Wstęp do Techniki Cyfrowej... Algebra Boole a

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wstęp do Techniki Cyfrowej... Algebra Boole a"

Transkrypt

1 Wstęp do Techniki Cyfrowej... Algebra Boole a

2 Po co AB? Świetne narzędzie do analitycznego opisu układów logicznych. 1854r. George Boole opisuje swój system dedukcyjny. Ukoronowanie zapoczątkowanych w starożytności prac nad usystematyzowaniem reguł wnioskowania. Różne formy definicji: 1904 E. V. Huntington 1938 C. E. Shannon algebra binarnej sieci przełączającej.

3 Definiowanie systemu algebraicznego zbiór elementów rozważanych zbiór operacji na elementach zbiór relacji między elementami aksjomaty charakteryzujące operacje i relacje

4 Definicja Algebra Boole a zbiór elementów (zwyczajowo oznaczony B), w którym istnieją co najmniej dwa różne elementy, istnieją dwa elementy wyróżnione (zakładamy, że są one różne) są określone dwa operatory dwuargumentowe, oznaczone najczęściej symbolami sumy i iloczynu (jak w zwykłej algebrze) oraz jeden operator jednoargumentowy zwany dopełnieniem ~a; elementy (a + b), (a b), ~ a należą do B nie wychodzimy poza B, jest określona relacja równoważności, oznaczona =, spełniająca warunek: dla każdego a,b,c B, jeśli a = b, to ~a = ~b oraz a + c = b + c i a c = b c

5 Definicja c.d. operatory sumy logicznej, iloczynu logicznego i dopełnienia spełniają dla wszystkich elementów zbioru B następujące postulaty (aksjomaty)(a,b,c B): A 1 postulat przemienności sumy i iloczynu A 2 postulat wzajemnej rozdzielności sumy i iloczynu A 3 postulat o elemencie identycznościowym: dla operatora sumy identycznościowym jest element wyróżniony oznaczony 0, tzn. a + 0 = a, dla operatora iloczynu identycznościowym jest element wyróżniony oznaczony 1, tzn. a 1 = a, A 4 postulat o dopełnieniu: dla operatora sumy i iloczynu obowiązują zależności: a + ~a = 1 oraz a ~a = 0

6 Przykład algebry Boole a Elementy B podzbiory zbioru {a, b} {-} (zbiór pusty) element wyróżniony 0 {a} = e 1 {b} = e 2 {a,b} element wyróżniony 1 Przyjmujemy znane operatory sumy, iloczynu i dopełnienia zbiorów.

7 Przykład c.d. Aksjomaty A 1 i A 2 wynikają z teorii zbiorów. Aksjomat A 3 łatwo sprawdzić Aksjomat A 4 : przyjmując, że e 1 = ~e 2 {a} {b} = {-}, czyli e 1 e 2 = 0 {a} {b} = {a, b}, czyli e 1 e 2 = 1,

8 Twierdzenia 1. W każdej algebrze Boole a istnieją tylko dwa różne od siebie elementy wyróżnione. 2. Dla każdego elementu a B istnieje jeden i tylko jeden element będący jego dopełnieniem. 3. x + x = x oraz x x = x 4. x + 1 = 1 oraz x 0 = x = 1 oraz 0 x = 0

9 Twierdzenia c.d. 6. Dopełnienie dopełnienia elementu a jest równe temu elementowi. 7. Twierdzenie o absorpcji x + (x y) = x oraz x (x + y) = x 8. x + (~x y) = x + y oraz x (~x + y) = x y 9. Prawo łączności: (a + b) + c = a + (b + c) oraz (a b) c = a (b c) 10. Prawa de Morgana: ~(a + b) = (~a ~b) ~(a b) = (~a + ~b)

10 Interpretacja geometryczna a a b b ~a ~b Wykres Venna dla funkcji dwóch zmiennych

11 Interpretacja geometryczna c.d. a (b + c) (a b) + (a c) Ilustracja prawa rozdzielności mnożenia

12 Algebra dwuelementowa Określamy zbiór B={0, 1}, przy czym 0 1. Operatory: a b a+b a b a b a ~a

13 Formuły boolowskie Wyrażenia zbudowane ze stałych {0, 1}, oznaczeń zmiennych (literałów) oraz symboli operatorów sumy logicznej, iloczynu i dopełnienia. Pierwszeństwo wykonywania działań: 0 działania w nawiasach, 1 dopełnienie (negacja) 2 mnożenie (iloczyn logiczny) 3 suma logiczna Postać afirmacyjna zmiennej a Postać zanegowana zmiennej ~a

14 Funkcje boolowskie Zbiór {F} par uporządkowanych <x, y>, będący podzbiorem iloczynu kartezjańskiego {X} {Y}, przy czym x {X}, y {Y}; -dla każdego x {X} istnieje y {Y} takie, że (x, y) {F}, -jeśli (x, y 1 ) {F} i (x, y 2 ) {F}, to y 1 = y 2. Zmienne x i y mogą być w ogólnym przypadku wektorami zmiennymi wielowymiarowymi. Dla każdego z n wyjść układu logicznego o m wejściach funkcję boolowską można zdefiniować jako odwzorowanie zbioru {0, 1}... {0, 1} = {0, 1} m w zbiór {0, 1}. Reguły zapisu odwzorowania: - tablica wartości logicznych (tablica prawdy) - formuła boolowska (postać analityczna funkcji)

15 Przykład formuły boolowskiej Przykładowo: y = ~x 1 ~x 2 + x 1 x 2 oznacza, że y = 1, gdy x 1 = x 2 = 0 lub x 1 = x 2 = 1 (w pozostałych przypadkach y = 0). x 1 x 2 y Na podstawie A 2, A 1 i Tw.8: y = (~x 1 ~x 2 )+ x 1 x 2 = (~x 1 ~x 2 + x 1 ) (~x 1 ~x 2 +x 2 ) = = (x 1 + ~x 2 ) (~x 1 +x 2 ) Formuła pierwsza suma jedynek funkcji Formuła druga iloczyn zer funkcji (zamiana postaci zmiennych zeru odpowiada afirmacyjna, jedynce zanegowana)

16 Pełna suma, pełny iloczyn Pełny iloczyn iloczyn złożony ze wszystkich zmiennych funkcji, przy czym literał każdej zmiennej występuje tylko raz. Przyjmuje wartość 1 tylko dla jednej kombinacji wartości zmiennych. Pełna suma sumazłożona ze wszystkich zmiennych, przy czym literał każdej zmiennej występuje tylko raz. Przyjmuje wartość 0 tylko dla jednej kombinacji wartości zmiennych. Suma wszystkich pełnych iloczynów funkcji jest zawsze równa jedności. Iloczyn wszystkich pełnych sum funkcji jest zawsze równy zeru. Dla m zmiennych można utworzyć 2 m pełnych iloczynów lub pełnych sum.

