Tranzystor JFET i MOSFET zas. działania

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Tranzystor JFET i MOSFET zas. działania"

Transkrypt

1 Tranzystor JFET i MOSFET zas. działania brak kanału v GS =v t (cutoff ) kanał otwarty brak kanału kanał otwarty kanał zamknięty w.2, p. kanał zamknięty

2 Co było na ostatnim wykładzie? Układy cyfrowe Najczęściej układy cyfrowe służą do przetwarzania sygnałów o dwóch poziomach napięć: wysokiego (H high) Binarny (dwójkowy) system liczbowy. niskiego (L low). np..: 2 = Logika dodatnia (w standardzie TTL): 2.4 V 5. V. V.8 V w.2, p.2

3 Co było na ostatnim wykładzie? Algebra Boole'a: Zmienne logiczne przyjmują dwie wartości: prawda (true), fałsz (false) Podstawowe operacje na zmiennych logicznych A i B: Iloczyn logiczny: A*B A AND B Suma logiczba: A+B A OR B Negacja: ~A NOT A Tablica prawdy, np.: AND Prawa de Morgana: A+ B= A B AB= A + B Podział układów cyfrowych: a) kombinacyjne y=f(x), b) sekwencyjne y(tn)=f(x(t),...,x(tn)) Układy kombinacyjne: bramki logiczne (NAND, NOR etc.) w.2, p.3 A B A*B

4 Układ scalony w technice TTL Przekrój: w.2, p.4

5 Co było na ostatnim wykładzie? Bramki logiczne Używając tyko bramek NAND lub tylko bramek NOR można zbudować układ realizujący dowolną funkcję logiczną. Przykłady realizacji podstawowych funkcji logicznych ( NOT, AND, OR ) przy użyciu bramek NAND : w.2, p.5

6 Bramka NAND przykładowy przebieg impulsów Wyjście bramki jest ustawione na, jeśli oba wejścia są. w.2, p.6

7 Bramka NAND przykład zastosowania pr. de Morgana w.2, p.7 AB= A + B

8 Bramka NOR przykładowy przebieg impulsów Wyjście bramki jest ustawione na, jeśli jedno z wejść jest w stanie. w.2, p.8

9 Bramka NOR przykład zastosowanie pr. de Morgana w.2, p.9 A+ B= A B

10 Bramka XOR przykładowy przebieg impulsów Wyjście bramki jest ustawione na, jeśli dokładnie jedno z wejść jest w stanie. w.2, p.

11 Bramka XOR przykład zastosowania Generator bitu parzystości: Parzystość parzysta Dane wysłane. Dane odebrane. w.2, p.

12 kombinacyjny X={x, x2, } Układ Układy kombinacyjne bloki funkcjonalne Układ taki można definiować za pomocą: Tablicy prawdy Symbolu graficznego Równania Boole a w.2, p.2 Y(X)={y, y2, }

13 Układy kombinacyjne przykład Tablica prawdy: Sygnały wejściowe w.2, p.3 Sygnał wyjściowy A B C F 3

14 Układy kombinacyjne przykład Realizacja układu za pomocą bramek AND, OR i NOT: w.2, p.4

15 Układy kombinacyjne przykład Równanie Boole'a: Uwzglądniamy sumę iloczynów wartości zmiennych A, B, C dla których mamy F=. Sygnały wejściowe F= A B C+ A BC + A B C w.2, p.5 A B C Sygnał wyjściowy F

16 Metody upraszczania układów kombinacyjnych (Szukanie minimalnej formuły funkcji boolowskiej) Mapa Karnaugha: F= A B + A B Kod Graya F= A B C+ A B C + A B C F= A B C D+ A B C D+ A B C D w.2, p.6

17 Metody upraszczania układów kombinacyjnych Mapa Karnaugha (reguła ): Rys a8 Jeśli sąsiadujące kwadraty zawierają, to odpowiednie iloczyny różnią się tylko jedną zmienną. W takim przypadku te iloczyny mogą być połączone przez wyeliminowanie tej zmiennej. w.2, p.7

18 Metody upraszczania układów kombinacyjnych Mapa Karnaugha (reguła 2): Gdy zakreślamy grupy, dozwolone jest użycie tej samej jedynki więcej niż jeden raz. w.2, p.8

19 Metody upraszczania układów kombinacyjnych Mapa Karnaugha (reguła 3): Możemy wyeliminować dowolną grupę jedynek, która w całości nakłada się z innymi grupami Metoda map Karnaugha skuteczna dla niewielkiej liczby zmiennych! w.2, p.9

20 Multiplekser Często w praktyce pomiarowej lub obliczeniowej informacja napływa równocześnie z wielu źródeł, a nas interesuje tylko przekaz informacji z jednego z nich. Stosujemy wówczas multiplekser. Multiplekser jest układem logicznym realizującym przepływ informacji tylko z jednego wejścia. Wybór wejścia jest określony przez podanie jego adresu (numeru) na wejścia adresowe. Przepływ informacji z wejścia na wyjście jest możliwy dopiero wówczas, gdy wejście strobujące (zezwalające) znajduje się w stanie logicznym. w.2, p.2

21 Multiplekser zastosowanie w.2, p.2

22 Multiplekser przykład z czterema wejściami w.2, p.22 która linia?

23 Demultiplekser Demultiplekser przekazuje dane z jednego wejścia na selektywnie wybrane adresem wyjście. Tablica prawdy dla demultipleksera z czterema wyjściami: w.2, p.23

24 Kody, konwertery kodów Każda informacja może być przedstawiona jako określona kombinacja bitów. Kombinacja bitów przypisana danej informacji jest nazywana kodem. Kodowanie umożliwia na przykład przedstawienie symboli cyfrowych, liter lub znaków w postaci binarnych słów logicznych. Komunikacja z człowiekiem wymaga stosowania kodu wyświetlającego. W najprostszym przypadku jest to kod siedmiosegmentowego wyświetlacza cyfr. Cyfry kodujemy tak, aby w siedmiobitowym słowie binarnym każdy bit odpowiadał jednemu z segmentów. CYFRA w.2, p a b c d e f g

25 Układy logiczne realizujące kod siedmiosegmentowego wyświetlacza Segment c: ) Tablica prawdy: w.2, p.25 A B C Fc 2) Tablica Karnaugha: A BC F c =B C+ B C + B C+ A B= =B (C +C)+ BC + AB=B+ BC+ AB= =B BC + AB=B BC AB 3) Realizacja: A B C AB B BC AB BC

26 Kody, konwertery kodów Kod Graya (kod refleksyjny) Wśród kodów stosowanych w pomiarach można wyróżnić kod Graya. Główną zaletą tego kodu jest to, że przy przejściu do następnej pozycji zmienia się tylko jeden bit. Kodem Graya długości n (n bitowym) jest ciąg wszystkich 2n różnych ciągów n cyfr {,}, ustawionych tak, że dwa kolejne ciągi różnią sie tylko na jednej pozycji. Ostatni i pierwszy wyraz tego kodu także spełnia tę zasadę (kod cykliczny). w.2, p.26

