Układy Logiczne i Cyfrowe

Wielkość: px
Rozpocząć pokaz od strony:

Download "Układy Logiczne i Cyfrowe"

Transkrypt

1 Układy Logiczne i Cyfrowe Wykład dla studentów III roku Wydziału Elektrycznego mgr inż. Grzegorz Lisowski Instytut Automatyki

2 Podział układów cyfrowych elementy logiczne bloki funkcjonalne zespoły funkcjonalne Podział ze względu na strukturę układy specjalizowane układy programowalne Podział ze względu na właściwości układy kombinacyjne układy sekwencyjne

3 Dla dwóch argumentów x i y mamy cztery możliwe kombinacje argumentów: x y

4 Jeżeli f i (x) będzie funkcją logiczną jednego argumentu x to można określić co najwyżej cztery takie funkcje.

5 Spośród funkcji dwuargumentowych f(x,y) najważniejszymi są: Nazwa Oznaczenie Wartość funkcji gdy (x,y) równa się (0,0) (0,1) (1,0) (1,1) suma, dysjunkcja x+y, x y iloczyn, konjunkcja xy, x y

6 Funkcje boolowskie spełniają następujące aksjomaty: l.p. Nazwa aksjomatu Aksjomaty dotyczące dodawania mnożenia 1 prawo łączności (A+B)+C=A+(B+C) (A*B)*C=A*(B*C) 2 prawo przemienności A+B = B+A A*B = B*A 3 Prawo istnienia jednego elementu identycznościowego A + 0 = A A * 1 = A 4 Prawo dopełnienia A A=1 A A=0 5 Prawo rozdzielczości A + B*C = (A+B)*(A+C) A*(B+C) = A*B + A*C

7 Podstawowe tożsamości l.p. Nazwa twierdzenia twierdzenia dotyczące dodawania mnożenia 1 prawo stałych elementów A+1=1 A 0 = 0 2 prawo powtórzenia A+A=A A A = A 3 prawo podwójnej negacji A = A 4 prawo de Morgana A + B=AB AB = A + B 5 reguła pochłaniania A+AB=A A(A+B)+A 6 reguła pochłaniania A AB = A + B + A( A + B) = AB 7 reguła sklejania AB + AB = A (A + B)(A + B) = A 8 reguła niepełnego sklejania 9 reguła uogólnionego sklejania AB + AB = (A + B)(A + B) = A + AB + AB A(A + B)(A + B) AB + CB = (A + B)(C + B) = AC + AB + CB (A + C)(A + B)(C + B)

8 Ogólny zapis liczby dziesiętnej przedstawia poniższy zapis: L = a a a a = a n i n i= 0 i a < 0, 9 > =

9 W liczbach ułamkowych podstawa występuje w potęgach ujemnych, a zatem zapis liczby dziesiętnej ma postać: n 10 n l i i = l L = a a a a, a a a = a 10 i L = b n b 2 b b 1 0,b 1 b 2 b l = i= n l b i P i gdzie: P oznacza dowolną podstawę

10 Dla P=2 otrzymujemy system dwójkowy (binarny) = czyli: = 13 10

11 Najbardziej rozpowszechnionymi kodami dwójkowymi są: kod naturalny dwójkowy, kod Grey'a, kod dwójkowo-dziesiętny BCD (ang. Binary Coded Decimial), kod pierścieniowy czyli kod 1 z 10 należący do grupy kodów 1 z n kod pseudopierścieniowy Johnsona,

12 Kod dwójkowy naturalny Kod dwójkowy naturalny jest kodem wagowym, w którym poszczególne wagi są kolejnymi potęgami liczby 2 (tzn. 2 i, gdzie i=0,1,2,3...). Istnieje wiele sposobów konwersji liczb z systemu dziesiętnego do dwójkowego i odwrotnie.

13 Konw ersja liczby dwójkow ej na dziesiętną. Dla kodów wagowych najprostsza metoda polega na sumowaniu albo wydzielaniu wag. Przykład: Należy zamienić liczbę binarną na liczbę dziesiętną = 1* * * * *2 0 = = 25 10

14 Konwersja liczby dziesiętnej na dwójkową. Konwersja liczby dziesiętnej na dwójkową polega na wyszukiwaniu najwyższej potęgi liczby 2. Przykład: Należy zamienić liczbę dziesiętną na liczbę binarną. Największą potęgą liczby 2 jest tutaj 2 4 = 16 a zatem, liczba dwójkowa będzie miała 5 bitów i na najstarszym bicie piszemy 1???? 2. Od liczby = 11. W 11 najstarszą potęgą 2 jest 2 3. Zatem na następnym bicie piszemy 1 i uzyskujemy 11??? 2.. Następna operacja to: 11-8 = 3. Dla 3 najstarszą potęgą 2 jest 2 1. Ponieważ nie wystąpiła tutaj druga potęga liczby 2, to na drugiej pozycji piszemy 0, i otrzymujemy 110?? 2, natomiast na czwartej pozycji piszemy 1 ponieważ wystąpiła pierwsza potęga liczby 2, 1101? 2. Po odjęciu 3-2 = 1, gdzie 1 jest potęgą zerową liczby 2, bo 2 0 = 1. W ostateczności otrzymujemy liczbę dwójkową

15 Należy zamienić liczbę na liczbę dwójkową: Reszta 11 : 2 = 5 1 najmłodszy bit 5 : 2 = : 2 = : 2 = =

16 Kod szesnastkowy Kod szesnastkowy (heksadecymalny) jest kodem wagowym, w którym poszczególne wagi są kolejnymi potęgami liczby 16 (tzn. 16 i, gdzie i=0,1,2,3...). Aby ułatwić zapis w kodzie heksadecymalnym wprowadzono następującą regułę. Dla liczb od 10 do 15 stosuje się odpowiedni zapis literowy: 10 - A, 11 - B, 12 - C, 13 - D, 14 - E, 15 - F.

17 Zamiana kodu dw ójkowego na kod sze snastkowy Przejście pomiędzy kodem dwójkowym a heksadecymalnym polega na pogrupowaniu zapisu dwójkowego w grupy czterobitowe i zapisaniu ich wartości wykorzystując liczby z zakresu Należy zamienić zapis liczby dwójkowej na zapis szesnastkowy kod dwójkowy (binarny) kod szesnastkowy (heksadecymalny) 6 C E =6CE 16

18 Kod Grey'a Cechą charakterystyczną kodu Grey'a jest to, że sąsiadujące kombinacje kodowe różnią się wartościami tylko jednego bitu. Tablicę kodu Grey'a można utworzyć na podstawie tablicy kodu dwójkowego naturalnego posługując się następującą regułą: G = B B = B B + B B i i i + 1 i i + 1 i i + 1 gdzie: G i - i-ty bit kodu Grey'a, B i - i-ty bit kodu binarnego, B i+1 - i+1 bit kodu binarnego.

19 linia lustra linia lustra linia lustra

20 Kod dwójkowo dziesiętny BCD Kod dwójkowo dziesiętny jest odmianą kodu dwójkowego naturalnego gdzie każdej cyfrze dziesiętnej przyporządkowywuje się liczbę binarną. Nie następuje tutaj kodowanie całej liczby, a kodowana jest każda cyfra oddzielnie

21 Kod pseudopierścieniowy

22 Kod pierścieniowy

23 Tablica kodu dwa z pięciu

24 Sposoby zapisu funkcji Opis słowny Tablica wartości Wykres czasowy Zbiór wartości zmiennych funkcji Tablica Karnaugha Zapis algebraiczny funkcji

25 Tablica wartości funkcji Numer zbioru Wartość zmiennych Wartość funkcji i x 1 x 2 x 3 f(x 1,x 2,x 3)

26 Do jednoznacznego określenia funkcji wystarczy podać zbiór wartości zmiennych funkcji oznaczany: F 1 dla którego funkcja przyjmuje wartość 1, lub zbiór F 0 dla którego funkcja przyjmuje wartość 0. 1 { } F = 010,011,101 x x x { } F = 000,001,100,110,111 x x x 1 2 3

27 1 { } F = 2,3,5 x x x { } F = 0,1,4,6,7 x x x F = { 4,5,6} x x x (-) F = { 2,4,6,(0,1) } x x x 1 2 3

28 Tablica Karnaugha f(x, x, x ) 1 2 3

29 Zapis algebraiczny funkcji f(x, x, x ) = x x + x x x

30 x x x x x x x x x F + + = { } F 010,011,101 1 x x x = { } F 000,001,100,110,111 0 x x x = ) x x (x ) x x )(x x x )(x x x )(x x x (x F =

31 Sposoby minimalizacji funkcji boolowskich metoda przekształceń algebraicznych metoda tablic Karnaugha, metoda Quine a - Mc Cluskeya, metoda tablic harwardzkich, metoda Patricka, metoda Blake a.