17 Mintermy i makstermy Minterm pełny iloczyn uporządkowany zgodnie z tabelą poniżej. Maksterm pełna suma uporządkowana zgodnie z tabelą poniżej. ln x m-1,...,x 1, x 0 minterm maksterm 0 0,..., 0, 0 ~x m-1... ~x 1 ~x 0 m 0 x m x 1 +x 0 M 0 1 0,..., 0, 1 ~x m-1... ~x 1 x 0 m 1 x m x 1 +~x 0 M 1 2 0,..., 1, 0 ~x m-1... x 1 ~x 0 m 2 x m ~x 1 +x 0 M k=2 m -1 1,..., 1, 1 x m-1... x 1 x 0 m k ~x m ~x 1 +~x 0 M k

18 Postać kanoniczna funkcji boolowskiej Każdą funkcję boolowską binarną można przedstawić: - w postaci sumy mintermów (wskaźnik dotyczy tych mintermów, dla których wartość funkcji jest równa 1) - w postaci iloczynu makstermów (wskaźnik dotyczy tych makstermów, dla których wartość funkcji jest równa 0) Powyższe postaci funkcji noszą nazwę kanonicznych. f f = i = i m i M i

19 Postać normalna funkcji i jej dopełnienie Postać normalna postać, w której formuła boolowska określająca funkcję jest wyłącznie sumą iloczynów zmiennych (postać normalna dysjunkcyjna alternatywna) bądź iloczynem ich sum (postać normalna koniunkcyjna). Dopełnienie funkcji można znaleźć posługując się rozwinięciem praw de Morgana (tw. 10) na większą liczbę zmiennych. W szczególności: ~(x n-1... x 1 x 0 ) = ~x n ~x 1 + ~x 0 ~(x n x 1 + x 0 ) = ~x n-1... ~x 1 ~x 0 (dowodzenie oparte na iteracyjnym stosowaniu twierdzeń 9 i 10)

20 Funkcje boolowskie dwóch zmiennych x y f 0 f 1 f 2 f 3 f 4 f 5 f 6 f symbol/ operacja 0 x y x/y (x ~y) x y/x (~x y) y XOR x+y f 2 funkcja zakazu y f 4 funkcja zakazu x f 6 ALBO Nazwy funkcji pochodzą z rachunku zdań; wówczas 1 określa się jako prawda, 0 jako fałsz.

21 Funkcje boolowskie dwóch zmiennych x y f 8 f 9 f 10 f 11 f 12 f 13 f 14 f symbol/ operacja f 9 równoważność f 11 implikacja x y f 13 implikacja x y NOR XNOR ~y x+~y ~x ~x+y NAND 1 W teorii układów logicznych operatory implikacji i zakazu nie odgrywają większej roli.

22 Najważniejsze operatory jedno- i dwuargumentowe Bramki logiczne nazwa używana z uwagi na dwustanowy charakter pracy (włącz-wyłącz).

23 Systemy funkcjonalnie pełne Zestawy operatorów, pozwalające tworzyć poprawne formuły boolowskie, zawierające, obok nazw zmiennych i elementów 0, 1, symbole odpowiednio zdefiniowanych operatorów. Najbardziej naturalny test: czy w oparciu o dane operatory można skonstruować operatory AND, OR, NOT?

24 Systemy funkcjonalnie pełne c.d. NAND NOR implikacja, 0 implikacja, NOT implikacja, 1 zakaz, 1 zakaz, NOT XOR, AND, 1 XOR, OR, 1 XNOR, AND, 0 XNOR, OR, 0 AND, NOT OR, NOT

25 Test pełności NAND i NOR

26 Realizacje bramkowe funkcji logicznych Symbole graficzne (bramki) mogą być wykorzystywane do graficznego przedstawiania formuł boolowskich. operatory przemienne i łączne mogą być reprezentowane przez bramki wielowejściowe konstruowane wprost z definicji (suma, iloczyn, XOR, XNOR); operatory przemienne NAND NOR mogą być reprezentowane przez bramki dwuwejściowe; dla dwóch argumentów funkcje te tożsame są z systemami AND-NOT i OR-NOT bramki wielowejściowe powstają jako realizacje negacji wielowejściowego iloczynu i sumy; operatory nieprzemienne (implikacja, zakaz) nie mogą być stosowane w układach logicznych i nie są realizowane fizycznie.

27 Realizacje AND-OR-NOT każda postać normalna daje realizację zawierającą co najwyżej trzy poziomy bramek poziom trzeci (negacje) może nie wystąpić y x z y x z y x F + + = ( ) ( ) ( ) y x z y x z y x F =

28 Minimalizacja formuł boolowskich Najczęstsze kryterium minimalizacja liczby literałów; prowadzi do najprostszej realizacji bramkowej funkcji Metody heurystyczne przekształcenia zgodne z twierdzeniami i aksjomatami algebry Boole a Metody algorytmiczne (do zastosowań komputerowych) Metody intuicyjne diagramy Veitch a tablice Karnaugh

29 Faktoryzacja funkcji logicznych Minimalizacja formuł boolowskich prowadzona jest w klasie formuł normalnych; otrzymane formuły minimalne są postaciami normalnymi funkcji Faktoryzacja dostosowanie do wymagań technologicznych (ilość wejść bramek, dostępne typy bramek itp.); może zwiększyć skomplikowanie formuły

Wstęp do Techniki Cyfrowej i Mikroelektroniki

Wstęp do Techniki Cyfrowej i Mikroelektroniki Wstęp do Techniki Cyfrowej i Mikroelektroniki dr inż. Maciej Piotrowicz Katedra Mikroelektroniki i Technik Informatycznych PŁ piotrowi@dmcs.p.lodz.pl http://fiona.dmcs.pl/~piotrowi -> Wstęp do... Układy

Bardziej szczegółowo

Technika cyfrowa Synteza układów kombinacyjnych

Technika cyfrowa Synteza układów kombinacyjnych Sławomir Kulesza Technika cyfrowa Synteza układów kombinacyjnych Wykład dla studentów III roku Informatyki Wersja 2.0, 05/10/2011 Podział układów logicznych Opis funkcjonalny układów logicznych x 1 y 1

Bardziej szczegółowo

Technika cyfrowa Synteza układów kombinacyjnych (I)

Technika cyfrowa Synteza układów kombinacyjnych (I) Sławomir Kulesza Technika cyfrowa Synteza układów kombinacyjnych (I) Wykład dla studentów III roku Informatyki Wersja 2.0, 05/10/2011 Podział układów logicznych Opis funkcjonalny układów logicznych x 1

Bardziej szczegółowo

Algebra Boole a. Ćwiczenie Sprawdź, czy algebra zbiorów jestrównież algebrą Boole a. Padaj wszystkie elementy takiej realizacji.

Algebra Boole a. Ćwiczenie Sprawdź, czy algebra zbiorów jestrównież algebrą Boole a. Padaj wszystkie elementy takiej realizacji. Algebra Boole a Algebrą Boole a nazywamy zbiór B, wyróżnione jego podzbiory O i I oraz operacje dwuargumentowe +;, które dla dowolnych elementów X, Y, Z zbioru B spełniają następujące aksjomaty: X+Y B;

Bardziej szczegółowo

Wykład nr 1 Techniki Mikroprocesorowe. dr inż. Artur Cichowski

Wykład nr 1 Techniki Mikroprocesorowe. dr inż. Artur Cichowski Wykład nr 1 Techniki Mikroprocesorowe dr inż. Artur Cichowski ix jy i j {0,1} {0,1} Dla układów kombinacyjnych stan dowolnego wyjścia y i w danej chwili czasu zależy wyłącznie od aktualnej kombinacji stanów

Bardziej szczegółowo

Logika binarna. Prawo łączności mówimy, że operator binarny * na zbiorze S jest łączny gdy (x * y) * z = x * (y * z) dla każdego x, y, z S.