27 Kody, konwertery kodów Kod z N (kod pierścieniowy) W kodzie tym tylko jeden z bitów przyjmuje wartość (pozostałe bity ). Umożliwia on na przykład wprowadzanie z klawiatury cyfr (naciskamy tylko jeden klawisz). w.2, p.27

28 Kody, konwertery kodów Konwersja pomiędzy kodami : liczbowym binarnym (kod naturalny binarny), liczbowym dziesiętnym, binarnym Graya i binarnym z N (6 elementów). w.2, p.28

29 Konwertery kodów Koderem (enkoderem) nazywamy układ cyfrowy, który przekształca kod z N na określony kod wyjściowy. Sygnał aktywny () pojawiający się na jednym z N wejść zostaje zakodowany w odpowiednie słowo M bitowe (M wyjść kodera). Dekoderem nazywamy układ, który przekształca określony kod wejściowy na kod wyjściowy z N. Dekoder ma więc N wyjść, przy czym każdemu ze słów wejściowych jest przyporządkowany sygnał aktywny pojawiający się tylko na jednym z N wyjść. Transkoderem (translatorem) nazywamy układ realizujący konwersję dwóch dowolnych kodów z których żaden nie jest kodem z N. w.2, p.29

30 Przykład dekodera Dekoder realizujący konwersję dwubitowego naturalnego kodu binarnego na kod z 4. w.2, p.3

31 Przykład zastosowania dekodera Chcemy zbudować kilobajtową pamięć z czterech układów RAM o pojemności 256 bajtów. Przestrzeń adresową możemy podzielić następująco: adres układ FF FF 2 2FF 2 3 3FF 3 w.2, p.3

32 Enkoder, dekoder zastosowanie w.2, p.32

33 Przykład transkodera Transkoder realizujący konwersję naturalnego kodu binarnego na kod Graya (kody 3 bitowe). w.2, p.33

34 Programowalne tablice logiczne (PLA) Koncepcja PLA polega na tym, że dowolna funkcja Boole a może być wyrażona na podstawie sumy iloczynów. Programowanie polega na przepalaniu zbędnych połączeń. w.2, p.34

35 Programowalne tablice logiczne (PLA) Zaprogramowana PLA ( po wypaleniu ). w.2, p.35

36 Pamięć stała (ROM Read Only Memory) Wejścia/ adresy Wyjścia /zawartość Informacja zawarta w pamięci ROM jest trwała. Jest ona zapisana w procesie tworzenia układu. w.2, p.36

Układy cyfrowe. Najczęściej układy cyfrowe służą do przetwarzania sygnałów o dwóch poziomach napięć:

Układy cyfrowe. Najczęściej układy cyfrowe służą do przetwarzania sygnałów o dwóch poziomach napięć: Układy cyfrowe W układach cyfrowych sygnały napięciowe (lub prądowe) przyjmują tylko określoną liczbę poziomów, którym przyporządkowywane są wartości liczbowe. Najczęściej układy cyfrowe służą do przetwarzania

Bardziej szczegółowo

Bramki logiczne Podstawowe składniki wszystkich układów logicznych

Bramki logiczne Podstawowe składniki wszystkich układów logicznych Układy logiczne Bramki logiczne A B A B AND NAND A B A B OR NOR A NOT A B A B XOR NXOR A NOT A B AND NAND A B OR NOR A B XOR NXOR Podstawowe składniki wszystkich układów logicznych 2 Podstawowe tożsamości

Bardziej szczegółowo

WSTĘP DO ELEKTRONIKI

WSTĘP DO ELEKTRONIKI WSTĘP DO ELEKTRONIKI Część VII Układy cyfrowe Janusz Brzychczyk IF UJ Układy cyfrowe W układach cyfrowych sygnały napięciowe (lub prądowe) przyjmują tylko określoną liczbę poziomów, którym przyporządkowywane

Bardziej szczegółowo

Temat 7. Dekodery, enkodery

Temat 7. Dekodery, enkodery Temat 7. Dekodery, enkodery 1. Pojęcia: koder, dekoder, enkoder, konwerter kodu, transkoder, enkoder priorytetowy... Koderami (lub enkoderami) nazywamy układy realizujące proces zamiany informacji kodowanej

Bardziej szczegółowo

ćwiczenie 202 Temat: Układy kombinacyjne 1. Cel ćwiczenia

ćwiczenie 202 Temat: Układy kombinacyjne 1. Cel ćwiczenia Opracował: dr inż. Jarosław Mierzwa KTER INFORMTKI TEHNIZNEJ Ćwiczenia laboratoryjne z Logiki Układów yfrowych ćwiczenie 202 Temat: Układy kombinacyjne 1. el ćwiczenia Ćwiczenie ma na celu praktyczne zapoznanie

Bardziej szczegółowo

Architektura komputerów Wykład 2

Architektura komputerów Wykład 2 Architektura komputerów Wykład 2 Jan Kazimirski 1 Elementy techniki cyfrowej 2 Plan wykładu Algebra Boole'a Podstawowe układy cyfrowe bramki Układy kombinacyjne Układy sekwencyjne 3 Algebra Boole'a Stosowana

Bardziej szczegółowo

Automatyka. Treść wykładów: Multiplekser. Układ kombinacyjny. Demultiplekser. Koder

Automatyka. Treść wykładów: Multiplekser. Układ kombinacyjny. Demultiplekser. Koder Treść wykładów: utomatyka dr inż. Szymon Surma szymon.surma@polsl.pl http://zawt.polsl.pl/studia pok., tel. +48 6 46. Podstawy automatyki. Układy kombinacyjne,. Charakterystyka,. Multiplekser, demultiplekser,.

Bardziej szczegółowo

Układy logiczne. Wstęp doinformatyki. Funkcje boolowskie (1854) Funkcje boolowskie. Operacje logiczne. Funkcja boolowska (przykład)

Układy logiczne. Wstęp doinformatyki. Funkcje boolowskie (1854) Funkcje boolowskie. Operacje logiczne. Funkcja boolowska (przykład) Wstęp doinformatyki Układy logiczne komputerów kombinacyjne sekwencyjne Układy logiczne Układy kombinacyjne Dr inż. Ignacy Pardyka Akademia Świętokrzyska Kielce, 2001 synchroniczne asynchroniczne Wstęp

Bardziej szczegółowo

INSTYTUT CYBERNETYKI TECHNICZNEJ POLITECHNIKI WROCŁAWSKIEJ ZAKŁAD SZTUCZNEJ INTELIGENCJI I AUTOMATÓW

INSTYTUT CYBERNETYKI TECHNICZNEJ POLITECHNIKI WROCŁAWSKIEJ ZAKŁAD SZTUCZNEJ INTELIGENCJI I AUTOMATÓW INSTYTUT YERNETYKI TEHNIZNEJ POLITEHNIKI WROŁWSKIEJ ZKŁD SZTUZNEJ INTELIGENJI I UTOMTÓW Ćwiczenia laboratoryjne z Logiki Układów yfrowych ćwiczenie 22 temat: UKŁDY KOMINYJNE. EL ĆWIZENI Ćwiczenie ma na

Bardziej szczegółowo

Funkcja Boolowska a kombinacyjny blok funkcjonalny

Funkcja Boolowska a kombinacyjny blok funkcjonalny SWB - Kombinacyjne bloki funkcjonalne - wykład 3 asz 1 Funkcja Boolowska a kombinacyjny blok funkcjonalny Kombinacyjny blok funkcjonalny w technice cyfrowej jest układem kombinacyjnym złożonym znwejściach

Bardziej szczegółowo

LEKCJA. TEMAT: Funktory logiczne.