32 Metoda tablic Karnaugha Należy wyznaczyć minimalną postać funkcji, która jest opisana w następujący sposób. W pomieszczeniu znajdują się trzy czujniki pożarowe a, b, c. Przy sygnale równym 1 z dowolnego czujnika należy uruchomić sygnalizację pożaru (f 1 = 1), zaś przy sygnale 1 z co najmniej dwóch czujników należy uruchomić urządzenie gaśnicze (f 2 = 1).

33 f 1 1 = a + b + c

34 f 1 2 = ab + ac + bc

35 f 1 0 = a + b + c f = (a + b)(a + c)(b + c) 2 0 Łatwo można wykazać, że f 1 1 = f 1 0 oraz f = f

36 Jeżeli podczas zakreślania obszarów wartości zmiennych określających obszar są inne niż zaznaczane wartości funkcji, (np. podczas zaznaczania 1 element funkcji ma 0), to jest on zapisywany jako sygnał zanegowany. Przedstawione to zostało na poniższym przykładzie. f 0 = ac + ab + bc f 1 = ( a + b )( a + c )( b + c )

37 Funktory układów cyfrowych Układy cyfrowe dzieli się na dwie podstawowe grupy: 1. układy kombinacyjne 2. układy sekwencyjne

38

39 Funktory układów kombinacyjnych - bramki Nazwa Symbol Realizowana funkcja Negacja, NOT a Suma, OR a + b Negacja sumy, NOR a + b Iloczyn, NAD a b Negacja iloczynu, NAND a b Suma modulo, EX-OR a b

40 Podstawowe funktory układów sekwencyjnych - przerzutniki

41 Przerzutnik typu RS Tablica przejść Symbol S R Q t Q t

42 Przerzutnik typu JK Tablica przejść Symbol J K Q t Q t Q t

43 Przerzutnik typu D Tablica przejść Symbol D Q t

44 Przerzutnik typu T Tablica przejść Symbol T Q t+1 0 Q t 1 Q t

45 Typowe podzespoły układów cyfrowych Rejestry Liczniki Bloki arytmetyczne Komparatory Multipleksery Demultipleksery Konwertery kodów Pamięci

46 Rejestry Rejestrem nazywamy układ służący do przechowywania informacji

47 szeregowe - szeregowe wprowadzanie i wyprowadzanie informacji, tzn. kolejno bit po bicie; równoległe - równoległe wprowadzanie i wyprowadzanie informacji jednocześnie do wszystkich i ze wszystkich pozycji rejestru;

48 szeregowo-równoległe - szeregowe wprowadzanie i równoległe wyprowadzanie informacji; równoległo-szeregowe - równoległe wprowadzanie i szeregowe wyprowadzanie informacji.

49 Rejestry szeregowe charakteryzują się możliwością przesuwania wprowadzonej informacji bądź w prawo albo w lewo (rejestry przesuwające jednokierunkowe), bądź też zarówno w prawo, jak i w lewo (rejestry przesuwające dwukierunkowe, rewersyjne). SR

50 Liczniki Licznikiem nazywany jest sekwencyjny układ cyfrowy służący do zliczania i pamiętania liczby impulsów podawanych w określonym przedziale czasu na jego wejście zliczające.

51 Liczniki podlegają następującym kryteriom podziału: pod względem długości cyklu: liczniki o stałej długości cyklu liczniki o zmiennej długości cyklu pod względem kierunku zliczania: liczniki jednokierunkowe zliczające w przód zliczające w tył liczniki dwukierunkowe pod względem sposobu oddziaływania impulsów zliczanych na stan przerzutników licznika: liczniki asynchroniczne liczniki synchroniczne liczniki asynchroniczno - synchroniczne

52 Bloki arytmetyczne Podstawowym układem arytmetycznym jest sumator, którego zadaniem jest dodawanie lub odejmowanie liczb. Odejmowanie liczb jest możliwe w tzw. kodzie uzupełnień do dwóch

53 Komparatory Komparatory służą do porównywania wartości dwu lub więcej liczb dwójkowych. REJESTR RÓWNOLEGŁY LICZBY A KOMPARATOR A>B A=B A<B WYJŚCIE REJESTR RÓWNOLEGŁY LICZBY B REJESTR SZEREGOWY LICZBY A Schemat ideowy kom paratora równoległego KOMPARATOR A>B A=B A<B WYJŚCIE REJESTR SZEREGOWY LICZBY B Schemat ideowy kom paratora szeregowego

54 Multipleksery Multiplekser (inaczej selektor) wybiera jeden sygnał spośród wielu sygnałów wejściowych.

55 Demultipleksery Demultiplekser (inaczej kolektor) kieruje sygnał na jedną z wielu możliwych dróg. Ym D Yi Y2 Y1 A1 A2 AJ An

56 Konwertery kodów Konwertery kodów służą do zamiany liczby podanej w jednym kodzie na inny kod. Konwersji można dokonać tylko wówczas gdy liczba słów kodowych w obu kodach jest identyczna, natomiast długość słów obydwu kodów nie musi być identyczna.

57 Pamięci Pamięci - układy służące do przechowywania ciągów cyfr binarnych są nazywane pamięciami. Z punktu wykonywanej funkcji pamięci można podzielić na dwie klasy: pamięci z zapisem i odczytem tzw. pamięci RAM (Random Acces Memory); pamięci stałe, tylko z odczytem tzw. pamięci ROM (Read Only Memory).

58

59 Jako pamięci mogą być wykorzystywane następujące układy: przerzutniki: rejestry; układy pamięciowe scalone; pamięci ferrytowe; matryce diodowe

60 Synteza układów cyfrowych Po przeprowadzeniu minimalizacji funkcji wykorzystując tablicę Karnaugha, należy przystąpić do budowy układu realizującego otrzymaną funkcję. Do budowy układu można wykorzystywać układy stykowe, negacje, bramki AND, OR, negacje, NAND, NOR, multipleksery

61 Dla układów stykowych przyjmowana jest następująca zasada: sygnał prosty jest realizowany jako styk normalnie rozwarty; sygnał zanegowany jest realizowany jako styk normalnie zwarty;

62 suma sygnałów jest realizowana jako połączenie równoległe styków; a a+b b iloczyn sygnałów jest realizowany jako połączenie szeregowe styków; a b ab

63 Budowa układu przy wykorzystaniu układu stykowego, bramek AND i OR Mając funkcję przedstawioną jako minimalną postać normalną sumy lub iloczynu można bezpośrednio przejść do budowy układu składającego się z układów stykowych lub bramek AND i OR. Otrzymano następujące funkcje: f 11 = a+b+c, f 21 = ab+ac+bc, f 20 = (a+b)(a+c)(b+c).

64 Układ stykowy: c b a a+b+c Układ stykowy realizujący funkcję f 11

65 a b a c b c ab+ac+bc Układ stykowy realizujący funkcję f 21

66 a b a c b c (a+b)(a+c)(b+c) Układ stykowy realizujący funkcję f 20

67 a b c Układ bramek OR realizujący funkcję f 11

68 a b a c b c ab ac bc ab+ac+bc Układ bramek AND i OR realizujący funkcję f 21

69 a b a c b c (a+b) (a+c) (b+c) (a+b)(a+c)(b+c) Układ bramek AND i OR realizujący funkcję f 20

70 Dana jest funkcja a f = a + cb b c a+bc Układ bramek AND, OR realizujący funkcję f a b a+bc c Układ bramek AND, OR i negacji realizujący funkcję f

71 Budowa układu przy wykorzystaniu bramek NAND lub NOR Na podstawie wzoru funkcji określającej jej minimalną postać sumy (iloczynu) można zaprojektować układ zbudowany z elementów NAND (NOR). Układ tak zaprojektowany będzie składał się z trzech poziomów. Poziom I (licząc od wejść układu) zawiera układy które negują sygnały wejściowe. Poziom II realizuje poszczególne funkcje. Ilość funktorów NAND jest równa ilości składników sumy a ilość funktorów NOR jest równa ilości czynników iloczynu. Poziom III stanowi pojedynczy element NAND (NOR). UWAGA: Dwa ostatnie poziomy są niezbędne.

