Podstawy techniki cyfrowej zima Wykład dr inż. Rafał Walkowiak

Wielkość: px
Rozpocząć pokaz od strony:

Download "Podstawy techniki cyfrowej zima Wykład dr inż. Rafał Walkowiak"

Transkrypt

1 Podstwy techniki cyfrowej zim 27 Wykłd dr inż. Rfł Wlkowik

2 Litertur. Podstwy Techniki Cyfrowej, Brry Wilkinson, WKiŁ 2 2. Podstwy projektowni ukłdów logicznych i komputerów, M.M.Mno, Ch.R.Kime, WNT Komputerowe projektownie ukłdów cyfrowych, T.Łub, B.Zbierzchowski, WKiŁ, 2 4. Podstwy projektowni ukłdów cyfrowych, Cezry Zieliński, PWN Język VHDL: projektownie progrmowlnych ukłdów logicznych, Kevin Shkill, WNT Ukłdy cyfrowe, Zbiór zdń z rozwiąznimi, J.Tyszer, G.Mruglski, Wydwnictwo PP 7. Ukłdy Sclone TTL w systemch cyfrowych, J. Pienkos, J. Turczyński, WkiŁ, 994 2

3 Zkres przedmiotu Wstęp: rytmetyk binrn, lgebr Boole, kody binrne, BCD, podstwowe funkcje logiczne, sposoby przedstwini funkcji logicznych - postcie knoniczne, minimlizcj funkcji logicznych, łączn minimlizcj funkcji logicznych, hzrd. Technologie CMOS,TTL i ich wpływ n włściwości użytkowe ukłdów, brmki logiczne. Ukłdy kombincyjne: multipleksery i demultipleksery; komprtory, łączenie komprtorów; kodery, dekodery, trnsltory kodów; sumtory: sumtory binrne, dziesiętne. Podstwowe elementy sekwencyjne: ztrzsk RS, ztrzsk D, przerzutniki: D, JK, T; prmetry czsowe, rejestry szeregowe, równoległe, przesuwne, rejestry liczące. Liczniki: synchroniczne i synchroniczne, binrne, dziesiętne; łączenie liczników, syntez liczników, skrcnie liczników, tktownie systemów cyfrowych, częstotliwości mksymlne liczników; Automty synchroniczne: Moor, Melego, grf i tblic przejść utomtu, minimlizcj stnów, kodownie stnów, funkcje przejść i wyjść i implementcj utomtu n przerzutnikch. Język opisu sprzętu VHDL : jednostki projektowe, obiekty, typy, typy rozstrzyglne, instrukcje współbieżne i sekwencyjne, komponenty, strukturlny i behwiorlny opis ukłdów, przykłdowe relizcje ukłdów kombincyjnych, sekwencyjnych, utomtów. Ukłdy progrmowlne: ROM, PLD, PLA, PAL, FPGA. Syntez wyższego poziomu: implementcj ukłdów cyfrowych dl relizcji lgorytmów przetwrzni dnych;, opisy ukłdu: sieć dziłń lgorytmu, digrm synchronicznego ukłdu sekwencyjnego, digrm synchronicznego ukłdu sekwencyjnego ze zintegrowną ścieżką dnych; projekt: schemt strukturlny, opis ukłdu cyfrowego w języku opisu sprzętu. Ukłdy mikroprogrmowlne w sterowniu ukłdmi cyfrowymi. Pmięci: sttyczne i dynmiczne, RAM, CAM, łączenie pmięci, prmetry, cykle zpisu i odczytu. Współprc ukłdów cyfrowych z otoczeniem; wprowdznie i wyprowdznie dnych, wyświetlnie sttyczne i dynmiczne. Sposoby orgnizcji systemów cyfrowych: itercj w czsie i przestrzeni. Automty synchroniczne, minimlizcj liczby stnów i kodownie stnów, przykłdy implementcji. 3

4 Podstwowe informcje orgnizcyjne Zliczenie: 2 sprwdziny n ćwiczenich i egzmin Ocen - średni wżon. Sprwdzin z określonego mteriłu ćwiczeń : n ćwiczenich i n osttnim wykłdzie. Egzmin w sesji egzmin nleży zliczyć. Wrunek konieczny do zwolnieni z egzminu min 8 % obecności n wykłdch ze sprwdzną obecnością. 4

5 Systemy cyfrowe System cyfrowy to ukłd powiąznych ze sobą elementów projektowny w celu relizcji tkich zdń jk: przetwrznie informcji (w tym obliczeni) sterownie urządzenimi i innymi systemmi i obiektmi (np. silniki, zwory, piece itp.) Przetwrzne informcje zpisne są z pomocą wrtości z określonego ogrniczonego zbioru (np. cyfr w różnych systemch liczeni). 5

6 Systemy liczeni * Co już wiemy: [, str 5-22] Pozycyjne systemy liczeni dziesiętny, dwójkowy (NKB), ósemkowy, szesnstkowy Konwersje liczb między systemmi, konwersje liczb ułmkowych Systemy uzupełnieniowe: Uzupełnienie do K - Uzupełnienie liczby N o n cyfrch zpisnej w systemie o podstwie K definiujemy jko liczbę równą: K n N liczb w kodzie Uzupełnienie do K jest reprezentown przez wrtość różnicy K n i N (wyrżoną w systemie o podstwie K) Np. liczb dziesiętn trzy cyfrow K= n=3 liczb z systemu dziesiętnego 345 zpisn w systemie uzupełnieniowym do m postć 655, liczb 345 w systemie dziesiętnym: 345=345 (zer nieznczące) Liczb 345 w systemie uzupełnienie do : 655=99655 (dziewiątki nieznczące) Liczb dwójkow w systemie uzupełnienie do 2 m postć lub (jedynki nieznczące) wrtość 3 uzupełni 5 do 8, wrtość 59 uzupełni 5 do 64 * Litertur: Wilkinson, Strony

7 Reprezentcje liczb binrnych ze znkiem Reprezentcj znk moduł ZM njstrszy bit określ znk liczby, pozostłe bity bez zminy Reprezentcj uzupełnieniow RU to bit znku i zstosownie kodu U2 dl liczb ujemnych bit znku () i moduł liczby dodtniej w NKB, bit znku () i moduł liczby ujemnej w kodzie U2, njbrdziej znczące jedynki możn usunąć z zpisu Przykłd -8, moduł 8 u2(8)= -8= RU()=RU() 8=RU() N ZM(N) RU(N) N2 ZM(N2)=RU(N2)

8 Reprezentcj uzupełnieniow Binrn liczb dodtni jest zpisywn n wystrczjącej liczbie pozycji i uzupełnin zermi n pozycjch brdziej znczących: (3) = () 2 = () 2 Binrn liczb ujemn jest zpisywn: w uzupełnieniu do 2 i poprzedzon n pozycji njstrszej i uzupełnion jedynkmi n pozycjch brdziej znczących: (-3) = () UZ = () UZ Gdy njstrszy bit U2 = jest bitem znku, nie potrzeb umieszczć przed kodem U2-8 D = UZ Notcj uzupełnieniow liczb binrnych pozwl n dodwnie liczb dodtnich i ujemnych relizowne przez sumtor zprojektowny dl liczb wyrżonych w NKB. 8

9 Dodwnie liczb ujemnych wykorzystnie notcji UZ -3 +(-2) () = = () = 2 Przeniesienie jest ignorowne, wynik poprwny gdy przeniesieni: n njstrszy bit i z njstrszego bitu są jednkowe. 9

10 Odejmownie liczb dodwnie liczby przeciwnej (3d) + (-5d) (-2d) (5d) + (-3d) (2d) Binrn liczb ujemn bit znku i liczb binrn w uzupełnieniu do 2 = 22 (d) Wyznczenie liczby w kodzie U2 Medtod : negcj bitów dodnie jedynki = -22 (d) Metod 2: Negcj bitów brdziej znczących -strszych niż njmniej znczący bit równy. -> dodtkowy bit niepotrzebny dl -4 -> konieczny dodtkowy bit dl -5 ->

11 Odejmownie binrne D dodtni U ujemn D U= D+D=D (sprwdzenie przepełnieni) D D2 = D gdy (D>D2) lub U gdy (D<D2) U-D= U + U = U (sprwdzenie przepełnieni)

12 Dodwnie liczb przepełnienie (3d) + (3d) (6d) wynik dodtni poprwnie (-3) + (-3) (-6) wynik ujemny poprwnie (5d) + (5d) (6d) Wynik ujemny - niepoprwny (-5) + (-5) (6) wynik dodtni - niepoprwny Wynik niepoprwny przepełnienie ndmir - gdy przeniesieni n njwyższą pozycję i z njwyższej pozycji są różne. 2

13 Kody dwójkowe niewgowe pozycj binrn nie posid wgi Kod cyfr Z ndmirem 3 Gry Wtts Johnson Wskźników 7 segmentowych

14 Kody dwójkowo-dziesiętne Do reprezentcji cyfr dzisiętnych cyfr dziesiętnych (,,2,3,4,5,6,7,8,9) zkodownych z pomocą ciągu 4 bitów (ciąg ten dostrcz 6 kombincji n 4 bitch) 6 kombincji jest niewykorzystnych. Wrinty kodów dwójkowo-dziesiętnych: Kody wgowe pozycj binrn posid przypisną wgę Kody niewgowe pozycj binrn nie posid wgi 4

15 Kody dwójkowo-dziesiętne wgowe kod Nturlny NKB Aiken Wgi cyfr 842 2*

16 Kody detekcyjne kod z 2 z 5 2 z 7 Bin z Bitem przystości Wgi-> cyfr niewgowy BP Kody z kontrolą przystości i ze stłą liczbą jedynek pozwlją n wykrycie pewnych błędów przy przesyłniu słów kodowych. 6