Logika binarna. Prawo łączności mówimy, że operator binarny * na zbiorze S jest łączny gdy (x * y) * z = x * (y * z) dla każdego x, y, z S. Logika binarna Logika binarna zajmuje się zmiennymi mogącymi przyjmować dwie wartości dyskretne oraz operacjami mającymi znaczenie logiczne. Dwie wartości jakie mogą te zmienne przyjmować noszą przy tym

Bardziej szczegółowo

Podstawy Automatyki. Wykład 13 - Układy bramkowe. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 13 - Układy bramkowe. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 13 - Układy bramkowe Instytut Automatyki i Robotyki Warszawa, 2015 Układy z elementów logicznych Bramki logiczne Elementami logicznymi (bramkami logicznymi) są urządzenia o dwustanowym sygnale wyjściowym

Bardziej szczegółowo

Podstawy Automatyki. Wykład 13 - Układy bramkowe. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 13 - Układy bramkowe. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 13 - Układy bramkowe Instytut Automatyki i Robotyki Warszawa, 2015 Układy z elementów logicznych Bramki logiczne Elementami logicznymi (bramkami logicznymi) są urządzenia o dwustanowym sygnale wyjściowym

Bardziej szczegółowo

Automatyka Treść wykładów: Literatura. Wstęp. Sygnał analogowy a cyfrowy. Bieżące wiadomości:

Automatyka Treść wykładów: Literatura. Wstęp. Sygnał analogowy a cyfrowy. Bieżące wiadomości: Treść wykładów: Automatyka dr inż. Szymon Surma szymon.surma@polsl.pl pok. 202, tel. +48 32 603 4136 1. Podstawy automatyki 1. Wstęp, 2. Różnice między sygnałem analogowym a cyfrowym, 3. Podstawowe elementy

Bardziej szczegółowo

Rys. 2. Symbole dodatkowych bramek logicznych i ich tablice stanów.

Rys. 2. Symbole dodatkowych bramek logicznych i ich tablice stanów. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z funktorami realizującymi podstawowe funkcje logiczne poprzez zaprojektowanie, wykonanie i przetestowanie kombinacyjnego układu logicznego realizującego

Bardziej szczegółowo

dr inż. Rafał Klaus Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia i ich zastosowań w przemyśle" POKL

dr inż. Rafał Klaus Zajęcia finansowane z projektu Rozwój i doskonalenie kształcenia i ich zastosowań w przemyśle POKL Technika cyfrowa w architekturze komputerów materiał do wykładu 2/3 dr inż. Rafał Klaus Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii

Bardziej szczegółowo

Architektura komputerów Wykład 2

Architektura komputerów Wykład 2 Architektura komputerów Wykład 2 Jan Kazimirski 1 Elementy techniki cyfrowej 2 Plan wykładu Algebra Boole'a Podstawowe układy cyfrowe bramki Układy kombinacyjne Układy sekwencyjne 3 Algebra Boole'a Stosowana

Bardziej szczegółowo

Część 2. Funkcje logiczne układy kombinacyjne

Część 2. Funkcje logiczne układy kombinacyjne Część 2 Funkcje logiczne układy kombinacyjne Zapis funkcji logicznych układ funkcjonalnie pełny Arytmetyka Bool a najważniejsze aksjomaty i tożsamości Minimalizacja funkcji logicznych Układy kombinacyjne

Bardziej szczegółowo

Automatyzacja Ćwicz. 2 Teoria mnogości i algebra logiki Akademia Morska w Szczecinie - Wydział Inżynieryjno-Ekonomiczny Transportu

Automatyzacja Ćwicz. 2 Teoria mnogości i algebra logiki Akademia Morska w Szczecinie - Wydział Inżynieryjno-Ekonomiczny Transportu Automatyzacja Ćwicz. 2 Teoria mnogości i algebra logiki Historia teorii mnogości Teoria mnogości to inaczej nauka o zbiorach i ich własnościach; Zapoczątkowana przez greckich matematyków i filozofów w

Bardziej szczegółowo

Podstawy Automatyki. Wykład 12 - synteza i minimalizacja funkcji logicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 12 - synteza i minimalizacja funkcji logicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 12 - synteza i minimalizacja funkcji logicznych Instytut Automatyki i Robotyki Warszawa, 2017 Synteza funkcji logicznych Terminy - na bazie funkcji trójargumenowej y = (x 1, x 2, x 3 ) (1) Elementarny

Bardziej szczegółowo

1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych.

1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych. Elementy logiki i teorii zbiorów. 1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych. Pojęcia pierwotne to najprostsze

Bardziej szczegółowo

Arytmetyka liczb binarnych

Arytmetyka liczb binarnych Wartość dwójkowej liczby stałoprzecinkowej Wartość dziesiętna stałoprzecinkowej liczby binarnej Arytmetyka liczb binarnych b n-1...b 1 b 0,b -1 b -2...b -m = b n-1 2 n-1 +... + b 1 2 1 + b 0 2 0 + b -1

Bardziej szczegółowo

Automatyka Lab 1 Teoria mnogości i algebra logiki. Akademia Morska w Szczecinie - Wydział Inżynieryjno-Ekonomiczny Transportu

Automatyka Lab 1 Teoria mnogości i algebra logiki. Akademia Morska w Szczecinie - Wydział Inżynieryjno-Ekonomiczny Transportu Automatyka Lab 1 Teoria mnogości i algebra logiki Harmonogram zajęć Układy przełączające: 1. Algebra logiki - Wprowadzenie 2. Funkcje logiczne - minimalizacja funkcji 3. Bramki logiczne - rysowanie układów

Bardziej szczegółowo

Podstawy Automatyki. Wykład 9 - Podstawy matematyczne automatyki procesów dyskretnych. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 9 - Podstawy matematyczne automatyki procesów dyskretnych. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki Wykład 9 - Podstawy matematyczne automatyki procesów dyskretnych Instytut Automatyki i Robotyki Warszawa, 2015 Kody liczb całkowitych nieujemnych Kody liczbowe dzielimy na analityczne nieanalityczne (symboliczne)

Bardziej szczegółowo

0.1. Logika podstawowe pojęcia: zdania i funktory, reguły wnioskowania, zmienne zdaniowe, rachunek zdań.

0.1. Logika podstawowe pojęcia: zdania i funktory, reguły wnioskowania, zmienne zdaniowe, rachunek zdań. Wykłady z Analizy rzeczywistej i zespolonej w Matematyce stosowanej Wykład ELEMENTY LOGIKI ALGEBRA BOOLE A Logika podstawowe pojęcia: zdania i funktory, reguły wnioskowania, zmienne zdaniowe, rachunek

Bardziej szczegółowo

Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych

Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych 1 Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych 1. Podstawowe operacje logiczne dla cyfr binarnych Jeśli cyfry 0 i 1 potraktujemy tak, jak wartości logiczne fałsz i prawda, to działanie

Bardziej szczegółowo

Układy logiczne. Wstęp doinformatyki. Funkcje boolowskie (1854) Funkcje boolowskie. Operacje logiczne. Funkcja boolowska (przykład)

Układy logiczne. Wstęp doinformatyki. Funkcje boolowskie (1854) Funkcje boolowskie. Operacje logiczne. Funkcja boolowska (przykład) Wstęp doinformatyki Układy logiczne komputerów kombinacyjne sekwencyjne Układy logiczne Układy kombinacyjne Dr inż. Ignacy Pardyka Akademia Świętokrzyska Kielce, 2001 synchroniczne asynchroniczne Wstęp

Bardziej szczegółowo

Architektura komputerów ćwiczenia Bramki logiczne. Układy kombinacyjne. Kanoniczna postać dysjunkcyjna i koniunkcyjna.

