementy analizy matematycznej WSTAWKA MATEMATYCZNA I. Elementy analzy matematycznej Pochodna funkcj f(x) Pochodna funkcj podaje nam prędkość zman funkcj: df f (x + x) f (x) f '(x) = = lm x 0 (1) dx x Pochodna funkcj podaje nam zarazem

Bardziej szczegółowo

Evaluation of estimation accuracy of correlation functions with use of virtual correlator model

Evaluation of estimation accuracy of correlation functions with use of virtual correlator model Jadwga LAL-JADZIAK Unwersytet Zelonogórsk Instytut etrolog Elektrycznej Elżbeta KAWECKA Unwersytet Zelonogórsk Instytut Informatyk Elektronk Ocena dokładnośc estymacj funkcj korelacyjnych z użycem modelu

Bardziej szczegółowo

architektura komputerów w. 3 Arytmetyka komputerów

architektura komputerów w. 3 Arytmetyka komputerów archtektura komputerów w. 3 Arytmetyka komputerów Systemy pozycyjne - dodawane w systeme dwójkowym 100101011001110010101 100111101000001000 0110110011101 1 archtektura komputerów w 3 1 Arytmetyka bnarna.

Bardziej szczegółowo

MATEMATYKA POZIOM ROZSZERZONY Kryteria oceniania odpowiedzi. Arkusz A II. Strona 1 z 5

MATEMATYKA POZIOM ROZSZERZONY Kryteria oceniania odpowiedzi. Arkusz A II. Strona 1 z 5 MATEMATYKA POZIOM ROZSZERZONY Krytera ocenana odpowedz Arkusz A II Strona 1 z 5 Odpowedz Pytane 1 2 3 4 5 6 7 8 9 Odpowedź D C C A B 153 135 232 333 Zad. 10. (0-3) Dana jest funkcja postac. Korzystając

Bardziej szczegółowo

Ewolucyjne projektowanie filtrów cyfrowych IIR o nietypowych charakterystykach amplitudowych

Ewolucyjne projektowanie filtrów cyfrowych IIR o nietypowych charakterystykach amplitudowych Adam Słowk Mchał Bałko Wydzał Elektronk Poltechnka Koszalńska ul. JJ Śnadeckch 2, 75-453 Koszaln Ewolucyjne projektowane fltrów cyfrowych IIR o netypowych charakterystykach ampltudowych Słowa kluczowe:

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1 KURS STATYSTYKA Lekcja 6 Regresja lne regresj ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowedź (tylko jedna jest prawdzwa). Pytane 1 Funkcja regresj I rodzaju cechy Y zależnej

Bardziej szczegółowo

Zastosowanie entropii Shannona do określenia ważności atrybutów w AHP

Zastosowanie entropii Shannona do określenia ważności atrybutów w AHP Zastosowane entrop Shannona do określena ważnośc atrybutów w AHP Mrosław Kweselewcz Ewa van Uden Poltechnka Gdańska, Wydzał Elektrotechnk Autoatyk ul. Narutowcza /, 80-95 Gdańsk Streszczene. W pracy rozważa

Bardziej szczegółowo

p Z(G). (G : Z({x i })),

p Z(G). (G : Z({x i })), 3. Wykład 3: p-grupy twerdzena Sylowa. Defncja 3.1. Nech (G, ) będze grupą. Grupę G nazywamy p-grupą, jeżel G = dla pewnej lczby perwszej p oraz k N. Twerdzene 3.1. Nech (G, ) będze p-grupą. Wówczas W

Bardziej szczegółowo

Ćwiczenie 10. Metody eksploracji danych

Ćwiczenie 10. Metody eksploracji danych Ćwczene 10. Metody eksploracj danych Grupowane (Clusterng) 1. Zadane grupowana Grupowane (ang. clusterng) oznacza grupowane rekordów, obserwacj lub przypadków w klasy podobnych obektów. Grupa (ang. cluster)

Bardziej szczegółowo

SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW

SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW Stefan WÓJTOWICZ, Katarzyna BIERNAT ZAKŁAD METROLOGII I BADAŃ NIENISZCZĄCYCH INSTYTUT ELEKTROTECHNIKI ul. Pożaryskego 8, 04-703 Warszawa tel.

Bardziej szczegółowo

WikiWS For Business Sharks

WikiWS For Business Sharks WkWS For Busness Sharks Ops zadana konkursowego Zadane Opracowane algorytmu automatyczne przetwarzającego zdjęce odręczne narysowanego dagramu na tablcy lub kartce do postac wektorowej zapsanej w formace

Bardziej szczegółowo

65120/ / / /200

65120/ / / /200 . W celu zbadana zależnośc pomędzy płcą klentów ch preferencjam, wylosowano kobet mężczyzn zadano m pytane: uważasz za lepszy produkt frmy A czy B? Wynk były następujące: Odpowedź Kobety Mężczyźn Wolę