LEKCJA. TEMAT: Funktory logiczne. TEMAT: Funktory logiczne. LEKCJA 1. Bramką logiczną (funktorem) nazywa się układ elektroniczny realizujący funkcje logiczne jednej lub wielu zmiennych. Sygnały wejściowe i wyjściowe bramki przyjmują wartość

Bardziej szczegółowo

Badanie układów średniej skali integracji - ćwiczenie Cel ćwiczenia. 2. Wykaz przyrządów i elementów: 3. Przedmiot badań

Badanie układów średniej skali integracji - ćwiczenie Cel ćwiczenia. 2. Wykaz przyrządów i elementów: 3. Przedmiot badań adanie układów średniej skali integracji - ćwiczenie 6. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi układami SSI (Średniej Skali Integracji). Przed wykonaniem ćwiczenia należy zapoznać

Bardziej szczegółowo

Lista tematów na kolokwium z wykładu z Techniki Cyfrowej w roku ak. 2013/2014

Lista tematów na kolokwium z wykładu z Techniki Cyfrowej w roku ak. 2013/2014 Lista tematów na kolokwium z wykładu z Techniki Cyfrowej w roku ak. 2013/2014 Temat 1. Algebra Boole a i bramki 1). Podać przykład dowolnego prawa lub tożsamości, które jest spełnione w algebrze Boole

Bardziej szczegółowo

Układy kombinacyjne. cz.2

Układy kombinacyjne. cz.2 Układy kombinacyjne cz.2 Układy kombinacyjne 2/26 Kombinacyjne bloki funkcjonalne Kombinacyjne bloki funkcjonalne - dekodery 3/26 Dekodery Są to układy zamieniające wybrany kod binarny (najczęściej NB)

Bardziej szczegółowo

Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych

Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych 1 Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych 1. Podstawowe operacje logiczne dla cyfr binarnych Jeśli cyfry 0 i 1 potraktujemy tak, jak wartości logiczne fałsz i prawda, to działanie

Bardziej szczegółowo

Arytmetyka liczb binarnych

Arytmetyka liczb binarnych Wartość dwójkowej liczby stałoprzecinkowej Wartość dziesiętna stałoprzecinkowej liczby binarnej Arytmetyka liczb binarnych b n-1...b 1 b 0,b -1 b -2...b -m = b n-1 2 n-1 +... + b 1 2 1 + b 0 2 0 + b -1

Bardziej szczegółowo

UKŁAD SCALONY. Cyfrowe układy można podzielić ze względu na różne kryteria, na przykład sposób przetwarzania informacji, technologię wykonania.

UKŁAD SCALONY. Cyfrowe układy można podzielić ze względu na różne kryteria, na przykład sposób przetwarzania informacji, technologię wykonania. UKŁDAY CYFROWE Układy cyfrowe są w praktyce realizowane różnymi technikami. W prostych urządzeniach automatyki powszechnie stosowane są układy elektryczne, wykorzystujące przekaźniki jako podstawowe elementy

Bardziej szczegółowo

Automatyka Treść wykładów: Literatura. Wstęp. Sygnał analogowy a cyfrowy. Bieżące wiadomości:

Automatyka Treść wykładów: Literatura. Wstęp. Sygnał analogowy a cyfrowy. Bieżące wiadomości: Treść wykładów: Automatyka dr inż. Szymon Surma szymon.surma@polsl.pl pok. 202, tel. +48 32 603 4136 1. Podstawy automatyki 1. Wstęp, 2. Różnice między sygnałem analogowym a cyfrowym, 3. Podstawowe elementy

Bardziej szczegółowo

JAK MATEMATYKA SŁUŻY ELEKTRONICE BRAMKI LOGICZNE

JAK MATEMATYKA SŁUŻY ELEKTRONICE BRAMKI LOGICZNE SZKOŁA PODSTAWOWA NR 109 IM. KORNELA MAKUSZYŃSKIEGO W KRAKOWIE UL. MACKIEWICZA 15; 31-214 KRAKÓW; TEL.12 415 27 59 sp109krakow.w.w.interia.pl ; e-mail: sp109krakow@wp.pl Krakowskie Młodzieżowe Towarzystwo

Bardziej szczegółowo

Wielkość analogowa w danym przedziale swojej zmienności przyjmuje nieskończoną liczbę wartości.

Wielkość analogowa w danym przedziale swojej zmienności przyjmuje nieskończoną liczbę wartości. TECHNOLOGE CYFOWE kłady elektroniczne. Podzespoły analogowe. Podzespoły cyfrowe Wielkość analogowa w danym przedziale swojej zmienności przyjmuje nieskończoną liczbę wartości. Wielkość cyfrowa w danym

Bardziej szczegółowo

Układy Logiczne i Cyfrowe

Układy Logiczne i Cyfrowe Układy Logiczne i Cyfrowe Wykład dla studentów III roku Wydziału Elektrycznego mgr inż. Grzegorz Lisowski Instytut Automatyki Podział układów cyfrowych elementy logiczne bloki funkcjonalne zespoły funkcjonalne

Bardziej szczegółowo

Stan wysoki (H) i stan niski (L)

Stan wysoki (H) i stan niski (L) PODSTAWY Przez układy cyfrowe rozumiemy układy, w których w każdej chwili występują tylko dwa (zwykle) możliwe stany, np. tranzystor, jako element układu cyfrowego, może być albo w stanie nasycenia, albo

Bardziej szczegółowo

Wstęp do Techniki Cyfrowej... Układy kombinacyjne

Wstęp do Techniki Cyfrowej... Układy kombinacyjne Wstęp do Techniki Cyfrowej... Układy kombinacyjne Przypomnienie Stan wejść układu kombinacyjnego jednoznacznie określa stan wyjść. Poszczególne wyjścia określane są przez funkcje boolowskie zmiennych wejściowych.

