Problem plecakowy (KNAPSACK PROBLEM).

Wielkość: px
Rozpocząć pokaz od strony:

Download "Problem plecakowy (KNAPSACK PROBLEM)."

Transkrypt

1 Problem plecakowy (KNAPSACK PROBLEM). Zagadnene optymalzac zwane problemem plecakowym swą nazwę wzęło z analog do sytuac praktyczne podobne do problemu pakowana plecaka. Chodz o to, by zapakować maksymalne cenny zbór przedmotów ne przekraczaąc ładownośc (nośnośc lub poemnośc) bagażu. Można tu wyróżnć klka sposobów rozumowana. Ops rozpoczynamy od zagadnena nabardze ogólnego. Ogólny problem plecakowy Przedmoty które oprócz unkatowe nazwy P posadaą dwe cechy: 1. masę m lub eśl kto wol obętość (bo pakowane plecaka możemy optymalzować ze względu na masę (cężar) lub ze względu na obętość 2. cenę c. Wynk: lośc k poszczególnych przedmotów (mogą być zeram) Formuła problemu: Nech: o W est wartoścą wszystkch przedmotów spakowanych w plecaku. o M max est maksymalną masą (obętoścą) plecaka Znaleźć wartośc k, take aby:. = było możlwe nawększe, oraz =1. =1. 0 Rozwązanam dopuszczalnym nazywać będzemy wszystke zbory lośc k spełnaące warunek. Rozwązanem optymalnym będze ten zbór lośc k, który spełn warunek. - nazwemy funkcą optymalzac oraz - nazwemy ogranczenam lub warunkam brzegowym. Zagadnene w swe prostoce sformułowana wydawać by sę mogło łatwym do rozwązana problemem. Nc bardze mylnego. Wbrew pozorom problem plecakowy wygenerował wele dość skomplkowanych algorytmów rozwązuących go. Strona 1

2 Algorytm zachłanny dla ogólnego zagadnena plecakowego. Dzałane zachłanne przypomna naturalne podeśce człoweka do zagadnena pakowana plecaka. Pakuąc plecak tak aby pomeścć w nm ak nawększą wartość człowek kerowałby sę - ednym z lub w sposób meszany - następuącym kryteram: 1) Starałby sę wyberać rzeczy nacennesze w kolenośc od nadroższe do natańsze. 2) Starałby sę zaberać rzeczy ak namnesze poczynaąc od nalżeszego przedmotu, na nacęższym skończywszy. 3) Starałby sę wyberać przedmoty w kolenośc ustawone nerosnąco ze względu na loraz ceny do wag przedmotu. Tak loraz stanow bowem ednostkową wartość przedmotu (wartość przypadaącą na ednostkę masy lub obętośc). Człowek dzałaąc strategczne po kole, podemue decyze optymalne z punktu wdzena danego kroku. Tak węc w perwszym kroku wg planu nr 1 wząłby rzecz nadroższą, wg planu nr 2 wząłby dużo lekkch, zaś wg strateg nr 3 występue uż element wyważena choć tym razem wząłby maksymalna lość przedmotów o nawększe wartośc ednostkowe. Właśne take dzałane nazywamy dzałanem zachłannym. Zbadamy teraz do akch rezultatów doprowadz nas postępowane według każde z trzech strateg zachłannych podczas pakowana 6 przedmotów do plecaka o nośnośc M max =10 m 1, przy czym każdego przedmotu mamy dowolną lość k. P c [zł] m [m] 1 Koszula flanelowa Spodne dżnsowe Sweter Czapka baseballowa Kąpelówk Obuwe sportowe Ad.1 Tabela 1. Dane do analzy rozwązań problemu plecakowego. 1 m ednostka mary umowna ednostka mary dla potrzeb przykładu. Strona 2

3 Zaczynamy od wybrana rzeczy nadroższe. Jest ną sweter, czyl przedmot o ndekse 3. Sweter waży 6 m, a węc możemy zapakować ch co nawyże 1 szt. Zatem k 3 =1. Wypełnony swetram plecak waży 6 m, musmy zatem eszcze doładować 4 m. Nadroższy przedmot ne przekraczaący te wag to czapka baseballowa o ndekse 4. Do plecaka zmeśc sę dokładne edna k 4 =1 szt. Plecak mamy pełen. Nasz wynk zatem to: zaś uzyskana wartość plecaka, wynos: Ad.2 k 1 =0, k 2 =0, k 3 =1, k 4 =1, k 5 =0, k 6 =0 W=k 3 c 3 +k 4 c 4 = 1 * 250 zł + 1 * 35 zł = 285 zł Teraz pakować będzemy dużo zaczynaąc od rzeczy nalżesze. Nalżesze w naszym zestawe są kąpelówk o ndekse =5. Masa m 5 =3 m. W plecaku zmeścmy ch aż k 5 =3szt. Plecak ne będze wypełnony do końca, brakue 1 m ale ne ma towaru, który małby co nawyże taką masę. Wartość plecaka w tym przypadku wynese: W=k 5 c 5 =3 * 10 zł = 30 zł Jak wdać mne nż w poprzednm przypadku, a węc ne optymalne. Wypróbumy teraz sposób trzec. Ad.3 Wylczmy wartośc ednostkowe poszczególnych przedmotów. W tym celu uzupełnmy tabelę 1 o kolumnę c /m. P c [zł] m [m] c /m 1 Koszula flanelowa ,71 2 Spodne dżnsowe ,75 3 Sweter ,67 4 Czapka baseballowa ,75 5 Kąpelówk ,33 6 Obuwe sportowe ,11 Tabela 2. Wartośc ednostkowe. Plecak zacznemy zapełnać swetram, gdyż one maą nawększą wartość ednostkową. Do plecaka uda nam sę zapakować 1 tak sweter. Da to łączną masę 6 m. Musmy węc zapełnć eszcze 4 m. Zmeszczą sę eszcze kąpelówk lub czapka baseballowa. Wyberamy czapkę Strona 3

4 baseballową (4 m) gdyż e wartość ednostkowa est wyższa od wartośc ednostkowe kąpelówek. Sprawdźmy aką uzyskalśmy wartość plecaka? W=k 3 c 3 +k 4 c 4 =1 * 250zł + 1 * 35zł = 285 zł Tym sposobem otrzymalśmy wartość taką samą ak w metodze 1, Ale ta metoda wydae sę nabardze logczna. Należy uznać, ze metoda optymalzac poprzez porządkowane wg. wartośc ednostkowe przynos nalepszy rezultat. Czy ednak est to wartość optymalna? W naszym przykładze tak ale można wykazać, że ne zawsze ten sposób rozumowana prowadz do wynku optymalnego 2. Wynk metod 1 2 ne są optymalne zaś dzałaąc wg metody 3 często otrzymuemy wynk przyblżony. Mmo to metoda nr 3 wydae sę edyną spośród rozważanych, godną uwzględnena w metodach zachłannych rozwązuących problem plecakowy. GREEDY-GENERAL-KNAPSACK,, =1,2,, ; gdze P przedmot, m masa -tego przedmotu, c cena -tego przedmotu Uporządkowane tak, aby: M max nośność (poemność) plecaka. Wynk:,,, take, że 0 oraz =1 1) Dla kolenych przedmotów, =1,2,3,.., wykona krok 2). 2) Określ nawększą wartość, spełnaącą nerówność Przym =. 3) Znalezona wartość plecaka wynos: = KONIEC 2 Patrz Mace M. Sysło Algorytmy WSIP Warszawa 2002 s Strona 4