Bardziej szczegółowo

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 5(96)/2013

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 5(96)/2013 ZESZYTY NAUKOWE NSTYTUTU POJAZDÓW 5(96)/2013 Hubert Sar, Potr Fundowcz 1 WYZNACZANE MASOWEGO MOMENTU BEZWŁADNOŚC WZGLĘDEM OS PODŁUŻNEJ DLA SAMOCHODU TYPU VAN NA PODSTAWE WZORÓW DOŚWADCZALNYCH 1. Wstęp

Bardziej szczegółowo

Zmodyfikowana technika programowania dynamicznego

Zmodyfikowana technika programowania dynamicznego Zmodyfkowana technka programowana dynamcznego Lech Madeysk 1, Zygmunt Mazur 2 Poltechnka Wrocławska, Wydzał Informatyk Zarządzana, Wydzałowy Zakład Informatyk Wybrzeże Wyspańskego 27, 50-370 Wrocław Streszczene.

Bardziej szczegółowo

Zastosowanie symulatora ChemCad do modelowania złożonych układów reakcyjnych procesów petrochemicznych

Zastosowanie symulatora ChemCad do modelowania złożonych układów reakcyjnych procesów petrochemicznych NAFTA-GAZ styczeń 2011 ROK LXVII Anna Rembesa-Śmszek Instytut Nafty Gazu, Kraków Andrzej Wyczesany Poltechnka Krakowska, Kraków Zastosowane symulatora ChemCad do modelowana złożonych układów reakcyjnych

Bardziej szczegółowo

Problem nośności granicznej płyt żelbetowych w ujęciu aktualnych przepisów normowych. Prof. dr hab. inż. Piotr Konderla, Politechnika Wrocławska

Problem nośności granicznej płyt żelbetowych w ujęciu aktualnych przepisów normowych. Prof. dr hab. inż. Piotr Konderla, Politechnika Wrocławska Proble nośnośc grancznej płt żelbetowch w ujęcu aktualnch przepsów norowch Prof. dr hab. nż. Potr Konderla Poltechnka Wrocławska 1. Wprowadzene Przedote analz jest płta żelbetowa zbrojona ortogonalne paraetrzowana

Bardziej szczegółowo

Programowanie Równoległe i Rozproszone

Programowanie Równoległe i Rozproszone Programowane Równoległe Rozproszone Wykład Programowane Równoległe Rozproszone Lucjan Stapp Wydzał Matematyk Nauk Informacyjnych Poltechnka Warszawska (l.stapp@mn.pw.edu.pl) /38 PRR Wykład Chcemy rozwązać

Bardziej szczegółowo

(M2) Dynamika 1. ŚRODEK MASY. T. Środek ciężkości i środek masy

(M2) Dynamika 1. ŚRODEK MASY. T. Środek ciężkości i środek masy (MD) MECHANIKA - Dynamka T. Środek cężkośc środek masy (M) Dynamka T: Środek cężkośc środek masy robert.szczotka(at)gmal.com Fzyka astronoma, Lceum 01/014 1 (MD) MECHANIKA - Dynamka T. Środek cężkośc środek

Bardziej szczegółowo

BADANIA OPERACYJNE. Podejmowanie decyzji w warunkach niepewności. dr Adam Sojda

BADANIA OPERACYJNE. Podejmowanie decyzji w warunkach niepewności. dr Adam Sojda BADANIA OPERACYJNE Podejmowane decyzj w warunkach nepewnośc dr Adam Sojda Teora podejmowana decyzj gry z naturą Wynk dzałana zależy ne tylko od tego, jaką podejmujemy decyzję, ale równeż od tego, jak wystąp

Bardziej szczegółowo

Badanie współzależności dwóch cech ilościowych X i Y. Analiza korelacji prostej

Badanie współzależności dwóch cech ilościowych X i Y. Analiza korelacji prostej Badane współzależnośc dwóch cech loścowych X Y. Analza korelacj prostej Kody znaków: żółte wyróżnene nowe pojęce czerwony uwaga kursywa komentarz 1 Zagadnena 1. Zwązek determnstyczny (funkcyjny) a korelacyjny.

Bardziej szczegółowo

Proces narodzin i śmierci

Proces narodzin i śmierci Proces narodzn śmerc Jeżel w ewnej oulacj nowe osobnk ojawają sę w sosób losowy, rzy czym gęstość zdarzeń na jednostkę czasu jest stała w czase wynos λ, oraz lczba osobnków n, które ojawły sę od chwl do

Bardziej szczegółowo

O PEWNYM MODELU POZWALAJĄCYM IDENTYFIKOWAĆ K NAJBARDZIEJ PODEJRZANYCH REKORDÓW W ZBIORZE DANYCH KSIĘGOWYCH W PROCESIE WYKRYWANIA OSZUSTW FINANSOWYCH