Bardziej szczegółowo

UKŁADY CYFROWE. Układ kombinacyjny

UKŁADY CYFROWE. Układ kombinacyjny UKŁADY CYFROWE Układ kombinacyjny Układów kombinacyjnych są bramki. Jedną z cech układów kombinacyjnych jest możliwość przedstawienia ich działania (opisu) w postaci tabeli prawdy. Tabela prawdy podaje

Bardziej szczegółowo

Podstawy Automatyki. Wykład 9 - Podstawy matematyczne automatyki procesów dyskretnych. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 9 - Podstawy matematyczne automatyki procesów dyskretnych. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki Wykład 9 - Podstawy matematyczne automatyki procesów dyskretnych Instytut Automatyki i Robotyki Warszawa, 2015 Kody liczb całkowitych nieujemnych Kody liczbowe dzielimy na analityczne nieanalityczne (symboliczne)

Bardziej szczegółowo

PoniŜej zamieszczone są rysunki przedstawiane na wykładach z przedmiotu Peryferia Komputerowe. ELEKTRONICZNE UKŁADY CYFROWE

PoniŜej zamieszczone są rysunki przedstawiane na wykładach z przedmiotu Peryferia Komputerowe. ELEKTRONICZNE UKŁADY CYFROWE PoniŜej zamieszczone są rysunki przedstawiane na wykładach z przedmiotu Peryferia Komputerowe. ELEKTRONICZNE UKŁADY CYFROWE Podstawowymi bramkami logicznymi są układy stanowiące: - funktor typu AND (funkcja

Bardziej szczegółowo

AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ

AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ KDEMI MORSK KTEDR NWIGCJI TECHNICZEJ ELEMETY ELEKTRONIKI LORTORIUM Kierunek NWIGCJ Specjalność Transport morski Semestr II Ćw. 4 Podstawy techniki cyfrowej Wersja opracowania Marzec 5 Opracowanie: mgr

Bardziej szczegółowo

Dr inż. Jan Chudzikiewicz Pokój 117/65 Tel Materiały:

Dr inż. Jan Chudzikiewicz Pokój 117/65 Tel Materiały: Dr inż Jan Chudzikiewicz Pokój 7/65 Tel 683-77-67 E-mail: jchudzikiewicz@watedupl Materiały: http://wwwitawatedupl/~jchudzikiewicz/ Warunki zaliczenie: Otrzymanie pozytywnej oceny z kolokwium zaliczeniowego

Bardziej szczegółowo

Cyfrowe układy scalone c.d. funkcje

Cyfrowe układy scalone c.d. funkcje Cyfrowe układy scalone c.d. funkcje Ryszard J. Barczyński, 206 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Kombinacyjne układy cyfrowe

Bardziej szczegółowo

Kombinacyjne bloki funkcjonalne

Kombinacyjne bloki funkcjonalne Sławomir Kulesza Technika cyfrowa Kombinacyjne bloki funkcjonalne Wykład dla studentów III roku Informatyki Wersja., 5//2 Bloki cyfrowe Blok funkcjonalny to układ cyfrowy utworzony z pewnej liczby elementów

Bardziej szczegółowo

LABORATORIUM ELEKTRONIKI UKŁADY KOMBINACYJNE

LABORATORIUM ELEKTRONIKI UKŁADY KOMBINACYJNE LORTORIUM ELEKTRONIKI UKŁDY KOMINCYJNE ndrzej Malinowski 1. Układy kombinacyjne 1.1 Cel ćwiczenia 3 1.2 Podział kombinacyjnych układów funkcjonalnych 3 1.3 Układy komutacyjne 3 1.3.1 Układy zmiany kodów

Bardziej szczegółowo

Rys. 2. Symbole dodatkowych bramek logicznych i ich tablice stanów.

Rys. 2. Symbole dodatkowych bramek logicznych i ich tablice stanów. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z funktorami realizującymi podstawowe funkcje logiczne poprzez zaprojektowanie, wykonanie i przetestowanie kombinacyjnego układu logicznego realizującego

Bardziej szczegółowo

Ćwiczenie 25 Temat: Interfejs między bramkami logicznymi i kombinacyjne układy logiczne. Układ z bramkami NOR. Cel ćwiczenia

Ćwiczenie 25 Temat: Interfejs między bramkami logicznymi i kombinacyjne układy logiczne. Układ z bramkami NOR. Cel ćwiczenia Ćwiczenie 25 Temat: Interfejs między bramkami logicznymi i kombinacyjne układy logiczne. Układ z bramkami NOR. Cel ćwiczenia Zapoznanie się z techniką połączenia za pośrednictwem interfejsu. Zbudowanie

Bardziej szczegółowo

Podstawy działania układów cyfrowych...2 Systemy liczbowe...2 Kodowanie informacji...3 Informacja cyfrowa...4 Bramki logiczne...

Podstawy działania układów cyfrowych...2 Systemy liczbowe...2 Kodowanie informacji...3 Informacja cyfrowa...4 Bramki logiczne... Podstawy działania układów cyfrowych...2 Systemy liczbowe...2 Kodowanie informacji...3 Informacja cyfrowa...4 Bramki logiczne...4 Podział układów logicznych...6 Cyfrowe układy funkcjonalne...8 Rejestry...8

Bardziej szczegółowo

Badanie elektronicznych układów cyfrowych 312[02].O2.02

Badanie elektronicznych układów cyfrowych 312[02].O2.02 MINISTERSTWO EDUKACJI NARODOWEJ Jarosław Świtalski Badanie elektronicznych układów cyfrowych 32[2].O2.2 Poradnik dla ucznia Wydawca Instytut Technologii Eksploatacji Państwowy Instytut Badawczy Radom 27

Bardziej szczegółowo

Architektura komputerów ćwiczenia Bramki logiczne. Układy kombinacyjne. Kanoniczna postać dysjunkcyjna i koniunkcyjna.

Architektura komputerów ćwiczenia Bramki logiczne. Układy kombinacyjne. Kanoniczna postać dysjunkcyjna i koniunkcyjna. Architektura komputerów ćwiczenia Zbiór zadań IV Bramki logiczne. Układy kombinacyjne. Kanoniczna postać dysjunkcyjna i koniunkcyjna. Wprowadzenie 1 1 fragmenty książki "Organizacja i architektura systemu

Bardziej szczegółowo

Podstawy Automatyki. Wykład 13 - Układy bramkowe. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 13 - Układy bramkowe. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 13 - Układy bramkowe Instytut Automatyki i Robotyki Warszawa, 2015 Układy z elementów logicznych Bramki logiczne Elementami logicznymi (bramkami logicznymi) są urządzenia o dwustanowym sygnale wyjściowym

Bardziej szczegółowo

Zadania do wykładu 1, Zapisz liczby binarne w kodzie dziesiętnym: ( ) 2 =( ) 10, ( ) 2 =( ) 10, (101001, 10110) 2 =( ) 10

Zadania do wykładu 1, Zapisz liczby binarne w kodzie dziesiętnym: ( ) 2 =( ) 10, ( ) 2 =( ) 10, (101001, 10110) 2 =( ) 10 Zadania do wykładu 1,. 1. Zapisz liczby binarne w kodzie dziesiętnym: (1011011) =( ) 10, (11001100) =( ) 10, (101001, 10110) =( ) 10. Zapisz liczby dziesiętne w naturalnym kodzie binarnym: (5) 10 =( ),