5 Programowane dynamczne dla ogólnego problemu plecakowego Metoda programowana dynamcznego zapewna znalezene optymalnego rozwązana problemu plecakowego. Polega ona na umeętnym zastosowanu zasady dzel zwycęża. Generalne chodz o to aby podzelć zagadnene, na problemy mnesze łatwesze do rozwązana. Fane byłoby, gdyby poemność plecaka była mała mała była także lczba rodzaów przedmotów do upakowana. No to znadźmy rozwązana dla sytuac ak gdyby trzeba było wypełnć plecak tylko ednym rodzaem przedmotów. Dodatkowo nech poemność maksymalna plecaka zmena sę od ednostkowe, do maksymalne co 1. Wartośc wpsywać będzemy w tabel w które numer wersza odpowadać będze numerow przedmotu z tabel1 3 zaś numer kolumny nech będze koleną całkowtą poemnoścą plecaka. Wartość P defnuemy ako wartość optymalne wypełnonego plecaka o poemnośc przedmotam, których ndeksy meszczą sę mędzy 1, a. Perwszy wersz wypełnć nałatwe albowem mamy do dyspozyc tylko przedmot ednego rodzau, którym napełnamy plecak o kolenych (1, 2 10) poemnoścach. W kolene rubryczk wpsuemy wartośc plecaka. Perwszych sześć pozyc ma wartość 0 gdyż koszula waży 7 m. Dopero od poemnośc plecaka równe 7 możemy ą do nego wpakować. P c m P koszula flanelowa spodne dżnsowe sweter czapka baseballowa kąpelówk obuwe sportowe Tabela 3a. Tablca P wartośc upakowań plecaka wygenerowanych przez algorytm programowana dynamcznego perwszy wersz. W drugm werszu do dyspozyc mamy uż dwa cuchy. Nestety w naszym przykładze ch łączna waga przekracza dopuszczalną ładowność plecaka. Wyberamy zatem cuch droższy (spodne dżnsowe 150 zł), który zmeśc sę w plecaku począwszy od =8. Podobne w przypadku trzecego wersza, gdze do dyspozyc dochodz sweter, ale tylko on meśc sę w maksymalnym dla każdego plecaku. Wypełnmy zatem wartoścam wersze W algorytme programowana dynamcznego, koleność przedmotów ne ma znaczena, dlatego tabela nr 1 ne mus być sortowana. Przyp. aut. Strona 5

6 P c m P koszula flanelowa spodne dżnsowe sweter czapka baseballowa kąpelówk obuwe sportowe Tabela 3b. Tablca P wartośc upakowań plecaka wygenerowanych przez algorytm programowana dynamcznego drug trzec wersz. W czwartym werszu sytuaca sę neco komplkue. Do plecaka począwszy od pozyc =4 meśc sę czapka baseballowa, w pozyc =6 droższy ednak będze sweter, a w kolumne =10 zmeśc sę czapka sweter. P c m P koszula flanelowa spodne dżnsowe sweter czapka baseballowa kąpelówk obuwe sportowe Tabela 3c. Tablca P wartośc upakowań plecaka wygenerowanych przez algorytm programowana dynamcznego czwarty wersz. Jeśl poszerzymy asortyment o kąpelówk, to tabela przyme koleną postać: Strona 6

7 P c m P koszula flanelowa spodne dżnsowe sweter czapka baseballowa kąpelówk obuwe sportowe Tabela 3d. Tablca P wartośc upakowań plecaka wygenerowanych przez algorytm programowana dynamcznego pąty wersz. I wreszce wypełnamy ostatn wersz. Buty dla każdego wedą do plecaka tylko one wcale to ne będze nawększa wartość. Zatem szósty wersz będze wyglądał tak samo ak pąty. P c m P koszula flanelowa spodne dżnsowe sweter czapka baseballowa kąpelówk obuwe sportowe Tabela 3. Tablca P wartośc upakowań plecaka wygenerowanych przez algorytm programowana dynamcznego kompletne wypełnona. Optymalna wartość otrzymana w pozyc P 6,10 wynos 285. Jest to ta sama wartość którą otrzymalśmy stosuąc algorytm zachłanny, tyle, że tu mamy pewność, że est to wartość nawększa. Podczas wypełnana tabel rozpoczęlśmy od sytuac naprostsze. Jeden przedmot rosnąca co eden poemność plecaka. Jeśl przedmot ne meścł sę w plecaku, to plecak pozostawał pusty (wartość 0), eśl natomast meścł sę, to przypsywalśmy wartośc plecaka krotność wartośc przedmotu (u nas krotność w całym zadanu wynosła 1). Strona 7

8 W następnym werszu moglśmy uż wypełnać plecak korzystaąc z wersza perwszego. 4 Podemowalśmy edną z następuących decyz: wyberz upakowane rzeczam z wersza poprzednego, dołóż rzecz o numerze 2 eśl sę zmeśc, zastąp rzecz nr 1 rzeczą nr 2 eśl e wartość est wększa meśc sę tylko edna spośród nch. Jeśl to wyberamy wększa spośród,, + Podobne w werszach następnych. Tabela P przechowue edyne wartośc optymalne spakowanego plecaka. Aby móc pokazać zestaw rzeczy składaących sę na optymalne spakowany plecak pownnśmy zbudować tabelę Q skoarzoną z tabelą P, w które przechowywać będzemy ndeksy rzeczy pakowanych do plecaka ako ostatne. To pozwol na wyznaczene zestawu rzeczy w plecaku. koszula flanelowa P c m Q spodne dżnsowe sweter czapka baseballowa kąpelówk obuwe sportowe Tabela 4. Tablca Q numerów rzeczy wkładanych do plecaka ako ostatne. Na pozyc Q[6,10] znadue sę numer rzeczy włożone do plecaka na końcu. Rzecz o ndekse = 4 (czapka baseballowa) waży 4 m. Zatem cofamy sę w werszu do pozyc Q[6,10-4]=Q[6,6]. Tam zapsano rzecz o ndekse =3 (sweter), który waży 6 m. W takm raze pownnśmy przeskoczyć do kolumny 6-6, ale to dae zero (wyczerpała sę poemność plecaka). Zatem w plecaku znadue sę sweter czapka baseballowa wkładane doń właśne w take kolenośc. DYNAMIC-GENERAL-KNAPSACK,, =1,2,, ; gdze P przedmot, m masa -tego przedmotu, c cena -tego przedmotu M max nośność (poemność) plecaka. Wynk: 4 Zasadę polegaącą na podemowanu nalepsze decyz z uwzględnenem stanu wynkaącego z poprzednch decyz nazywamy zasadą optymalnośc Bellmana. Strona 8

9 Tablca wartośc P, nalepszych upakowań plecaka o poemnośc rzeczam rodzaów od 1 do ; dla =1,2,.,n oraz =1,2, M max. Tablca Q, skoarzona z P, rzeczy P pakowanych do plecaka w ostatnm ruchu. 1) {Ustalene wartośc początkowych tablc P Q rozszerzonych dla uednolcena oblczeń o wersze kolumny zerowe.} Dla =1,2,, M max przypsz P 0, :=0, Q 0, :=0 Dla =1,2,,n przypsz P,0 :=0, Q,0 :=0. 2) Dla kolenych rzeczy =1,2,,n wykona krok 3. 3) Dla kolenych poemnośc plecaka =1,2, M max wykona krok 4. 4) Jeśl {Czyl poemność plecaka est wystarczaąca, by pomeścć rzecz } oraz, <, + to przypsz, =, + oraz, =, a w przecwnym raze pozostaw wartośc z poprzednego wersza, czyl przypsz, =, oraz, =,. KONIEC Decyzyny problem plecakowy Problem różn sę tym od ogólnego, że każda rzecz pakowana do plecaka może wystąpć tylko eden raz. Podemuemy węc decyzę pakować = 1 ne pakować = 0. Tak zdefnowany problem bardze odzwercedla rzeczywstą sytuacę pakowana plecaka. Podobne ak w przypadku możemy mówć o algorytmach zachłannych dynamcznych które przytaczam tu uż bez szerszego omówena, ze względu na duze podobeństwo do wcześne omówonych. GREEDY-DECIDE-KNAPSACK,, =1,2,, ; gdze P przedmot, m masa -tego przedmotu, c cena -tego przedmotu Uporządkowane tak, aby: M max nośność (poemność) plecaka. Wynk:,,, take, że =0 =1 oraz =1 1. Dla kolenych rzeczy = 1,2,,n wykona krok Jeśl,to przym k =1 przypsz M max = M max -m, a w przecwnym raze przym k =0. Strona 9