72 dla minimalnej postaci sumy funkcji f 11 = a+b+c, f 21 = ab+ac+bc. Poziom I Poziom II Poziom III a b c a b c a b c = a+b+c Realizacja funkcji f 11 przy pomocy bramek NAND

73 a b c Poziom I Poziom II Poziom III ab ac bc a b ac bc = ab+ac+bc Realizacja funkcji f 21 przy pomocy bramek NAND

74 dla minimalnej postaci iloczynu funkcji f 10 = (a+b+c), f 20 = (a+b)(a+c)(b+c). Poziom I Poziom II Poziom III a b c a+b+c = a+b+c Realizacja funkcji f 10 przy pomocy bramek NOR

75 a b c Poziom I Poziom II Poziom III a+b a+c b+c (a+b)+(a+c)+(b+c) = (a+b)(a+c)(b+c) Realizacja funkcji f 20 przy pomocy bramek NOR

76 UWAGA: Funkcja zapisana w formie sumy iloczynów, zazwyczaj realizowana jest za pomocą elementów typu NAND. Funkcja zapisana w formie iloczynu sum, zazwyczaj realizowana jest za pomocą elementów typu NOR. Jeżeli funkcja zapisana w formie sumy iloczynów, ma być zrealizowana jest za pomocą elementów typu NOR, to należy zanegować wszystkie wejścia i wyjścia. Jeżeli funkcja zapisana w formie iloczynu sum, ma być zrealizowana jest za pomocą elementów typu NAND, to należy zanegować wszystkie wejścia i wyjścia.

77 f 7 A1 A 2 A 3 a b c

78 Przerzutnik rs s r Q Q s r Q

79 Przerzutnik jk j k Q Q j k Q

80 Przerzutnik t t Q Q t Q

81 Przerzutnik RS S c R Q Q c S S c R Q Q R Q

82 Przerzutnik JK J c K Q Q c J J c Q Q K Q

83 Przerzutnik D D c Q Q c D c Q Q D Q

84 Przerzutnik T T c Q Q c T c Q Q T Q

85 Tablice wzbudzeń podstawowych przerzutników Q t Q t+1 D T JK RS D=1 T=1 J=1 K=1 R=1 S=1 Warunek konieczny Warunek dozwolony Q t Q t Q t Q t

86 D = [F,F,(F 1 1 )] S = [F,(F,F 1 1 )] R = [F,(F,F 0 0 )] J = [F,(F,F,F )] K = [F,(F,F,F )] T = [F,F,(F 1 0 )]

Układy logiczne. Instytut Automatyki

Układy logiczne. Instytut Automatyki Układy logiczne Instytut Automatyki Wiadomość, informacja Wiadomość i informacja są podstawowymi pojęciami informatyki. Znaczenie obu pojęć na gruncie informatyki nie całkowicie pokrywa się z potocznym

Bardziej szczegółowo

Bramki logiczne Podstawowe składniki wszystkich układów logicznych

Bramki logiczne Podstawowe składniki wszystkich układów logicznych Układy logiczne Bramki logiczne A B A B AND NAND A B A B OR NOR A NOT A B A B XOR NXOR A NOT A B AND NAND A B OR NOR A B XOR NXOR Podstawowe składniki wszystkich układów logicznych 2 Podstawowe tożsamości

Bardziej szczegółowo

Tranzystor JFET i MOSFET zas. działania

Tranzystor JFET i MOSFET zas. działania Tranzystor JFET i MOSFET zas. działania brak kanału v GS =v t (cutoff ) kanał otwarty brak kanału kanał otwarty kanał zamknięty w.2, p. kanał zamknięty Co było na ostatnim wykładzie? Układy cyfrowe Najczęściej

Bardziej szczegółowo

Automatyzacja i robotyzacja procesów produkcyjnych

Automatyzacja i robotyzacja procesów produkcyjnych Automatyzacja i robotyzacja procesów produkcyjnych Instrukcja laboratoryjna Technika cyfrowa Opracował: mgr inż. Krzysztof Bodzek Cel ćwiczenia. Celem ćwiczenia jest zapoznanie studenta z zapisem liczb

Bardziej szczegółowo

LEKCJA. TEMAT: Funktory logiczne.

LEKCJA. TEMAT: Funktory logiczne. TEMAT: Funktory logiczne. LEKCJA 1. Bramką logiczną (funktorem) nazywa się układ elektroniczny realizujący funkcje logiczne jednej lub wielu zmiennych. Sygnały wejściowe i wyjściowe bramki przyjmują wartość

Bardziej szczegółowo

Podstawy Informatyki Elementarne podzespoły komputera

Podstawy Informatyki Elementarne podzespoły komputera Podstawy Informatyki alina.momot@polsl.pl http://zti.polsl.pl/amomot/pi Plan wykładu 1 Reprezentacja informacji Podstawowe bramki logiczne 2 Przerzutniki Przerzutnik SR Rejestry Liczniki 3 Magistrala Sygnały

Bardziej szczegółowo

UKŁAD SCALONY. Cyfrowe układy można podzielić ze względu na różne kryteria, na przykład sposób przetwarzania informacji, technologię wykonania.

UKŁAD SCALONY. Cyfrowe układy można podzielić ze względu na różne kryteria, na przykład sposób przetwarzania informacji, technologię wykonania. UKŁDAY CYFROWE Układy cyfrowe są w praktyce realizowane różnymi technikami. W prostych urządzeniach automatyki powszechnie stosowane są układy elektryczne, wykorzystujące przekaźniki jako podstawowe elementy

Bardziej szczegółowo

Podstawy Automatyki. Wykład 9 - Podstawy matematyczne automatyki procesów dyskretnych. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 9 - Podstawy matematyczne automatyki procesów dyskretnych. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki Wykład 9 - Podstawy matematyczne automatyki procesów dyskretnych Instytut Automatyki i Robotyki Warszawa, 2015 Kody liczb całkowitych nieujemnych Kody liczbowe dzielimy na analityczne nieanalityczne (symboliczne)

Bardziej szczegółowo

PODSTAWY TEORII UKŁADÓW CYFROWYCH

PODSTAWY TEORII UKŁADÓW CYFROWYCH PODSTAWY TEORII UKŁADÓW CYFROWYCH UKŁADY KODUJĄCE Kodery Kodery Kodery służą do przedstawienia informacji z tylko jednego aktywnego wejścia na postać binarną. Ponieważ istnieje fizyczna możliwość jednoczesnej

Bardziej szczegółowo

Układy kombinacyjne 1

Układy kombinacyjne 1 Układy kombinacyjne 1 Układy kombinacyjne są to układy cyfrowe, których stany wyjść są zawsze jednoznacznie określone przez stany wejść. Oznacza to, że doprowadzając na wejścia tych układów określoną kombinację

Bardziej szczegółowo

Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych

Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych 1 Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych 1. Podstawowe operacje logiczne dla cyfr binarnych Jeśli cyfry 0 i 1 potraktujemy tak, jak wartości logiczne fałsz i prawda, to działanie

Bardziej szczegółowo

Automatyka. Treść wykładów: Multiplekser. Układ kombinacyjny. Demultiplekser. Koder

Automatyka. Treść wykładów: Multiplekser. Układ kombinacyjny. Demultiplekser. Koder Treść wykładów: utomatyka dr inż. Szymon Surma szymon.surma@polsl.pl http://zawt.polsl.pl/studia pok., tel. +48 6 46. Podstawy automatyki. Układy kombinacyjne,. Charakterystyka,. Multiplekser, demultiplekser,.