17 Cyfry dziesiętne kodowne w NKB kod BCD 842 Dziesiętny chrkter informcji lecz kodownie NKB cyfr 2345 ()= (BCD) 4 pozycje cyfr dziesiętnych Dodwnie liczb w kodzie BCD relizowne tk jk dodwnie liczb binrnych, lecz: wystąpienie podczs dodwni liczb przeniesieni n pozycję kolejnej cyfry dziesiętnej (kolejne 4 bity) wymg skorygowni (czyli dodni wrtości 6) n tej pozycji, z której przeniesienie wystąpiło wystąpienie wyniku n 4 bitch (jednj pozycji cyfry dziesiętnej) spoz zkresu (-5) wymg skorygowni wyniku czyli dodni wrtości 6 n tej pozycji cyfry dziesiętnej, któr nie jest poprwn; może wystąpić przeniesienie, które nleży uwzględnić n kolejnej pozycji (le bez korekcji pozycji bieżącej), możliw również propgcj przeniesieni np. dl liczb

18 Dodwnie w kodzie BCD przeniesienie -> korekcj wrtość spoz przedziłu ->korekcj przeniesienie bez konieczności korekcji 8

19 Kody lfnumeryczne Kody służące do kodowni znków w systemch cyfrowych, w urządzenich współprcujących z komputerem, np. drukrki, ekrny lfnumeryczne. Przykłdmi kodów lfnumerycznych są kody: ASCII ISO-7, ISO 8859, Unicode, Windows-25. Kod ASCII ISO-7 7 bitowy pełny zbiór zwier 28 znków, pierwsze 33 znki służą do sterowni systemu drukowni lub wyświetlni, pozostłe znki to: duże i młe litery, cyfry, znki przestnkowe i inne. 9

20 Kod ISO-7 2

21 Algebr Boole * Nrzędzie mtemtyki (lgebr logiki) służąc do opisu i projektowni systemów cyfrowych. Zmienne boolowskie mogą przyjąć jedn z dwóch wrtości lub są to zmienne binrne (jednobitowe) Podstwowe funkcje lgebry Bool Iloczyn logiczny I (AND),,,, (lterntywne oznczeni) Sum logiczn LUB (OR),,+,,,, (lterntywne oznczeni) Negcj NIE (NOT) lini nd zmienną,, (lterntywne oznczeni) Funkcj boolowsk (logiczn, przełączjąc) jest dziłniem n zmiennych boolowskich i przyjmuje wrtości ze zbioru {,}. Algebr Boole jest zgodn z nstępującymi postultmi: * Litertur Wilkinson

22 Notcj: Postulty Huntington () Z = {,} zbiór wrtości, b dowolne zmienne binrne A Domknięcie dziłń: + b Z AB Z A2 Elementy stłe: Istnieją tkie i : += i = A3 Przemienność: +b=b+ b= b A4 Rozdzielność: (b+c)=b+c +(bc)=(+b)(+c) również mnożeni względem dodwni A5 Istnienie negcji: dl istnieje : + = = 22

23 Postulty Huntington (2) Zsd dulności: Wyrżenie dulne powstnie poprzez zminę opertorów binrnych i stłych: +, +,, Wrtościowni (prwd, fłsz) wyrżeni prostego i dulnego jest jednkowe. np wyrżenie proste: (b+c)=b+c Wyrżenie dulne: +(bc)=(+b)(+c) 23

24 Przeksztłcnie funkcji logicznych Dl minimlizcji postci wyrżeń (funkcji) boolowskich służą tożsmości i twierdzeni lgebry boole. Minimlizcj pozwl n uzysknie prostszej, tńszej implementcji funkcji tńsz implementcj m mniej skłdników orz/lub skłdniki prostsze. 24

25 Twierdzeni lgebry Boole Idempotentność (łc. tki sm) +=, = Jednoznczność negcji dl kzdego istnieje tylko jeden element Domincj - dl kżdego = += Podwójn negcj dl kzdego zchodzi Pochłninie - +(b)= (+b)= 25

26 Twierdzeni lgebry Boole Uproszczenie (+b)+ b=+b(+ )=+b Minimlizcj - Łączność (+b)+c=+(b+c) (b) c= (b c) Konsensus (zgod) Wystrczy jedn dl b i c, wystrczy jedno dl b i c b b) ( ) ( b b b b b b ) ( ) ( ) ( ) ( ) ( ) ( ) ( c b c b c b c b c b c b 26

27 Prwo de Morgn b c... b c b c... b c... 27

28 Funkcje logiczne dwóch zmiennychi ich wrtości zmienne binrne b Wrtości b b b b Równnie Nzw Skrót rgumentów funkcji funkcji Nzwy Wrtości funkcji b b b b ( b)+(b ) +b (+b) (b)+( b ) b +b +b (b) Stł Zero Iloczyn logiczny Zkz przez b Identyczn z Zkz przez Identyczn z b Sum modulo Sum logiczn Negcj sumy Równowżność Negcj b Implikcj b Implikcj Implikcj b negcj iloczynu Stł AND XOR OR NOR EQU NAND 28

29 Populrne funkcje logiczne Szczególnie populrne AND, OR, NAND, NOR, XOR,NOT XOR wrtość funkcji równ dl różnych rgumentów Zleżności dl XOR (sum wyłczn) i XNOR (równowżność): b= b+b =(+b)( +b ) (b) = b=b =b+ b =( +b)(+b ) = = Różne interpretcje logiczne wielowejściowych brmek XOR/XNOR. Njczęściej brmk wykryw nieprzystą liczbę jedynek (XOR) lub przystą liczbę jedynek XNOR. 29

30 System funkcjonlnie pełny - SFP Zbiór funkcji pozwljący n przedstwienie Wyrżenie kżdej innej funkcji logicznej. 3 przykłdy S.F.P: {NAND}, {OR,AND,NOT}, {NOR} 3

31 Sposoby przedstwini funkcji logicznych Tblic prwdy Nr kombincji x x x 2*** x n- f * * * 2 n - *** *** *** Wrtości funkcji np. nr we wy 2 3 Nr kombincji wejść, wrtości kombincji wejść, odpowidjące wejściu wrtości n wyjściu Zwier wszystkie kombincje zero-jedynkowe zmiennych niezleżnych i odpowidjące im wrtości funkcji 3

32 Sposoby przedstwini funkcji logicznych Tblice Krnugh Kombincji wejść odpowid pole tblicy, w polu umieszczmy włściwą dl kombincji wrtość. Sąsiednie (w poziomie i pionie tkże cyklicznie) pol tblicy Krnugh odpowidją kombincji rgumentów różniącej się jedną wrtością. N rysunku zpisno kombincje wejść nie wrtości b funkcji b c Tblic dl funkcji 2 i 3 zmiennych wejściowych 32

33 Reprezentcj funkcji logicznych z pomocą tblic Krnugh b b dc c b - oznczenie wrtości dowolnej n wyjściu 33

34 Sposoby przedstwini funkcji logicznych Dysjunkcyjn (lterntywn) postć knoniczn: n 2 Y f x, x,..., x n j I j Gdzie: U to sum j I j ozncz minterm - iloczyn zmiennych niezleżnych dl j-tej kombincji zmiennych =; zwier zmienną prostą gdy bit zmiennej jest równy lub zmienną znegowną gdy bit zmiennej jest równy np. zerow kombincj wejść: : minterm - x x x 2 x 3 (wrtość wyrżeni dl tej kombincji wrtości zmiennych wynosi jeden) j wrtość funkcji odpowidjąc j-tej kombincji zmiennych term wyrżenie skłdjące się ze zmiennych i symboli funkcyjnych 34

35 Dysjunkcyjn postć knoniczn przykłd Iloczyny zmiennych bc in S Cout b c in b c in 2 bc in 3 bc in 4 b c in 5 b c in 6 bc in 7 bc in S = b c in + b c in + bc in + bc in +b c in +b c in + bc in +bc in S = b c in + bc in +b c in + bc in S = (,2,4,7) gdzie liczby oznczją numer kolejny iloczynu (mintermu) dl którego wrtość funkcji = (nleży okreslić wgę (,2,4) zmiennej; w przykłdzie: jest njbrdziej znczącym bitem - wg =4) 35

36 Sposoby przedstwini funkcji logicznych Koniunkcyjn (iloczynow) postć knoniczn: Y f,,..., x x j Gdzie: S j ozncz mxterm - sumę zmiennych niezleżnych dl j-tej kombincji zmiennych = ; zwier zmienną prostą gdy bit tej zmiennej jest równy lub zmienną znegowną gdy bit kombincji jest równy Np. zerow kombincj wejść : ; sum dl tej kombincji: x +x +x 2 +x 3, wrtość wyrżeni dl tej kombincji zmiennych wynosi j ozncz wrtość funkcji odpowidjącej j-tej kombincji zmiennych. x n 2 n j S j 36

37 Konjunkcyjn postć knoniczn - przykłd sumy bc in S Cout +b+c in +b+c in 2 +b +c in 3 +b +c in 4 +b+c in 5 +b+c in 6 +b +c in 7 +b +c in S = (+ +b+c in ) (++b+c in )(++b +c in )(++b +c in ) (+ +b+c in )(+ +b+c in )(+ +b +c in )(+ +b +c in ) S = (+b+c in ) (+b +c in )( +b+c in )( +b +c in ) S=(,3,5,6) gdzie liczby oznczją numer kolejny sumy (mxterm) dl której wrtość funkcji = 37

