Wykład 2 - modelowanie matematyczne układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2017
Wstęp Rzeczywiste obiekty regulacji, a co za tym idzie układy regulacji, mają właściwości nieliniowe, n.p. turbulencje, wiele stanów stabilnych, histereza, straty energii w wyniku tarcia. W praktyce, dla uproszczenia opisu matematycznego przeprowadza się ich linearyzację, co pozwala na sformułowanie przybliżonego opisu liniowego zjawiska, ważnego w otoczeniu wybranego punktu pracy na charakterystyce statycznej (punkt ten odpowiada najczęściej nominalnym lub uśrednionym warunkom pracy układu). Stosowany aparat matematyczny: opis zjawiska w postaci równań różniczkowych, linearyzacja modelu, rachunek operatorowy- transmitancja operatorowa.
Metody opisu działania elementów (układów) liniowych Podstawowymi formami matematycznego opisu działania elementu (układu) są: równanie dynamiki, transmitancja operatorowa, równania stanu. W przypadku elementu (układu) o jednym sygnale wejściowym x(t) i jednym sygnale wyjściowym y(t) równanie dynamiki wyraża związek zachodzący pomiędzy sygnałem wyjściowym y(t) i sygnałem wejściowym x(t).
Metody opisu działania elementów (układów) liniowych Rysunek 1 : Proces - przyczynowo-skutkowy ciąg zdarzeń Posługując się przykładami kilku elementów elementów rozważmy pojęcia: sygnał, wielkość wejściowa, wielkość wyjściowa, sygnał wejściowy, sygnał wyjściowy.
Opis matematyczny układów liniowych - równania dynamiki Zasada superpozycji: f (x 1 + x 2 ) = f (x 1 ) + f (x 2 ), and f (0) = 0 (1) przestrzeń rozwiązań równania spełniającego zasadę superpozycji (5) jest przestrzenią liniową. Jednorodność (implikuje niezmienność skalowania): FInkcja f (x, y) jest jednorodna w stopniu k jeżeli. gdzie: β - stały współczynnik. Układ liniowy f (βx, βy) = β k f (x, y), and f (0) = 0 (2) Układ opisany funkcją jednorodną, w którym zachowana jest zasada superpozycji. Układ nieliniowy Układ, w którym nie jest zachowana jest zasada superpozycji i/lub nie jest opisany funkcją jednorodną.
Opis matematyczny układów liniowych - równania dynamiki Ogólna postać równania różniczkowego układu liniowego: d n y a n dt n +a d n 1 y n 1 dt n 1 + +a d m x 0y = b m dt m +b d m 1 x m 1 dt m 1 + +b 0x (3) gdzie: y - sygnał wyjściowy, x - sygnał wejściowy, a i, b i - stałe współczynniki.
Elementy bezinercyjne Rysunek 2 : Element bezinercyjny - dzielnik napięcia Sygnał wejściowy x(t) - przebieg napięcia U 1 (t). Sygnałem wyjściowy y(t) - przebieg napięcia U 2 (t). Równanie dynamiki - zależność pomiędzy sygnałem wejściowym i sygnałem wyjściowym systemu: U 2 (t) = R 2 R 1 + R 2 U 1 (t) (4) Równanie elementu bezinercyjnego y(t) = kx(t) (5)
Elementy inercyjne Rysunek 3 : Elementy inercyjne - przykłady V dp a) 2(t) αrθ dt b) J dω(t) R dt c) L du 2(t) R dt Równanie elementu inercyjnego T dy(t) dt + p 2 (t) = p 1 (t) + ω(t) = 1 R M(t) + U 2 (t) = U 1 (t) + y(t) = kx(t) (6)
Charakterystyka statyczna Charakterystyka statyczna Charakterystyka statyczna f st przedstawia zależność sygnału wyjściowego układu y od sygnału wejściowego x w stanie ustalonym. Stan ustalony Stanem ustalonym nazywamy jest stan, w którym wszystkie pochodne sygnału wejściowego i sygnału wyjściowego są równe zero Rysunek 4 : Charakterystyka statyczna układu liniowego.
Linearyzacja Tworzenie opisu liniowego na podstawie opisu nieliniowego nazywa się linearyzacją. Linearyzacja opisu nieliniowego w postaci równań algebraicznych nazywa się linearyzacją statyczną. (brak pochodnych) Metody linearyzacji statycznej linearyzacja metodą siecznej: uzyskanie najlepszej zgodności opisu liniowego z nieliniowym w określonym przedziale zmian zmiennej niezależnej. linearyzacja metodą stycznej: uzyskanie najlepszej zgodności opisu liniowego z nieliniowym dla określonej wartości zmiennej niezależnej, a więc i określonej wartości zmiennej zależnej. Linearyzacja opisu nieliniowego w postaci równań różniczkowych nazywa się linearyzacją dynamiczną.
Linearyzacja statyczna Rysunek 5 : Linearyzacja statyczna; a) metoda siecznej, b) metoda stycznej. Ponieważ w automatyce rozważa się zachowanie układów w otoczeniu określonego punktu pracy, w dalszych rozważaniach przydatna jest linearyzacja metodą stycznej.