10 3. Utworzony ładunek plecaka ma wartość =. KONIEC =1 DYNAMIC-DECIDE-KNAPSACK,, =1,2,, ; gdze P przedmot, m masa -tego przedmotu, c cena -tego przedmotu M max nośność (poemność) plecaka. Wynk: Tablca wartośc P, nalepszych upakowań plecaka o poemnośc rzeczam rodzaów od 1 do ; dla =1,2,.,n oraz =1,2, M max. Tablca Q, skoarzona z P, rzeczy P pakowanych do plecaka w ostatnm ruchu. 1) {Ustalene wartośc początkowych tablc P Q rozszerzonych dla uednolcena oblczeń o wersze kolumny zerowe.} Dla =1,2,, M max przypsz P 0, :=0, Q 0, :=0 Dla =1,2,,n przypsz P,0 :=0, Q,0 :=0. 2) Dla kolenych rzeczy =1,2,,n wykona krok 3. 3) Dla kolenych poemnośc plecaka =1,2, M max wykona krok 4. 4) Jeśl {Czyl poemność plecaka est wystarczaąca, by pomeścć rzecz } oraz, <, + to przypsz, =, + oraz, =1, a w przecwnym raze pozostaw wartośc z poprzednego wersza, czyl przypsz, =, oraz, = 0. KONIEC Uwag końcowe Złożoność oblczenowa obydwu algorytmów zachłannych est proporconalna do n log. Podobne oba algorytmy dynamczne maą złożoność oblczenowa rzędu n M max. Należy zwrócć uwagę, że programowane dynamczne będze sprawdzać sę przy newelke lośc elementów newelke poemnośc plecaka. Dla wększych lczb algorytmy programowana dynamcznego staa sę mało praktyczne. Strona 10

Wykład 2: Uczenie nadzorowane sieci neuronowych - I

Wykład 2: Uczenie nadzorowane sieci neuronowych - I Wykład 2: Uczene nadzorowane sec neuronowych - I Algorytmy uczena sec neuronowych Na sposób dzałana sec ma wpływ e topologa oraz funkconowane poszczególnych neuronów. Z reguły topologę sec uznae sę za

Bardziej szczegółowo

Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE

Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE Inormatyka Podstawy Programowana 06/07 Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE 6. Równana algebraczne. Poszukujemy rozwązana, czyl chcemy określć perwastk rzeczywste równana:

Bardziej szczegółowo

Wykład 2: Uczenie nadzorowane sieci neuronowych - I

Wykład 2: Uczenie nadzorowane sieci neuronowych - I Wykład 2: Uczene nadzorowane sec neuronowych - I Algorytmy uczena sec neuronowych Na sposób dzałana sec ma wpływ e topologa oraz funkconowane poszczególnych neuronów. Z reguły topologę sec uznae sę za

Bardziej szczegółowo

Sortowanie szybkie Quick Sort

Sortowanie szybkie Quick Sort Sortowane szybke Quck Sort Algorytm sortowana szybkego opera sę na strateg "dzel zwycęża" (ang. dvde and conquer), którą możemy krótko scharakteryzować w trzech punktach: 1. DZIEL - problem główny zostae

Bardziej szczegółowo

Badania operacyjne w logistyce i zarządzaniu produkcją

Badania operacyjne w logistyce i zarządzaniu produkcją Państwowa Wyższa Szkoła Zawodowa w Nowym Sączu Badana operacyne w logstyce zarządzanu produkcą cz. I Andrze Woźnak Nowy Sącz Komtet Redakcyny doc. dr Zdzsława Zacłona przewodncząca, prof. dr hab. nż. Jarosław

Bardziej szczegółowo

Przykład 5.1. Kratownica dwukrotnie statycznie niewyznaczalna

Przykład 5.1. Kratownica dwukrotnie statycznie niewyznaczalna rzykład.. Kratownca dwukrotne statyczne newyznaczana oecene: korzystaąc z metody sł wyznaczyć sły w prętach ponższe kratowncy. const Rozwązane zadana rozpoczynamy od obczena stopna statyczne newyznaczanośc

Bardziej szczegółowo

11/22/2014. Jeśli stała c jest równa zero to takie gry nazywamy grami o sumie zerowej.

11/22/2014. Jeśli stała c jest równa zero to takie gry nazywamy grami o sumie zerowej. /22/24 Dwuosobowe gry o sume zero DO NAUCZENIA I ZAPAMIĘTANIA: Defnca zaps ger o sume zero, adaptaca ogólnych defnc. Punkt sodłowy Twerdzena o zwązkach punktu sodłowego z koncepcam rozwązań PRZYPOMNIENIE:

Bardziej szczegółowo

Twierdzenie Bezouta i liczby zespolone Javier de Lucas. Rozwi azanie 2. Z twierdzenia dzielenia wielomianów, mamy, że

Twierdzenie Bezouta i liczby zespolone Javier de Lucas. Rozwi azanie 2. Z twierdzenia dzielenia wielomianów, mamy, że Twerdzene Bezouta lczby zespolone Javer de Lucas Ćwczene 1 Ustal dla których a, b R można podzelć f 1 X) = X 4 3X 2 + ax b przez f 2 X) = X 2 3X+2 Oblcz a b Z 5 jeżel zak ladamy, że f 1 f 2 s a welomanam

Bardziej szczegółowo

Poszukiwanie optymalnego wyrównania harmonogramu zatrudnienia metodą analityczną

Poszukiwanie optymalnego wyrównania harmonogramu zatrudnienia metodą analityczną Mieczysław POŁOŃSKI Wydział Budownictwa i Inżynierii Środowiska, Szkoła Główna Gospodarstwa Wieskiego, Warszawa, ul. Nowoursynowska 159 e-mail: mieczyslaw_polonski@sggw.pl Poszukiwanie optymalnego wyrównania

Bardziej szczegółowo

ZAGADNIENIE TRANSPORTOWE

ZAGADNIENIE TRANSPORTOWE ZAGADNIENIE TRANSPORTOWE ZT.. Zagadee trasportowe w postac tablcy Z m puktów (odpowedo A,...,A m ) wysyłamy edorody produkt w loścach a,...,a m do puktów odboru (odpowedo B,...,B ), gdze est odberay w

Bardziej szczegółowo

Zestaw zadań 4: Przestrzenie wektorowe i podprzestrzenie. Liniowa niezależność. Sumy i sumy proste podprzestrzeni.

Zestaw zadań 4: Przestrzenie wektorowe i podprzestrzenie. Liniowa niezależność. Sumy i sumy proste podprzestrzeni. Zestaw zadań : Przestrzene wektorowe podprzestrzene. Lnowa nezależność. Sumy sumy proste podprzestrzen. () Wykazać, że V = C ze zwykłym dodawanem jako dodawanem wektorów operacją mnożena przez skalar :

Bardziej szczegółowo

7. Wykład VII: Warunki Kuhna-Tuckera

7. Wykład VII: Warunki Kuhna-Tuckera Wocech Grega, Metody Optymalzac 7 Wykład VII: Warunk Kuhna-Tuckera 7 Warunk koneczne stnena ekstremum Rozważane est zadane z ogranczenam nerównoścowym w postac: mn F( x ) x X X o F( x ), o { R x : h n

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH

STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH 1 Test zgodnośc χ 2 Hpoteza zerowa H 0 ( Cecha X populacj ma rozkład o dystrybuance F). Hpoteza alternatywna H1( Cecha X populacj

Bardziej szczegółowo

MIKROEKONOMIA Prof. nadzw. dr hab. Jacek Prokop jproko@sgh.waw.pl

MIKROEKONOMIA Prof. nadzw. dr hab. Jacek Prokop jproko@sgh.waw.pl MIKROEKONOMIA Prof. nadzw. dr hab. Jacek Proko roko@sgh.waw.l Statyka dynamka olgoolstyczne struktury rynku. Modele krótkookresowe konkurenc cenowe w olgoolu.. Model ogranczonych mocy rodukcynych ako wyaśnene

Bardziej szczegółowo

RÓWNOWAGA STACKELBERGA W GRACH SEKWENCYJNYCH

RÓWNOWAGA STACKELBERGA W GRACH SEKWENCYJNYCH Stansław KOWALIK e-mal: skowalk@wsb.edu.pl Wyższa Szkoła Bznesu Dąbrowa Górncza RÓWNOWAGA STACKELBERGA W GRACH SEKWENCYJNYCH Streszczene Praca dotyczy nekooperacynych sekwencynych ger dwuosobowych o sume

Bardziej szczegółowo

Laboratorium ochrony danych

Laboratorium ochrony danych Laboratorum ochrony danych Ćwczene nr Temat ćwczena: Cała skończone rozszerzone Cel dydaktyczny: Opanowane programowej metody konstruowana cał skończonych rozszerzonych GF(pm), poznane ch własnośc oraz

Bardziej szczegółowo

W praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np.

W praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np. Wykład 7 Uwaga: W praktyce często zdarza sę, że wynk obu prób możemy traktować jako wynk pomarów na tym samym elemence populacj np. wynk x przed wynk y po operacj dla tego samego osobnka. Należy wówczas

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 7

Stanisław Cichocki. Natalia Nehrebecka. Wykład 7 Stansław Cchock Natala Nehrebecka Wykład 7 1 1. Zmenne cągłe a zmenne dyskretne 2. Interpretacja parametrów przy zmennych dyskretnych 1. Zmenne cągłe a zmenne dyskretne 2. Interpretacja parametrów przy

Bardziej szczegółowo

CAŁKOWANIE NUMERYCZNE całki pojedyncze

CAŁKOWANIE NUMERYCZNE całki pojedyncze CAŁKOWANIE NUMERYCZNE całk pojedyncze Kwadratury nterpolacyjne Kwadratury nterpolacyjne Rozpatrujemy funkcję f() cągłą ogranczoną w przedzale domknętym [a, b]. Przedzał [a, b] dzelmy na skończoną lczbę

Bardziej szczegółowo

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych Zaawansowane metody numeryczne Komputerowa analza zagadneń różnczkowych 1. Układy równań lnowych P. F. Góra http://th-www.f.uj.edu.pl/zfs/gora/ semestr letn 2006/07 Podstawowe fakty Równane Ax = b, x,

Bardziej szczegółowo

Zarządzanie ryzykiem w przedsiębiorstwie i jego wpływ na analizę opłacalności przedsięwzięć inwestycyjnych

Zarządzanie ryzykiem w przedsiębiorstwie i jego wpływ na analizę opłacalności przedsięwzięć inwestycyjnych dr nż Andrze Chylńsk Katedra Bankowośc Fnansów Wyższa Szkoła Menedżerska w Warszawe Zarządzane ryzykem w rzedsęborstwe ego wływ na analzę ołacalnośc rzedsęwzęć nwestycynych w w w e - f n a n s e c o m

Bardziej szczegółowo

Sztuczne sieci neuronowe

Sztuczne sieci neuronowe Sztuczne sec neuronowe Jerzy Stefanowsk Plan wykładu 1. Wprowadzene 2. Model sztucznego neuronu. 3. Topologe sec neuronowych 4. Reguły uczena sec neuronowych. 5. Klasyfkaca sec neuronowych. 6. Sec warstwowe

Bardziej szczegółowo

Krzysztof Borowski Zastosowanie metody wideł cenowych w analizie technicznej

Krzysztof Borowski Zastosowanie metody wideł cenowych w analizie technicznej Krzysztof Borowsk Zastosowane metody wdeł cenowych w analze technczne Wprowadzene Metoda wdeł cenowych została perwszy raz ogłoszona przez Alana Andrewsa 1 w roku 1960. Trzy lne wchodzące w skład metody

Bardziej szczegółowo

ZASTOSOWANIE KLASYCZNEGO ALGORYTMU GENETYCZNEGO DO ROZWIĄZANIA ZBILANSOWANEGO ZAGADNIENIA TRANSPORTOWEGO

ZASTOSOWANIE KLASYCZNEGO ALGORYTMU GENETYCZNEGO DO ROZWIĄZANIA ZBILANSOWANEGO ZAGADNIENIA TRANSPORTOWEGO Studa Materały. Mscellanea Oeconomcae Rok 6, Nr 2/22 Wydzał Zarządzana Admnstrac Unwersytetu Jana Kochanowskego w Kelcach Z a r z ą d z a n e f n a n s e Rafał Prońko ZASTOSOWANIE KLASYCZNEGO ALGORYTMU

Bardziej szczegółowo

Temat: Algorytmy zachłanne

Temat: Algorytmy zachłanne Temat: Algorytmy zachłanne Algorytm zachłanny ( ang. greedy algorithm) wykonuje zawsze działanie, które wydaje się w danej chwili najkorzystniejsze. Wybiera zatem lokalnie optymalną możliwość w nadziei,

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6 Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Zastosowane modelu potęgowego Przekształcene Boxa-Coxa 2. Zmenne cągłe za zmenne dyskretne 3. Interpretacja parametrów przy zmennych dyskretnych 1. Zastosowane

Bardziej szczegółowo

BADANIA OPERACYJNE ANALITYKA GOSPODARCZA

BADANIA OPERACYJNE ANALITYKA GOSPODARCZA BADANIA OPERACYJNE ANALITYKA GOSPODARCZA Egzamin pisemny 8.4.7 piątek, salae-6, godz. 8:-9:3 OBECNOŚĆ OBOWIĄZKOWA!!! Układ egzaminu. TEST z teorii: minut (test wielostronnego wyboru; próg 75%). ZADANIA:

Bardziej szczegółowo

KRZYWA BÉZIERA TWORZENIE I WIZUALIZACJA KRZYWYCH PARAMETRYCZNYCH NA PRZYKŁADZIE KRZYWEJ BÉZIERA

KRZYWA BÉZIERA TWORZENIE I WIZUALIZACJA KRZYWYCH PARAMETRYCZNYCH NA PRZYKŁADZIE KRZYWEJ BÉZIERA KRZYWA BÉZIERA TWORZENIE I WIZUALIZACJA KRZYWYCH PARAMETRYCZNYCH NA PRZYKŁADZIE KRZYWEJ BÉZIERA Krzysztof Serżęga Wyższa Szkoła Informatyk Zarządzana w Rzeszowe Streszczene Artykuł porusza temat zwązany

Bardziej szczegółowo

Algorytmy. i podstawy programowania. eci. Proste algorytmy sortowania tablic. 4. Wskaźniki i dynamiczna alokacja pami

Algorytmy. i podstawy programowania. eci. Proste algorytmy sortowania tablic. 4. Wskaźniki i dynamiczna alokacja pami MAREK GAGOLEWSKI INSTYTUT BADAŃ SYSTEMOWYCH PAN Algorytmy podstawy programowana 4. Wskaźnk dynamczna alokaca pam ec. Proste algorytmy sortowana tablc Matera ly dydaktyczne dla studentów matematyk na Wydzale

Bardziej szczegółowo

2012-10-11. Definicje ogólne

2012-10-11. Definicje ogólne 0-0- Defncje ogólne Logstyka nauka o przepływe surowców produktów gotowych rodowód wojskowy Utrzyywane zapasów koszty zwązane.n. z zarożene kaptału Brak w dostawach koszty zwązane.n. z przestoje w produkcj

Bardziej szczegółowo

Algorytmy szukania równowag w grach dwumacierzowych

Algorytmy szukania równowag w grach dwumacierzowych Rozdzał 2 Algorytmy szukana równowag w grach dwumacerzowych 2. Algorytm Lemke-Howsona Dzseszy wykład pośwęcony będze temu, ak szukać równowag w grach dwumacerzowych. Poneważ temu były uż w wększośc pośwęcone

Bardziej szczegółowo

Rozwiązywanie zadań optymalizacji w środowisku programu MATLAB

Rozwiązywanie zadań optymalizacji w środowisku programu MATLAB Rozwązywane zadań optymalzacj w środowsku programu MATLAB Zagadnene optymalzacj polega na znajdowanu najlepszego, względem ustalonego kryterum, rozwązana należącego do zboru rozwązań dopuszczalnych. Standardowe