Bardziej szczegółowo

Wstęp do Techniki Cyfrowej i Mikroelektroniki

Wstęp do Techniki Cyfrowej i Mikroelektroniki Wstęp do Techniki Cyfrowej i Mikroelektroniki dr inż. Maciej Piotrowicz Katedra Mikroelektroniki i Technik Informatycznych PŁ piotrowi@dmcs.p.lodz.pl http://fiona.dmcs.pl/~piotrowi -> Wstęp do... Układy

Bardziej szczegółowo

Podstawy Automatyki. Wykład 13 - Układy bramkowe. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 13 - Układy bramkowe. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 13 - Układy bramkowe Instytut Automatyki i Robotyki Warszawa, 2015 Układy z elementów logicznych Bramki logiczne Elementami logicznymi (bramkami logicznymi) są urządzenia o dwustanowym sygnale wyjściowym

Bardziej szczegółowo

Układy kombinacyjne Y X 4 X 5. Rys. 1 Kombinacyjna funkcja logiczna.

Układy kombinacyjne Y X 4 X 5. Rys. 1 Kombinacyjna funkcja logiczna. Układy kombinacyjne. Czas trwania: 6h. Cele ćwiczenia Przypomnienie podstawowych praw Algebry Boole a. Zaprojektowanie, montaż i sprawdzenie działania zadanych układów kombinacyjnych.. Wymagana znajomość

Bardziej szczegółowo

WSTĘP. Budowa bramki NAND TTL, ch-ka przełączania, schemat wewnętrzny, działanie 2

WSTĘP. Budowa bramki NAND TTL, ch-ka przełączania, schemat wewnętrzny, działanie 2 WSTĘP O liczbie elementów użytych do budowy jakiegoś urządzenia elektronicznego, a więc i o możliwości obniżenia jego ceny, decyduje dzisiaj liczba zastosowanych w nim układów scalonych. Najstarszą rodziną

Bardziej szczegółowo

Temat: Pamięci. Programowalne struktury logiczne.

Temat: Pamięci. Programowalne struktury logiczne. Temat: Pamięci. Programowalne struktury logiczne. 1. Pamięci są układami służącymi do przechowywania informacji w postaci ciągu słów bitowych. Wykonuje się jako układy o bardzo dużym stopniu scalenia w

Bardziej szczegółowo

Kombinacyjne bloki funkcjonalne - wykład 3

Kombinacyjne bloki funkcjonalne - wykład 3 SWB - Kombinacyjne bloki funkcjonalne - wykład 3 asz 1 Kombinacyjne bloki funkcjonalne - wykład 3 Adam Szmigielski aszmigie@pjwstk.edu.pl Laboratorium robotyki s09 SWB - Kombinacyjne bloki funkcjonalne

Bardziej szczegółowo

Lekcja na Pracowni Podstaw Techniki Komputerowej z wykorzystaniem komputera

Lekcja na Pracowni Podstaw Techniki Komputerowej z wykorzystaniem komputera Lekcja na Pracowni Podstaw Techniki Komputerowej z wykorzystaniem komputera Temat lekcji: Minimalizacja funkcji logicznych Etapy lekcji: 1. Podanie tematu i określenie celu lekcji SOSOBY MINIMALIZACJI

Bardziej szczegółowo

Cyfrowe układy scalone

Cyfrowe układy scalone Ryszard J. Barczyński, 2 25 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Układy cyfrowe stosowane są do przetwarzania informacji zakodowanej

Bardziej szczegółowo

Elektronika i techniki mikroprocesorowe

Elektronika i techniki mikroprocesorowe Elektronika i techniki mikroprocesorowe Technika cyfrowa Podstawowy techniki cyfrowej Katedra Energoelektroniki, Napędu Elektrycznego i Robotyki Wydział Elektryczny, ul. Krzywoustego 2 trochę historii

Bardziej szczegółowo

1.1. Pozycyjne systemy liczbowe

1.1. Pozycyjne systemy liczbowe 1.1. Pozycyjne systemy liczbowe Systemami liczenia nazywa się sposób tworzenia liczb ze znaków cyfrowych oraz zbiór reguł umożliwiających wykonywanie operacji arytmetycznych na liczbach. Dla dowolnego

Bardziej szczegółowo

Podstawy Informatyki Elementarne podzespoły komputera

Podstawy Informatyki Elementarne podzespoły komputera Podstawy Informatyki alina.momot@polsl.pl http://zti.polsl.pl/amomot/pi Plan wykładu 1 Reprezentacja informacji Podstawowe bramki logiczne 2 Przerzutniki Przerzutnik SR Rejestry Liczniki 3 Magistrala Sygnały

Bardziej szczegółowo

Elektronika (konspekt)

Elektronika (konspekt) Elektronika (konspekt) Franciszek Gołek (golek@ifd.uni.wroc.pl) www.pe.ifd.uni.wroc.pl Wykład 12 Podstawy elektroniki cyfrowej (kody i układy logiczne kombinacyjne) Dwa znaki wystarczają aby w układach

Bardziej szczegółowo

Architektura komputerów

Architektura komputerów Wykład jest przygotowany dla IV semestru kierunku Elektronika i Telekomunikacja. Studia I stopnia Dr inż. Małgorzata Langer Architektura komputerów Prezentacja multimedialna współfinansowana przez Unię

Bardziej szczegółowo

Cyfrowe bramki logiczne 2012

Cyfrowe bramki logiczne 2012 LORTORIUM ELEKTRONIKI yfrowe bramki logiczne 2012 ndrzej Malinowski 1. yfrowe bramki logiczne 3 1.1 el ćwiczenia 3 1.2 Elementy algebry oole`a 3 1.3 Sposoby zapisu funkcji logicznych 4 1.4 Minimalizacja

Bardziej szczegółowo

Bramki logiczne. 2. Cele ćwiczenia Badanie charakterystyk przejściowych inwertera. tranzystorowego, bramki 7400 i bramki 74132.