Linearyzacja metodą stycznej Przeprowadzony proces linearyzacji metodą stycznej polega na : zastąpieniu krzywej, reprezentującej nieliniową zależność y = f (x) styczną do niej w punkcie pracy, przeniesieniu początku układu współrzędnych do punktu pracy, zastąpieniu w modelu matematycznym zmiennych absolutnych x i y odchyleniami tych zmiennych od punktu pracy - zmiennymi przyrostowymi x i y. Charakterystyka statyczna wyznaczona na podstawie równania zlinearyzowanego względem określonego punktu pracy jest funkcją liniową. Można ją także wyznaczyć linearyzując charakterystykę rzeczywistą względem tego samego punktu pracy
Linearyzacja statyczna Przykład [do samodzielnego rozwiązania] Wyznaczyć zlinearyzowaną funkcję określającą zależność strumienia masy Q cieczy przepływającej przez zawór od ciśnień p1 i p2 oraz od odległości x grzybka od gniazda zaworu. Rysunek 6 : Przykład układu - linearyzacja statyczna.
Linearyzacja dynamiczna Przykład równania różniczkowego, będącego nieliniową zależnością pomiędzy funkcjami x(t) i y(t) i ich pochodnymi. F [y(t), ẏ(t), ÿ(t),..., y (n) (t), x, ẋ(t), ẍ(t),..., x (m) (t)] = 0 (7) Podczas linearyzacji dynamicznej funkcje x(t) i y(t) jak i ich pochodne traktuje się analogicznie jak zmienne funkcji uwikłanej. { n [ ] } { F m [ ] } F y (i) + x (j) = 0 (8) y (i) i=0 y (i) x (j) 0 j=0 x (j) 0 gdzie: y = y(t) y 0, ẏ = d y,..., y (n) = d n y dt dt n x = y(t) x 0, ẋ = d x dt,..., x (m) = d m x dt m
Linearyzacja dynamiczna - przykład Funkcja niejednorodna Przyjmując punkt pracy - {x 0, y 0 }, y 0 = f (x 0 ) Rozwinięcie w szereg Taylora w punkcie pracy y = mx + b (9) y = f (x) = f (x 0 ) + df dx (x x 0 ) x=x 0 + d 2 f 1! dx 2 (x x 0 ) 2 x=x 0 +... (10) 2! prosta styczna (pierwsza pochodna) w punkcie pracy jest dobrą aproksymacją w małym zakresie zmian argumentu funkcji (wielkości wejściowej). Tak więc i ostatecznie y = f (x 0 ) + df dx x=x 0 (x x 0 ) = y 0 + m(x x 0 ) (11) y y 0 = m(x x 0 ) y = m x (12)
Przekształcenie Laplacea Zastąpienie równania różniczkowego transmitancją operatorową, przejście z dziedziny czasu rzeczywistego t na dziedzinę zmiennej zespolonej s. f (t) f (s), gdzie s = c + jω (13) gdzie: c - współczynnik części rzeczywistej, ω - współczynnik części urojonej. Przekształcenie Laplace a f (s) = L[f (t)] = 0 f (t)e st dt (14) Odwrotne przekształcenie Laplace a - całka Riemanna Mellina f (t) = L 1 [f (s)] = 1 2πj c+jω c jω F (s)e st ds (15)
Przekształcenie Laplacea Przekształcenie Laplace a, nazywane też transformatą Laplace a, wykorzystywana jest w automatyce do analizy układów. Jako narzędzie analizy graficznej wykorzystywana jest płaszczyzna zespolona S, na której mnożenie przez s daje efekt różniczkowania a dzielenie przez s całkowania. Analiza pierwiastków zespolonych równania liniowego, może ujawnić informacje na temat charakterystyk częstotliwościowych i na temat stabilności układu.
Przekształcenie Laplace a układów liniowych Aby można było wyznaczyć transformatę Laplace a funkcji muszą być spełnione następujące warunki: f (t) ma w każdym przedziale skończonym wartość skończoną, df (t) dt f (t) ma pochodną w każdym przedziale skończonym, istnieje zbiór liczb rzeczywistych C, dla których całka e ct jest absolutnie zbieżna. 0
Przekształcenie Laplace a układów liniowych d n y a n dt n +a d n 1 y n 1 dt n 1 + +a d m x 0y = b m [ d n ] y L dt n dt m +b m 1 d m 1 x dt m 1 + +b 0x (16) = s n y(s) s n 1 y(0 + ) y n 1 (0 + ) (17) przy zerowych warunkach początkowych [ d n ] y L dt n = s n y(s) (18) Tak więc przekształcenie Laplace a układu liniowego przy zerowych warunkach początkowych przyjmuje postać y(s)(a n s n +a n 1 s n 1 + +a 0 ) = x(s)(b m s m +b m 1 s m 1 + +b 0 ) (19)
Transmitancja operatorowa Transmitancja operatorowa Transmitancja operatorowa to stosunek transformaty sygnału wyjściowego do transformaty sygnału wejściowego przy zerowych warunkach początkowych y(s)(a n s n +a n 1 s n 1 + +a 0 ) = x(s)(b m s m +b m 1 s m 1 + +b 0 ) (20) G(s) = y(s) x(s) = b ms m + b m 1 s m 1 + + b 0 a n s n + a n 1 s n 1 + + a 0 (21) przyjmuje się następujące oznaczenia oznaczenia licznik M(s) = b m s m + b m 1 s m 1 + + b 0 (22) mianownik - tzw. równanie charakterystyczne N(s) = a n s n + a n 1 s n 1 + + a 0 (23)
Wyznaczanie charakterystyki statycznej z transmitancji operatorowej x 0 = lim t x(t), na podstawie twierdzenia o wartości końcowej y 0 = lim y(t), (24) t y 0 = lim y(t) = lim sy(s) = lim sg(s)x(s) (25) t s 0 s 0 x 0 = const x(s) = 1 s x 0 (26) ostatecznie y 0 x 0 = lim s 0 G(s) (27) y 0 = b 0 a 0 x 0 (28)
Właściwości układów Właściwości dynamiczne prezentacja przebiegu wielkości wyjściowej y(t) po wprowadzeniu do układu wymuszenia x(t) Rysunek 7 : Postać charakterystyki dynamicznej układu.