Bardziej szczegółowo

WikiWS For Business Sharks

WikiWS For Business Sharks WkWS For Busness Sharks Ops zadana konkursowego Zadane Opracowane algorytmu automatyczne przetwarzającego zdjęce odręczne narysowanego dagramu na tablcy lub kartce do postac wektorowej zapsanej w formace

Bardziej szczegółowo

MATEMATYKA POZIOM ROZSZERZONY Kryteria oceniania odpowiedzi. Arkusz A II. Strona 1 z 5

MATEMATYKA POZIOM ROZSZERZONY Kryteria oceniania odpowiedzi. Arkusz A II. Strona 1 z 5 MATEMATYKA POZIOM ROZSZERZONY Krytera ocenana odpowedz Arkusz A II Strona 1 z 5 Odpowedz Pytane 1 2 3 4 5 6 7 8 9 Odpowedź D C C A B 153 135 232 333 Zad. 10. (0-3) Dana jest funkcja postac. Korzystając

Bardziej szczegółowo

Portfele zawierające walor pozbawiony ryzyka. Elementy teorii rynku kapitałowego

Portfele zawierające walor pozbawiony ryzyka. Elementy teorii rynku kapitałowego Portel nwestycyjny ćwczena Na podst. Wtold Jurek: Konstrukcja analza rozdzał 5 dr chał Konopczyńsk Portele zawerające walor pozbawony ryzyka. lementy teor rynku kaptałowego 1. Pożyczane penędzy amy dwa

Bardziej szczegółowo

Diagonalizacja macierzy kwadratowej

Diagonalizacja macierzy kwadratowej Dagonalzacja macerzy kwadratowej Dana jest macerz A nân. Jej wartośc własne wektory własne spełnają równane Ax x dla,..., n Każde z równań własnych osobno można zapsać w postac: a a an x x a a an x x an

Bardziej szczegółowo

Oligopol dynamiczny. Rozpatrzmy model sekwencyjnej konkurencji ilościowej jako gra jednokrotna z pełną i doskonalej informacją

Oligopol dynamiczny. Rozpatrzmy model sekwencyjnej konkurencji ilościowej jako gra jednokrotna z pełną i doskonalej informacją Olgopol dynamczny Rozpatrzmy model sekwencyjnej konkurencj loścowej jako gra jednokrotna z pełną doskonalej nformacją (1934) Dwa okresy: t=0, 1 tzn. frma 2 podejmując decyzję zna decyzję frmy 1 Q=q 1 +q

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6 Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Interpretacja parametrów przy zmennych objaśnających cągłych Semelastyczność 2. Zastosowane modelu potęgowego Model potęgowy 3. Zmenne cągłe za zmenne dyskretne

Bardziej szczegółowo

p Z(G). (G : Z({x i })),

p Z(G). (G : Z({x i })), 3. Wykład 3: p-grupy twerdzena Sylowa. Defncja 3.1. Nech (G, ) będze grupą. Grupę G nazywamy p-grupą, jeżel G = dla pewnej lczby perwszej p oraz k N. Twerdzene 3.1. Nech (G, ) będze p-grupą. Wówczas W

Bardziej szczegółowo

Zaawansowane metody numeryczne

Zaawansowane metody numeryczne Wykład 9. jej modyfkacje. Oznaczena Będzemy rozpatrywać zagadnene rozwązana następującego układu n równań lnowych z n newadomym x 1... x n : a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 1 Statystyka opisowa ZADANIE DOMOWE. www.etrapez.pl Strona 1

KURS STATYSTYKA. Lekcja 1 Statystyka opisowa ZADANIE DOMOWE. www.etrapez.pl Strona 1 KURS STATYSTYKA Lekcja 1 Statystyka opsowa ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowedź (tylko jedna jest prawdzwa). Pytane 1 W statystyce opsowej mamy pełne nformacje

Bardziej szczegółowo

Analiza danych OGÓLNY SCHEMAT. http://zajecia.jakubw.pl/ Dane treningowe (znana decyzja) Klasyfikator. Dane testowe (znana decyzja)

Analiza danych OGÓLNY SCHEMAT. http://zajecia.jakubw.pl/ Dane treningowe (znana decyzja) Klasyfikator. Dane testowe (znana decyzja) Analza danych Dane trenngowe testowe. Algorytm k najblższych sąsadów. Jakub Wróblewsk jakubw@pjwstk.edu.pl http://zajeca.jakubw.pl/ OGÓLNY SCHEMAT Mamy dany zbór danych podzelony na klasy decyzyjne, oraz

Bardziej szczegółowo

Algorytmy i struktury danych.

Algorytmy i struktury danych. Algorytmy i struktury danych. Wykład 4 Krzysztof M. Ocetkiewicz Krzysztof.Ocetkiewicz@eti.pg.gda.pl Katedra Algorytmów i Modelowania Systemów, WETI, PG Problem plecakowy mamy plecak o określonej pojemności

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 4

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 4 Stansław Cchock Natala Nehrebecka Zajęca 4 1. Interpretacja parametrów przy zmennych zerojedynkowych Zmenne 0-1 Interpretacja przy zmennej 0 1 w modelu lnowym względem zmennych objaśnających Interpretacja

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6 Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Zastosowane modelu potęgowego Model potęgowy Przekształcene Boxa-Coxa 2. Zmenne cągłe za zmenne dyskretne 3. Interpretacja parametrów przy zmennych dyskretnych

Bardziej szczegółowo

(Dantzig G. B. (1963))

(Dantzig G. B. (1963)) (Dantzig G.. (1963)) Uniwersalna metoda numeryczna dla rozwiązywania zadań PL. Ideą metody est uporządkowany przegląd skończone ilości rozwiązań bazowych układu ograniczeń, które możemy utożsamiać, w przypadku

Bardziej szczegółowo

6. ANALIZA POST-OPTYMALIZACYJNA analiza wrażliwości rozwiązania optymalnego

6. ANALIZA POST-OPTYMALIZACYJNA analiza wrażliwości rozwiązania optymalnego 6. ANALIZA POST-OPTYMALIZACYJNA analiza wrażliwości rozwiązania optymalnego Analiza wrażliwości est studium analizy wpływu zmian wartości różnych parametrów modelu PL na rozwiązanie optymalne. Na optymalne

Bardziej szczegółowo

Wykład 1 Zagadnienie brzegowe liniowej teorii sprężystości. Metody rozwiązywania, metody wytrzymałości materiałów. Zestawienie wzorów i określeń.

Wykład 1 Zagadnienie brzegowe liniowej teorii sprężystości. Metody rozwiązywania, metody wytrzymałości materiałów. Zestawienie wzorów i określeń. Wykład Zagadnene brzegowe lnowe teor sprężystośc. Metody rozwązywana, metody wytrzymałośc materałów. Zestawene wzorów określeń. Układ współrzędnych Kartezańsk, prostokątny. Ose x y z oznaczono odpowedno

Bardziej szczegółowo

SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW

SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW Stefan WÓJTOWICZ, Katarzyna BIERNAT ZAKŁAD METROLOGII I BADAŃ NIENISZCZĄCYCH INSTYTUT ELEKTROTECHNIKI ul. Pożaryskego 8, 04-703 Warszawa tel.