O PEWNYM MODELU POZWALAJĄCYM IDENTYFIKOWAĆ K NAJBARDZIEJ PODEJRZANYCH REKORDÓW W ZBIORZE DANYCH KSIĘGOWYCH W PROCESIE WYKRYWANIA OSZUSTW FINANSOWYCH Mateusz Baryła Unwersytet Ekonomczny w Krakowe O PEWNYM MODELU POZWALAJĄCYM IDENTYFIKOWAĆ K NAJBARDZIEJ PODEJRZANYCH REKORDÓW W ZBIORZE DANYCH KSIĘGOWYCH W PROCESIE WYKRYWANIA OSZUSTW FINANSOWYCH Wprowadzene

Bardziej szczegółowo

TRANZYSTOR BIPOLARNY CHARAKTERYSTYKI STATYCZNE

TRANZYSTOR BIPOLARNY CHARAKTERYSTYKI STATYCZNE POLITHNIKA RZSZOWSKA Katedra Podstaw lektronk Instrkcja Nr4 F 00/003 sem. letn TRANZYSTOR IPOLARNY HARAKTRYSTYKI STATYZN elem ćwczena jest pomar charakterystyk statycznych tranzystora bpolarnego npn lb

Bardziej szczegółowo

PODSTAWA WYMIARU ORAZ WYSOKOŚĆ EMERYTURY USTALANEJ NA DOTYCHCZASOWYCH ZASADACH

PODSTAWA WYMIARU ORAZ WYSOKOŚĆ EMERYTURY USTALANEJ NA DOTYCHCZASOWYCH ZASADACH PODSTAWA WYMIARU ORAZ WYSOKOŚĆ EMERYTURY USTALANEJ NA DOTYCHCZASOWYCH ZASADACH Z a k ł a d U b e z p e c z e ń S p o ł e c z n y c h Wprowadzene Nnejsza ulotka adresowana jest zarówno do osób dopero ubegających

Bardziej szczegółowo

MADE IN CHINA czyli SYSTEM RESZTOWY

MADE IN CHINA czyli SYSTEM RESZTOWY MADE IN CHINA czyli SYSTEM RESZTOWY System ten oznaczmy skrótem RNS (residue number system czyli po prostu resztowy system liczbowy). Wartość liczby w tym systemie reprezentuje wektor (zbiór) reszt z dzielenia

Bardziej szczegółowo

EUROELEKTRA. Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej. Rok szkolny 2013/2014

EUROELEKTRA. Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej. Rok szkolny 2013/2014 EUROELEKTRA Ogólnopolska Olmpada Wedzy Elektrycznej Elektroncznej Rok szkolny 232 Zadana z elektronk na zawody III stopna (grupa elektronczna) Zadane. Oblczyć wzmocnene napęcowe, rezystancję wejścową rezystancję

Bardziej szczegółowo

BADANIE DRGAŃ WŁASNYCH NAPĘDU ROBOTA KUCHENNEGO Z SILNIKIEM SRM

BADANIE DRGAŃ WŁASNYCH NAPĘDU ROBOTA KUCHENNEGO Z SILNIKIEM SRM Zeszyty Problemowe Maszyny Elektryczne Nr 88/2010 13 Potr Bogusz Marusz Korkosz Jan Prokop POLITECHNIKA RZESZOWSKA Wydzał Elektrotechnk Informatyk BADANIE DRGAŃ WŁASNYCH NAPĘDU ROBOTA KUCHENNEGO Z SILNIKIEM

Bardziej szczegółowo

Analiza niestacjonarności systemów WIM 1

Analiza niestacjonarności systemów WIM 1 Poary Autoatyka Kontrola nr 10bs/06 Potr BUROS, AGH AKADEMIA GÓRICZO-HUTICZA, KATEDRA METROLOGII ELEKTROIKI {burnos@agh.edu.pl} Analza nestacjonarnośc systeów WIM 1 Ten utwór jest dostępny na lcencj Creatve

Bardziej szczegółowo

Analiza rodzajów skutków i krytyczności uszkodzeń FMECA/FMEA według MIL STD - 1629A

Analiza rodzajów skutków i krytyczności uszkodzeń FMECA/FMEA według MIL STD - 1629A Analza rodzajów skutków krytycznośc uszkodzeń FMECA/FMEA według MIL STD - 629A Celem analzy krytycznośc jest szeregowane potencjalnych rodzajów uszkodzeń zdentyfkowanych zgodne z zasadam FMEA na podstawe

Bardziej szczegółowo

Współczynnik przenikania ciepła U v. 4.00

Współczynnik przenikania ciepła U v. 4.00 Współczynnk przenkana cepła U v. 4.00 1 WYMAGANIA Maksymalne wartośc współczynnków przenkana cepła U dla ścan, stropów, stropodachów, oken drzw balkonowych podano w załącznku do Rozporządzena Mnstra Infrastruktury

Bardziej szczegółowo

Sztuczne sieci neuronowe. Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 311

Sztuczne sieci neuronowe. Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 311 Sztuczne sec neuronowe Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyk, p. 311 Wykład 6 PLAN: - Repetto (brevs) - Sec neuronowe z radalnym funkcjam bazowym Repetto W aspekce archtektury: zajmowalśmy