Architektura komputerów ćwiczenia Bramki logiczne. Układy kombinacyjne. Kanoniczna postać dysjunkcyjna i koniunkcyjna. Architektura komputerów ćwiczenia Zbiór zadań IV Bramki logiczne. Układy kombinacyjne. Kanoniczna postać dysjunkcyjna i koniunkcyjna. Wprowadzenie 1 1 fragmenty książki "Organizacja i architektura systemu

Bardziej szczegółowo

Algebra Boole a i jej zastosowania

Algebra Boole a i jej zastosowania lgebra oole a i jej zastosowania Wprowadzenie Niech dany będzie zbiór dwuelementowy, którego elementy oznaczymy symbolami 0 oraz 1, tj. {0, 1}. W zbiorze tym określamy działania sumy :, iloczynu : _ oraz

Bardziej szczegółowo

Elementy logiki. Wojciech Buszkowski Wydział Matematyki i Informatyki UAM Zakład Teorii Obliczeń

Elementy logiki. Wojciech Buszkowski Wydział Matematyki i Informatyki UAM Zakład Teorii Obliczeń Elementy logiki Wojciech Buszkowski Wydział Matematyki i Informatyki UAM Zakład Teorii Obliczeń 1 Klasyczny Rachunek Zdań 1.1 Spójniki logiczne Zdaniem w sensie logicznym nazywamy wyrażenie, które jest

Bardziej szczegółowo

Elementy logiki. Algebra Boole a. Analiza i synteza układów logicznych

Elementy logiki. Algebra Boole a. Analiza i synteza układów logicznych Elementy logiki: Algebra Boole a i układy logiczne 1 Elementy logiki dla informatyków Wykład III Elementy logiki. Algebra Boole a. Analiza i synteza układów logicznych Elementy logiki: Algebra Boole a

Bardziej szczegółowo

Minimalizacja funkcji boolowskich

Minimalizacja funkcji boolowskich Minimalizacja funkcji boolowskich Zagadnienie intensywnych prac badawczych od początku lat pięćdziesiątych 2 wieku. Ogromny wzrost zainteresowania minimalizacją f.b. powstał ponownie w latach 8. rzyczyna:

Bardziej szczegółowo

Koszt literału (literal cost) jest określony liczbą wystąpień literału w wyrażeniu boolowskim realizowanym przez układ.

Koszt literału (literal cost) jest określony liczbą wystąpień literału w wyrażeniu boolowskim realizowanym przez układ. Elementy cyfrowe i układy logiczne Wykład Legenda Kryterium kosztu realizacji Minimalizacja i optymalizacja Optymalizacja układów dwupoziomowych Tablica (mapa) Karnaugh a Metoda Quine a-mccluskey a Złożoność

Bardziej szczegółowo

b) bc a Rys. 1. Tablice Karnaugha dla funkcji o: a) n=2, b) n=3 i c) n=4 zmiennych.

b) bc a Rys. 1. Tablice Karnaugha dla funkcji o: a) n=2, b) n=3 i c) n=4 zmiennych. DODATEK: FUNKCJE LOGICZNE CD. 1 FUNKCJE LOGICZNE 1. Tablice Karnaugha Do reprezentacji funkcji boolowskiej n-zmiennych można wykorzystać tablicę prawdy o 2 n wierszach lub np. tablice Karnaugha. Tablica

Bardziej szczegółowo

Wstęp do Techniki Cyfrowej... Układy kombinacyjne

Wstęp do Techniki Cyfrowej... Układy kombinacyjne Wstęp do Techniki Cyfrowej... Układy kombinacyjne Przypomnienie Stan wejść układu kombinacyjnego jednoznacznie określa stan wyjść. Poszczególne wyjścia określane są przez funkcje boolowskie zmiennych wejściowych.

Bardziej szczegółowo

Minimalizacja formuł Boolowskich

Minimalizacja formuł Boolowskich Minimalizacja formuł Boolowskich Stosowanie reguł algebry Boole a w celu minimalizacji funkcji logicznych jest niedogodne brak metody, aby stwierdzić czy dana formuła może być jeszcze minimalizowana czasami

Bardziej szczegółowo

Elementy cyfrowe i układy logiczne

Elementy cyfrowe i układy logiczne Elementy cyfrowe i układy logiczne Wykład Legenda Optymalizacja wielopoziomowa Inne typy bramek logicznych System funkcjonalnie pełny Optymalizacja układów wielopoziomowych Układy wielopoziomowe układy

Bardziej szczegółowo

Tranzystor JFET i MOSFET zas. działania

Tranzystor JFET i MOSFET zas. działania Tranzystor JFET i MOSFET zas. działania brak kanału v GS =v t (cutoff ) kanał otwarty brak kanału kanał otwarty kanał zamknięty w.2, p. kanał zamknięty Co było na ostatnim wykładzie? Układy cyfrowe Najczęściej

Bardziej szczegółowo

Algebra. Jakub Maksymiuk. lato 2018/19

Algebra. Jakub Maksymiuk. lato 2018/19 Algebra Jakub Maksymiuk lato 2018/19 Algebra W1/0 Zbiory z działaniami Podstawowe własności Potęgi Tabelka działania Przykłady Grupa symetryczna Algebra W1/1 Podstawowe własności Definicja: Działaniem

Bardziej szczegółowo

WOJSKOWA AKADEMIA TECHNICZNA im. Jarosława Dąbrowskiego

WOJSKOWA AKADEMIA TECHNICZNA im. Jarosława Dąbrowskiego WOJSKOWA AKADEMIA TECHNICZNA im. Jarosława Dąbrowskiego Modelowanie kombinacyjnych układów przełączających z wykorzystaniem elementów Podstawy Automatyki i Automatyzacji - Ćwiczenia Laboratoryjne mgr inż.