Bardziej szczegółowo

WSTĘP DO ELEKTRONIKI

WSTĘP DO ELEKTRONIKI WSTĘP DO ELEKTRONIKI Część VII Układy cyfrowe Janusz Brzychczyk IF UJ Układy cyfrowe W układach cyfrowych sygnały napięciowe (lub prądowe) przyjmują tylko określoną liczbę poziomów, którym przyporządkowywane

Bardziej szczegółowo

Lista tematów na kolokwium z wykładu z Techniki Cyfrowej w roku ak. 2013/2014

Lista tematów na kolokwium z wykładu z Techniki Cyfrowej w roku ak. 2013/2014 Lista tematów na kolokwium z wykładu z Techniki Cyfrowej w roku ak. 2013/2014 Temat 1. Algebra Boole a i bramki 1). Podać przykład dowolnego prawa lub tożsamości, które jest spełnione w algebrze Boole

Bardziej szczegółowo

dr inż. Rafał Klaus Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia i ich zastosowań w przemyśle" POKL

dr inż. Rafał Klaus Zajęcia finansowane z projektu Rozwój i doskonalenie kształcenia i ich zastosowań w przemyśle POKL Technika cyfrowa w architekturze komputerów materiał do wykładu 2/3 dr inż. Rafał Klaus Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii

Bardziej szczegółowo

UKŁADY SEKWENCYJNE Opracował: Andrzej Nowak

UKŁADY SEKWENCYJNE Opracował: Andrzej Nowak PODSTAWY TEORII UKŁADÓW CYFROWYCH UKŁADY SEKWENCYJNE Opracował: Andrzej Nowak Bibliografia: Urządzenia techniki komputerowej, K. Wojtuszkiewicz http://pl.wikipedia.org/ Układem sekwencyjnym nazywamy układ

Bardziej szczegółowo

Arytmetyka liczb binarnych

Arytmetyka liczb binarnych Wartość dwójkowej liczby stałoprzecinkowej Wartość dziesiętna stałoprzecinkowej liczby binarnej Arytmetyka liczb binarnych b n-1...b 1 b 0,b -1 b -2...b -m = b n-1 2 n-1 +... + b 1 2 1 + b 0 2 0 + b -1

Bardziej szczegółowo

Układy logiczne układy cyfrowe

Układy logiczne układy cyfrowe Układy logiczne układy cyfrowe Jak projektować układy cyfrowe (systemy cyfrowe) Układy arytmetyki rozproszonej filtrów cyfrowych Układy kryptograficzne X Selektor ROM ROM AND Specjalizowane układy cyfrowe

Bardziej szczegółowo

Architektura komputerów Wykład 2

Architektura komputerów Wykład 2 Architektura komputerów Wykład 2 Jan Kazimirski 1 Elementy techniki cyfrowej 2 Plan wykładu Algebra Boole'a Podstawowe układy cyfrowe bramki Układy kombinacyjne Układy sekwencyjne 3 Algebra Boole'a Stosowana

Bardziej szczegółowo

Krótkie przypomnienie

Krótkie przypomnienie Krótkie przypomnienie Prawa de Morgana: Kod Gray'a A+ B= Ā B AB= Ā + B Układ kombinacyjne: Tablicy prawdy Symbolu graficznego Równania Boole a NOR Negative-AND w.11, p.1 XOR Układy arytmetyczne Cyfrowe

Bardziej szczegółowo

Zadania do wykładu 1, Zapisz liczby binarne w kodzie dziesiętnym: ( ) 2 =( ) 10, ( ) 2 =( ) 10, (101001, 10110) 2 =( ) 10

Zadania do wykładu 1, Zapisz liczby binarne w kodzie dziesiętnym: ( ) 2 =( ) 10, ( ) 2 =( ) 10, (101001, 10110) 2 =( ) 10 Zadania do wykładu 1,. 1. Zapisz liczby binarne w kodzie dziesiętnym: (1011011) =( ) 10, (11001100) =( ) 10, (101001, 10110) =( ) 10. Zapisz liczby dziesiętne w naturalnym kodzie binarnym: (5) 10 =( ),

Bardziej szczegółowo

Stan wysoki (H) i stan niski (L)

Stan wysoki (H) i stan niski (L) PODSTAWY Przez układy cyfrowe rozumiemy układy, w których w każdej chwili występują tylko dwa (zwykle) możliwe stany, np. tranzystor, jako element układu cyfrowego, może być albo w stanie nasycenia, albo

Bardziej szczegółowo

Dr inż. Jan Chudzikiewicz Pokój 117/65 Tel Materiały:

Dr inż. Jan Chudzikiewicz Pokój 117/65 Tel Materiały: Dr inż Jan Chudzikiewicz Pokój 7/65 Tel 683-77-67 E-mail: jchudzikiewicz@watedupl Materiały: http://wwwitawatedupl/~jchudzikiewicz/ Warunki zaliczenie: Otrzymanie pozytywnej oceny z kolokwium zaliczeniowego

Bardziej szczegółowo

Układy kombinacyjne. cz.2

Układy kombinacyjne. cz.2 Układy kombinacyjne cz.2 Układy kombinacyjne 2/26 Kombinacyjne bloki funkcjonalne Kombinacyjne bloki funkcjonalne - dekodery 3/26 Dekodery Są to układy zamieniające wybrany kod binarny (najczęściej NB)

Bardziej szczegółowo

Ćw. 1: Systemy zapisu liczb, minimalizacja funkcji logicznych, konwertery kodów, wyświetlacze.

Ćw. 1: Systemy zapisu liczb, minimalizacja funkcji logicznych, konwertery kodów, wyświetlacze. Lista zadań do poszczególnych tematów ćwiczeń. MIERNICTWO ELEKTRYCZNE I ELEKTRONICZNE Studia stacjonarne I stopnia, rok II, 2010/2011 Prowadzący wykład: Prof. dr hab. inż. Edward Layer ćw. 15h Tematyka

Bardziej szczegółowo

Wykład nr 1 Techniki Mikroprocesorowe. dr inż. Artur Cichowski

Wykład nr 1 Techniki Mikroprocesorowe. dr inż. Artur Cichowski Wykład nr 1 Techniki Mikroprocesorowe dr inż. Artur Cichowski ix jy i j {0,1} {0,1} Dla układów kombinacyjnych stan dowolnego wyjścia y i w danej chwili czasu zależy wyłącznie od aktualnej kombinacji stanów

Bardziej szczegółowo

Funkcje logiczne X = A B AND. K.M.Gawrylczyk /55

Funkcje logiczne X = A B AND. K.M.Gawrylczyk /55 Układy cyfrowe Funkcje logiczne AND A B X = A B... 2/55 Funkcje logiczne OR A B X = A + B NOT A A... 3/55 Twierdzenia algebry Boole a A + B = B + A A B = B A A + B + C = A + (B+C( B+C) ) = (A+B( A+B) )

Bardziej szczegółowo

ARYTMETYKA BINARNA. Dziesiątkowy system pozycyjny nie jest jedynym sposobem kodowania liczb z jakim mamy na co dzień do czynienia.