Bardziej szczegółowo

Pokazać, że wyżej zdefiniowana struktura algebraiczna jest przestrzenią wektorową nad ciałem

Pokazać, że wyżej zdefiniowana struktura algebraiczna jest przestrzenią wektorową nad ciałem Zestaw zadań : Przestrzene wektorowe. () Wykazać, że V = C ze zwykłym dodawanem jako dodawanem wektorów operacją mnożena przez skalar : C C C, (z, v) z v := z v jest przestrzeną lnową nad całem lczb zespolonych

Bardziej szczegółowo

XXX OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne

XXX OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne XXX OLIMPIADA FIZYCZNA ETAP III Zadane dośwadczalne ZADANIE D Nazwa zadana: Maszyna analogowa. Dane są:. doda półprzewodnkowa (krzemowa) 2. opornk dekadowy (- 5 Ω ), 3. woltomerz cyfrowy, 4. źródło napęca

Bardziej szczegółowo

Józef Maria Hoene-Wroński jako wizjoner i reformator matematyki

Józef Maria Hoene-Wroński jako wizjoner i reformator matematyki Józef Mara Hoene-Wrońsk jako wzjoner reforator ateatyk Wesław Wójck I. Sytuacja w ateatyce za czasów Hoene-Wrońskego W czase, gdy Józef Mara Hoene-Wrońsk rozpoczyna swoją dzałalność naukową welu ateatyków

Bardziej szczegółowo

OPTYMALIZACJA WARTOŚCI POLA MAGNETYCZNEGO W POBLIŻU LINII NAPOWIETRZNEJ Z WYKORZYSTANIEM ALGORYTMU GENETYCZNEGO

OPTYMALIZACJA WARTOŚCI POLA MAGNETYCZNEGO W POBLIŻU LINII NAPOWIETRZNEJ Z WYKORZYSTANIEM ALGORYTMU GENETYCZNEGO POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 81 Electrcal Engneerng 015 Mkołaj KSIĄŻKIEWICZ* OPTYMALIZACJA WARTOŚCI POLA MAGNETYCZNEGO W POLIŻU LINII NAPOWIETRZNEJ Z WYKORZYSTANIEM ALGORYTMU

Bardziej szczegółowo

Plan wykładu: Typowe dane. Jednoczynnikowa Analiza wariancji. Zasada: porównać zmienność pomiędzy i wewnątrz grup

Plan wykładu: Typowe dane. Jednoczynnikowa Analiza wariancji. Zasada: porównać zmienność pomiędzy i wewnątrz grup Jednoczynnkowa Analza Waranc (ANOVA) Wykład 11 Przypomnene: wykłady zadana kursu były zaczerpnęte z podręcznków: Statystyka dla studentów kerunków techncznych przyrodnczych, J. Koronack, J. Melnczuk, WNT

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA WYKŁAD 15. ALGORYTMY GENETYCZNE Częstochowa 014 Dr hab. nż. Grzegorz Dudek Wydzał Elektryczny Poltechnka Częstochowska TERMINOLOGIA allele wartośc, waranty genów, chromosom - (naczej

Bardziej szczegółowo

= σ σ. 5. CML Capital Market Line, Rynkowa Linia Kapitału

= σ σ. 5. CML Capital Market Line, Rynkowa Linia Kapitału 5 CML Catal Market Lne, ynkowa Lna Katału Zbór ortolo o nalny odchylenu standardowy zbór eektywny ozważy ortolo złożone ze wszystkch aktywów stnejących na rynku Załóży, że jest ch N A * P H P Q P 3 * B

Bardziej szczegółowo

Podstawy teorii falek (Wavelets)

Podstawy teorii falek (Wavelets) Podstawy teor falek (Wavelets) Ψ(). Transformaca Haara (97).. Przykład pewne metody zapsu obrazu Transformaca Haara Przykład zapsu obrazu -D Podstawy matematyczne transformac Algorytmy rozkładana funkc

Bardziej szczegółowo

1. SPRAWDZENIE WYSTEPOWANIA RYZYKA KONDENSACJI POWIERZCHNIOWEJ ORAZ KONDENSACJI MIĘDZYWARSTWOWEJ W ŚCIANIE ZEWNĘTRZNEJ

1. SPRAWDZENIE WYSTEPOWANIA RYZYKA KONDENSACJI POWIERZCHNIOWEJ ORAZ KONDENSACJI MIĘDZYWARSTWOWEJ W ŚCIANIE ZEWNĘTRZNEJ Ćwczene nr 1 cz.3 Dyfuzja pary wodnej zachodz w kerunku od środowska o wyższej temperaturze do środowska chłodnejszego. Para wodna dyfundująca przez przegrody budowlane w okrese zmowym napotyka na coraz

Bardziej szczegółowo

Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne

Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne ś POLITECHNIKA POZNAŃSKA INSTYTUT INŻYNIERII ŚRODOWISKA PROWADZĄCY: mgr nż. Łukasz Amanowcz Systemy Ochrony Powetrza Ćwczena Laboratoryjne 2 TEMAT ĆWICZENIA: Oznaczane lczbowego rozkładu lnowych projekcyjnych