Bardziej szczegółowo

Bramki logiczne Podstawowe składniki wszystkich układów logicznych

Bramki logiczne Podstawowe składniki wszystkich układów logicznych Układy logiczne Bramki logiczne A B A B AND NAND A B A B OR NOR A NOT A B A B XOR NXOR A NOT A B AND NAND A B OR NOR A B XOR NXOR Podstawowe składniki wszystkich układów logicznych 2 Podstawowe tożsamości

Bardziej szczegółowo

Wykład 2. Informatyka Stosowana. 8 października 2018, M. A-B. Informatyka Stosowana Wykład 2 8 października 2018, M. A-B 1 / 41

Wykład 2. Informatyka Stosowana. 8 października 2018, M. A-B. Informatyka Stosowana Wykład 2 8 października 2018, M. A-B 1 / 41 Wykład 2 Informatyka Stosowana 8 października 2018, M. A-B Informatyka Stosowana Wykład 2 8 października 2018, M. A-B 1 / 41 Elementy logiki matematycznej Informatyka Stosowana Wykład 2 8 października

Bardziej szczegółowo

Państwowa Wyższa Szkoła Zawodowa

Państwowa Wyższa Szkoła Zawodowa Państwowa Wyższa Szkoła Zawodowa w Legnicy Laboratorium Podstaw Elektroniki i Miernictwa Ćwiczenie nr 4 BADANIE BRAMEK LOGICZNYCH A. Cel ćwiczenia. - Poznanie zasad logiki binarnej. Prawa algebry Boole

Bardziej szczegółowo

Minimalizacja funkcji boolowskich - wykład 2

Minimalizacja funkcji boolowskich - wykład 2 SWB - Minimalizacja funkcji boolowskich - wykład 2 asz 1 Minimalizacja funkcji boolowskich - wykład 2 Adam Szmigielski aszmigie@pjwstk.edu.pl Laboratorium robotyki s09 SWB - Minimalizacja funkcji boolowskich

Bardziej szczegółowo

Minimalizacja form boolowskich

Minimalizacja form boolowskich Sławomir Kulesza Technika cyfrowa Minimalizacja form boolowskich Wykład dla studentów III roku Informatyki Wersja 1.0, 05/10/2010 Minimalizacja form boolowskich Minimalizacja proces przekształcania form

Bardziej szczegółowo

dr inż. Małgorzata Langer Architektura komputerów

dr inż. Małgorzata Langer Architektura komputerów Instrukcja współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego w projekcie Innowacyjna dydaktyka bez ograniczeń zintegrowany rozwój Politechniki Łódzkiej zarządzanie Uczelnią,

Bardziej szczegółowo

Cyfrowe bramki logiczne 2012

Cyfrowe bramki logiczne 2012 LORTORIUM ELEKTRONIKI yfrowe bramki logiczne 2012 ndrzej Malinowski 1. yfrowe bramki logiczne 3 1.1 el ćwiczenia 3 1.2 Elementy algebry oole`a 3 1.3 Sposoby zapisu funkcji logicznych 4 1.4 Minimalizacja

Bardziej szczegółowo

WOJSKOWA AKADEMIA T E CHNI CZNA im. Jarosława Dą brow ski ego ZAKŁAD AWIONIKI I UZBROJENIA LOTNICZEGO

WOJSKOWA AKADEMIA T E CHNI CZNA im. Jarosława Dą brow ski ego ZAKŁAD AWIONIKI I UZBROJENIA LOTNICZEGO WOJSKOWA AKADEMIA T E CHNI CZNA im. Jarosława Dą brow ski ego ZAKŁAD AWIONIKI I UZBROJENIA LOTNICZEGO Przedmiot: PODSTAWY AUTOMATYKI I AUTOMATYZACJI (studia I stopnia) ĆWICZENIE RACHUNKOWE PROJEKT PROSTEGO

Bardziej szczegółowo

Minimalizacja funkcji boolowskich

Minimalizacja funkcji boolowskich Minimalizacja funkcji boolowskich Zagadnienie intensywnych prac badawczych od początku lat pięćdziesiątych 20 wieku. Ogromny wzrost zainteresowania minimalizacją f.b. powstał ponownie w latach 80. rzyczyna:

Bardziej szczegółowo

Lista tematów na kolokwium z wykładu z Techniki Cyfrowej w roku ak. 2013/2014

Lista tematów na kolokwium z wykładu z Techniki Cyfrowej w roku ak. 2013/2014 Lista tematów na kolokwium z wykładu z Techniki Cyfrowej w roku ak. 2013/2014 Temat 1. Algebra Boole a i bramki 1). Podać przykład dowolnego prawa lub tożsamości, które jest spełnione w algebrze Boole

Bardziej szczegółowo

Laboratorium podstaw elektroniki

Laboratorium podstaw elektroniki 150875 Grzegorz Graczyk numer indeksu imie i nazwisko 150889 Anna Janicka numer indeksu imie i nazwisko Grupa: 2 Grupa: 5 kierunek Informatyka semestr 2 rok akademicki 2008/09 Laboratorium podstaw elektroniki

Bardziej szczegółowo

Elementy logiki Klasyczny rachunek zdań. Wojciech Buszkowski Zakład Teorii Obliczeń Wydział Matematyki i Informatyki Uniwersytet im.

Elementy logiki Klasyczny rachunek zdań. Wojciech Buszkowski Zakład Teorii Obliczeń Wydział Matematyki i Informatyki Uniwersytet im. Elementy logiki. Klasyczny rachunek zdań. 1 Elementy logiki Klasyczny rachunek zdań Wojciech Buszkowski Zakład Teorii Obliczeń Wydział Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza Elementy

Bardziej szczegółowo

WOJSKOWA AKADEMIA TECHNICZNA im. Jarosława Dąbrowskiego

WOJSKOWA AKADEMIA TECHNICZNA im. Jarosława Dąbrowskiego WOJSKOWA AKADEMIA TECHNICZNA im. Jarosława Dąbrowskiego Modelowanie kombinacyjnych układów przełączających z wykorzystaniem elementów pneumatycznych i elektrycznych Podstawy Automatyki i Automatyzacji

Bardziej szczegółowo

Funkcja Boolowska. f:b n B, gdzieb={0,1} jest zbiorem wartości funkcji. Funkcja boolowska jest matematycznym modelem układu kombinacyjnego.

Funkcja Boolowska. f:b n B, gdzieb={0,1} jest zbiorem wartości funkcji. Funkcja boolowska jest matematycznym modelem układu kombinacyjnego. SWB - Minimalizacja funkcji boolowskich - wykład 2 asz 1 Funkcja Boolowska Funkcja boolowskanargumentową nazywamy odwzorowanie f:b n B, gdzieb={0,1} jest zbiorem wartości funkcji. Funkcja boolowska jest

Bardziej szczegółowo

Wykład 1. Informatyka Stosowana. 3 października Informatyka Stosowana Wykład 1 3 października / 26

Wykład 1. Informatyka Stosowana. 3 października Informatyka Stosowana Wykład 1 3 października / 26 Wykład 1 Informatyka Stosowana 3 października 2016 Informatyka Stosowana Wykład 1 3 października 2016 1 / 26 Wykłady : 45h (w semestrze zimowym) ( Egzamin) 30h (w semetrze letnim ) ( Egzamin) Zajęcia praktyczne:

Bardziej szczegółowo

Elementy logiki Klasyczny rachunek zdań. Wojciech Buszkowski Zakład Teorii Obliczeń Wydział Matematyki i Informatyki Uniwersytet im.