38 Minimlizcj wyrżeń logicznych Postć knoniczn nie jest njprostsz Kryterium kosztu: Redukcj liczby skłdników funkcji (liczb brmek) Redukcj liczby literłów (liczb wejść brmek) Minimlizcj to przeksztłcnie postci knonicznej do postci równowżnej tńszej wg przyjętej funkcji kosztu Przykłd: f(,b,c,d)= (5,7,3,5)= d cb +d cb+dcb +dcb=c Minimlizcj liczby skłdników z 4 do i liczby literłów z 4 do 2 Zpis funkcji f()= (5,7,3,5)+d(,3,4) ozncz brk konkretnego wymgni n wrtość funkcji (dowoln wrtość lub ) dl,3 i 4 kombincji wejść. 38

39 Złożeni: Sitk Krnugh wg zmiennych ustlon np. : od njniższej wgi,b,c,d Dl n zmiennych: Prostokątn tblic zwierjąc 2 n pól, kżde pole reprezentuje jeden minterm (mxterm), mintermy odpowidjące sąsiednim polom różnią się wrtością tylko jednej zmiennej. b b b c 3 2 dc

40 Twierdzenie o minimlizcji b+b =(b+b )= reguł sklejni b c b f(,b)= Σ(,2)= b + b= (b+b )= Uzsdnienie do sklejni sąsiednich pól sitki. Powstjącą grupę opisuje wyrżenie iloczynowe posidjące mniejszą liczbę zmiennych (usuwmy z opisu grupy tę zmienną, któr dl pól przyjmuje różne wrtości b, pozostje ), zmienn, któr dl grupy przyjmuje wrtość pozostje w opisie (iloczynowym) grupy jko zmienn znegown ( zmienn prost) F(,b,c)= Σ (,3,5,7)=c b +c b+cb +cb= c +c= Sklejmy poziomo usuwjąc zmienną b, sklejmy pionowo usuwjąc zmienną c, pozostje tylko dl opisu grupy, - proste gdyż przyjmuje wrtość dl wszystkich pól. 4

41 Twierdzenie o minimlizcji reguł sklejni F(,b) = Π(,)=( +b)(+b)= + b+b+b=b b c b Uzsdnienie do sklejni sąsiednich pól sitki. Powstjącą grupę opisuje wyrżenie sumcyjne posidjące mniejszą liczbę zmiennych (usuwmy z opisu grupy tę zmienną, któr dl sąsiednich pól przyjmuje różne wrtości -, pozostje b=), zmienn, któr dl grupy przyjmuje wrtość pozostje w opisie (sumcyjnym) grupy jko zmienn prost( zmienn znegown) F(,b,c)= Π(,2,4,6)=(+b+c)(+b +c)(+b+c )(+b +c ) = Sklejmy poziomo usuwjąc zmienną b, sklejmy pionowo usuwjąc zmienną c, dl opisu grupy pozostje tylko, proste gdyż przyjmuje wrtość (dl wszystkich pól). 4

42 Minimlizcj sklejeni dl jedynek i zer, funkcj dopełnieniow b dc dc b Funkcj f(,b,c,d)= (,,2,3,8,9,)+d(5,3) f=c d +c +b grup poziom, grup nrożn, grup pionow f=c (d +b + ) 42

43 Metod tblic Krnugh minimlizcji funkcji logicznej TABLICE. Przygotownie tblic dl dnej liczby zmiennych i wpisnie wrtości w polch. W polch w krtórych wrtość jest nieokreslon nleży wpisć symbol nieokresloności np. SKLEJENIA. Nrysowć obwiednie łączące pol tworzące możliwie njwiększe obszry. Obwiednie łączą sąsiednie pol z jedynkmi (dl postci sumcyjnej funkcji) [pol z zermi (dl postci iloczynowej funkcji)]. Sąsiedztwo tkże cykliczne. Obwiednie pokrywją grupy pól tworzące prostokąt (,2,4,8,6 pól). Funkcj. Zpisnie postci minimlnej funkcji w oprciu o wykonne sklejeni (obwiednie), (sum iloczynów- kżd grup wykorzystn do opisu to skłdnik sumy), kżde pole z musi być pokryte przez dowolną grupę uwzględnioną w zpisie. Uwg: Pol ze znkmi nieokreśloności możn łączyć z dowolnymi innymi polmi (jedynek lub zer w zleżności od postci funkcji) dl uzyskni mksymlnych sklejeń. 43

44 Terminologi minimlizcji Impliknt: kżdy minterm (iloczyn) dl którego funkcj jest równ lub grup mintermów z wrtością funkcji lub Ø które możn skleić. Impliknt prosty: impliknt, którego nie możn rozszerzyć przez sklejeni w tblicy Krnugh. Impliknt istotny: impliknt prosty zwierjący ten minterm z wrtoscią funkcji =, który nie występuje w żdnym innym implikncie prostym. 44

45 Terminologi minimlizcji Implicent: kżdy mxterm (sum) dl którego funkcj jest równ lub grup mxtermów z wrtością funkcji lub Ø które możn skleić. Implicent prosty: Implicent, którego nie możn rozszerzyć przez sklejeni w tblicy Krnugh. Implicent istotny: Implicent prosty zwierjący ten mxterm z, który nie występuje w żdnym innym implikncie prostym. 45

46 Metod minimlizcji dwupoziomowej (wersj sum iloczynów). Wygeneruj wszystkie impliknty proste. 2. Utwórz pokrycie funkcji (wrtości z ) z pomocą minimlnej liczby implikntów. Tblic pokryci. Dl określeni postci funkcji nie korzystjącej wyłącznie z implikntów kluczowych nleży wykonć tblicę pokryci. Uwg: Impliknty istotne są koniecznymi elementmi pokryci funkcji. 46

47 Metod minimlizcji dwupoziomowej (wersj iloczyn sum). Wygeneruj wszystkie implicenty proste. 2. Utwórz pokrycie funkcji (wrtości z ) z pomocą minimlnej liczby implicentów. Tblic pokryci. Dl określeni postci funkcji nie korzystjącej wyłącznie z implicentów kluczowych nleży wykonć tblicę pokryci. Uwg: Implicenty istotne są koniecznymi elementmi pokryci funkcji 47

48 Przykłd dc b Impliknty proste: c, dc, db, d Impliknty istotne: c, d,db Impliknty istotne wystrczą do minimlnego pokryci funkcji F(d,c,b,)= c+d +db F(d,c,b,)= (d+c)(+d)( +b) 48

49 Przykłd Relizcj funkcji n brmkch NAND bądź NOR przejście między rodzjmi funkcji - zstosownie prw demorgn F(d,c,b,)= (c+d +db) =((c) (d ) (db) ) F(d,c,b,)= (d+c)(+d)( +b) = ((d+c) +(+d) +( +b) ) 49

50 Metod Quine -McCluskey. Utwórz grupy kombincji zmiennych (z wrtością funkcji =) posidjące jednkow liczbę w ich reprezentcji binrnej. Jest to utworzenie początkowych implikntów. 2. Utwórz wszystkie impliknty przez połączenie implikntów jednej grupy z implikntmi kolejnej grupy jest to możliwe jeżeli reprezentcje binrne kombincji zmiennych różnią się wrtością jednej zmiennej, zzncz wykorzystne do łączeni impliknty (nie będą już dlej wykorzystywne). 3. Powtrzj krok 2 bzując n implikntch uzysknych w poprzedniej itercji 2 kroku. 4. Niewykorzystne w połączenich impliknty tworzą zbiór implikntów prostych. Wybierz minimlny zbiór implikntów prostych z pomocą tblicy pokryci lub funkcji Petric. 5

51 Metod Quine -McCluskey genercj implikntów prostych wygodn dl funkcji wielu zmiennych Funkcj f(,b,c,d)= (,,2,3,8,9,)+d(5,3) , -,2 -,8 -,3 -,5 -,9-2,3-2, - 8,9-8, - 5,3-9,3 -,,2,3,2,8, --,,8,9 --,5,9,3 Impliknty proste d c -- c -- c b -- b 5

52 Metod Quine -McCluskey tblic pokryci mintermów ,,2,3,2,8, --,,8,9 --,5,9,3 W kolumnch tblicy uwzględnimy tylko mintermy z określonymi dl funkcji wrtościmi Impliknty istotne Mintermy pokryte przez impliknty istotne Możliwe wrinty funkcji o minimlnej liczbie implikntów: F=d c +c + c b F=d c +c + b 52

53 Przykłd 2 metod Petrick jeśli tblic pokryci nie wystrcz Pozwl n wyznczenie minimlnego zbioru implikntów prostych (nie dotyczy implikntów istotnych) Przykłd: Jeden impliknt istotny, 5 implikntów prostych możn wykorzystć do pokryci 5 mintermów, Pokrycie wystąpi, gdy zstosujemy impliknty dl których funkcj Petrick przyjmuje wrtość jeden Px w równniu ozncz wykorzystnie impliknt x FP=(P +P )(P + P2 )(P2 + P3 )(P3 + P4 )(P4 + P5 ) = PP3P5+ PP2P4+PP2P4 Zpis czytmy : pokrycie wystąpi gdy użyjemy impliknt ( lub ) i ( lub 2) i (2 lub 3) i (3 lub 4) zpewni to pokrycie odpowiednio 7,5,4, i 2 kombincji 53 z

54 54

55 dc b Minimlizcj funkcji wielowyjściowych F b F2 b F*F2 dc dc Wyznczenie implikntów prostych dl: funkcji optymlizownych i wszystkich iloczynów funkcji - (powyżej 6 implikntów prostych w 3 grupch). Znjdownie pokryci minimlną liczbą spośród wszystkich implikntów (tblic pokryci): impliknt iloczynu dwóch funkcji (zielony) pokryw mintermy obu funkcji 55