ARYTMETYKA BINARNA. Dziesiątkowy system pozycyjny nie jest jedynym sposobem kodowania liczb z jakim mamy na co dzień do czynienia. ARYTMETYKA BINARNA ROZWINIĘCIE DWÓJKOWE Jednym z najlepiej znanych sposobów kodowania informacji zawartej w liczbach jest kodowanie w dziesiątkowym systemie pozycyjnym, w którym dla przedstawienia liczb

Bardziej szczegółowo

Układy cyfrowe. Najczęściej układy cyfrowe służą do przetwarzania sygnałów o dwóch poziomach napięć:

Układy cyfrowe. Najczęściej układy cyfrowe służą do przetwarzania sygnałów o dwóch poziomach napięć: Układy cyfrowe W układach cyfrowych sygnały napięciowe (lub prądowe) przyjmują tylko określoną liczbę poziomów, którym przyporządkowywane są wartości liczbowe. Najczęściej układy cyfrowe służą do przetwarzania

Bardziej szczegółowo

PoniŜej zamieszczone są rysunki przedstawiane na wykładach z przedmiotu Peryferia Komputerowe. ELEKTRONICZNE UKŁADY CYFROWE

PoniŜej zamieszczone są rysunki przedstawiane na wykładach z przedmiotu Peryferia Komputerowe. ELEKTRONICZNE UKŁADY CYFROWE PoniŜej zamieszczone są rysunki przedstawiane na wykładach z przedmiotu Peryferia Komputerowe. ELEKTRONICZNE UKŁADY CYFROWE Podstawowymi bramkami logicznymi są układy stanowiące: - funktor typu AND (funkcja

Bardziej szczegółowo

4. UKŁADY FUNKCJONALNE TECHNIKI CYFROWEJ

4. UKŁADY FUNKCJONALNE TECHNIKI CYFROWEJ 4. UKŁADY FUNKCJONALNE TECHNIKI CYFROWEJ 4.1. UKŁADY KONWERSJI KODÓW 4.1.1. Kody Kod - sposób reprezentacji sygnału cyfrowego za pomocą grupy sygnałów binarnych: Sygnał cyfrowy wektor bitowy Gdzie np.

Bardziej szczegółowo

Cyfrowe układy scalone c.d. funkcje

Cyfrowe układy scalone c.d. funkcje Cyfrowe układy scalone c.d. funkcje Ryszard J. Barczyński, 206 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Kombinacyjne układy cyfrowe

Bardziej szczegółowo

Automatyka Treść wykładów: Literatura. Wstęp. Sygnał analogowy a cyfrowy. Bieżące wiadomości:

Automatyka Treść wykładów: Literatura. Wstęp. Sygnał analogowy a cyfrowy. Bieżące wiadomości: Treść wykładów: Automatyka dr inż. Szymon Surma szymon.surma@polsl.pl pok. 202, tel. +48 32 603 4136 1. Podstawy automatyki 1. Wstęp, 2. Różnice między sygnałem analogowym a cyfrowym, 3. Podstawowe elementy

Bardziej szczegółowo

LICZNIKI PODZIAŁ I PARAMETRY

LICZNIKI PODZIAŁ I PARAMETRY LICZNIKI PODZIAŁ I PARAMETRY Licznik jest układem służącym do zliczania impulsów zerojedynkowych oraz zapamiętywania ich liczby. Zależnie od liczby n przerzutników wchodzących w skład licznika pojemność

Bardziej szczegółowo

ćwiczenie 202 Temat: Układy kombinacyjne 1. Cel ćwiczenia

ćwiczenie 202 Temat: Układy kombinacyjne 1. Cel ćwiczenia Opracował: dr inż. Jarosław Mierzwa KTER INFORMTKI TEHNIZNEJ Ćwiczenia laboratoryjne z Logiki Układów yfrowych ćwiczenie 202 Temat: Układy kombinacyjne 1. el ćwiczenia Ćwiczenie ma na celu praktyczne zapoznanie

Bardziej szczegółowo

1.1. Pozycyjne systemy liczbowe

1.1. Pozycyjne systemy liczbowe 1.1. Pozycyjne systemy liczbowe Systemami liczenia nazywa się sposób tworzenia liczb ze znaków cyfrowych oraz zbiór reguł umożliwiających wykonywanie operacji arytmetycznych na liczbach. Dla dowolnego

Bardziej szczegółowo

dwójkę liczącą Licznikiem Podział liczników:

dwójkę liczącą Licznikiem Podział liczników: 1. Dwójka licząca Przerzutnik typu D łatwo jest przekształcić w przerzutnik typu T i zrealizować dzielnik modulo 2 - tzw. dwójkę liczącą. W tym celu wystarczy połączyć wyjście zanegowane Q z wejściem D.

Bardziej szczegółowo

Wstęp do Techniki Cyfrowej... Układy kombinacyjne

Wstęp do Techniki Cyfrowej... Układy kombinacyjne Wstęp do Techniki Cyfrowej... Układy kombinacyjne Przypomnienie Stan wejść układu kombinacyjnego jednoznacznie określa stan wyjść. Poszczególne wyjścia określane są przez funkcje boolowskie zmiennych wejściowych.

Bardziej szczegółowo

Funkcja Boolowska a kombinacyjny blok funkcjonalny

Funkcja Boolowska a kombinacyjny blok funkcjonalny SWB - Kombinacyjne bloki funkcjonalne - wykład 3 asz 1 Funkcja Boolowska a kombinacyjny blok funkcjonalny Kombinacyjny blok funkcjonalny w technice cyfrowej jest układem kombinacyjnym złożonym znwejściach

Bardziej szczegółowo

Układy logiczne. Wstęp doinformatyki. Funkcje boolowskie (1854) Funkcje boolowskie. Operacje logiczne. Funkcja boolowska (przykład)

Układy logiczne. Wstęp doinformatyki. Funkcje boolowskie (1854) Funkcje boolowskie. Operacje logiczne. Funkcja boolowska (przykład) Wstęp doinformatyki Układy logiczne komputerów kombinacyjne sekwencyjne Układy logiczne Układy kombinacyjne Dr inż. Ignacy Pardyka Akademia Świętokrzyska Kielce, 2001 synchroniczne asynchroniczne Wstęp

Bardziej szczegółowo

Układy kombinacyjne Y X 4 X 5. Rys. 1 Kombinacyjna funkcja logiczna.

Układy kombinacyjne Y X 4 X 5. Rys. 1 Kombinacyjna funkcja logiczna. Układy kombinacyjne. Czas trwania: 6h. Cele ćwiczenia Przypomnienie podstawowych praw Algebry Boole a. Zaprojektowanie, montaż i sprawdzenie działania zadanych układów kombinacyjnych.. Wymagana znajomość

Bardziej szczegółowo

LICZNIKI Liczniki scalone serii 749x

LICZNIKI Liczniki scalone serii 749x LABOATOIUM PODSTAWY ELEKTONIKI LICZNIKI Liczniki scalone serii 749x Cel ćwiczenia Zapoznanie się z budową i zasadą działania liczników synchronicznych i asynchronicznych. Poznanie liczników dodających

Bardziej szczegółowo

12. Wprowadzenie Sygnały techniki cyfrowej Systemy liczbowe. Matematyka: Elektronika:

12. Wprowadzenie Sygnały techniki cyfrowej Systemy liczbowe. Matematyka: Elektronika: PRZYPOMNIJ SOBIE! Matematyka: Dodawanie i odejmowanie "pod kreską". Elektronika: Sygnały cyfrowe. Zasadę pracy tranzystorów bipolarnych i unipolarnych. 12. Wprowadzenie 12.1. Sygnały techniki cyfrowej

Bardziej szczegółowo

Wstęp do Techniki Cyfrowej... Synchroniczne układy sekwencyjne

Wstęp do Techniki Cyfrowej... Synchroniczne układy sekwencyjne Wstęp do Techniki Cyfrowej... Synchroniczne układy sekwencyjne Schemat ogólny X Y Układ kombinacyjny S Z Pamięć Zegar Działanie układu Zmiany wartości wektora S możliwe tylko w dyskretnych chwilach czasowych

Bardziej szczegółowo

Układy logiczne układy cyfrowe

Układy logiczne układy cyfrowe Układy logiczne układy cyfrowe Jak projektować układy cyfrowe (systemy cyfrowe) Układy arytmetyki rozproszonej filtrów cyfrowych Układy kryptograficzne Evatronix KontrolerEthernet MAC (Media Access Control)

Bardziej szczegółowo

Układy arytmetyczne. Joanna Ledzińska III rok EiT AGH 2011

Układy arytmetyczne. Joanna Ledzińska III rok EiT AGH 2011 Układy arytmetyczne Joanna Ledzińska III rok EiT AGH 2011 Plan prezentacji Metody zapisu liczb ze znakiem Układy arytmetyczne: Układy dodające Półsumator Pełny sumator Półsubtraktor Pełny subtraktor Układy

Bardziej szczegółowo

Cyfrowe Elementy Automatyki. Bramki logiczne, przerzutniki, liczniki, sterowanie wyświetlaczem

Cyfrowe Elementy Automatyki. Bramki logiczne, przerzutniki, liczniki, sterowanie wyświetlaczem Cyfrowe Elementy Automatyki Bramki logiczne, przerzutniki, liczniki, sterowanie wyświetlaczem Układy cyfrowe W układach cyfrowych sygnały napięciowe (lub prądowe) przyjmują tylko określoną liczbę poziomów,

Bardziej szczegółowo

Wielkość analogowa w danym przedziale swojej zmienności przyjmuje nieskończoną liczbę wartości.