Bardziej szczegółowo

Proste modele ze złożonym zachowaniem czyli o chaosie

Proste modele ze złożonym zachowaniem czyli o chaosie Proste modele ze złożonym zachowanem czyl o chaose 29 kwetna 2014 Komputer jest narzędzem coraz częścej stosowanym przez naukowców do ukazywana skrzętne ukrywanych przez naturę tajemnc. Symulacja, obok

Bardziej szczegółowo

ZESTAW ZADAŃ Z INFORMATYKI

ZESTAW ZADAŃ Z INFORMATYKI (Wpsue zdaąc przed rozpoczęcem prac) KOD ZDAJĄCEGO ZESTAW ZADAŃ Z INFORMATYKI CZĘŚĆ II (dla pozomu rozszerzonego) GRUDZIEŃ ROK 004 Czas prac 50 mnut Instrukca dla zdaącego. Proszę sprawdzć, cz zestaw zadań

Bardziej szczegółowo

Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne. Temat ćwiczenia: Problemy rozkroju materiałowego, zagadnienia dualne

Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne. Temat ćwiczenia: Problemy rozkroju materiałowego, zagadnienia dualne Instrukca do ćwczeń laboratorynych z przedmotu: Badana operacyne Temat ćwczena: Problemy rozkrou materałowego, zagadnena dualne Zachodnopomorsk Unwersytet Technologczny Wydzał Inżyner Mechanczne Mechatronk

Bardziej szczegółowo

Wprowadzenie do Sieci Neuronowych Sieci rekurencyjne

Wprowadzenie do Sieci Neuronowych Sieci rekurencyjne Wprowadzene do Sec Neuronowych Sec rekurencyjne M. Czoków, J. Persa 2010-12-07 1 Powtórzene Konstrukcja autoasocjatora Hopfelda 1.1 Konstrukcja Danych jest m obrazów wzorcowych ξ 1..ξ m, gdze każdy pojedynczy

Bardziej szczegółowo

BADANIA OPERACYJNE. Podejmowanie decyzji w warunkach niepewności. dr Adam Sojda

BADANIA OPERACYJNE. Podejmowanie decyzji w warunkach niepewności. dr Adam Sojda BADANIA OPERACYJNE Podejmowane decyzj w warunkach nepewnośc dr Adam Sojda Teora podejmowana decyzj gry z naturą Wynk dzałana zależy ne tylko od tego, jaką podejmujemy decyzję, ale równeż od tego, jak wystąp

Bardziej szczegółowo

Dobór procesora sygnałowego w konstrukcji regulatora optymalnego

Dobór procesora sygnałowego w konstrukcji regulatora optymalnego Pomary Automatyka Robotyka 10/2008 Dobór procesora sygnałowego w konstrukc regulatora optymalnego Marusz Pauluk Potr Bana Darusz Marchewka Mace Rosół W pracy przedstawono przegląd dostępnych obecne procesorów

Bardziej szczegółowo

Badanie współzależności dwóch cech ilościowych X i Y. Analiza korelacji prostej

Badanie współzależności dwóch cech ilościowych X i Y. Analiza korelacji prostej Badane współzależnośc dwóch cech loścowych X Y. Analza korelacj prostej Kody znaków: żółte wyróżnene nowe pojęce czerwony uwaga kursywa komentarz 1 Zagadnena 1. Zwązek determnstyczny (funkcyjny) a korelacyjny.

Bardziej szczegółowo

Problemy jednoczesnego testowania wielu hipotez statystycznych i ich zastosowania w analizie mikromacierzy DNA

Problemy jednoczesnego testowania wielu hipotez statystycznych i ich zastosowania w analizie mikromacierzy DNA Problemy jednoczesnego testowana welu hpotez statystycznych ch zastosowana w analze mkromacerzy DNA Konrad Furmańczyk Katedra Zastosowań Matematyk SGGW Plan referatu Testowane w analze mkromacerzy DNA

Bardziej szczegółowo

n liczba zmiennych decyzyjnych c współczynniki funkcji celu a współczynniki przy zmienych decyzyjnych w warunkach

n liczba zmiennych decyzyjnych c współczynniki funkcji celu a współczynniki przy zmienych decyzyjnych w warunkach Problem decyzyny cel różne sposoby dzałana (decyze) warunk ogranczaące (determnuą zbór decyz dopuszczalnych) kryterum wyboru: umożlwa porównane efektywnośc różnych decyz dopuszczalnych z punktu wdzena

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA WYKŁAD 15. ALGORYTMY GENETYCZNE Częstochowa 014 Dr hab. nż. Grzegorz Dudek Wydzał Elektryczny Poltechnka Częstochowska TERMINOLOGIA allele wartośc, waranty genów, chromosom - (naczej

Bardziej szczegółowo

Regulamin promocji 14 wiosna

Regulamin promocji 14 wiosna promocja_14_wosna strona 1/5 Regulamn promocj 14 wosna 1. Organzatorem promocj 14 wosna, zwanej dalej promocją, jest JPK Jarosław Paweł Krzymn, zwany dalej JPK. 2. Promocja trwa od 01 lutego 2014 do 30

Bardziej szczegółowo

Natalia Nehrebecka. Zajęcia 4

Natalia Nehrebecka. Zajęcia 4 St ł Cchock Stansław C h k Natala Nehrebecka Zajęca 4 1. Interpretacja parametrów przy zmennych zerojedynkowych Zmenne 0 1 Interpretacja przy zmennej 0 1 w modelu lnowym względem zmennych objaśnających

Bardziej szczegółowo

5. OPTYMALIZACJA GRAFOWO-SIECIOWA

5. OPTYMALIZACJA GRAFOWO-SIECIOWA . OPTYMALIZACJA GRAFOWO-SIECIOWA Defncja grafu Pod pojęcem grafu G rozumemy następującą dwójkę uporządkowaną (defncja grafu Berge a): (.) G W,U gdze: W zbór werzchołków grafu, U zbór łuków grafu, U W W,

Bardziej szczegółowo

Podejście zachłanne, a programowanie dynamiczne

Podejście zachłanne, a programowanie dynamiczne Podejście zachłanne, a programowanie dynamiczne Algorytm zachłanny pobiera po kolei elementy danych, za każdym razem wybierając taki, który wydaje się najlepszy w zakresie spełniania pewnych kryteriów

Bardziej szczegółowo

I. Elementy analizy matematycznej

I. Elementy analizy matematycznej WSTAWKA MATEMATYCZNA I. Elementy analzy matematycznej Pochodna funkcj f(x) Pochodna funkcj podaje nam prędkość zman funkcj: df f (x + x) f (x) f '(x) = = lm x 0 (1) dx x Pochodna funkcj podaje nam zarazem

Bardziej szczegółowo

Wstęp Funkcja pliki nagłówkowe i typ tablicowy. Wstęp Pliki nagłówkowe i typ tablicowy. Wstęp Funkcja fill_array() Wstęp. Notatki. Notatki.

Wstęp Funkcja pliki nagłówkowe i typ tablicowy. Wstęp Pliki nagłówkowe i typ tablicowy. Wstęp Funkcja fill_array() Wstęp. Notatki. Notatki. Podstawy Programowana 2 Algorytmy Arkadusz Chrobot Zakład Informatyk 28 maa 2019 1 / 60 Plan Podsumowane 2 / 60 Dzseszy wykład będze dotyczył dwóch algorytmów sortowana, które powązane są z wcześne poruszanym

Bardziej szczegółowo

Podstawy teorii falek (Wavelets)

Podstawy teorii falek (Wavelets) Podstawy teor falek (Wavelets) Ψ(). Transformaca Haara (97).. Przykład pewne metody zapsu obrazu Transformaca Haara Przykład zapsu obrazu -D Podstawy matematyczne transformac Algorytmy rozkładana funkc

Bardziej szczegółowo

STATYSTYCZNA ANALIZA WYNIKÓW POMIARÓW

STATYSTYCZNA ANALIZA WYNIKÓW POMIARÓW Zakład Metrolog Systemów Pomarowych P o l t e c h n k a P o z n ańska ul. Jana Pawła II 4 60-965 POZAŃ (budynek Centrum Mechatronk, Bomechank anonżyner) www.zmsp.mt.put.poznan.pl tel. +48 61 665 5 70 fax

Bardziej szczegółowo

METODA UNITARYZACJI ZEROWANEJ Porównanie obiektów przy ocenie wielokryterialnej. Ranking obiektów.

METODA UNITARYZACJI ZEROWANEJ Porównanie obiektów przy ocenie wielokryterialnej. Ranking obiektów. Opracowane: Dorota Mszczyńska METODA UNITARYZACJI ZEROWANEJ Porównane obektów przy ocene welokryteralnej. Rankng obektów. Porównane wybranych obektów (warantów decyzyjnych) ze względu na różne cechy (krytera)

Bardziej szczegółowo

Stateczność układów ramowych

Stateczność układów ramowych tateczność układów ramowych PRZYPONIENIE IŁ KRYTYCZN DL POJEDYNCZYCH PRĘTÓW tateczność ustrou tateczność ustrou est to zdoność ustrou do zachowana nezmennego położena (kształtu) ub nacze mówąc układ po

Bardziej szczegółowo

Modele wieloczynnikowe. Modele wieloczynnikowe. Modele wieloczynnikowe ogólne. α β β β ε. Analiza i Zarządzanie Portfelem cz. 4.