56 Komputerowo wspomgnie minimlizcji funkcji logicznych Znlezienie pokryci minimlnego jest problemem NP-trudnym. Ze względu n trudność problemu dl dużych instncji stosowne są metody przybliżone. brk genercji wszystkich implikntów zpewnienie pokryci funkcji przez wybrny zbiór implikntów 56

Podstawy techniki cyfrowej zima Wykład dr inż. Rafał Walkowiak

Podstawy techniki cyfrowej zima Wykład dr inż. Rafał Walkowiak Podstwy techniki cyfrowej zim 26 Wykłd 6..26 dr inż. Rfł Wlkowik Litertur. Podstwy Techniki Cyfrowej, Brry Wilkinson, WKiŁ 2 2. Podstwy Projektowni Ukłdów Cyfrowych, Cezry Zieliński, PWN 22 3. Fundmentls

Bardziej szczegółowo

Podstawy techniki cyfrowej zima Wykład dr inż. Rafał Walkowiak

Podstawy techniki cyfrowej zima Wykład dr inż. Rafał Walkowiak Podstwy techniki cyfrowej zim 28 Wykłd dr inż. Rfł Wlkowik Litertur. Podstwy Techniki Cyfrowej, Brry Wilkinson, WKiŁ 2 2. Podstwy projektowni ukłdów logicznych i komputerów, M.M.Mno, Ch.R.Kime, WNT 27

Bardziej szczegółowo

Podstawy techniki cyfrowej cz1

Podstawy techniki cyfrowej cz1 23--4 Podstwy techniki cyfrowej cz Wykłd dr inż. Rfł Wlkowik Litertur. Podstwy Techniki Cyfrowej, Brry Wilkinson, WKiŁ 2 2. Podstwy Projektowni Ukłdów Cyfrowych, Cezry Zieliński, PWN 22 3. Fundmentls of

Bardziej szczegółowo

ELEKTRONIKA CYFROWA. Materiały y pomocnicze do wykład sem.. 1

ELEKTRONIKA CYFROWA. Materiały y pomocnicze do wykład sem.. 1 ELEKTRONIKA CYFROWA Mteriły y pomocnicze do wykłd dów Dl AiZ zoczne inŝynierskie, sem Wykorzystne mteriły Łub T Ukłdy logiczne, PW 26 Wenck A NOTATKI Z TECHNIKI CYFROWEJ PW 26 wwwelektronikorgpl Wprowdzenie

Bardziej szczegółowo

Bardzo krótki wstęp do elektroniki cyfrowej

Bardzo krótki wstęp do elektroniki cyfrowej Brdzo krótki wstęp do elektroniki cyfrowej Słwomir Mmic http://min5.mu.edu.pl/~zfp/sm/home.html Pln ) Ukłdy logiczne b) Algebr Boole i jej relizcj sprzętow c) Brmki są dwie? d) Prosty przykłd sumtor e)

Bardziej szczegółowo

Legenda. Optymalizacja wielopoziomowa Inne typy bramek logicznych System funkcjonalnie pełny

Legenda. Optymalizacja wielopoziomowa Inne typy bramek logicznych System funkcjonalnie pełny Dr Glin Criow Legend Optymlizcj wielopoziomow Inne typy brmek logicznych System funkcjonlnie pełny Optymlizcj ukłdów wielopoziomowych Ukłdy wielopoziomowe ukłdy zwierjące więcej niż dw poziomy logiczne.

Bardziej szczegółowo

Kodowanie liczb. Kodowanie stałopozycyjne liczb całkowitych. Niech liczba całkowita a ma w systemie dwójkowym postać: Kod prosty

Kodowanie liczb. Kodowanie stałopozycyjne liczb całkowitych. Niech liczba całkowita a ma w systemie dwójkowym postać: Kod prosty Kodownie licz Kodownie stłopozycyjne licz cłkowitych Niech licz cłkowit m w systemie dwójkowym postć: nn 0 Wtedy może yć on przedstwion w postci ( n+)-itowej przy pomocy trzech niżej zdefiniownych kodów

Bardziej szczegółowo

Podstawy układów logicznych

Podstawy układów logicznych Podstwy ukłdów logicznych Prw logiki /9 Alger Boole Prw logiki WyrŜeni i funkcje logiczne Brmki logiczne Alger Boole /9 Alger Boole' Powszechnie stosowne ukłdy cyfrowe (logiczne) prcują w oprciu o tzw.

Bardziej szczegółowo

Algebra Boola i podstawy systemów liczbowych. Ćwiczenia z Teorii Układów Logicznych, dr inż. Ernest Jamro. 1. System dwójkowy reprezentacja binarna

Algebra Boola i podstawy systemów liczbowych. Ćwiczenia z Teorii Układów Logicznych, dr inż. Ernest Jamro. 1. System dwójkowy reprezentacja binarna lger Bool i podstwy systemów liczowych. Ćwiczeni z Teorii Ukłdów Logicznych, dr inż. Ernest Jmro. System dwójkowy reprezentcj inrn Ukłdy logiczne operują tylko n dwóch stnch ozncznymi jko zero (stn npięci

Bardziej szczegółowo

Podstawy Techniki Cyfrowej Układy komutacyjne

Podstawy Techniki Cyfrowej Układy komutacyjne Podstwy Techniki Cyfrowej Ukłdy komutcyjne Ukłdy kombincyjne, umożliwijące przełącznie (komutcję) sygnłów cyfrowych, nzyw się ukłdmi ukłdmi komutcyjnymi. Do podstwowych ukłdów komutcyjnych zlicz się multipleksery

Bardziej szczegółowo

WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać:

WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać: WEKTORY Wśród wielkości fizycznych występujących w fizyce możn wyróżnić sklry i wektory. Aby określić wielkość sklrną, wystrczy podć tylko jedną liczbę. Wielkościmi tkimi są ms, czs, tempertur, objętość

Bardziej szczegółowo

Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych,

Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych, Klsyczn Metod Njmniejszych Kwdrtów (KMNK) Postć ć modelu jest liniow względem prmetrów (lbo nleży dokonć doprowdzeni postci modelu do liniowości względem prmetrów), Zmienne objśnijące są wielkościmi nielosowymi,

Bardziej szczegółowo

WSTĘP DO INFORMATYKI

WSTĘP DO INFORMATYKI Akdemi Górniczo-Hutnicz Wydził Elektrotechniki, Automtyki, Informtyki i Inżynierii Biomedycznej WSTĘP DO INFORMATYKI SYSTEMY KODOWANIA ORAZ REPREZENTACJA I ARYTMETYKA LICZB Adrin Horzyk www.gh.edu.pl SYSTEMY

Bardziej szczegółowo

Macierz. Wyznacznik macierzy. Układ równań liniowych

Macierz. Wyznacznik macierzy. Układ równań liniowych Temt wykłdu: Mcierz. Wyzncznik mcierzy. Ukłd równń liniowych Kody kolorów: żółty nowe pojęcie pomrńczowy uwg kursyw komentrz * mterił ndobowiązkowy Ann Rjfur, Mtemtyk Zgdnieni. Pojęci. Dziłni n mcierzch.

Bardziej szczegółowo

WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać:

WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać: WEKTORY Wśród wielkości fizycznych występujących w fizyce możn wyróżnić sklry i wektory. Aby określić wielkość sklrną, wystrczy podć tylko jedną liczbę. Wielkościmi tkimi są ms, czs, tempertur, objętość

Bardziej szczegółowo

Zastosowanie multimetrów cyfrowych do pomiaru podstawowych wielkości elektrycznych

Zastosowanie multimetrów cyfrowych do pomiaru podstawowych wielkości elektrycznych Zstosownie multimetrów cyfrowych do pomiru podstwowych wielkości elektrycznych Cel ćwiczeni Celem ćwiczeni jest zpoznnie się z możliwościmi pomirowymi współczesnych multimetrów cyfrowych orz sposobmi wykorzystni

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z INFORMATYKI

PRÓBNY EGZAMIN MATURALNY Z INFORMATYKI PRÓBNY EGZAMIN MATURALNY Z INFORMATYKI POZIOM PODSTAWOWY Arkusz I Instrukcj dl zdjącego 1. Sprwdź, czy rkusz egzmincyjny zwier 8 stron (zdni 1 3). Ewentulny brk zgłoś przewodniczącemu zespołu ndzorującego

Bardziej szczegółowo

Zbiory wyznaczone przez funkcje zdaniowe

Zbiory wyznaczone przez funkcje zdaniowe pojęci zbioru i elementu RCHUNEK ZIORÓW zbiór zwier element element nleży do zbioru jest elementem zbioru ( X zbiór wszystkich przedmiotów indywidulnych, których dotyczy dn nuk zbiór pełny (uniwerslny

Bardziej szczegółowo

Wymagania edukacyjne matematyka klasa 2 zakres podstawowy 1. SUMY ALGEBRAICZNE

Wymagania edukacyjne matematyka klasa 2 zakres podstawowy 1. SUMY ALGEBRAICZNE Wymgni edukcyjne mtemtyk kls 2 zkres podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych

Bardziej szczegółowo

PODSTAWY ALGEBRY MACIERZY. Operacje na macierzach

PODSTAWY ALGEBRY MACIERZY. Operacje na macierzach PODSTWY LGEBRY MCIERZY WIERSZ i, KOLUMN (j) Mcierz m,n, gdzie m to ilość wierszy, n ilość kolumn i,j element mcierzy z itego wiersz, jtej kolumny Opercje n mcierzch Równość mcierzy m,n = B m,n. def i,j

Bardziej szczegółowo

Pojęcia Działania na macierzach Wyznacznik macierzy

Pojęcia Działania na macierzach Wyznacznik macierzy Temt: Mcierze Pojęci Dziłni n mcierzch Wyzncznik mcierzy Symbolem gwizdki (*) oznczono zgdnieni przeznczone dl studentów wybitnie zinteresownych prezentowną temtyką. Ann Rjfur Pojęcie mcierzy Mcierz to