Bardziej szczegółowo

Weryfikacja hipotez dla wielu populacji

Weryfikacja hipotez dla wielu populacji Weryfkacja hpotez dla welu populacj Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Intelgencj Metod Matematycznych Wydzał Informatyk Poltechnk Szczecńskej 5. Parametryczne testy stotnośc w

Bardziej szczegółowo

Zadanie na wykonanie Projektu Zespołowego

Zadanie na wykonanie Projektu Zespołowego Zadane na wykonane Projektu Zespołowego Celem projektu jest uzyskane następującego szeregu umejętnośc praktycznych: umejętnośc opracowana równoległych wersj algorytmów (na przykładze algorytmów algebry

Bardziej szczegółowo

Diagonalizacja macierzy kwadratowej

Diagonalizacja macierzy kwadratowej Dagonalzacja macerzy kwadratowej Dana jest macerz A nân. Jej wartośc własne wektory własne spełnają równane Ax x dla,..., n Każde z równań własnych osobno można zapsać w postac: a a an x x a a an x x an

Bardziej szczegółowo

5. OPTYMALIZACJA GRAFOWO-SIECIOWA

5. OPTYMALIZACJA GRAFOWO-SIECIOWA . OPTYMALIZACJA GRAFOWO-SIECIOWA Defncja grafu Pod pojęcem grafu G rozumemy następującą dwójkę uporządkowaną (defncja grafu Berge a): (.) G W,U gdze: W zbór werzchołków grafu, U zbór łuków grafu, U W W,

Bardziej szczegółowo

2 PRAKTYCZNA REALIZACJA PRZEMIANY ADIABATYCZNEJ. 2.1 Wprowadzenie

2 PRAKTYCZNA REALIZACJA PRZEMIANY ADIABATYCZNEJ. 2.1 Wprowadzenie RAKTYCZNA REALIZACJA RZEMIANY ADIABATYCZNEJ. Wprowadzene rzeana jest adabatyczna, jeśl dla każdych dwóch stanów l, leżących na tej przeane Q - 0. Z tej defncj wynka, że aby zrealzować wyżej wyenony proces,

Bardziej szczegółowo

Regulamin promocji upalne lato 2014 2.0

Regulamin promocji upalne lato 2014 2.0 upalne lato 2014 2.0 strona 1/5 Regulamn promocj upalne lato 2014 2.0 1. Organzatorem promocj upalne lato 2014 2.0, zwanej dalej promocją, jest JPK Jarosław Paweł Krzymn, zwany dalej JPK. 2. Promocja trwa

Bardziej szczegółowo

Wyznaczanie współczynnika sztywności zastępczej układu sprężyn

Wyznaczanie współczynnika sztywności zastępczej układu sprężyn Wyznaczane zastępczej sprężyn Ćwczene nr 10 Wprowadzene W przypadku klku sprężyn ze sobą połączonych, można mu przypsać tzw. współczynnk zastępczej k z. W skrajnych przypadkach sprężyny mogą być ze sobą

Bardziej szczegółowo

KRZYWA BÉZIERA TWORZENIE I WIZUALIZACJA KRZYWYCH PARAMETRYCZNYCH NA PRZYKŁADZIE KRZYWEJ BÉZIERA

KRZYWA BÉZIERA TWORZENIE I WIZUALIZACJA KRZYWYCH PARAMETRYCZNYCH NA PRZYKŁADZIE KRZYWEJ BÉZIERA KRZYWA BÉZIERA TWORZENIE I WIZUALIZACJA KRZYWYCH PARAMETRYCZNYCH NA PRZYKŁADZIE KRZYWEJ BÉZIERA Krzysztof Serżęga Wyższa Szkoła Informatyk Zarządzana w Rzeszowe Streszczene Artykuł porusza temat zwązany

Bardziej szczegółowo

V. WPROWADZENIE DO PRZESTRZENI FUNKCYJNYCH

V. WPROWADZENIE DO PRZESTRZENI FUNKCYJNYCH Krs na Stdach Doktoranckch Poltechnk Wrocławskej wersja: lty 007 34 V. WPROWADZENIE DO PRZESTRZENI FUNKCYJNYCH. Zbór np. lczb rzeczywstych a, b elementy zbor A a A b A, podzbór B zbor A : B A, sma zborów

Bardziej szczegółowo

Proste modele ze złożonym zachowaniem czyli o chaosie

Proste modele ze złożonym zachowaniem czyli o chaosie Proste modele ze złożonym zachowanem czyl o chaose 29 kwetna 2014 Komputer jest narzędzem coraz częścej stosowanym przez naukowców do ukazywana skrzętne ukrywanych przez naturę tajemnc. Symulacja, obok

Bardziej szczegółowo

Systemy liczbowe. 1. Przedstawić w postaci sumy wag poszczególnych cyfr liczbę rzeczywistą R = (10).