Bramki logiczne. 2. Cele ćwiczenia Badanie charakterystyk przejściowych inwertera. tranzystorowego, bramki 7400 i bramki 74132. Bramki logiczne 1. Czas trwania: 3h 2. Cele ćwiczenia Badanie charakterystyk przejściowych inwertera. tranzystorowego, bramki 7400 i bramki 74132. 3. Wymagana znajomość pojęć stany logiczne Hi, Lo, stan

Bardziej szczegółowo

Układy logiczne układy cyfrowe

Układy logiczne układy cyfrowe Układy logiczne układy cyfrowe Jak projektować układy cyfrowe (systemy cyfrowe) Układy arytmetyki rozproszonej filtrów cyfrowych Układy kryptograficzne X Selektor ROM ROM AND Specjalizowane układy cyfrowe

Bardziej szczegółowo

Badanie i pomiary elektronicznych układów cyfrowych 725[01].O1.05

Badanie i pomiary elektronicznych układów cyfrowych 725[01].O1.05 MINISTERSTWO EDUKACJI NARODOWEJ Agnieszka Ambrożejczyk-Langer Badanie i pomiary elektronicznych układów cyfrowych 725[01].O1.05 Poradnik dla ucznia Wydawca Instytut Technologii Eksploatacji Państwowy Instytut

Bardziej szczegółowo

Wprowadzenie do architektury komputerów systemy liczbowe, operacje arytmetyczne i logiczne

Wprowadzenie do architektury komputerów systemy liczbowe, operacje arytmetyczne i logiczne Wprowadzenie do architektury komputerów systemy liczbowe, operacje arytmetyczne i logiczne 1. Bit Pozycja rejestru lub komórki pamięci służąca do przedstawiania (pamiętania) cyfry w systemie (liczbowym)

Bardziej szczegółowo

4. MATERIAŁ NAUCZANIA

4. MATERIAŁ NAUCZANIA 4. MATERIAŁ NAUCZANIA 4.. Architektura i zasada działania komputera 4... Materiał nauczania Aby zrozumieć zasadę działania komputera należy zrozumieć operacje wykonywane przez układy cyfrowe zarówno proste,

Bardziej szczegółowo

3.2. PODSTAWOWE WIADOMOŚCI TEORETYCZNE

3.2. PODSTAWOWE WIADOMOŚCI TEORETYCZNE 3. BLOKI KOMUTACYJNE 3.. CEL ĆWICZENIA Celem ćwiczenia jest zapoznanie się z podstawowymi układami komutacyjnymi. Ćwiczenie wykonywane jest na modułowym zestawie elementów logicznych UNILOG-2. 3.2. PODSTAWOWE

Bardziej szczegółowo

Automatyzacja i robotyzacja procesów produkcyjnych

Automatyzacja i robotyzacja procesów produkcyjnych Automatyzacja i robotyzacja procesów produkcyjnych Instrukcja laboratoryjna Technika cyfrowa Opracował: mgr inż. Krzysztof Bodzek Cel ćwiczenia. Celem ćwiczenia jest zapoznanie studenta z zapisem liczb

Bardziej szczegółowo

Ćwiczenie 01 - Strona nr 1 ĆWICZENIE 01

Ćwiczenie 01 - Strona nr 1 ĆWICZENIE 01 ĆWICZENIE 01 Ćwiczenie 01 - Strona nr 1 Polecenie: Bez użycia narzędzi elektronicznych oraz informatycznych, wykonaj konwersje liczb z jednego systemu liczbowego (BIN, OCT, DEC, HEX) do drugiego systemu

Bardziej szczegółowo

Laboratorium podstaw elektroniki

Laboratorium podstaw elektroniki 150875 Grzegorz Graczyk numer indeksu imie i nazwisko 150889 Anna Janicka numer indeksu imie i nazwisko Grupa: 2 Grupa: 5 kierunek Informatyka semestr 2 rok akademicki 2008/09 Laboratorium podstaw elektroniki

Bardziej szczegółowo

Elementy cyfrowe i układy logiczne

Elementy cyfrowe i układy logiczne Elementy cyfrowe i układy logiczne Wykład 5 Legenda Procedura projektowania Podział układów VLSI 2 1 Procedura projektowania Specyfikacja Napisz, jeśli jeszcze nie istnieje, specyfikację układu. Opracowanie

Bardziej szczegółowo

Ćw. 1: Systemy zapisu liczb, minimalizacja funkcji logicznych, konwertery kodów, wyświetlacze.

Ćw. 1: Systemy zapisu liczb, minimalizacja funkcji logicznych, konwertery kodów, wyświetlacze. Lista zadań do poszczególnych tematów ćwiczeń. MIERNICTWO ELEKTRYCZNE I ELEKTRONICZNE Studia stacjonarne I stopnia, rok II, 2010/2011 Prowadzący wykład: Prof. dr hab. inż. Edward Layer ćw. 15h Tematyka

Bardziej szczegółowo

I. Podstawowe zagadnienia z teorii układów cyfrowych

I. Podstawowe zagadnienia z teorii układów cyfrowych I. Podstawowe zagadnienia z teorii układów cyfrowych. Wstęp Muzyka na płytach fonograficznych jest zapisana w formie kanaliku o zmiennym urzeźbieniu. Ruch igły prowadzonej przez kanalik odbywa się w sposób

Bardziej szczegółowo

Technika cyfrowa i mikroprocesorowa. Zaliczenie na ocenę. Zaliczenie na ocenę

Technika cyfrowa i mikroprocesorowa. Zaliczenie na ocenę. Zaliczenie na ocenę I. KARTA PRZEDMIOTU Nazwa przedmiotu/modułu: Nazwa angielska: Kierunek studiów: Poziom studiów: Profil studiów: Jednostka prowadząca: Technika cyfrowa i mikroprocesorowa Edukacja techniczno-informatyczna

Bardziej szczegółowo

Wstęp do Techniki Cyfrowej... Algebra Boole a

Wstęp do Techniki Cyfrowej... Algebra Boole a Wstęp do Techniki Cyfrowej... Algebra Boole a Po co AB? Świetne narzędzie do analitycznego opisu układów logicznych. 1854r. George Boole opisuje swój system dedukcyjny. Ukoronowanie zapoczątkowanych w

Bardziej szczegółowo

Ćwiczenie 2. Algebra Boolea, przykłady równań logicznych. A. TWIERDZENIA ALGEBRY BOOLE A WPROWADZENIE DO TEORII.

Ćwiczenie 2. Algebra Boolea, przykłady równań logicznych. A. TWIERDZENIA ALGEBRY BOOLE A WPROWADZENIE DO TEORII. Ćwiczenie 2 lgebra Boolea, przykłady równań logicznych. WPROWDZENIE DO TEORII.. TWIERDZENI LGEBRY BOOLE 2 3 a + B = B + b B = B a + B + C = + (B + C) = ( + B) + C b B C = (B C) = ( B) C a (B + C) = B +

Bardziej szczegółowo

dwójkę liczącą Licznikiem Podział liczników:

dwójkę liczącą Licznikiem Podział liczników: 1. Dwójka licząca Przerzutnik typu D łatwo jest przekształcić w przerzutnik typu T i zrealizować dzielnik modulo 2 - tzw. dwójkę liczącą. W tym celu wystarczy połączyć wyjście zanegowane Q z wejściem D.

Bardziej szczegółowo

4. UKŁADY FUNKCJONALNE TECHNIKI CYFROWEJ

4. UKŁADY FUNKCJONALNE TECHNIKI CYFROWEJ 4. UKŁADY FUNKCJONALNE TECHNIKI CYFROWEJ 4.1. UKŁADY KONWERSJI KODÓW 4.1.1. Kody Kod - sposób reprezentacji sygnału cyfrowego za pomocą grupy sygnałów binarnych: Sygnał cyfrowy wektor bitowy Gdzie np.