Bardziej szczegółowo

usuwa niewymierność z mianownika wyrażenia typu

usuwa niewymierność z mianownika wyrażenia typu Wymgni edukcyjne n poszczególne oceny z mtemtyki Kls pierwsz zkres podstwowy. LICZBY RZECZYWISTE podje przykłdy liczb: nturlnych, cłkowitych, wymiernych, niewymiernych, pierwszych i złożonych orz przyporządkowuje

Bardziej szczegółowo

Wykład 2. Granice, ciągłość, pochodna funkcji i jej interpretacja geometryczna

Wykład 2. Granice, ciągłość, pochodna funkcji i jej interpretacja geometryczna 1 Wykłd Grnice, ciągłość, pocodn unkcji i jej interpretcj geometryczn.1 Grnic unkcji. Grnic lewostronn i grnic prwostronn unkcji Deinicj.1 Mówimy, że liczb g jest grnicą lewostronną unkcji w punkcie =,

Bardziej szczegółowo

2. FUNKCJE WYMIERNE Poziom (K) lub (P)

2. FUNKCJE WYMIERNE Poziom (K) lub (P) Kls drug poziom podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych redukuje wyrzy

Bardziej szczegółowo

Macierz. Wyznacznik macierzy. Układ równań liniowych

Macierz. Wyznacznik macierzy. Układ równań liniowych Temt wykłdu: Mcierz. Wyzncznik mcierzy. Ukłd równń liniowych Kody kolorów: Ŝółty nowe pojęcie pomrńczowy uwg kursyw komentrz * mterił ndobowiązkowy Ann Rjfur, Mtemtyk n kierunku Biologi w SGGW Zgdnieni.

Bardziej szczegółowo

Tranzystor JFET i MOSFET zas. działania

Tranzystor JFET i MOSFET zas. działania Tranzystor JFET i MOSFET zas. działania brak kanału v GS =v t (cutoff ) kanał otwarty brak kanału kanał otwarty kanał zamknięty w.2, p. kanał zamknięty Co było na ostatnim wykładzie? Układy cyfrowe Najczęściej

Bardziej szczegółowo

MATeMAtyka 3 inf. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Dorota Ponczek, Karolina Wej

MATeMAtyka 3 inf. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Dorota Ponczek, Karolina Wej Dorot Ponczek, Krolin Wej MATeMAtyk 3 inf Przedmiotowy system ocenini wrz z określeniem wymgń edukcyjnych Zkres podstwowy i rozszerzony Wyróżnione zostły nstępujące wymgni progrmowe: konieczne (K), podstwowe

Bardziej szczegółowo

Wektor kolumnowy m wymiarowy macierz prostokątna o wymiarze n=1 Wektor wierszowy n wymiarowy macierz prostokątna o wymiarze m=1

Wektor kolumnowy m wymiarowy macierz prostokątna o wymiarze n=1 Wektor wierszowy n wymiarowy macierz prostokątna o wymiarze m=1 Rchunek mcierzowy Mcierzą A nzywmy funkcję 2-zmiennych, któr prze liczb nturlnych (i,j) gdzie i = 1,2,3,4.,m; j = 1,2,3,4,n przyporządkowuje dokłdnie jeden element ij. 11 21 A = m1 12 22 m2 1n 2n mn Wymirem

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY. JĘZYK MATEMATYKI oblicz wrtość bezwzględną liczby rzeczywistej stosuje interpretcję geometryczną wrtości bezwzględnej liczby

Bardziej szczegółowo

Wymagania kl. 2. Uczeń:

Wymagania kl. 2. Uczeń: Wymgni kl. 2 Zkres podstwowy Temt lekcji Zkres treści Osiągnięci uczni. SUMY ALGEBRAICZNE. Sumy lgebriczne definicj jednominu pojęcie współczynnik jednominu porządkuje jednominy pojęcie sumy lgebricznej

Bardziej szczegółowo

Temat lekcji Zakres treści Osiągnięcia ucznia

Temat lekcji Zakres treści Osiągnięcia ucznia ln wynikowy kls 2c i 2e - Jolnt jąk Mtemtyk 2. dl liceum ogólnoksztłcącego, liceum profilownego i technikum. sztłcenie ogólne w zkresie podstwowym rok szkolny 2015/2016 Wymgni edukcyjne określjące oceny:

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA Mteriły do wykłdu MATEMATYKA DYSKRETNA dl studiów zocznych cz. Progrm wykłdu: KOMBINATORYKA:. Notcj i podstwowe pojęci. Zlicznie funkcji. Permutcje. Podziory zioru. Podziory k-elementowe. Ziory z powtórzenimi

Bardziej szczegółowo

Wymagania na ocenę dopuszczającą z matematyki klasa II Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02

Wymagania na ocenę dopuszczającą z matematyki klasa II Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02 Wymgni n ocenę dopuszczjącą z mtemtyki kls II Mtemtyk - Bbiński, Chńko-Now Er nr prog. DKOS 4015-99/02 Temt lekcji Zkres treści Osiągnięci uczni WIELOMIANY 1. Stopień i współczynniki wielominu 2. Dodwnie

Bardziej szczegółowo

Klasa druga: II TK1, II TK2 Poziom podstawowy 3 godz. x 30 tyg.= 90 nr programu DKOS /07 I. Funkcja kwadratowa

Klasa druga: II TK1, II TK2 Poziom podstawowy 3 godz. x 30 tyg.= 90 nr programu DKOS /07 I. Funkcja kwadratowa Kls drug: II TK1, II TK2 Poziom podstwowy 3 godz. 30 tyg.= 0 nr progrmu DKOS-5002-7/07 I. Funkcj kwdrtow Moduł - dził - L.p. temt Wykres 1 f()= 2 2 Zkres treści Pojęcie Rysownie wykresów Związek współczynnik

Bardziej szczegółowo

FUNKCJA KWADRATOWA. Moduł - dział -temat Lp. Zakres treści. z.p. z.r Funkcja kwadratowa - powtórzenie PLANIMETRIA 1

FUNKCJA KWADRATOWA. Moduł - dział -temat Lp. Zakres treści. z.p. z.r Funkcja kwadratowa - powtórzenie PLANIMETRIA 1 FUNKCJA KWADRATOWA Moduł - dził -temt Funkcj kwdrtow - powtórzenie Lp Lp z.p. z.r. 1 1 Równni kwdrtowe 2 Postć iloczynow funkcji kwdrtowej 3 Równni sprowdzlne do równń kwdrtowych Nierówności kwdrtowe 5

Bardziej szczegółowo

Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy)

Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Propozycj przedmiotowego systemu ocenini wrz z określeniem wymgń edukcyjnych (zkres podstwowy) Proponujemy, by omwijąc dne zgdnienie progrmowe lub rozwiązując zdnie, nuczyciel określł do jkiego zkresu

Bardziej szczegółowo

symbol dodatkowy element graficzny kolorystyka typografia

symbol dodatkowy element graficzny kolorystyka typografia Identyfikcj wizuln Fundcji n rzecz Nuki Polskiej 1/00 Elementy podstwowe symbol dodtkowy element grficzny kolorystyk typogrfi Identyfikcj wizuln Fundcji n rzecz Nuki Polskiej 1/01 Elementy podstwowe /

Bardziej szczegółowo

INSTYTUT CYBERNETYKI TECHNICZNEJ POLITECHNIKI WROCŁAWSKIEJ ZAKŁAD SZTUCZNEJ INTELIGENCJI I AUTOMATÓW

INSTYTUT CYBERNETYKI TECHNICZNEJ POLITECHNIKI WROCŁAWSKIEJ ZAKŁAD SZTUCZNEJ INTELIGENCJI I AUTOMATÓW INSTYTUT YERNETYKI TEHNIZNEJ POLITEHNIKI WROŁWSKIEJ ZKŁD SZTUZNEJ INTELIGENJI I UTOMTÓW Ćwiczenia laboratoryjne z Logiki Układów yfrowych ćwiczenie 22 temat: UKŁDY KOMINYJNE. EL ĆWIZENI Ćwiczenie ma na

Bardziej szczegółowo

Minimalizacja form boolowskich

Minimalizacja form boolowskich Sławomir Kulesza Technika cyfrowa Minimalizacja form boolowskich Wykład dla studentów III roku Informatyki Wersja 1.0, 05/10/2010 Minimalizacja form boolowskich Minimalizacja proces przekształcania form

Bardziej szczegółowo

PRÓBNA MATURA Z MATEMATYKI Z OPERONEM LISTOPAD ,0. 3x 6 6 3x 6 6,

PRÓBNA MATURA Z MATEMATYKI Z OPERONEM LISTOPAD ,0. 3x 6 6 3x 6 6, Zdnie PRÓBNA MATURA Z MATEMATYKI Z OPERONEM LISTOPAD 04 Zbiorem wszystkich rozwiązń nierówności x 6 6 jest: A, 4 0, B 4,0 C,0 4, D 0,4 Odpowiedź: C Rozwiąznie Sposób I Nierówność A 6 jest równowżn lterntywie

Bardziej szczegółowo

Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych

Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych 1 Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych 1. Podstawowe operacje logiczne dla cyfr binarnych Jeśli cyfry 0 i 1 potraktujemy tak, jak wartości logiczne fałsz i prawda, to działanie

Bardziej szczegółowo

WYMAGANIA I KRYTERIA OCENIANIA DO EGZAMINU POPRAWKOWEGO MATEMATYKA. Zakresie podstawowym i rozszerzonym. Klasa II rok szkolny 2011/2012

WYMAGANIA I KRYTERIA OCENIANIA DO EGZAMINU POPRAWKOWEGO MATEMATYKA. Zakresie podstawowym i rozszerzonym. Klasa II rok szkolny 2011/2012 mgr Jolnt Chlebd mgr Mri Mślnk mgr Leszek Mślnk mgr inż. Rent itl mgr inż. Henryk Stępniowski Zespół Szkół ondgimnzjlnych Młopolsk Szkoł Gościnności w Myślenicch WYMAGANIA I RYTERIA OCENIANIA DO EGZAMINU

Bardziej szczegółowo

Zadania. I. Podzielność liczb całkowitych

Zadania. I. Podzielność liczb całkowitych Zdni I. Podzielność liczb cłkowitych. Pewn liczb sześciocyfrow kończy się cyfrą 5. Jeśli tę cyfrę przestwimy n miejsce pierwsze ze strony lewej to otrzymmy nową liczbę cztery rzy większą od poprzedniej.