Wielkość analogowa w danym przedziale swojej zmienności przyjmuje nieskończoną liczbę wartości. TECHNOLOGE CYFOWE kłady elektroniczne. Podzespoły analogowe. Podzespoły cyfrowe Wielkość analogowa w danym przedziale swojej zmienności przyjmuje nieskończoną liczbę wartości. Wielkość cyfrowa w danym

Bardziej szczegółowo

Wprowadzenie do architektury komputerów systemy liczbowe, operacje arytmetyczne i logiczne

Wprowadzenie do architektury komputerów systemy liczbowe, operacje arytmetyczne i logiczne Wprowadzenie do architektury komputerów systemy liczbowe, operacje arytmetyczne i logiczne 1. Bit Pozycja rejestru lub komórki pamięci służąca do przedstawiania (pamiętania) cyfry w systemie (liczbowym)

Bardziej szczegółowo

Rys. 2. Symbole dodatkowych bramek logicznych i ich tablice stanów.

Rys. 2. Symbole dodatkowych bramek logicznych i ich tablice stanów. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z funktorami realizującymi podstawowe funkcje logiczne poprzez zaprojektowanie, wykonanie i przetestowanie kombinacyjnego układu logicznego realizującego

Bardziej szczegółowo

Cyfrowy zapis informacji. 5 grudnia 2013 Wojciech Kucewicz 2

Cyfrowy zapis informacji. 5 grudnia 2013 Wojciech Kucewicz 2 Cyfrowy zapis informacji 5 grudnia 2013 Wojciech Kucewicz 2 Bit, Bajt, Słowo 5 grudnia 2013 Wojciech Kucewicz 3 Cyfrowy zapis informacji Bit [ang. binary digit] jest elementem zbioru dwuelementowego używanym

Bardziej szczegółowo

Wstęp do Techniki Cyfrowej... Algebra Boole a

Wstęp do Techniki Cyfrowej... Algebra Boole a Wstęp do Techniki Cyfrowej... Algebra Boole a Po co AB? Świetne narzędzie do analitycznego opisu układów logicznych. 1854r. George Boole opisuje swój system dedukcyjny. Ukoronowanie zapoczątkowanych w

Bardziej szczegółowo

INSTYTUT CYBERNETYKI TECHNICZNEJ POLITECHNIKI WROCŁAWSKIEJ ZAKŁAD SZTUCZNEJ INTELIGENCJI I AUTOMATÓW

INSTYTUT CYBERNETYKI TECHNICZNEJ POLITECHNIKI WROCŁAWSKIEJ ZAKŁAD SZTUCZNEJ INTELIGENCJI I AUTOMATÓW INSTYTUT YERNETYKI TEHNIZNEJ POLITEHNIKI WROŁWSKIEJ ZKŁD SZTUZNEJ INTELIGENJI I UTOMTÓW Ćwiczenia laboratoryjne z Logiki Układów yfrowych ćwiczenie 22 temat: UKŁDY KOMINYJNE. EL ĆWIZENI Ćwiczenie ma na

Bardziej szczegółowo

Wstęp do Techniki Cyfrowej i Mikroelektroniki

Wstęp do Techniki Cyfrowej i Mikroelektroniki Wstęp do Techniki Cyfrowej i Mikroelektroniki dr inż. Maciej Piotrowicz Katedra Mikroelektroniki i Technik Informatycznych PŁ piotrowi@dmcs.p.lodz.pl http://fiona.dmcs.pl/~piotrowi -> Wstęp do... Układy

Bardziej szczegółowo

Pracownia elektryczna i elektroniczna. Elektronika cyfrowa. Ćwiczenie nr 5.

Pracownia elektryczna i elektroniczna. Elektronika cyfrowa. Ćwiczenie nr 5. Pracownia elektryczna i elektroniczna. Elektronika cyfrowa. Ćwiczenie nr 5. Klasa III Opracuj projekt realizacji prac związanych z badaniem działania cyfrowych bloków arytmetycznych realizujących operacje

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: obowiązkowy w ramach treści kierunkowych, moduł kierunkowy ogólny Rodzaj zajęć: wykład, laboratorium, ćwiczenia I KARTA PRZEDMIOTU CEL PRZEDMIOTU

Bardziej szczegółowo

Temat 7. Dekodery, enkodery

Temat 7. Dekodery, enkodery Temat 7. Dekodery, enkodery 1. Pojęcia: koder, dekoder, enkoder, konwerter kodu, transkoder, enkoder priorytetowy... Koderami (lub enkoderami) nazywamy układy realizujące proces zamiany informacji kodowanej

Bardziej szczegółowo

Przerzutnik ma pewną liczbę wejść i z reguły dwa wyjścia.

Przerzutnik ma pewną liczbę wejść i z reguły dwa wyjścia. Kilka informacji o przerzutnikach Jaki układ elektroniczny nazywa się przerzutnikiem? Przerzutnikiem bistabilnym jest nazywany układ elektroniczny, charakteryzujący się istnieniem dwóch stanów wyróżnionych

Bardziej szczegółowo

Układy sekwencyjne. Podstawowe informacje o układach cyfrowych i przerzutnikach (rodzaje, sposoby wyzwalania).

Układy sekwencyjne. Podstawowe informacje o układach cyfrowych i przerzutnikach (rodzaje, sposoby wyzwalania). Ćw. 10 Układy sekwencyjne 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z sekwencyjnymi, cyfrowymi blokami funkcjonalnymi. W ćwiczeniu w oparciu o poznane przerzutniki zbudowane zostaną układy rejestrów

Bardziej szczegółowo

DYDAKTYKA ZAGADNIENIA CYFROWE ZAGADNIENIA CYFROWE

DYDAKTYKA ZAGADNIENIA CYFROWE ZAGADNIENIA CYFROWE ZAGADNIENIA CYFROWE ZAGADNIENIA CYFROWE @KEMOR SPIS TREŚCI. SYSTEMY LICZBOWE...3.. SYSTEM DZIESIĘTNY...3.2. SYSTEM DWÓJKOWY...3.3. SYSTEM SZESNASTKOWY...4 2. PODSTAWOWE OPERACJE NA LICZBACH BINARNYCH...5

Bardziej szczegółowo

Podstawy Automatyki. Wykład 13 - Układy bramkowe. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 13 - Układy bramkowe. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 13 - Układy bramkowe Instytut Automatyki i Robotyki Warszawa, 2015 Układy z elementów logicznych Bramki logiczne Elementami logicznymi (bramkami logicznymi) są urządzenia o dwustanowym sygnale wyjściowym

Bardziej szczegółowo

ćwiczenie 203 Temat: Układy sekwencyjne 1. Cel ćwiczenia

ćwiczenie 203 Temat: Układy sekwencyjne 1. Cel ćwiczenia Opracował: mgr inż. Antoni terna ATEDA INFOMATYI TEHNIZNE Ćwiczenia laboratoryjne z Logiki Układów yfrowych ćwiczenie 203 Temat: Układy sekwencyjne 1. el ćwiczenia elem ćwiczenia jest zapoznanie się z

Bardziej szczegółowo

1.Wprowadzenie do projektowania układów sekwencyjnych synchronicznych

1.Wprowadzenie do projektowania układów sekwencyjnych synchronicznych .Wprowadzenie do projektowania układów sekwencyjnych synchronicznych.. Przerzutniki synchroniczne Istota działania przerzutników synchronicznych polega na tym, że zmiana stanu wewnętrznego powinna nastąpić

Bardziej szczegółowo

LABORATORIUM ELEKTRONIKI I TEORII OBWODÓW

LABORATORIUM ELEKTRONIKI I TEORII OBWODÓW POLITECHNIKA POZNAŃSKA FILIA W PILE LABORATORIUM ELEKTRONIKI I TEORII OBWODÓW numer ćwiczenia: data wykonania ćwiczenia: data oddania sprawozdania: OCENA: 6 21.11.2002 28.11.2002 tytuł ćwiczenia: wykonawcy:

Bardziej szczegółowo

Podstawy działania układów cyfrowych...2 Systemy liczbowe...2 Kodowanie informacji...3 Informacja cyfrowa...4 Bramki logiczne...