Bardziej szczegółowo

Automatyzacja Ćwicz. 2 Teoria mnogości i algebra logiki Akademia Morska w Szczecinie - Wydział Inżynieryjno-Ekonomiczny Transportu

Automatyzacja Ćwicz. 2 Teoria mnogości i algebra logiki Akademia Morska w Szczecinie - Wydział Inżynieryjno-Ekonomiczny Transportu Automatyzacja Ćwicz. 2 Teoria mnogości i algebra logiki Historia teorii mnogości Teoria mnogości to inaczej nauka o zbiorach i ich własnościach; Zapoczątkowana przez greckich matematyków i filozofów w

Bardziej szczegółowo

Techniki multimedialne

Techniki multimedialne Techniki multimedialne Digitalizacja podstawą rozwoju systemów multimedialnych. Digitalizacja czyli obróbka cyfrowa oznacza przetwarzanie wszystkich typów informacji - słów, dźwięków, ilustracji, wideo

Bardziej szczegółowo

Funkcje logiczne X = A B AND. K.M.Gawrylczyk /55

Funkcje logiczne X = A B AND. K.M.Gawrylczyk /55 Układy cyfrowe Funkcje logiczne AND A B X = A B... 2/55 Funkcje logiczne OR A B X = A + B NOT A A... 3/55 Twierdzenia algebry Boole a A + B = B + A A B = B A A + B + C = A + (B+C( B+C) ) = (A+B( A+B) )

Bardziej szczegółowo

Bramki logiczne V MAX V MIN

Bramki logiczne V MAX V MIN Bramki logiczne W układach fizycznych napięcie elektryczne może reprezentować stany logiczne. Bramką nazywamy prosty obwód elektroniczny realizujący funkcję logiczną. Pewien zakres napięcia odpowiada stanowi

Bardziej szczegółowo

Kodowanie informacji. Przygotował: Ryszard Kijanka

Kodowanie informacji. Przygotował: Ryszard Kijanka Kodowanie informacji Przygotował: Ryszard Kijanka Komputer jest urządzeniem służącym do przetwarzania informacji. Informacją są liczby, ale także inne obiekty, takie jak litery, wartości logiczne, obrazy

Bardziej szczegółowo

Kodowanie informacji. Kody liczbowe

Kodowanie informacji. Kody liczbowe Wykład 2 2-1 Kodowanie informacji PoniewaŜ komputer jest urządzeniem zbudowanym z układów cyfrowych, informacja przetwarzana przez niego musi być reprezentowana przy pomocy dwóch stanów - wysokiego i niskiego,

Bardziej szczegółowo

CYFROWE UKŁADY SCALONE STOSOWANE W AUTOMATYCE

CYFROWE UKŁADY SCALONE STOSOWANE W AUTOMATYCE Pracownia Automatyki Katedry Tworzyw Drzewnych Ćwiczenie 5 str. 1/16 ĆWICZENIE 5 CYFROWE UKŁADY SCALONE STOSOWANE W AUTOMATYCE 1.CEL ĆWICZENIA: zapoznanie się z podstawowymi elementami cyfrowymi oraz z

Bardziej szczegółowo

Technika cyfrowa Synteza układów kombinacyjnych

Technika cyfrowa Synteza układów kombinacyjnych Sławomir Kulesza Technika cyfrowa Synteza układów kombinacyjnych Wykład dla studentów III roku Informatyki Wersja 2.0, 05/10/2011 Podział układów logicznych Opis funkcjonalny układów logicznych x 1 y 1

Bardziej szczegółowo

Układy arytmetyczne. Joanna Ledzińska III rok EiT AGH 2011

Układy arytmetyczne. Joanna Ledzińska III rok EiT AGH 2011 Układy arytmetyczne Joanna Ledzińska III rok EiT AGH 2011 Plan prezentacji Metody zapisu liczb ze znakiem Układy arytmetyczne: Układy dodające Półsumator Pełny sumator Półsubtraktor Pełny subtraktor Układy

Bardziej szczegółowo

Układy logiczne układy cyfrowe

Układy logiczne układy cyfrowe Układy logiczne układy cyfrowe Jak projektować układy cyfrowe (systemy cyfrowe) Układy arytmetyki rozproszonej filtrów cyfrowych Układy kryptograficzne Evatronix KontrolerEthernet MAC (Media Access Control)

Bardziej szczegółowo

Podstawy techniki cyfrowej cz.2 wykład 3 i 5

Podstawy techniki cyfrowej cz.2 wykład 3 i 5 Podstawy techniki cyfrowej cz.2 wykład 3 i 5 Rafał Walkowiak Wersja 0.1 29.10.2013 Układy cyfrowe Ogólna struktura logiczna: Wej ster Dane bloki funkcjonalne dla realizacji określonych funkcji przetwarzania

Bardziej szczegółowo

Elektronika cyfrowa i optoelektronika - laboratorium

Elektronika cyfrowa i optoelektronika - laboratorium Państwowa Wyższa Szkoła Zawodowa w Nowym Sączu Instytut Techniczny Elektronika cyfrowa i optoelektronika - laboratorium Temat: Minimalizacja funkcji logicznych multiplekser demultiplekser. Koder i dekodedr.

Bardziej szczegółowo

Funkcja Boolowska. f:b n B, gdzieb={0,1} jest zbiorem wartości funkcji. Funkcja boolowska jest matematycznym modelem układu kombinacyjnego.

Funkcja Boolowska. f:b n B, gdzieb={0,1} jest zbiorem wartości funkcji. Funkcja boolowska jest matematycznym modelem układu kombinacyjnego. SWB - Minimalizacja funkcji boolowskich - wykład 2 asz 1 Funkcja Boolowska Funkcja boolowskanargumentową nazywamy odwzorowanie f:b n B, gdzieb={0,1} jest zbiorem wartości funkcji. Funkcja boolowska jest

Bardziej szczegółowo

Minimalizacja form boolowskich

Minimalizacja form boolowskich Sławomir Kulesza Technika cyfrowa Minimalizacja form boolowskich Wykład dla studentów III roku Informatyki Wersja 1.0, 05/10/2010 Minimalizacja form boolowskich Minimalizacja proces przekształcania form

Bardziej szczegółowo

Architektura systemów komputerowych

Architektura systemów komputerowych Architektura systemów komputerowych Sławomir Mamica Wykład 2: Między sprzętem a matematyką http://main5.amu.edu.pl/~zfp/sm/home.html W poprzednim odcinku O przedmiocie: architektura jako organizacja, może

Bardziej szczegółowo

Laboratorium z podstaw automatyki

Laboratorium z podstaw automatyki Wydział Inżynierii Mechanicznej i Mechatroniki Laboratorium z podstaw automatyki Budowa i analiza układów logicznego sterowania Kierunek studiów: Transport, Stacjonarne pierwszego stopnia Prowadzący: dr