Bardziej szczegółowo

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające Wymgni edukcyjne z mtemtyki ls 2 b lo Zkres podstwowy Oznczeni: wymgni konieczne; wymgni podstwowe; R wymgni rozszerzjące; D wymgni dopełnijące; W wymgni wykrczjące Temt lekcji Zkres treści Osiągnięci

Bardziej szczegółowo

Matematyczne Podstawy Informatyki

Matematyczne Podstawy Informatyki Mtemtyczne Podstwy Informtyki dr inż. Andrzej Grosser Instytut Informtyki Teoretycznej i Stosownej Politechnik Częstochowsk Rok kdemicki 2013/2014 Podstwowe pojęci teorii utomtów I Alfetem jest nzywny

Bardziej szczegółowo

Podstawy programowania obiektowego

Podstawy programowania obiektowego 1/3 Podstwy progrmowni oiektowego emil: m.tedzki@p.edu.pl stron: http://rgorn.p.ilystok.pl/~tedzki/ Mrek Tędzki Wymgni wstępne: Wskzn yły znjomość podstw progrmowni strukturlnego (w dowolnym języku). Temty

Bardziej szczegółowo

Wstęp do Techniki Cyfrowej... Układy kombinacyjne

Wstęp do Techniki Cyfrowej... Układy kombinacyjne Wstęp do Techniki Cyfrowej... Układy kombinacyjne Przypomnienie Stan wejść układu kombinacyjnego jednoznacznie określa stan wyjść. Poszczególne wyjścia określane są przez funkcje boolowskie zmiennych wejściowych.

Bardziej szczegółowo

H L. The Nobel Prize in Physics 2000 "for basic work on information and communication technology"

H L. The Nobel Prize in Physics 2000 for basic work on information and communication technology 2014 CYFROWE UKŁADY SCALONE Ukłdy nlogowe: przetwrznie npięć (lu prądów), których wrtości zwierją się w pewnym przedzile wrtości. WE ukłd nlogowy WY Ukłdy cyfrowe: przetwrznie sygnłów o dwóch wrtościch

Bardziej szczegółowo

Technika Cyfrowa 1 wykład 1: kody. Dr inż. Jacek Mazurkiewicz Katedra Informatyki Technicznej

Technika Cyfrowa 1 wykład 1: kody. Dr inż. Jacek Mazurkiewicz Katedra Informatyki Technicznej Technika Cyfrowa 1 wykład 1: kody Dr inż. Jacek Mazurkiewicz Katedra Informatyki Technicznej e-mail: Jacek.Mazurkiewicz@pwr.edu.pl Sprawy formalne konsultacje, p. 225 C-3: PN: 12:45-15:15, PT: 14:30-16:00

Bardziej szczegółowo

Algebra macierzowa. Akademia Morska w Gdyni Katedra Automatyki Okrętowej Teoria sterowania. Mirosław Tomera 1. ELEMENTARNA TEORIA MACIERZOWA

Algebra macierzowa. Akademia Morska w Gdyni Katedra Automatyki Okrętowej Teoria sterowania. Mirosław Tomera 1. ELEMENTARNA TEORIA MACIERZOWA kdemi Morsk w Gdyni Ktedr utomtyki Okrętowej Teori sterowni lger mcierzow Mirosłw Tomer. ELEMENTRN TEORI MCIERZOW W nowoczesnej teorii sterowni rdzo często istnieje potrze zstosowni notcji mcierzowej uprszczjącej

Bardziej szczegółowo

system identyfikacji wizualnej forma podstawowa karta A03 część A znak marki

system identyfikacji wizualnej forma podstawowa karta A03 część A znak marki krt A03 część A znk mrki form podstwow Znk mrki Portu Lotniczego Olsztyn-Mzury stnowi połączenie znku grficznego (tzw. logo) z zpisem grficznym (tzw. logotypem). Służy do projektowni elementów symboliki

Bardziej szczegółowo

Lista tematów na kolokwium z wykładu z Techniki Cyfrowej w roku ak. 2013/2014

Lista tematów na kolokwium z wykładu z Techniki Cyfrowej w roku ak. 2013/2014 Lista tematów na kolokwium z wykładu z Techniki Cyfrowej w roku ak. 2013/2014 Temat 1. Algebra Boole a i bramki 1). Podać przykład dowolnego prawa lub tożsamości, które jest spełnione w algebrze Boole

Bardziej szczegółowo

Karta oceny merytorycznej wniosku o dofinansowanie projektu innowacyjnego testującego składanego w trybie konkursowym w ramach PO KL

Karta oceny merytorycznej wniosku o dofinansowanie projektu innowacyjnego testującego składanego w trybie konkursowym w ramach PO KL Złącznik nr 5 Krt oceny merytorycznej Krt oceny merytorycznej wniosku o dofinnsownie projektu innowcyjnego testującego skłdnego w trybie konkursowym w rmch PO KL NR WNIOSKU KSI: WND-POKL. INSTYTUCJA PRZYJMUJĄCA

Bardziej szczegółowo

Wymagania edukacyjne matematyka klasa 2b, 2c, 2e zakres podstawowy rok szkolny 2015/2016. 1.Sumy algebraiczne

Wymagania edukacyjne matematyka klasa 2b, 2c, 2e zakres podstawowy rok szkolny 2015/2016. 1.Sumy algebraiczne Wymgni edukcyjne mtemtyk kls 2b, 2c, 2e zkres podstwowy rok szkolny 2015/2016 1.Sumy lgebriczne N ocenę dopuszczjącą: 1. rozpoznje jednominy i sumy lgebriczne 2. oblicz wrtości liczbowe wyrżeń lgebricznych

Bardziej szczegółowo

WYMAGANIA I KRYTERIA OCENIANIA Z MATEMATYKI W 3 LETNIM LICEUM OGÓLNOKSZTAŁCĄCYM

WYMAGANIA I KRYTERIA OCENIANIA Z MATEMATYKI W 3 LETNIM LICEUM OGÓLNOKSZTAŁCĄCYM WYMAGANIA I KRYTERIA OCENIANIA Z MATEMATYKI W 3 LETNIM LICEUM OGÓLNOKSZTAŁCĄCYM Kls drug A, B, C, D, E, G, H zkres podstwowy 1. FUNKCJA LINIOWA rozpoznje funkcję liniową n podstwie wzoru lub wykresu rysuje

Bardziej szczegółowo

Sumy algebraiczne i funkcje wymierne

Sumy algebraiczne i funkcje wymierne Sumy lgebriczne i funkcje wymierne Moduł - dził -temt Zkres treści Sumy lgebriczne 1 definicj jednominu, sumy lgebricznej, wyrzów podobnych pojęcie współczynnik jednominu Dodwnie i odejmownie sum lgebricznych

Bardziej szczegółowo

dr inż. Rafał Klaus Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia i ich zastosowań w przemyśle" POKL

dr inż. Rafał Klaus Zajęcia finansowane z projektu Rozwój i doskonalenie kształcenia i ich zastosowań w przemyśle POKL Technika cyfrowa w architekturze komputerów materiał do wykładu 2/3 dr inż. Rafał Klaus Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii

Bardziej szczegółowo

PODSTAWY BAZ DANYCH Wykład 3 2. Pojęcie Relacyjnej Bazy Danych

PODSTAWY BAZ DANYCH Wykład 3 2. Pojęcie Relacyjnej Bazy Danych PODSTAWY BAZ DANYCH Wykłd 3 2. Pojęcie Relcyjnej Bzy Dnych 2005/2006 Wykłd "Podstwy z dnych" 1 Rozkłdlno dlność schemtów w relcyjnych Przykłd. Relcj EGZ(U), U := { I, N, P, O }, gdzie I 10 10 11 N f f

Bardziej szczegółowo

EGZAMIN MATURALNY OD ROKU SZKOLNEGO 2014/2015 MATEMATYKA POZIOM ROZSZERZONY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A2, A3, A4, A6, A7)

EGZAMIN MATURALNY OD ROKU SZKOLNEGO 2014/2015 MATEMATYKA POZIOM ROZSZERZONY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A2, A3, A4, A6, A7) EGZAMIN MATURALNY OD ROKU SZKOLNEGO 01/015 MATEMATYKA POZIOM ROZSZERZONY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A, A, A, A6, A7) GRUDZIEŃ 01 Klucz odpowiedzi do zdń zmkniętych Nr zdni 1 5 Odpowiedź

Bardziej szczegółowo

ćwiczenie 202 Temat: Układy kombinacyjne 1. Cel ćwiczenia

ćwiczenie 202 Temat: Układy kombinacyjne 1. Cel ćwiczenia Opracował: dr inż. Jarosław Mierzwa KTER INFORMTKI TEHNIZNEJ Ćwiczenia laboratoryjne z Logiki Układów yfrowych ćwiczenie 202 Temat: Układy kombinacyjne 1. el ćwiczenia Ćwiczenie ma na celu praktyczne zapoznanie

Bardziej szczegółowo

Grażyna Nowicka, Waldemar Nowicki BADANIE RÓWNOWAG KWASOWO-ZASADOWYCH W ROZTWORACH ELEKTROLITÓW AMFOTERYCZNYCH

Grażyna Nowicka, Waldemar Nowicki BADANIE RÓWNOWAG KWASOWO-ZASADOWYCH W ROZTWORACH ELEKTROLITÓW AMFOTERYCZNYCH Ćwiczenie Grżyn Nowick, Wldemr Nowicki BDNIE RÓWNOWG WSOWO-ZSDOWYC W ROZTWORC ELETROLITÓW MFOTERYCZNYC Zgdnieni: ktywność i współczynnik ktywności skłdnik roztworu. ktywność jonów i ktywność elektrolitu.