Elementy logiki Klasyczny rachunek zdań. Wojciech Buszkowski Zakład Teorii Obliczeń Wydział Matematyki i Informatyki Uniwersytet im. Elementy logiki. Klasyczny rachunek zdań. Elementy logiki Klasyczny rachunek zdań Wojciech Buszkowski Zakład Teorii Obliczeń Wydział Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza 1 Spójniki

Bardziej szczegółowo

Logika Stosowana. Wykład 1 - Logika zdaniowa. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017

Logika Stosowana. Wykład 1 - Logika zdaniowa. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017 Logika Stosowana Wykład 1 - Logika zdaniowa Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2016/2017 Marcin Szczuka (MIMUW) Logika Stosowana 2017 1 / 30 Plan wykładu 1 Język

Bardziej szczegółowo

Metoda Karnaugh. B A BC A

Metoda Karnaugh. B A BC A Metoda Karnaugh. Powszechnie uważa się, iż układ o mniejszej liczbie elementów jest tańszy i bardziej niezawodny, a spośród dwóch układów o takiej samej liczbie elementów logicznych lepszy jest ten, który

Bardziej szczegółowo

Zbiory, relacje i funkcje

Zbiory, relacje i funkcje Zbiory, relacje i funkcje Zbiory będziemy zazwyczaj oznaczać dużymi literami A, B, C, X, Y, Z, natomiast elementy zbiorów zazwyczaj małymi. Podstawą zależność między elementem zbioru a zbiorem, czyli relację

Bardziej szczegółowo

Wykład ze Wstępu do Logiki i Teorii Mnogości

Wykład ze Wstępu do Logiki i Teorii Mnogości Wykład ze Wstępu do Logiki i Teorii Mnogości rok ak. 2016/2017, semestr zimowy Wykład 1 1 Wstęp do Logiki 1.1 Rachunek zdań, podstawowe funktory logiczne 1.1.1 Formuła atomowa; zdanie logiczne definicje

Bardziej szczegółowo

LOGIKA I TEORIA ZBIORÓW

LOGIKA I TEORIA ZBIORÓW LOGIKA I TEORIA ZBIORÓW Logika Logika jest nauką zajmującą się zdaniami Z punktu widzenia logiki istotne jest, czy dane zdanie jest prawdziwe, czy nie Nie jest natomiast istotne o czym to zdanie mówi Definicja

Bardziej szczegółowo

Np. Olsztyn leży nad Łyną - zdanie prawdziwe, wartość logiczna 1 4 jest większe od 5 - zdanie fałszywe, wartość logiczna 0

Np. Olsztyn leży nad Łyną - zdanie prawdziwe, wartość logiczna 1 4 jest większe od 5 - zdanie fałszywe, wartość logiczna 0 ĆWICZENIE 1 Klasyczny Rachunek Zdań (KRZ): zdania w sensie logicznym, wartości logiczne, spójniki logiczne, zmienne zdaniowe, tabele prawdziwościowe dla spójników logicznych, formuły, wartościowanie zbioru

Bardziej szczegółowo

Architektura komputerów

Architektura komputerów Wykład jest przygotowany dla IV semestru kierunku Elektronika i Telekomunikacja. Studia I stopnia Dr inż. Małgorzata Langer Architektura komputerów Prezentacja multimedialna współfinansowana przez Unię

Bardziej szczegółowo

Lekcja na Pracowni Podstaw Techniki Komputerowej z wykorzystaniem komputera

Lekcja na Pracowni Podstaw Techniki Komputerowej z wykorzystaniem komputera Lekcja na Pracowni Podstaw Techniki Komputerowej z wykorzystaniem komputera Temat lekcji: Minimalizacja funkcji logicznych Etapy lekcji: 1. Podanie tematu i określenie celu lekcji SOSOBY MINIMALIZACJI

Bardziej szczegółowo

Zadania do wykładu 1, Zapisz liczby binarne w kodzie dziesiętnym: ( ) 2 =( ) 10, ( ) 2 =( ) 10, (101001, 10110) 2 =( ) 10

Zadania do wykładu 1, Zapisz liczby binarne w kodzie dziesiętnym: ( ) 2 =( ) 10, ( ) 2 =( ) 10, (101001, 10110) 2 =( ) 10 Zadania do wykładu 1,. 1. Zapisz liczby binarne w kodzie dziesiętnym: (1011011) =( ) 10, (11001100) =( ) 10, (101001, 10110) =( ) 10. Zapisz liczby dziesiętne w naturalnym kodzie binarnym: (5) 10 =( ),

Bardziej szczegółowo

Układy kombinacyjne 1

Układy kombinacyjne 1 Układy kombinacyjne 1 Układy kombinacyjne są to układy cyfrowe, których stany wyjść są zawsze jednoznacznie określone przez stany wejść. Oznacza to, że doprowadzając na wejścia tych układów określoną kombinację

Bardziej szczegółowo

Wstęp do Matematyki (2)

Wstęp do Matematyki (2) Wstęp do Matematyki (2) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Własności relacji Jerzy Pogonowski (MEG) Wstęp do Matematyki (2) Własności relacji 1 / 24 Wprowadzenie

Bardziej szczegółowo

Układy kombinacyjne Y X 4 X 5. Rys. 1 Kombinacyjna funkcja logiczna.

Układy kombinacyjne Y X 4 X 5. Rys. 1 Kombinacyjna funkcja logiczna. Układy kombinacyjne. Czas trwania: 6h. Cele ćwiczenia Przypomnienie podstawowych praw Algebry Boole a. Zaprojektowanie, montaż i sprawdzenie działania zadanych układów kombinacyjnych.. Wymagana znajomość

Bardziej szczegółowo

Synteza układów kombinacyjnych

Synteza układów kombinacyjnych Sławomir Kulesza Technika cyfrowa Synteza układów kombinacyjnych Wykład dla studentów III roku Informatyki Wersja 4.0, 23/10/2014 Bramki logiczne Bramki logiczne to podstawowe elementy logiczne realizujące

Bardziej szczegółowo

Układy kombinacyjne i sekwencyjne. Podczas ćwiczenia poruszane będą następujące zagadnienia:

Układy kombinacyjne i sekwencyjne. Podczas ćwiczenia poruszane będą następujące zagadnienia: Warszawa 207 Cel ćwiczenia rachunkowego Podczas ćwiczenia poruszane będą następujące zagadnienia: modelowanie i synteza kombinacyjnych układów przełączających; minimalizacja funkcji przełączającej; projektowanie

Bardziej szczegółowo

0. ELEMENTY LOGIKI. ALGEBRA BOOLE A

0. ELEMENTY LOGIKI. ALGEBRA BOOLE A WYKŁAD 5() ELEMENTY LOGIKI ALGEBRA BOOLE A Logika podstawowe pojęcia: zdania i funktory, reguły wnioskowania, zmienne zdaniowe, rachunek zdań Matematyka zbudowana jest z pierwotnych twierdzeń (nazywamy

Bardziej szczegółowo

2019/09/16 07:46 1/2 Laboratorium AITUC

2019/09/16 07:46 1/2 Laboratorium AITUC 2019/09/16 07:46 1/2 Laboratorium AITUC Table of Contents Laboratorium AITUC... 1 Uwagi praktyczne przed rozpoczęciem zajęć... 1 Lab 1: Układy kombinacyjne małej i średniej skali integracji... 1 Lab 2:

Bardziej szczegółowo

Wykład 1. Informatyka Stosowana. 2 października Informatyka Stosowana Wykład 1 2 października / 33

Wykład 1. Informatyka Stosowana. 2 października Informatyka Stosowana Wykład 1 2 października / 33 Wykład 1 Informatyka Stosowana 2 października 2017 Informatyka Stosowana Wykład 1 2 października 2017 1 / 33 Wykłady : 45h (w semestrze zimowym) (Egzamin) 30h (w semetrze letnim) (Egzamin) 3h lekcyjne

Bardziej szczegółowo

Jest to zasadniczo powtórka ze szkoły średniej, być może z niektórymi rzeczami nowymi.