Bardziej szczegółowo

Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki. ĆWICZENIE Nr 8 (3h) Implementacja pamięci ROM w FPGA

Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki. ĆWICZENIE Nr 8 (3h) Implementacja pamięci ROM w FPGA Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki ĆWICZENIE Nr 8 (3h) Implementacja pamięci ROM w FPGA Instrukcja pomocnicza do laboratorium z przedmiotu Programowalne Struktury

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: obowiązkowy w ramach treści kierunkowych, moduł kierunkowy ogólny Rodzaj zajęć: wykład, laboratorium, ćwiczenia I KARTA PRZEDMIOTU CEL PRZEDMIOTU

Bardziej szczegółowo

Technika Cyfrowa i Mikroprocesorowa

Technika Cyfrowa i Mikroprocesorowa Technika Cyfrowa i Mikroprocesorowa Prowadzący przedmiot: Ćwiczenia laboratoryjne: dr inż. Andrzej Ożadowicz dr inż. Andrzej Ożadowicz dr inż. Jakub Grela Wydział Elektrotechniki, Automatyki, Informatyki

Bardziej szczegółowo

Podstawowe układy cyfrowe

Podstawowe układy cyfrowe ELEKTRONIKA CYFROWA SPRAWOZDANIE NR 4 Podstawowe układy cyfrowe Grupa 6 Prowadzący: Roman Płaneta Aleksandra Gierut CEL ĆWICZENIA Celem ćwiczenia jest zapoznanie się z podstawowymi bramkami logicznymi,

Bardziej szczegółowo

Katedra Sterowania i InŜynierii Systemów Laboratorium elektrotechniki i elektroniki. Badanie podstawowych bramek logicznych. 2.2 Bramka AND.

Katedra Sterowania i InŜynierii Systemów Laboratorium elektrotechniki i elektroniki. Badanie podstawowych bramek logicznych. 2.2 Bramka AND. Katedra Sterowania i InŜynierii Systemów 4 Temat Badanie podstawowych bramek logicznych 1. Cel ćwiczenia. Celem ćwiczenia jest zapoznanie się z działaniem podstawowych bramek logicznych. 2. Wiadomości

Bardziej szczegółowo

Logiczny model komputera i działanie procesora. Część 1.

Logiczny model komputera i działanie procesora. Część 1. Logiczny model komputera i działanie procesora. Część 1. Klasyczny komputer o architekturze podanej przez von Neumana składa się z trzech podstawowych bloków: procesora pamięci operacyjnej urządzeń wejścia/wyjścia.

Bardziej szczegółowo

Systemy bezpieczne i FTC (Niezawodne Systemy Cyfrowe)

Systemy bezpieczne i FTC (Niezawodne Systemy Cyfrowe) Systemy bezpieczne i FTC (Niezawodne Systemy Cyfrowe) dr inż Krzysztof Berezowski 220/C3 tel +48 71 320 27-59 krzysztofberezowski@pwrwrocpl 1 Wybrane kody dr inż Krzysztof Berezowski 220/C3 tel +48 71

Bardziej szczegółowo

Laboratorium podstaw elektroniki

Laboratorium podstaw elektroniki 150875 Grzegorz Graczyk numer indeksu imie i nazwisko 150889 Anna Janicka numer indeksu imie i nazwisko Grupa: 2 Grupa: 5 kierunek Informatyka semestr 2 rok akademicki 2008/09 Laboratorium podstaw elektroniki

Bardziej szczegółowo

ARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH

ARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH ARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH reprezentacja danych ASK.RD.01 c Dr inż. Ignacy Pardyka UNIWERSYTET JANA KOCHANOWSKIEGO w Kielcach Rok akad. 2011/2012 c Dr inż. Ignacy Pardyka (Inf.UJK) ASK.RD.01 Rok

Bardziej szczegółowo

WYKŁAD 8 Przerzutniki. Przerzutniki są inną niż bramki klasą urządzeń elektroniki cyfrowej. Są najprostszymi układami pamięciowymi.

WYKŁAD 8 Przerzutniki. Przerzutniki są inną niż bramki klasą urządzeń elektroniki cyfrowej. Są najprostszymi układami pamięciowymi. 72 WYKŁAD 8 Przerzutniki. Przerzutniki są inną niż bramki klasą urządzeń elektroniki cyfrowej. ą najprostszymi układami pamięciowymi. PZEZUTNIK WY zapamietanie skasowanie Przerzutmik zapamiętuje zmianę

Bardziej szczegółowo

Automatyka Lab 1 Teoria mnogości i algebra logiki. Akademia Morska w Szczecinie - Wydział Inżynieryjno-Ekonomiczny Transportu

Automatyka Lab 1 Teoria mnogości i algebra logiki. Akademia Morska w Szczecinie - Wydział Inżynieryjno-Ekonomiczny Transportu Automatyka Lab 1 Teoria mnogości i algebra logiki Harmonogram zajęć Układy przełączające: 1. Algebra logiki - Wprowadzenie 2. Funkcje logiczne - minimalizacja funkcji 3. Bramki logiczne - rysowanie układów

Bardziej szczegółowo

Języki i metodyka programowania. Reprezentacja danych w systemach komputerowych

Języki i metodyka programowania. Reprezentacja danych w systemach komputerowych Reprezentacja danych w systemach komputerowych Kod (łac. codex - spis), ciąg składników sygnału (kombinacji sygnałów elementarnych, np. kropek i kresek, impulsów prądu, symboli) oraz reguła ich przyporządkowania

Bardziej szczegółowo

Cyfrowy zapis informacji. 5 grudnia 2013 Wojciech Kucewicz 2

Cyfrowy zapis informacji. 5 grudnia 2013 Wojciech Kucewicz 2 Cyfrowy zapis informacji 5 grudnia 2013 Wojciech Kucewicz 2 Bit, Bajt, Słowo 5 grudnia 2013 Wojciech Kucewicz 3 Cyfrowy zapis informacji Bit [ang. binary digit] jest elementem zbioru dwuelementowego używanym

Bardziej szczegółowo

Zwykle układ scalony jest zamknięty w hermetycznej obudowie metalowej, ceramicznej lub wykonanej z tworzywa sztucznego.

Zwykle układ scalony jest zamknięty w hermetycznej obudowie metalowej, ceramicznej lub wykonanej z tworzywa sztucznego. Techniki wykonania cyfrowych układów scalonych Cyfrowe układy scalone dzielimy ze względu na liczbę bramek elementarnych tworzących dany układ na: małej skali integracji SSI do 10 bramek, średniej skali

Bardziej szczegółowo

Statyczne badanie przerzutników - ćwiczenie 3

Statyczne badanie przerzutników - ćwiczenie 3 Statyczne badanie przerzutników - ćwiczenie 3. Cel ćwiczenia Zapoznanie się z podstawowymi strukturami przerzutników w wersji TTL realizowanymi przy wykorzystaniu bramek logicznych NAND oraz NO. 2. Wykaz

Bardziej szczegółowo