Bardziej szczegółowo

Typ szkoły: ZASADNICZA SZKOŁA ZAWODOWA Rok szkolny 2016/2017 Zawód: FRYZJER, CUKIERNIK, PIEKARZ, SPRZEDAWCA, FOTOGRAF i inne zawody.

Typ szkoły: ZASADNICZA SZKOŁA ZAWODOWA Rok szkolny 2016/2017 Zawód: FRYZJER, CUKIERNIK, PIEKARZ, SPRZEDAWCA, FOTOGRAF i inne zawody. Typ szkoły: ZASADNICZA SZKOŁA ZAWODOWA Rok szkolny 016/017 Zwód: FRYZJER, CUKIERNIK, PIEKARZ, SPRZEDAWCA, FOTOGRAF i inne zwody Przedmiot: MATEMATYKA Kls II (67 godz) Rozdził 1. Funkcj liniow 1. Wzór i

Bardziej szczegółowo

Architektura komputerów Wykład 2

Architektura komputerów Wykład 2 Architektura komputerów Wykład 2 Jan Kazimirski 1 Elementy techniki cyfrowej 2 Plan wykładu Algebra Boole'a Podstawowe układy cyfrowe bramki Układy kombinacyjne Układy sekwencyjne 3 Algebra Boole'a Stosowana

Bardziej szczegółowo

Podstawy Automatyki. Wykład 12 - synteza i minimalizacja funkcji logicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 12 - synteza i minimalizacja funkcji logicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 12 - synteza i minimalizacja funkcji logicznych Instytut Automatyki i Robotyki Warszawa, 2017 Synteza funkcji logicznych Terminy - na bazie funkcji trójargumenowej y = (x 1, x 2, x 3 ) (1) Elementarny

Bardziej szczegółowo

Karta oceny merytorycznej wniosku o dofinansowanie projektu konkursowego PO KL 1

Karta oceny merytorycznej wniosku o dofinansowanie projektu konkursowego PO KL 1 Złącznik 3 Krt oceny merytorycznej wniosku o dofinnsownie konkursowego PO KL 1 NR WNIOSKU KSI: WND-POKL. INSTYTUCJA PRZYJMUJĄCA WNIOSEK:. NUMER KONKURSU 2/POKL/8.1.1/2010 TYTUŁ PROJEKTU:... SUMA KONTROLNA

Bardziej szczegółowo

4. UKŁADY FUNKCJONALNE TECHNIKI CYFROWEJ

4. UKŁADY FUNKCJONALNE TECHNIKI CYFROWEJ 4. UKŁADY FUNKCJONALNE TECHNIKI CYFROWEJ 4.1. UKŁADY KONWERSJI KODÓW 4.1.1. Kody Kod - sposób reprezentacji sygnału cyfrowego za pomocą grupy sygnałów binarnych: Sygnał cyfrowy wektor bitowy Gdzie np.

Bardziej szczegółowo

O pewnych zgadnieniach optymalizacyjnych O pewnych zgadnieniach optymalizacyjnych

O pewnych zgadnieniach optymalizacyjnych O pewnych zgadnieniach optymalizacyjnych Spis tresci 1 Spis tresci 1 W wielu zgdnienich prktycznych brdzo wżne jest znjdownie optymlnego (czyli njlepszego z jkiegoś punktu widzeni) rozwiązni dnego problemu. Dl przykłdu, gdybyśmy chcieli podróżowć

Bardziej szczegółowo

Wstęp do Techniki Cyfrowej... Algebra Boole a

Wstęp do Techniki Cyfrowej... Algebra Boole a Wstęp do Techniki Cyfrowej... Algebra Boole a Po co AB? Świetne narzędzie do analitycznego opisu układów logicznych. 1854r. George Boole opisuje swój system dedukcyjny. Ukoronowanie zapoczątkowanych w

Bardziej szczegółowo

Badanie regularności w słowach

Badanie regularności w słowach Przypdek sekwencyjny Mrcin Piątkowski Wydził Mtemtyki i Informtyki Uniwersytet Mikołj Kopernik Edsger Wybe Dijkstr (1930 2002) Computer science is no more bout computers thn stronomy is bout telescopes,

Bardziej szczegółowo

Szczegółowe wymagania edukacyjne z matematyki, klasa 2C, poziom podstawowy

Szczegółowe wymagania edukacyjne z matematyki, klasa 2C, poziom podstawowy Szczegółowe wymgni edukcyjne z mtemtyki, kls 2C, poziom podstwowy Wymgni konieczne () dotyczą zgdnieo elementrnych, stnowiących swego rodzju podstwę, ztem powinny byd opnowne przez kżdego uczni. Wymgni

Bardziej szczegółowo

Matematyka wykaz umiejętności wymaganych na poszczególne oceny KLASA II

Matematyka wykaz umiejętności wymaganych na poszczególne oceny KLASA II 1.Sumy lgebriczne Mtemtyk wykz umiejętności wymgnych n poszczególne oceny KLASA II N ocenę dop: 1. Rozpoznwnie jednominów i sum lgebricznych 2. Oblicznie wrtości liczbowych wyrżeń lgebricznych 3. Redukownie

Bardziej szczegółowo

Zadania do wykładu 1, Zapisz liczby binarne w kodzie dziesiętnym: ( ) 2 =( ) 10, ( ) 2 =( ) 10, (101001, 10110) 2 =( ) 10

Zadania do wykładu 1, Zapisz liczby binarne w kodzie dziesiętnym: ( ) 2 =( ) 10, ( ) 2 =( ) 10, (101001, 10110) 2 =( ) 10 Zadania do wykładu 1,. 1. Zapisz liczby binarne w kodzie dziesiętnym: (1011011) =( ) 10, (11001100) =( ) 10, (101001, 10110) =( ) 10. Zapisz liczby dziesiętne w naturalnym kodzie binarnym: (5) 10 =( ),

Bardziej szczegółowo

H L. The Nobel Prize in Physics 2000 "for basic work on information and communication technology"

H L. The Nobel Prize in Physics 2000 for basic work on information and communication technology 2012 CYFROWE UKŁADY SCALONE Ukłdy nlogowe: przetwrznie npięć (lu prądów), których wrtości zwierją się w pewnym przedzile wrtości. WE ukłd nlogowy Ukłdy cyfrowe: przetwrznie sygnłów o dwóch wrtościch npięć

Bardziej szczegółowo

WYKŁAD 7 CYFROWE UKŁADY SCALONE

WYKŁAD 7 CYFROWE UKŁADY SCALONE 65 KŁAD 7 CYFRO UKŁADY SCALONE Ukłdy nlogowe są przystosowne do przetwrzni npięć (lu prądów), których wrtości zwierją się w pewnym przedzile ukłd nlogowy wrtości Ukłdy cyfrowe służą do przetwrzni sygnłów

Bardziej szczegółowo

CYFROWE UKŁADY SCALONE. Technologia planarna

CYFROWE UKŁADY SCALONE. Technologia planarna CYFRO UKŁADY SCALONE PA 2010 The Noel Prize in Physics 2000 "for sic work on informtion nd communiction technology" Ukłdy nlogowe: przetwrznie npięć (lu prądów), których wrtości zwierją się w pewnym przedzile

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: obowiązkowy w ramach treści kierunkowych, moduł kierunkowy ogólny Rodzaj zajęć: wykład, laboratorium, ćwiczenia I KARTA PRZEDMIOTU CEL PRZEDMIOTU

Bardziej szczegółowo

MATURA 2014 z WSiP. Zasady oceniania zadań

MATURA 2014 z WSiP. Zasady oceniania zadań MATURA z WSiP Mtemtyk Poziom podstwowy Zsdy ocenini zdń Copyright by Wydwnictw Szkolne i Pedgogiczne sp. z o.o., Wrszw Krtotek testu Numer zdni 6 7 8 9 6 7 8 9 Uczeń: Sprwdzn umiejętność (z numerem stndrdu)

Bardziej szczegółowo

Technika cyfrowa Synteza układów kombinacyjnych

Technika cyfrowa Synteza układów kombinacyjnych Sławomir Kulesza Technika cyfrowa Synteza układów kombinacyjnych Wykład dla studentów III roku Informatyki Wersja 2.0, 05/10/2011 Podział układów logicznych Opis funkcjonalny układów logicznych x 1 y 1

Bardziej szczegółowo

Koszt literału (literal cost) jest określony liczbą wystąpień literału w wyrażeniu boolowskim realizowanym przez układ.

Koszt literału (literal cost) jest określony liczbą wystąpień literału w wyrażeniu boolowskim realizowanym przez układ. Elementy cyfrowe i układy logiczne Wykład Legenda Kryterium kosztu realizacji Minimalizacja i optymalizacja Optymalizacja układów dwupoziomowych Tablica (mapa) Karnaugh a Metoda Quine a-mccluskey a Złożoność

Bardziej szczegółowo

Ćw. 1: Systemy zapisu liczb, minimalizacja funkcji logicznych, konwertery kodów, wyświetlacze.