Podstawy działania układów cyfrowych...2 Systemy liczbowe...2 Kodowanie informacji...3 Informacja cyfrowa...4 Bramki logiczne... Podstawy działania układów cyfrowych...2 Systemy liczbowe...2 Kodowanie informacji...3 Informacja cyfrowa...4 Bramki logiczne...4 Podział układów logicznych...6 Cyfrowe układy funkcjonalne...8 Rejestry...8

Bardziej szczegółowo

CYFROWE UKŁADY SCALONE STOSOWANE W AUTOMATYCE

CYFROWE UKŁADY SCALONE STOSOWANE W AUTOMATYCE Pracownia Automatyki Katedry Tworzyw Drzewnych Ćwiczenie 5 str. 1/16 ĆWICZENIE 5 CYFROWE UKŁADY SCALONE STOSOWANE W AUTOMATYCE 1.CEL ĆWICZENIA: zapoznanie się z podstawowymi elementami cyfrowymi oraz z

Bardziej szczegółowo

Część 2. Funkcje logiczne układy kombinacyjne

Część 2. Funkcje logiczne układy kombinacyjne Część 2 Funkcje logiczne układy kombinacyjne Zapis funkcji logicznych układ funkcjonalnie pełny Arytmetyka Bool a najważniejsze aksjomaty i tożsamości Minimalizacja funkcji logicznych Układy kombinacyjne

Bardziej szczegółowo

Badanie układów średniej skali integracji - ćwiczenie Cel ćwiczenia. 2. Wykaz przyrządów i elementów: 3. Przedmiot badań

Badanie układów średniej skali integracji - ćwiczenie Cel ćwiczenia. 2. Wykaz przyrządów i elementów: 3. Przedmiot badań adanie układów średniej skali integracji - ćwiczenie 6. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi układami SSI (Średniej Skali Integracji). Przed wykonaniem ćwiczenia należy zapoznać

Bardziej szczegółowo

Podstawy Automatyki. Wykład 12 - synteza i minimalizacja funkcji logicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 12 - synteza i minimalizacja funkcji logicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 12 - synteza i minimalizacja funkcji logicznych Instytut Automatyki i Robotyki Warszawa, 2017 Synteza funkcji logicznych Terminy - na bazie funkcji trójargumenowej y = (x 1, x 2, x 3 ) (1) Elementarny

Bardziej szczegółowo

Elektronika i techniki mikroprocesorowe. Instrukcja do zajęć laboratoryjnych. Część: Technika Cyfrowa Liczba zajęć: 3 + zaliczające

Elektronika i techniki mikroprocesorowe. Instrukcja do zajęć laboratoryjnych. Część: Technika Cyfrowa Liczba zajęć: 3 + zaliczające Przygotowali: J. Michalak, M. Zygmanowski, M. Jeleń Elektronika i techniki mikroprocesorowe Instrukcja do zajęć laboratoryjnych Część: Technika Cyfrowa Liczba zajęć: 3 + zaliczające Celem zajęć jest zapoznanie

Bardziej szczegółowo

Część 3. Układy sekwencyjne. Układy sekwencyjne i układy iteracyjne - grafy stanów TCiM Wydział EAIiIB Katedra EiASPE 1

Część 3. Układy sekwencyjne. Układy sekwencyjne i układy iteracyjne - grafy stanów TCiM Wydział EAIiIB Katedra EiASPE 1 Część 3 Układy sekwencyjne Układy sekwencyjne i układy iteracyjne - grafy stanów 18.11.2017 TCiM Wydział EAIiIB Katedra EiASPE 1 Układ cyfrowy - przypomnienie Podstawowe informacje x 1 x 2 Układ cyfrowy

Bardziej szczegółowo

Arytmetyka binarna - wykład 6

Arytmetyka binarna - wykład 6 SWB - Arytmetyka binarna - wykład 6 asz 1 Arytmetyka binarna - wykład 6 Adam Szmigielski aszmigie@pjwstk.edu.pl SWB - Arytmetyka binarna - wykład 6 asz 2 Naturalny kod binarny (NKB) pozycja 7 6 5 4 3 2

Bardziej szczegółowo

Plan wykładu. Architektura systemów komputerowych. Cezary Bolek

Plan wykładu. Architektura systemów komputerowych. Cezary Bolek Architektura systemów komputerowych Poziom układów logicznych. Układy sekwencyjne Cezary Bolek Katedra Informatyki Plan wykładu Układy sekwencyjne Synchroniczność, asynchroniczność Zatrzaski Przerzutniki

Bardziej szczegółowo

Wykład 2. Informatyka Stosowana. 8 października 2018, M. A-B. Informatyka Stosowana Wykład 2 8 października 2018, M. A-B 1 / 41

Wykład 2. Informatyka Stosowana. 8 października 2018, M. A-B. Informatyka Stosowana Wykład 2 8 października 2018, M. A-B 1 / 41 Wykład 2 Informatyka Stosowana 8 października 2018, M. A-B Informatyka Stosowana Wykład 2 8 października 2018, M. A-B 1 / 41 Elementy logiki matematycznej Informatyka Stosowana Wykład 2 8 października

Bardziej szczegółowo

Elektronika (konspekt)

Elektronika (konspekt) Elektronika (konspekt) Franciszek Gołek (golek@ifd.uni.wroc.pl) www.pe.ifd.uni.wroc.pl Wykład 12 Podstawy elektroniki cyfrowej (kody i układy logiczne kombinacyjne) Dwa znaki wystarczają aby w układach

Bardziej szczegółowo

Technika cyfrowa Synteza układów kombinacyjnych (I)

Technika cyfrowa Synteza układów kombinacyjnych (I) Sławomir Kulesza Technika cyfrowa Synteza układów kombinacyjnych (I) Wykład dla studentów III roku Informatyki Wersja 2.0, 05/10/2011 Podział układów logicznych Opis funkcjonalny układów logicznych x 1

Bardziej szczegółowo

Architektura komputerów

Architektura komputerów Wykład jest przygotowany dla IV semestru kierunku Elektronika i Telekomunikacja. Studia I stopnia Dr inż. Małgorzata Langer Architektura komputerów Prezentacja multimedialna współfinansowana przez Unię

Bardziej szczegółowo

INSTYTUT CYBERNETYKI TECHNICZNEJ POLITECHNIKI WROCŁAWSKIEJ ZAKŁAD SZTUCZNEJ INTELIGENCJI I AUTOMATÓW

INSTYTUT CYBERNETYKI TECHNICZNEJ POLITECHNIKI WROCŁAWSKIEJ ZAKŁAD SZTUCZNEJ INTELIGENCJI I AUTOMATÓW e-version: dr inż. Tomasz apłon INTYTUT YBENETYI TEHNIZNE PLITEHNII WŁAWIE ZAŁA ZTUZNE INTELIGENI I AUTMATÓW Ćwiczenia laboratoryjne z Logiki Układów yfrowych ćwiczenie 23 temat: UŁAY EWENYNE. EL ĆWIZENIA

Bardziej szczegółowo

Technika cyfrowa Synteza układów kombinacyjnych

Technika cyfrowa Synteza układów kombinacyjnych Sławomir Kulesza Technika cyfrowa Synteza układów kombinacyjnych Wykład dla studentów III roku Informatyki Wersja 2.0, 05/10/2011 Podział układów logicznych Opis funkcjonalny układów logicznych x 1 y 1

Bardziej szczegółowo

PAMIĘĆ RAM. Rysunek 1. Blokowy schemat pamięci

PAMIĘĆ RAM. Rysunek 1. Blokowy schemat pamięci PAMIĘĆ RAM Pamięć służy do przechowania bitów. Do pamięci musi istnieć możliwość wpisania i odczytania danych. Bity, które są przechowywane pamięci pogrupowane są na komórki, z których każda przechowuje