Modele wieloczynnikowe. Modele wieloczynnikowe. Modele wieloczynnikowe ogólne. α β β β ε. Analiza i Zarządzanie Portfelem cz. 4. Modele weloczynnkowe Analza Zarządzane Portfelem cz. 4 Ogólne model weloczynnkowy można zapsać jako: (,...,,..., ) P f F F F = n Dr Katarzyna Kuzak lub (,...,,..., ) f F F F = n Modele weloczynnkowe Można

Bardziej szczegółowo

Statystyka Opisowa 2014 część 2. Katarzyna Lubnauer

Statystyka Opisowa 2014 część 2. Katarzyna Lubnauer Statystyka Opsowa 2014 część 2 Katarzyna Lubnauer Lteratura: 1. Statystyka w Zarządzanu Admr D. Aczel 2. Statystyka Opsowa od Podstaw Ewa Waslewska 3. Statystyka, Lucjan Kowalsk. 4. Statystyka opsowa,

Bardziej szczegółowo

OPTYMALIZACJA ALGORYTMÓW WYZNACZANIA RUCHU CIECZY LEPKIEJ METODĄ SZTUCZNEJ ŚCIŚLIWOŚCI

OPTYMALIZACJA ALGORYTMÓW WYZNACZANIA RUCHU CIECZY LEPKIEJ METODĄ SZTUCZNEJ ŚCIŚLIWOŚCI MODELOWANIE INśYNIERSKIE ISSN 1896-771X 36, s. 187-192, Glwce 2008 OPTYMALIZACJA ALGORYTMÓW WYZNACZANIA RUCHU CIECZY LEPKIEJ METODĄ SZTUCZNEJ ŚCIŚLIWOŚCI ZBIGNIEW KOSMA, BOGDAN NOGA Instytut Mechank Stosowane,

Bardziej szczegółowo

1. SPRAWDZENIE WYSTEPOWANIA RYZYKA KONDENSACJI POWIERZCHNIOWEJ ORAZ KONDENSACJI MIĘDZYWARSTWOWEJ W ŚCIANIE ZEWNĘTRZNEJ

1. SPRAWDZENIE WYSTEPOWANIA RYZYKA KONDENSACJI POWIERZCHNIOWEJ ORAZ KONDENSACJI MIĘDZYWARSTWOWEJ W ŚCIANIE ZEWNĘTRZNEJ Ćwczene nr 1 cz.3 Dyfuzja pary wodnej zachodz w kerunku od środowska o wyższej temperaturze do środowska chłodnejszego. Para wodna dyfundująca przez przegrody budowlane w okrese zmowym napotyka na coraz

Bardziej szczegółowo

OPTYMALIZACJA KOSZTÓW PRZEBUDOWY PORTFELA JAKO ZADANIE TRANSPORTOWE. 1. Problem badawczy

OPTYMALIZACJA KOSZTÓW PRZEBUDOWY PORTFELA JAKO ZADANIE TRANSPORTOWE. 1. Problem badawczy B A D A N I A O P E R A C Y J N E I D E C Y Z J E Nr 2 2004 Krzysztof PIASECKI* OPTYALIZACJA KOSZTÓW PRZEBUDOWY PORTFELA JAKO ZADANIE TRANSPORTOWE Wszyste oszty generowane przez prowze malerse są włączone

Bardziej szczegółowo

XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne

XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadane teoretyczne Rozwąż dowolne rzez sebe wybrane dwa sośród odanych nże zadań: ZADANIE T Nazwa zadana: Protony antyrotony A. Cząstk o mase równe mase rotonu, ale

Bardziej szczegółowo

STARE A NOWE KRAJE UE KONKURENCYJNOŚĆ POLSKIEGO EKSPORTU

STARE A NOWE KRAJE UE KONKURENCYJNOŚĆ POLSKIEGO EKSPORTU Ewa Szymank Katedra Teor Ekonom Akadema Ekonomczna w Krakowe ul. Rakowcka 27, 31-510 Kraków STARE A NOWE KRAJE UE KONKURENCYJNOŚĆ POLSKIEGO EKSPORTU Abstrakt Artykuł przedstawa wynk badań konkurencyjnośc

Bardziej szczegółowo

ZASADY PRZYJĘĆ NA I ROK STUDIÓW STACJONARNYCH I NIESTACJONARNYCH W POLITECHNICE KOSZALIŃSKIEJ W ROKU AKADEMICKIM 2007/2008

ZASADY PRZYJĘĆ NA I ROK STUDIÓW STACJONARNYCH I NIESTACJONARNYCH W POLITECHNICE KOSZALIŃSKIEJ W ROKU AKADEMICKIM 2007/2008 ZASADY PRZYJĘĆ NA I ROK STUDIÓW STACJONARNYCH I NIESTACJONARNYCH W POLITECHNICE KOSZALIŃSKIEJ W ROKU AKADEMICKIM 2007/2008 I. Przyęce na I rok studów odbywa sę wg ponższych zasad: z pomnęcem postępowana

Bardziej szczegółowo

PODSTAWA WYMIARU ORAZ WYSOKOŚĆ EMERYTURY USTALANEJ NA DOTYCHCZASOWYCH ZASADACH

PODSTAWA WYMIARU ORAZ WYSOKOŚĆ EMERYTURY USTALANEJ NA DOTYCHCZASOWYCH ZASADACH PODSTAWA WYMIARU ORAZ WYSOKOŚĆ EMERYTURY USTALANEJ NA DOTYCHCZASOWYCH ZASADACH Z a k ł a d U b e z p e c z e ń S p o ł e c z n y c h Wprowadzene Nnejsza ulotka adresowana jest zarówno do osób dopero ubegających

Bardziej szczegółowo

D Archiwum Prac Dyplomowych - Instrukcja dla studentów

D Archiwum Prac Dyplomowych - Instrukcja dla studentów Kraków 01.10.2015 D Archwum Prac Dyplomowych - Instrukcja dla studentów Procedura Archwzacj Prac Dyplomowych jest realzowana zgodne z zarządzenem nr 71/2015 Rektora Unwersytetu Rolnczego m. H. Kołłątaja

Bardziej szczegółowo

Zmodyfikowana technika programowania dynamicznego

Zmodyfikowana technika programowania dynamicznego Zmodyfkowana technka programowana dynamcznego Lech Madeysk 1, Zygmunt Mazur 2 Poltechnka Wrocławska, Wydzał Informatyk Zarządzana, Wydzałowy Zakład Informatyk Wybrzeże Wyspańskego 27, 50-370 Wrocław Streszczene.

Bardziej szczegółowo

Prawdopodobieństwo geometryczne

Prawdopodobieństwo geometryczne Prawdopodobeństwo geometryczne Przykład: Przestrzeń zdarzeń elementarnych określona jest przez zestaw punktów (x, y) na płaszczyźne wypełna wnętrze kwadratu [0 x ; 0 y ]. Znajdź p-stwo, że dowolny punkt

Bardziej szczegółowo

Regulamin promocji upalne lato 2014 2.0

Regulamin promocji upalne lato 2014 2.0 upalne lato 2014 2.0 strona 1/5 Regulamn promocj upalne lato 2014 2.0 1. Organzatorem promocj upalne lato 2014 2.0, zwanej dalej promocją, jest JPK Jarosław Paweł Krzymn, zwany dalej JPK. 2. Promocja trwa

Bardziej szczegółowo

) będą niezależnymi zmiennymi losowymi o tym samym rozkładzie normalnym z następującymi parametrami: nieznaną wartością 1 4

) będą niezależnymi zmiennymi losowymi o tym samym rozkładzie normalnym z następującymi parametrami: nieznaną wartością 1 4 Zadane. Nech ( X, Y ),( X, Y ), K,( X, Y n n ) będą nezależnym zmennym losowym o tym samym rozkładze normalnym z następującym parametram: neznaną wartoścą oczekwaną EX = EY = m, warancją VarX = VarY =

Bardziej szczegółowo

Wyszukiwanie. Wyszukiwanie

Wyszukiwanie. Wyszukiwanie ZŁOŻOOŚĆ PROBLEMÓW ALGORYTMICZYCH Dolne górne oszacowana złożonośc problemu Złożoność każdego poprawnego algorytmu znajdującego rozwązane danego problemu ustanawa górne oszacowane złożonośc dla tego problemu.