Systemy liczbowe. 1. Przedstawić w postaci sumy wag poszczególnych cyfr liczbę rzeczywistą R = (10). Wprowadzenie do inżynierii przetwarzania informacji. Ćwiczenie 1. Systemy liczbowe Cel dydaktyczny: Poznanie zasad reprezentacji liczb w systemach pozycyjnych o różnych podstawach. Kodowanie liczb dziesiętnych

Bardziej szczegółowo

Prawdopodobieństwo geometryczne

Prawdopodobieństwo geometryczne Prawdopodobeństwo geometryczne Przykład: Przestrzeń zdarzeń elementarnych określona jest przez zestaw punktów (x, y) na płaszczyźne wypełna wnętrze kwadratu [0 x ; 0 y ]. Znajdź p-stwo, że dowolny punkt

Bardziej szczegółowo

ĆWICZENIE NR 2 BADANIA OBWODÓW RLC PRĄDU HARMONICZNEGO

ĆWICZENIE NR 2 BADANIA OBWODÓW RLC PRĄDU HARMONICZNEGO ĆWENE N BADANA OBWODÓW PĄD HAMONNEGO el ćwczena: dośwadczalne sprawdzene prawa Oha praw Krchhoffa oraz zależnośc fazowych poędzy snusodalne zenny przebega prądów napęć w obwodach zawerających eleenty,,,

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6 Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Interpretacja parametrów przy zmennych objaśnających cągłych Semelastyczność 2. Zastosowane modelu potęgowego Model potęgowy 3. Zmenne cągłe za zmenne dyskretne

Bardziej szczegółowo

Wprowadzenie do Sieci Neuronowych Algorytm wstecznej propagacji błędu

Wprowadzenie do Sieci Neuronowych Algorytm wstecznej propagacji błędu Wprowadzene do Sec Neuronowych Algorytm wstecznej propagacj błędu Maja Czoków, Jarosław Persa --6 Powtórzene. Perceptron sgmodalny Funkcja sgmodalna: σ(x) = + exp( c (x p)) Parametr c odpowada za nachylene

Bardziej szczegółowo

Przykład 5.1. Kratownica dwukrotnie statycznie niewyznaczalna

Przykład 5.1. Kratownica dwukrotnie statycznie niewyznaczalna rzykład.. Kratownca dwukrotne statyczne newyznaczana oecene: korzystaąc z metody sł wyznaczyć sły w prętach ponższe kratowncy. const Rozwązane zadana rozpoczynamy od obczena stopna statyczne newyznaczanośc

Bardziej szczegółowo

Regulamin promocji 14 wiosna

Regulamin promocji 14 wiosna promocja_14_wosna strona 1/5 Regulamn promocj 14 wosna 1. Organzatorem promocj 14 wosna, zwanej dalej promocją, jest JPK Jarosław Paweł Krzymn, zwany dalej JPK. 2. Promocja trwa od 01 lutego 2014 do 30

Bardziej szczegółowo

MODEL OCENY JAKOŚCI OPROGRAMOWANIA SOTFWARE QUALITY ASSESMENT MODEL

MODEL OCENY JAKOŚCI OPROGRAMOWANIA SOTFWARE QUALITY ASSESMENT MODEL Y C L E C H K Ś L Ą K E J G L C C H EYY KE LECHK ŚLĄKEJ 08 era: GCJ ĄE z 30 MEL CEY JKŚC GM orota GŃK ydzał rganzacj arządzana oltechnka Śląska Glwce; dorotagawronska@polslpl treszczene: rtykuł przedstawa

Bardziej szczegółowo

f(x, y) = arctg x y. f(u) = arctg(u), u(x, y) = x y. x = 1 1 y = y y = 1 1 +

f(x, y) = arctg x y. f(u) = arctg(u), u(x, y) = x y. x = 1 1 y = y y = 1 1 + Różnczkowalność pocodne Ćwczene. Znaleźć pocodne cz astkowe funkcj f(x, y) = arctg x y. Rozw azane: Wdać, że funkcj f można napsać jako f(u(x, y)) gdze f(u) = arctg(u), u(x, y) = x y. Korzystaj ac z reg

Bardziej szczegółowo

Ile wynosi suma miar kątów wewnętrznych w pięciokącie?

Ile wynosi suma miar kątów wewnętrznych w pięciokącie? 1 Ile wynos suma mar kątów wewnętrznych w pęcokące? 1 Narysuj pęcokąt foremny 2 Połącz środek okręgu opsanego na tym pęcokące ze wszystkm werzchołkam pęcokąta 3 Oblcz kąty każdego z otrzymanych trójkątów

Bardziej szczegółowo

5. Pochodna funkcji. lim. x c x c. (x c) = lim. g(c + h) g(c) = lim

5. Pochodna funkcji. lim. x c x c. (x c) = lim. g(c + h) g(c) = lim 5. Pocodna funkcj Defncja 5.1 Nec f: (a, b) R nec c (a, b). Jeśl stneje granca lm x c x c to nazywamy ją pocodną funkcj f w punkce c oznaczamy symbolem f (c) Twerdzene 5.1 Jeśl funkcja f: (a, b) R ma pocodną