Jest to zasadniczo powtórka ze szkoły średniej, być może z niektórymi rzeczami nowymi. Logika Jest to zasadniczo powtórka ze szkoły średniej, być może z niektórymi rzeczami nowymi. Często słowu "logika" nadaje się szersze znaczenie niż temu o czym będzie poniżej: np. mówi się "logiczne myślenie"

Bardziej szczegółowo

I. Podstawowe zagadnienia z teorii układów cyfrowych

I. Podstawowe zagadnienia z teorii układów cyfrowych I. Podstawowe zagadnienia z teorii układów cyfrowych. Wstęp Muzyka na płytach fonograficznych jest zapisana w formie kanaliku o zmiennym urzeźbieniu. Ruch igły prowadzonej przez kanalik odbywa się w sposób

Bardziej szczegółowo

W pewnym mieście jeden z jej mieszkańców goli wszystkich tych i tylko tych jej mieszkańców, którzy nie golą się

W pewnym mieście jeden z jej mieszkańców goli wszystkich tych i tylko tych jej mieszkańców, którzy nie golą się 1 Logika Zdanie w sensie logicznym, to zdanie oznajmujące, o którym da się jednoznacznie powiedzieć, czy jest fałszywe, czy prawdziwe. Zmienna zdaniowa- to symbol, którym zastępujemy dowolne zdanie. Zdania

Bardziej szczegółowo

Metalogika (1) Jerzy Pogonowski. Uniwersytet Opolski. Zakład Logiki Stosowanej UAM

Metalogika (1) Jerzy Pogonowski. Uniwersytet Opolski. Zakład Logiki Stosowanej UAM Metalogika (1) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Uniwersytet Opolski Jerzy Pogonowski (MEG) Metalogika (1) Uniwersytet Opolski 1 / 21 Wstęp Cel: wprowadzenie

Bardziej szczegółowo

Układy cyfrowe. Najczęściej układy cyfrowe służą do przetwarzania sygnałów o dwóch poziomach napięć:

Układy cyfrowe. Najczęściej układy cyfrowe służą do przetwarzania sygnałów o dwóch poziomach napięć: Układy cyfrowe W układach cyfrowych sygnały napięciowe (lub prądowe) przyjmują tylko określoną liczbę poziomów, którym przyporządkowywane są wartości liczbowe. Najczęściej układy cyfrowe służą do przetwarzania

Bardziej szczegółowo

10. Kolorowanie wierzchołków grafu

10. Kolorowanie wierzchołków grafu p. 10. Kolorowanie wierzchołków grafu 10.1 Definicje i twierdzenia Przez k-kolorowanie wierzchołków grafu G rozumiemy przyporzadkowanie każdemu wierzchołkowi grafu G jednego z k kolorów 1, 2,...,k. p.

Bardziej szczegółowo

Matematyka ETId Elementy logiki

Matematyka ETId Elementy logiki Matematyka ETId Izolda Gorgol pokój 131A e-mail: I.Gorgol@pollub.pl tel. 081 5384 563 http://antenor.pol.lublin.pl/users/gorgol Zdania w sensie logicznym DEFINICJA Zdanie w sensie logicznym - zdanie oznajmujace,

Bardziej szczegółowo

Układy Logiczne i Cyfrowe

Układy Logiczne i Cyfrowe Układy Logiczne i Cyfrowe Wykład dla studentów III roku Wydziału Elektrycznego mgr inż. Grzegorz Lisowski Instytut Automatyki Podział układów cyfrowych elementy logiczne bloki funkcjonalne zespoły funkcjonalne

Bardziej szczegółowo

SWB - Wprowadzenie, funkcje boolowskie i bramki logiczne - wykład 1 asz 1. Plan wykładu

SWB - Wprowadzenie, funkcje boolowskie i bramki logiczne - wykład 1 asz 1. Plan wykładu SWB - Wprowadzenie, funkcje boolowskie i bramki logiczne - wykład 1 asz 1 Plan wykładu 1. Wprowadzenie, funkcje boolowskie i bramki logiczne, 2. Minimalizacja funkcji boolowskich, 3. Kombinacyjne bloki

Bardziej szczegółowo

Metoda tabel semantycznych. Dedukcja drogi Watsonie, dedukcja... Definicja logicznej konsekwencji. Logika obliczeniowa.

Metoda tabel semantycznych. Dedukcja drogi Watsonie, dedukcja... Definicja logicznej konsekwencji. Logika obliczeniowa. Plan Procedura decyzyjna Reguły α i β - algorytm Plan Procedura decyzyjna Reguły α i β - algorytm Logika obliczeniowa Instytut Informatyki 1 Procedura decyzyjna Logiczna konsekwencja Teoria aksjomatyzowalna

Bardziej szczegółowo

Tautologia (wyrażenie uniwersalnie prawdziwe - prawo logiczne)

Tautologia (wyrażenie uniwersalnie prawdziwe - prawo logiczne) Tautologia (wyrażenie uniwersalnie prawdziwe - prawo logiczne) Definicja 1: Tautologia jest to takie wyrażenie, którego wartość logiczna jest prawdą przy wszystkich możliwych wartościowaniach zmiennych

Bardziej szczegółowo

Algebra i jej zastosowania ćwiczenia

Algebra i jej zastosowania ćwiczenia Algebra i jej zastosowania ćwiczenia 14 stycznia 2013 1 Kraty 1. Pokazać, że każda klasa kongruencji kraty (K, +, ) jest podkrata kraty (K, +, ). 2. Znaleźć wszystkie kongruencje kraty 2 3, gdzie 2 jest

Bardziej szczegółowo

Dr inż. Jan Chudzikiewicz Pokój 117/65 Tel Materiały:

Dr inż. Jan Chudzikiewicz Pokój 117/65 Tel Materiały: Dr inż Jan Chudzikiewicz Pokój 7/65 Tel 683-77-67 E-mail: jchudzikiewicz@watedupl Materiały: http://wwwitawatedupl/~jchudzikiewicz/ Warunki zaliczenie: Otrzymanie pozytywnej oceny z kolokwium zaliczeniowego

Bardziej szczegółowo

METODY DOWODZENIA TWIERDZEŃ I AUTOMATYZACJA ROZUMOWAŃ

METODY DOWODZENIA TWIERDZEŃ I AUTOMATYZACJA ROZUMOWAŃ METODY DOWODZENIA TWIERDZEŃ I AUTOMATYZACJA ROZUMOWAŃ KONWERSATORIUM 6: REZOLUCJA V rok kognitywistyki UAM 1 Kilka uwag terminologicznych Słuchacze zapewne pamiętają z zajęć dotyczących PROLOGu poniższą

Bardziej szczegółowo

Ćwiczenie 26. Temat: Układ z bramkami NAND i bramki AOI..