Bardziej szczegółowo

Weryfikacja hipotez dla wielu populacji

Weryfikacja hipotez dla wielu populacji Weryfkacja hpotez dla welu populacj Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Intelgencj Metod Matematycznych Wydzał Informatyk Poltechnk Szczecńskej 5. Parametryczne testy stotnośc w

Bardziej szczegółowo

XXX OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne

XXX OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne XXX OLIMPIADA FIZYCZNA ETAP III Zadane dośwadczalne ZADANIE D Nazwa zadana: Maszyna analogowa. Dane są:. doda półprzewodnkowa (krzemowa) 2. opornk dekadowy (- 5 Ω ), 3. woltomerz cyfrowy, 4. źródło napęca

Bardziej szczegółowo

Diagnostyka układów kombinacyjnych

Diagnostyka układów kombinacyjnych Dagnostyka układów kombnacyjnych 1. Wprowadzene Dagnostyka obejmuje: stwerdzene stanu układu, systemu lub ogólne sec logcznej. Jest to tzw. kontrola stanu wykrywająca czy dzałane sec ne jest zakłócane

Bardziej szczegółowo

ZASADA ZACHOWANIA MOMENTU PĘDU: PODSTAWY DYNAMIKI BRYŁY SZTYWNEJ

ZASADA ZACHOWANIA MOMENTU PĘDU: PODSTAWY DYNAMIKI BRYŁY SZTYWNEJ ZASADA ZACHOWANIA MOMENTU PĘDU: PODSTAWY DYNAMIKI BYŁY SZTYWNEJ 1. Welkośc w uchu obotowym. Moment pędu moment sły 3. Zasada zachowana momentu pędu 4. uch obotowy były sztywnej względem ustalonej os -II

Bardziej szczegółowo

ANALIZA HARMONOGRAMÓW POWYKONAWCZYCH W BUDOWNICTWIE

ANALIZA HARMONOGRAMÓW POWYKONAWCZYCH W BUDOWNICTWIE ANALIZA HARMONOGRAMÓW POWYKONAWCZYCH W BUDOWNICTWIE Wocech BOŻEJKO Zdzsław HEJDUCKI Marusz UCHROŃSKI Meczysław WODECKI Streszczene: W pracy przedstawono metodę wykorzystana harmonogramów powykonawczych

Bardziej szczegółowo

1.1 Analiza decyzji- tablica decyzyjna, klasyfikacja

1.1 Analiza decyzji- tablica decyzyjna, klasyfikacja A. Kaspersk, M. Kule BO- Analza decyz, drzewa decyzyne, elementy teor ger1 ANALIZA DECYZJI(AD) 1.1 Analza decyz- tablca decyzyna, klasyfkaca problemów W celu formalzac klasyfkac problemów decyzynych wprowadzmy

Bardziej szczegółowo

Metoda wyznaczania najtańszych 1-diagnozowalnych struktur opiniowania diagnostycznego

Metoda wyznaczania najtańszych 1-diagnozowalnych struktur opiniowania diagnostycznego BIULETYN INSTYTUTU AUTOMATYKI I ROBOTYKI NR 7, 2002 Metoda wyznaczana natańszych -dagnozowalnych struktur opnowana dagnostycznego Roman KULESZA Zakład Automatyk, Instytut Automatyk Robotyk WAT, ul. Kalskego

Bardziej szczegółowo

4. OPTYMALIZACJA WIELOKRYTERIALNA

4. OPTYMALIZACJA WIELOKRYTERIALNA Wybrane zagadnena badań operacyjnych dr nż. Zbgnew Tarapata Wykład nr 4: Optymalzacja welokryteralna 4. OPTYMLIZCJ WIELORYTERIL Decyzje nwestycyjne mają często charakter złożony. Zdarza sę, że przy wyborze

Bardziej szczegółowo

KINEMATYKA MANIPULATORÓW

KINEMATYKA MANIPULATORÓW KIEMK MIULOÓW WOWDEIE. Manpulator obot można podzelć na zęść terująą mehanzną. Część mehanzna nazywana jet manpulatorem. punktu wdzena Mehank ta zęść jet najbardzej ntereująa. Manpulator zaadnzo można

Bardziej szczegółowo

Ćwiczenie 10. Metody eksploracji danych

Ćwiczenie 10. Metody eksploracji danych Ćwczene 10. Metody eksploracj danych Grupowane (Clusterng) 1. Zadane grupowana Grupowane (ang. clusterng) oznacza grupowane rekordów, obserwacj lub przypadków w klasy podobnych obektów. Grupa (ang. cluster)

Bardziej szczegółowo

Sprawozdanie powinno zawierać:

Sprawozdanie powinno zawierać: Sprawozdane pownno zawerać: 1. wypełnoną stronę tytułową (gotowa do ćw. nr 0 na strone drugej, do pozostałych ćwczeń zameszczona na strone 3), 2. krótk ops celu dośwadczena, 3. krótk ops metody pomaru,

Bardziej szczegółowo

PROBLEM: SORTOWANIE PRZEZ ODWRÓCENIA METODA: ALGORYTMY ZACHŁANNE

PROBLEM: SORTOWANIE PRZEZ ODWRÓCENIA METODA: ALGORYTMY ZACHŁANNE D: PROBLEM: SORTOWANIE PRZEZ ODWRÓCENIA METODA: ALGORYTMY ZACHŁANNE I. Strategia zachłanna II. Problem przetasowań w genomie III. Sortowanie przez odwrócenia IV. Algorytmy przybliżone V. Algorytm zachłanny

Bardziej szczegółowo

ZASTOSOWANIE DZIANIN DYSTANSOWYCH DO STREFOWYCH MATERACY ZDROWOTNYCH. Bogdan Supeł

ZASTOSOWANIE DZIANIN DYSTANSOWYCH DO STREFOWYCH MATERACY ZDROWOTNYCH. Bogdan Supeł ZASTOSOWANIE DZIANIN DYSTANSOWYCH DO STREFOWYCH MATERACY ZDROWOTNYCH. Wstęp Bogdan Supeł W ostatnm czase obserwuje sę welke zanteresowane dzannam dystansowym do produkcj materaców. Człowek około /3 życa

Bardziej szczegółowo

Proces narodzin i śmierci

Proces narodzin i śmierci Proces narodzn śmerc Jeżel w ewnej oulacj nowe osobnk ojawają sę w sosób losowy, rzy czym gęstość zdarzeń na jednostkę czasu jest stała w czase wynos λ, oraz lczba osobnków n, które ojawły sę od chwl do

Bardziej szczegółowo

Zapis informacji, systemy pozycyjne 1. Literatura Jerzy Grębosz, Symfonia C++ standard. Harvey M. Deitl, Paul J. Deitl, Arkana C++. Programowanie.

Zapis informacji, systemy pozycyjne 1. Literatura Jerzy Grębosz, Symfonia C++ standard. Harvey M. Deitl, Paul J. Deitl, Arkana C++. Programowanie. Zaps nformacj, systemy pozycyjne 1 Lteratura Jerzy Grębosz, Symfona C++ standard. Harvey M. Detl, Paul J. Detl, Arkana C++. Programowane. Zaps nformacj w komputerach Wszystke elementy danych przetwarzane

Bardziej szczegółowo

Procedura normalizacji

Procedura normalizacji Metody Badań w Geograf Społeczno Ekonomcznej Procedura normalzacj Budowane macerzy danych geografcznych mgr Marcn Semczuk Zakład Przedsęborczośc Gospodark Przestrzennej Instytut Geograf Unwersytet Pedagogczny

Bardziej szczegółowo