Bardziej szczegółowo

Lekcja na Pracowni Podstaw Techniki Komputerowej z wykorzystaniem komputera

Lekcja na Pracowni Podstaw Techniki Komputerowej z wykorzystaniem komputera Lekcja na Pracowni Podstaw Techniki Komputerowej z wykorzystaniem komputera Temat lekcji: Minimalizacja funkcji logicznych Etapy lekcji: 1. Podanie tematu i określenie celu lekcji SOSOBY MINIMALIZACJI

Bardziej szczegółowo

Ćw. 7: Układy sekwencyjne

Ćw. 7: Układy sekwencyjne Ćw. 7: Układy sekwencyjne Wstęp Celem ćwiczenia jest zapoznanie się z sekwencyjnymi, cyfrowymi blokami funkcjonalnymi. W ćwiczeniu w oparciu o poznane przerzutniki zbudowane zostaną następujące układy

Bardziej szczegółowo

Sekwencyjne bloki funkcjonalne

Sekwencyjne bloki funkcjonalne ekwencyjne bloki funkcjonalne Układy sekwencyjne bloki funkcjonalne 2/28 ejestry - układy do przechowywania informacji, charakteryzujące się róŝnymi metodami jej zapisu lub odczytu a) b) we wy we... we

Bardziej szczegółowo

Badanie elektronicznych układów cyfrowych 312[02].O2.02

Badanie elektronicznych układów cyfrowych 312[02].O2.02 MINISTERSTWO EDUKACJI NARODOWEJ Jarosław Świtalski Badanie elektronicznych układów cyfrowych 32[2].O2.2 Poradnik dla ucznia Wydawca Instytut Technologii Eksploatacji Państwowy Instytut Badawczy Radom 27

Bardziej szczegółowo

Naturalny kod binarny (NKB)

Naturalny kod binarny (NKB) SWB - Arytmetyka binarna - wykład 6 asz 1 Naturalny kod binarny (NKB) pozycja 7 6 5 4 3 2 1 0 wartość 2 7 2 6 2 5 2 4 2 3 2 2 2 1 2 0 wartość 128 64 32 16 8 4 2 1 bity b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 System

Bardziej szczegółowo

1. Poznanie właściwości i zasady działania rejestrów przesuwnych. 2. Poznanie właściwości i zasady działania liczników pierścieniowych.

1. Poznanie właściwości i zasady działania rejestrów przesuwnych. 2. Poznanie właściwości i zasady działania liczników pierścieniowych. Ćwiczenie 9 Rejestry przesuwne i liczniki pierścieniowe. Cel. Poznanie właściwości i zasady działania rejestrów przesuwnych.. Poznanie właściwości i zasady działania liczników pierścieniowych. Wprowadzenie.

Bardziej szczegółowo

UKŁADY CYFROWE. Układ kombinacyjny

UKŁADY CYFROWE. Układ kombinacyjny UKŁADY CYFROWE Układ kombinacyjny Układów kombinacyjnych są bramki. Jedną z cech układów kombinacyjnych jest możliwość przedstawienia ich działania (opisu) w postaci tabeli prawdy. Tabela prawdy podaje

Bardziej szczegółowo

Architektura systemów komputerowych

Architektura systemów komputerowych Architektura systemów komputerowych Sławomir Mamica Wykład 2: Między sprzętem a matematyką http://main5.amu.edu.pl/~zfp/sm/home.html W poprzednim odcinku O przedmiocie: architektura jako organizacja, może

Bardziej szczegółowo

Przykładowe pytania DSP 1

Przykładowe pytania DSP 1 Przykładowe pytania SP Przykładowe pytania Systemy liczbowe. Przedstawić liczby; -, - w kodzie binarnym i hexadecymalnym uzupełnionym do dwóch (liczba 6 bitowa).. odać dwie liczby binarne w kodzie U +..

Bardziej szczegółowo

LABORATORIUM ELEKTRONIKI UKŁADY KOMBINACYJNE

LABORATORIUM ELEKTRONIKI UKŁADY KOMBINACYJNE LORTORIUM ELEKTRONIKI UKŁDY KOMINCYJNE ndrzej Malinowski 1. Układy kombinacyjne 1.1 Cel ćwiczenia 3 1.2 Podział kombinacyjnych układów funkcjonalnych 3 1.3 Układy komutacyjne 3 1.3.1 Układy zmiany kodów

Bardziej szczegółowo

1259 (10) = 1 * * * * 100 = 1 * * * *1

1259 (10) = 1 * * * * 100 = 1 * * * *1 Zamiana liczba zapisanych w dowolnym systemie na system dziesiętny: W systemie pozycyjnym o podstawie 10 wartości kolejnych cyfr odpowiadają kolejnym potęgom liczby 10 licząc od strony prawej i numerując

Bardziej szczegółowo

Cyfrowe bramki logiczne 2012

Cyfrowe bramki logiczne 2012 LORTORIUM ELEKTRONIKI yfrowe bramki logiczne 2012 ndrzej Malinowski 1. yfrowe bramki logiczne 3 1.1 el ćwiczenia 3 1.2 Elementy algebry oole`a 3 1.3 Sposoby zapisu funkcji logicznych 4 1.4 Minimalizacja

Bardziej szczegółowo

Logika binarna. Prawo łączności mówimy, że operator binarny * na zbiorze S jest łączny gdy (x * y) * z = x * (y * z) dla każdego x, y, z S.

Logika binarna. Prawo łączności mówimy, że operator binarny * na zbiorze S jest łączny gdy (x * y) * z = x * (y * z) dla każdego x, y, z S. Logika binarna Logika binarna zajmuje się zmiennymi mogącymi przyjmować dwie wartości dyskretne oraz operacjami mającymi znaczenie logiczne. Dwie wartości jakie mogą te zmienne przyjmować noszą przy tym

Bardziej szczegółowo

Podstawy Automatyki. Wykład 13 - Układy bramkowe. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 13 - Układy bramkowe. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 13 - Układy bramkowe Instytut Automatyki i Robotyki Warszawa, 2015 Układy z elementów logicznych Bramki logiczne Elementami logicznymi (bramkami logicznymi) są urządzenia o dwustanowym sygnale wyjściowym

Bardziej szczegółowo

Elektronika i techniki mikroprocesorowe

Elektronika i techniki mikroprocesorowe Elektronika i techniki mikroprocesorowe Technika cyfrowa Podstawowy techniki cyfrowej Katedra Energoelektroniki, Napędu Elektrycznego i Robotyki Wydział Elektryczny, ul. Krzywoustego 2 trochę historii

Bardziej szczegółowo

ARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH

ARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH ARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH reprezentacja danych ASK.RD.01 c Dr inż. Ignacy Pardyka UNIWERSYTET JANA KOCHANOWSKIEGO w Kielcach Rok akad. 2011/2012 c Dr inż. Ignacy Pardyka (Inf.UJK) ASK.RD.01 Rok

Bardziej szczegółowo

Laboratorium podstaw elektroniki

Laboratorium podstaw elektroniki 150875 Grzegorz Graczyk numer indeksu imie i nazwisko 150889 Anna Janicka numer indeksu imie i nazwisko Grupa: 2 Grupa: 5 kierunek Informatyka semestr 2 rok akademicki 2008/09 Laboratorium podstaw elektroniki

Bardziej szczegółowo

Krótkie przypomnienie

Krótkie przypomnienie Krótkie przypomnienie x i ={,} y i ={,} w., p. Bramki logiczne czas propagacji Odpowiedź na wyjściu bramki następuje po pewnym, charakterystycznym dla danego układu czasie od momentu zmiany sygnałów wejściowych.

Bardziej szczegółowo

Ćwiczenie 01 - Strona nr 1 ĆWICZENIE 01

Ćwiczenie 01 - Strona nr 1 ĆWICZENIE 01 ĆWICZENIE 01 Ćwiczenie 01 - Strona nr 1 Polecenie: Bez użycia narzędzi elektronicznych oraz informatycznych, wykonaj konwersje liczb z jednego systemu liczbowego (BIN, OCT, DEC, HEX) do drugiego systemu

Bardziej szczegółowo