Bardziej szczegółowo

LABORATORIUM PROCESORY SYGNAŁOWE W AUTOMATYCE PRZEMYSŁOWEJ. Zasady arytmetyki stałoprzecinkowej oraz operacji arytmetycznych w formatach Q

LABORATORIUM PROCESORY SYGNAŁOWE W AUTOMATYCE PRZEMYSŁOWEJ. Zasady arytmetyki stałoprzecinkowej oraz operacji arytmetycznych w formatach Q LABORAORIUM PROCESORY SYGAŁOWE W AUOMAYCE PRZEMYSŁOWEJ Zasady arytmetyki stałoprzecinkowej oraz operacji arytmetycznych w formatach Q 1. Zasady arytmetyki stałoprzecinkowej. Kody stałopozycyjne mają ustalone

Bardziej szczegółowo

Portfele zawierające walor pozbawiony ryzyka. Elementy teorii rynku kapitałowego

Portfele zawierające walor pozbawiony ryzyka. Elementy teorii rynku kapitałowego Portel nwestycyjny ćwczena Na podst. Wtold Jurek: Konstrukcja analza rozdzał 5 dr chał Konopczyńsk Portele zawerające walor pozbawony ryzyka. lementy teor rynku kaptałowego 1. Pożyczane penędzy amy dwa

Bardziej szczegółowo

Pomiar mocy i energii

Pomiar mocy i energii Zakład Napędów Weloźródłowych Instytut Maszyn Roboczych CęŜkch PW Laboratorum Elektrotechnk Elektronk Ćwczene P3 - protokół Pomar mocy energ Data wykonana ćwczena... Zespół wykonujący ćwczene: Nazwsko

Bardziej szczegółowo

WYWAŻANIE STATYCZNE WIRUJĄCYCH ZESTAWÓW RADIOLOKACYJNYCH

WYWAŻANIE STATYCZNE WIRUJĄCYCH ZESTAWÓW RADIOLOKACYJNYCH Szybkobeżne Pojazdy Gąsencowe (15) nr 1, 2002 Andrzej SZAFRANIEC WYWAŻANIE STATYCZNE WIRUJĄCYCH ZESTAWÓW RADIOLOKACYJNYCH Streszczene. Przedstawono metodę wyważana statycznego wolnoobrotowych wrnków ponowych

Bardziej szczegółowo

EFEKTYWNA STOPA PROCENTOWA O RÓWNOWAŻNA STPOPA PROCENTOWA

EFEKTYWNA STOPA PROCENTOWA O RÓWNOWAŻNA STPOPA PROCENTOWA EFEKTYWNA STOPA PROCENTOWA O RÓWNOWAŻNA STPOPA PROCENTOWA Nekedy zachodz koneczność zany okesu kapt. z ównoczesny zachowane efektów opocentowane. Dzeje sę tak w nektóych zagadnenach ateatyk fnansowej np.

Bardziej szczegółowo

Logika i teoria mnogości/wykład 1: Po co nam teoria mnogości? Naiwna teoria mnogości, naiwna indukcja, naiwne dowody niewprost

Logika i teoria mnogości/wykład 1: Po co nam teoria mnogości? Naiwna teoria mnogości, naiwna indukcja, naiwne dowody niewprost 1 z 8 2013-03-23 18:23 Logka teora mnogośc/wykład 1: Po co nam teora mnogośc? Nawna teora mnogośc, nawna ndukcja, nawne dowody newprost From Studa Informatyczne < Logka teora mnogośc "Nawna" teora mnogośc

Bardziej szczegółowo

Nieparametryczne Testy Istotności

Nieparametryczne Testy Istotności Neparametryczne Testy Istotnośc Wzory Neparametryczne testy stotnośc schemat postępowana punkt po punkce Formułujemy hpotezę główną odnoszącą sę do: zgodnośc populacj generalnej z jakmś rozkładem, lub:

Bardziej szczegółowo

Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych

Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych Komputerowa analza zagadneń różnczkowych 1. Układy równań lnowych P. F. Góra http://th-www.f.uj.edu.pl/zfs/gora/ semestr letn 2007/08 Podstawowe fakty Równane Ax = b, x, b R N, A R N N (1) ma jednoznaczne

Bardziej szczegółowo

) będą niezależnymi zmiennymi losowymi o tym samym rozkładzie normalnym z następującymi parametrami: nieznaną wartością 1 4

) będą niezależnymi zmiennymi losowymi o tym samym rozkładzie normalnym z następującymi parametrami: nieznaną wartością 1 4 Zadane. Nech ( X, Y ),( X, Y ), K,( X, Y n n ) będą nezależnym zmennym losowym o tym samym rozkładze normalnym z następującym parametram: neznaną wartoścą oczekwaną EX = EY = m, warancją VarX = VarY =

Bardziej szczegółowo

Wprowadzenie. Support vector machines (maszyny wektorów wspierających, maszyny wektorów nośnych) SVM służy do: Zalety metody SVM

Wprowadzenie. Support vector machines (maszyny wektorów wspierających, maszyny wektorów nośnych) SVM służy do: Zalety metody SVM SVM Wprowadzene Support vector machnes (maszyny wektorów wsperających, maszyny wektorów nośnych) SVM służy do: w wersj podstawowej klasyfkacj bnarnej w wersj z rozszerzenam regresj wyboru najważnejszych

Bardziej szczegółowo

POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA i ENERGETYKI INSTYTUT MASZYN i URZĄDZEŃ ENERGETYCZNYCH.

POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA i ENERGETYKI INSTYTUT MASZYN i URZĄDZEŃ ENERGETYCZNYCH. POLITECHIKA ŚLĄSKA W GLIWICACH WYDZIAŁ IŻYIERII ŚRODOWISKA EERGETYKI ISTYTUT MASZY URZĄDZEŃ EERGETYCZYCH Turbna arowa II Laboratoru oarów azyn celnych (PM 8) Oracował: dr nż. Grzegorz Wcak Srawdzł: dr

Bardziej szczegółowo

Zadane 1: Wyznacz średne ruchome 3-okresowe z następujących danych obrazujących zużyce energ elektrycznej [kwh] w pewnym zakładze w mesącach styczeń - lpec 1998 r.: 400; 410; 430; 40; 400; 380; 370. Zadane

Bardziej szczegółowo

α i = n i /n β i = V i /V α i = β i γ i = m i /m

α i = n i /n β i = V i /V α i = β i γ i = m i /m Ćwczene nr 2 Stechometra reakcj zgazowana A. Część perwsza: powtórzene koncentracje stężena 1. Stężene Stężene jest stosunkem lośc substancj rozpuszczonej do całkowtej lośc rozpuszczalnka. Sposoby wyrażena

Bardziej szczegółowo

SYSTEMY UCZĄCE SIĘ WYKŁAD 7. KLASYFIKATORY BAYESA. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska.

SYSTEMY UCZĄCE SIĘ WYKŁAD 7. KLASYFIKATORY BAYESA. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska. SYSTEMY UCZĄCE SIĘ WYKŁAD 7. KLASYFIKATORY BAYESA Częstochowa 4 Dr hab. nż. Grzegorz Dudek Wydzał Elektryczny Poltechnka Częstochowska TWIERDZENIE BAYESA Wedza pozyskwana przez metody probablstyczne ma

Bardziej szczegółowo

Przykład 2.3 Układ belkowo-kratowy.

Przykład 2.3 Układ belkowo-kratowy. rzykład. Układ bekowo-kratowy. Dany jest układ bekowo-kratowy, który składa sę z bek o stałej sztywnośc EJ częśc kratowej złożonej z prętów o stałej sztywnośc, obcążony jak na rysunku. Wyznaczyć przemeszczene

Bardziej szczegółowo

Metody analizy obwodów

Metody analizy obwodów Metody analzy obwodów Metoda praw Krchhoffa, która jest podstawą dla pozostałych metod Metoda transfguracj, oparte na przekształcenach analzowanego obwodu na obwód równoważny Metoda superpozycj Metoda

Bardziej szczegółowo

Za: Stanisław Latoś, Niwelacja trygonometryczna, [w:] Ćwiczenia z geodezji II [red.] J. Beluch

Za: Stanisław Latoś, Niwelacja trygonometryczna, [w:] Ćwiczenia z geodezji II [red.] J. Beluch Za: Stansław Latoś, Nwelacja trygonometryczna, [w:] Ćwczena z geodezj II [red.] J. eluch 6.1. Ogólne zasady nwelacj trygonometrycznej. Wprowadzene Nwelacja trygonometryczna, zwana równeż trygonometrycznym

Bardziej szczegółowo

APLIKACJA NAPISANA W ŚRODOWISKU LABVIEW SŁUŻĄCA DO WYZNACZANIA WSPÓŁCZYNNIKA UZWOJENIA MASZYNY INDUKCYJNEJ

APLIKACJA NAPISANA W ŚRODOWISKU LABVIEW SŁUŻĄCA DO WYZNACZANIA WSPÓŁCZYNNIKA UZWOJENIA MASZYNY INDUKCYJNEJ POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 83 Electrical Engineering 2015 Damian BURZYŃSKI* Leszek KASPRZYK* APLIKACJA NAPISANA W ŚRODOWISKU LABVIEW SŁUŻĄCA DO WYZNACZANIA WSPÓŁCZYNNIKA UZWOJENIA

Bardziej szczegółowo

Regulamin promocji zimowa piętnastka

Regulamin promocji zimowa piętnastka zmowa pętnastka strona 1/5 Regulamn promocj zmowa pętnastka 1. Organzatorem promocj zmowa pętnastka, zwanej dalej promocją, jest JPK Jarosław Paweł Krzymn, zwany dalej JPK. 2. Promocja trwa od 01 grudna

Bardziej szczegółowo