Ćw. 1: Systemy zapisu liczb, minimalizacja funkcji logicznych, konwertery kodów, wyświetlacze. Lista zadań do poszczególnych tematów ćwiczeń. MIERNICTWO ELEKTRYCZNE I ELEKTRONICZNE Studia stacjonarne I stopnia, rok II, 2010/2011 Prowadzący wykład: Prof. dr hab. inż. Edward Layer ćw. 15h Tematyka

Bardziej szczegółowo

Lekcja na Pracowni Podstaw Techniki Komputerowej z wykorzystaniem komputera

Lekcja na Pracowni Podstaw Techniki Komputerowej z wykorzystaniem komputera Lekcja na Pracowni Podstaw Techniki Komputerowej z wykorzystaniem komputera Temat lekcji: Minimalizacja funkcji logicznych Etapy lekcji: 1. Podanie tematu i określenie celu lekcji SOSOBY MINIMALIZACJI

Bardziej szczegółowo

Dr inż. Jan Chudzikiewicz Pokój 117/65 Tel Materiały:

Dr inż. Jan Chudzikiewicz Pokój 117/65 Tel Materiały: Dr inż Jan Chudzikiewicz Pokój 7/65 Tel 683-77-67 E-mail: jchudzikiewicz@watedupl Materiały: http://wwwitawatedupl/~jchudzikiewicz/ Warunki zaliczenie: Otrzymanie pozytywnej oceny z kolokwium zaliczeniowego

Bardziej szczegółowo

Bramki logiczne Podstawowe składniki wszystkich układów logicznych

Bramki logiczne Podstawowe składniki wszystkich układów logicznych Układy logiczne Bramki logiczne A B A B AND NAND A B A B OR NOR A NOT A B A B XOR NXOR A NOT A B AND NAND A B OR NOR A B XOR NXOR Podstawowe składniki wszystkich układów logicznych 2 Podstawowe tożsamości

Bardziej szczegółowo

Sumy algebraiczne i funkcje wymierne

Sumy algebraiczne i funkcje wymierne Sumy lgebriczne i funkcje wymierne Moduł - dził -temt Zkres treści Sumy lgebriczne 1 definicj jednominu, sumy lgebricznej, wyrzów podobnych pojęcie współczynnik jednominu Dodwnie i odejmownie sum lgebricznych

Bardziej szczegółowo

Architektura systemów komputerowych Laboratorium 5 Kodowanie liczb i tekstów

Architektura systemów komputerowych Laboratorium 5 Kodowanie liczb i tekstów Architektura systemów komputerowych Laboratorium 5 Kodowanie liczb i tekstów Marcin Stępniak Informacje. Kod NKB Naturalny kod binarny (NKB) jest oparty na zapisie liczby naturalnej w dwójkowym systemie

Bardziej szczegółowo

Podstawy Automatyki. Wykład 9 - Podstawy matematyczne automatyki procesów dyskretnych. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 9 - Podstawy matematyczne automatyki procesów dyskretnych. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki Wykład 9 - Podstawy matematyczne automatyki procesów dyskretnych Instytut Automatyki i Robotyki Warszawa, 2015 Kody liczb całkowitych nieujemnych Kody liczbowe dzielimy na analityczne nieanalityczne (symboliczne)

Bardziej szczegółowo

Arytmetyka liczb binarnych

Arytmetyka liczb binarnych Wartość dwójkowej liczby stałoprzecinkowej Wartość dziesiętna stałoprzecinkowej liczby binarnej Arytmetyka liczb binarnych b n-1...b 1 b 0,b -1 b -2...b -m = b n-1 2 n-1 +... + b 1 2 1 + b 0 2 0 + b -1

Bardziej szczegółowo

Układy cyfrowe. Najczęściej układy cyfrowe służą do przetwarzania sygnałów o dwóch poziomach napięć:

Układy cyfrowe. Najczęściej układy cyfrowe służą do przetwarzania sygnałów o dwóch poziomach napięć: Układy cyfrowe W układach cyfrowych sygnały napięciowe (lub prądowe) przyjmują tylko określoną liczbę poziomów, którym przyporządkowywane są wartości liczbowe. Najczęściej układy cyfrowe służą do przetwarzania

Bardziej szczegółowo

O RELACJACH MIĘDZY GRUPĄ OBROTÓW, A GRUPĄ PERMUTACJI

O RELACJACH MIĘDZY GRUPĄ OBROTÓW, A GRUPĄ PERMUTACJI ZESZYTY NAUKOWE 7-45 Zenon GNIAZDOWSKI O RELACJACH MIĘDZY GRUPĄ OBROTÓW, A GRUPĄ PERMUTACJI Streszczenie W prcy omówiono grupę permutcji osi krtezjńskiego ukłdu odniesieni reprezentowną przez mcierze permutcji,

Bardziej szczegółowo

1 Ułamki zwykłe i dziesiętne

1 Ułamki zwykłe i dziesiętne Liczby wymierne i niewymierne Liczby wymierne i niewymierne - powtórzenie Ułmki zwykłe i dziesiętne. Rozszerznie ułmków Rozszerz ułmki b c b c 6 8. Skrcnie ułmków c b c b 8 0 Liczby wymierne i niewymierne

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA WYKŁAD 9. ZBIORY ROZMYTE Częstochow 204 Dr hb. inż. Grzegorz Dudek Wydził Elektryczny Politechnik Częstochowsk ZBIORY ROZMYTE Klsyczne pojęcie zbioru związne jest z logiką dwuwrtościową

Bardziej szczegółowo

Wymagania edukacyjne z matematyki FUNKCJE dopuszczającą dostateczną dobrą bardzo dobrą

Wymagania edukacyjne z matematyki FUNKCJE dopuszczającą dostateczną dobrą bardzo dobrą Wymgni edukcyjne z mtemtyki Kls IIC. Rok szkolny 013/014 Poziom podstwowy FUNKCJE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje przyporządkowni będące funkcjmi określ funkcję różnymi

Bardziej szczegółowo

Elementy logiki. Algebra Boole a. Analiza i synteza układów logicznych

Elementy logiki. Algebra Boole a. Analiza i synteza układów logicznych Elementy logiki: Algebra Boole a i układy logiczne 1 Elementy logiki dla informatyków Wykład III Elementy logiki. Algebra Boole a. Analiza i synteza układów logicznych Elementy logiki: Algebra Boole a

Bardziej szczegółowo

Wykład 2. Pojęcie całki niewłaściwej do rachunku prawdopodobieństwa

Wykład 2. Pojęcie całki niewłaściwej do rachunku prawdopodobieństwa Wykłd 2. Pojęcie cłki niewłściwej do rchunku prwdopodobieństw dr Mriusz Grządziel 4 mrc 24 Pole trpezu krzywoliniowego Przypomnienie: figurę ogrniczoną przez: wykres funkcji y = f(x), gdzie f jest funkcją

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VIII w roku szkolnym 2015/2016

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VIII w roku szkolnym 2015/2016 WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VIII w roku szkolnym 015/016 oprcowł: Dnut Wojcieszek n ocenę dopuszczjącą rysuje wykres funkcji f ( ) i podje jej włsności sprwdz lgebricznie, czy dny punkt

Bardziej szczegółowo

Układy Logiczne i Cyfrowe

Układy Logiczne i Cyfrowe Układy Logiczne i Cyfrowe Wykład dla studentów III roku Wydziału Elektrycznego mgr inż. Grzegorz Lisowski Instytut Automatyki Podział układów cyfrowych elementy logiczne bloki funkcjonalne zespoły funkcjonalne

Bardziej szczegółowo

Równania i nierówności kwadratowe z jedną niewiadomą

Równania i nierówności kwadratowe z jedną niewiadomą 50 REPETYTORIUM 31 Równni i nierówności kwdrtowe z jedną niewidomą Równnie wielominowe to równość dwóch wyrżeń lgebricznych Kżd liczb, któr po podstwieniu w miejscu niewidomej w równniu o jednej niewidomej

Bardziej szczegółowo

f(x)dx (1.7) b f(x)dx = F (x) = F (b) F (a) (1.2)

f(x)dx (1.7) b f(x)dx = F (x) = F (b) F (a) (1.2) Cłk oznczon Cłkę oznczoną będziemy zpisywli jko f(x)dx (.) z fnkcji f(x), któr jest ogrniczon w przedzile domkniętym [, b]. Jk obliczyć cłkę oznczoną? Obliczmy njpierw cłkę nieoznczoną z fnkcji f(x), co

Bardziej szczegółowo

Wielkość analogowa w danym przedziale swojej zmienności przyjmuje nieskończoną liczbę wartości.

Wielkość analogowa w danym przedziale swojej zmienności przyjmuje nieskończoną liczbę wartości. TECHNOLOGE CYFOWE kłady elektroniczne. Podzespoły analogowe. Podzespoły cyfrowe Wielkość analogowa w danym przedziale swojej zmienności przyjmuje nieskończoną liczbę wartości. Wielkość cyfrowa w danym

Bardziej szczegółowo

Wstęp do Techniki Cyfrowej i Mikroelektroniki

Wstęp do Techniki Cyfrowej i Mikroelektroniki Wstęp do Techniki Cyfrowej i Mikroelektroniki dr inż. Maciej Piotrowicz Katedra Mikroelektroniki i Technik Informatycznych PŁ piotrowi@dmcs.p.lodz.pl http://fiona.dmcs.pl/~piotrowi -> Wstęp do... Układy

Bardziej szczegółowo