Ćwiczenie 26. Temat: Układ z bramkami NAND i bramki AOI.. Temat: Układ z bramkami NAND i bramki AOI.. Ćwiczenie 26 Cel ćwiczenia Zapoznanie się ze sposobami konstruowania z bramek NAND różnych bramek logicznych. Konstruowanie bramek NOT, AND i OR z bramek NAND.

Bardziej szczegółowo

Zbiory. Specjalnym zbiorem jest zbiór pusty nie zawierajacy żadnych elementów. Oznaczamy go symbolem.

Zbiory. Specjalnym zbiorem jest zbiór pusty nie zawierajacy żadnych elementów. Oznaczamy go symbolem. Zbiory Pojęcie zbioru jest w matematyce pojęciem pierwotnym, którego nie definiujemy. Gdy a jest elementem należacym do zbioru A to piszemy a A. Stosujemy również oznaczenie a / A jeżeli (a A). Będziemy

Bardziej szczegółowo

5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów.

5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów. 5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów. Algebra jest jednym z najstarszych działów matematyki dotyczącym początkowo tworzenia metod rozwiązywania równań

Bardziej szczegółowo

Elementy logiki matematycznej

Elementy logiki matematycznej Elementy logiki matematycznej Przedmiotem logiki matematycznej jest badanie tzw. wyrażeń logicznych oraz metod rozumowania i sposobów dowodzenia używanych w matematyce, a także w innych dziedzinach, w

Bardziej szczegółowo

Laboratorium elektroniki. Ćwiczenie E52IS. Realizacja logicznych układów kombinacyjnych z bramek NOR. Wersja 1.0 (24 marca 2016)

Laboratorium elektroniki. Ćwiczenie E52IS. Realizacja logicznych układów kombinacyjnych z bramek NOR. Wersja 1.0 (24 marca 2016) Laboratorium elektroniki Ćwiczenie E52IS Realizacja logicznych układów kombinacyjnych z bramek NOR Wersja 1.0 (24 marca 2016) Spis treści: 1. Cel ćwiczenia... 3 2. Zagrożenia... 3 3. Wprowadzenie teoretyczne...

Bardziej szczegółowo

Rachunek logiczny. 1. Język rachunku logicznego.

Rachunek logiczny. 1. Język rachunku logicznego. Rachunek logiczny. Podstawową własnością rozumowania poprawnego jest zachowanie prawdy: rozumowanie poprawne musi się kończyć prawdziwą konkluzją, o ile wszystkie przesłanki leżące u jego podstaw były

Bardziej szczegółowo

1 Działania na zbiorach

1 Działania na zbiorach M. Beśka, Wstęp do teorii miary, rozdz. 1 1 1 Działania na zbiorach W rozdziale tym przypomnimy podstawowe działania na zbiorach koncentrując się na własnościach tych działań, które będą przydatne w dalszej

Bardziej szczegółowo

Podstawowe struktury algebraiczne

Podstawowe struktury algebraiczne Maciej Grzesiak Podstawowe struktury algebraiczne 1. Wprowadzenie Przedmiotem algebry było niegdyś przede wszystkim rozwiązywanie równań. Obecnie algebra staje się coraz bardziej nauką o systemach matematycznych.

Bardziej szczegółowo

1 Zbiory i działania na zbiorach.

1 Zbiory i działania na zbiorach. Matematyka notatki do wykładu 1 Zbiory i działania na zbiorach Pojęcie zbioru jest to pojęcie pierwotne (nie definiuje się tego pojęcia) Pojęciami pierwotnymi są: element zbioru i przynależność elementu

Bardziej szczegółowo

Logika pragmatyczna. Logika pragmatyczna. Kontakt: Zaliczenie:

Logika pragmatyczna. Logika pragmatyczna. Kontakt: Zaliczenie: Logika pragmatyczna Logika pragmatyczna Kontakt: dr hab. inż. Adam Kasperski pokój 509 B4 adam.kasperski@pwr.wroc.pl materiały + literatura + informacje na stronie www. Zaliczenie: Kolokwium pisemne na

Bardziej szczegółowo

1 Podstawowe oznaczenia

1 Podstawowe oznaczenia Poniżej mogą Państwo znaleźć skondensowane wiadomości z wykładu. Należy je traktować jako przegląd pojęć, które pojawiły się na wykładzie. Materiały te nie są w pełni tożsame z tym co pojawia się na wykładzie.

Bardziej szczegółowo

Definicja: alfabetem. słowem długością słowa

Definicja: alfabetem. słowem długością słowa Definicja: Niech X będzie zbiorem niepustym. Zbiór ten będziemy nazywać alfabetem. Skończony ciąg elementów alfabetu X będziemy nazywać słowem a liczbę elementów tego ciągu nazywamy długością słowa. Na

Bardziej szczegółowo

Bramki logiczne. 2. Cele ćwiczenia Badanie charakterystyk przejściowych inwertera. tranzystorowego, bramki 7400 i bramki 74132.

Bramki logiczne. 2. Cele ćwiczenia Badanie charakterystyk przejściowych inwertera. tranzystorowego, bramki 7400 i bramki 74132. Bramki logiczne 1. Czas trwania: 3h 2. Cele ćwiczenia Badanie charakterystyk przejściowych inwertera. tranzystorowego, bramki 7400 i bramki 74132. 3. Wymagana znajomość pojęć stany logiczne Hi, Lo, stan

Bardziej szczegółowo

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 9. Koniunkcyjne postacie normalne i rezolucja w KRZ

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 9. Koniunkcyjne postacie normalne i rezolucja w KRZ Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 9. Koniunkcyjne postacie normalne i rezolucja w KRZ 1 Inferencyjna równoważność formuł Definicja 9.1. Formuła A jest

Bardziej szczegółowo

1.1 Definicja. 1.2 Przykład. 1.3 Definicja. Niech G oznacza dowolny, niepusty zbiór.

1.1 Definicja. 1.2 Przykład. 1.3 Definicja. Niech G oznacza dowolny, niepusty zbiór. 20. Definicje i przykłady podstawowych struktur algebraicznych (grupy, pierścienie, ciała, przestrzenie liniowe). Pojęcia dotyczące przestrzeni liniowych (liniowa zależność i niezależność układu wektorów,

Bardziej szczegółowo

Monoidy wolne. alfabetem. słowem długością słowa monoidem wolnym z alfabetem Twierdzenie 1.

Monoidy wolne. alfabetem. słowem długością słowa monoidem wolnym z alfabetem Twierdzenie 1. 3. Wykłady 3 i 4: Języki i systemy dedukcyjne. Klasyczny rachunek zdań. 3.1. Monoidy wolne. Niech X będzie zbiorem niepustym. Zbiór ten będziemy nazywać alfabetem. Skończony ciąg elementów alfabetu X będziemy

Bardziej szczegółowo

Zadania z algebry liniowej - sem. I Struktury algebraiczne

Zadania z algebry liniowej - sem. I Struktury algebraiczne Zadania z algebry liniowej - sem. I Struktury algebraiczne Definicja 1. Działaniem dwuargumentowym w niepustym zbiorze A nazywamy każdą funkcję : A A A, tzn. taką funkcję, że zachodzi a,b A (a, b) ((a,

Bardziej szczegółowo