Metody wyznaczania odpowiedzi układu dynamicznego d n y a n dt n +a d n 1 y n 1 dt n 1 + +a d m x 0y = b m dt m +b d m 1 x m 1 dt m 1 + +b 0x (29) Klasyczna: Założenie warunków początkowych x(0), y(0) Rozwiązanie równań różniczkowych Operatorowa: f (t) = L 1 [y(s)] = L 1 [G(s)x(s)] (30) W zastosowaniach praktycznych do wykonywania transformacji prostej i odwrotnej, które są podstawowymi operacjami w rachunku operatorowym, zwykle nie zachodzi potrzeba wykorzystywania wzorów definicyjnych. Najczęściej wystarczy znajomość podstawowych własności przekształceń Laplace a i tablice transformat typowych funkcji zmiennej rzeczywistej.
Typowe sygnały wymuszające Wymuszenie skokowe jednostkowe (funkcja Heaveside a) x(t) = { 1(t) dla t 0 0 dla t < 0 x(s) = 1 s Wymuszenie skokowe o wartość stałą x(t) = { xst 1(t) dla t 0 0 dla t < 0 x(s) = x st 1 s Impuls - Delta Diraca x(t) = δ(t) = { 0 dla t 0 dla t = 0 x(s) = 1 Wymuszenie liniowo narastające x(t) = at x(s) = a s 2
Transmitancja operatorowa obiektów MIMO Rysunek 8 : Obiekt MIMO. Zapis wejść (p) i wyjść (r) w postaci wektorów U(s) = u 1 (s) u 2 (s). u p (s) p, Y (s) = y 1 (s) y 2 (s). y r (s) r (31)
Transmitancja operatorowa obiektów MIMO G MIMO (s) = Y (s) U(s) = Rysunek 9 : Obiekt MIMO. G 11 (s) G 12 (s)... G 2p (s) G 21 (s) G 22 (s)... G 2p (s).... G r1 (s) G r2 (s)... G rp (s) r p (32) G ij (s) = y i(s), gdzie i = 1,..., r, j = 1,..., p. (33) u j (s)
Współrzędne stanu Współrzędne stanu Współrzędne stanu to wielkości charakteryzujące zachowanie się układu dynamicznego, opisujące jego stan (np. położenie, prędkość, przyspieszenie). Wektor stanu Wektor stanu układu dynamicznego to minimalny zbiór współrzędnych stanu wystarczający łącznie ze znajomością wielkości wejściowych do określenia zachowania się układu w przyszłości. Liczba współrzędnych stanu jest równa rzędowi równania różniczkowego opisującego obiekt. Opis układów we współrzędnych stanu jest trudniejszy do interpretacji fizycznej niż opis w postaci transmitancji i niemożliwy do bezpośredniego określenia na drodze pomiarowej. Jest jednak wygodniejszy do celów modelowania oraz projektowania wielowymiarowych układów sterowania i regulacji.
Współrzędne stanu Współrzędne stanu Współrzędne stanu to wielkości charakteryzujące zachowanie się układu dynamicznego, opisujące jego stan (np. położenie, prędkość, przyspieszenie). Wektor stanu Wektor stanu układu dynamicznego to minimalny zbiór współrzędnych stanu wystarczający łącznie ze znajomością wielkości wejściowych do określenia zachowania się układu w przyszłości. Liczba współrzędnych stanu jest równa rzędowi równania różniczkowego opisującego obiekt. Opis układów we współrzędnych stanu jest trudniejszy do interpretacji fizycznej niż opis w postaci transmitancji i niemożliwy do bezpośredniego określenia na drodze pomiarowej. Jest jednak wygodniejszy do celów modelowania oraz projektowania wielowymiarowych układów sterowania i regulacji.
Równania stanu i wyjść Do wyznaczenia odpowiedzi na określone wymuszenie jednowymiarowego układu opisanego równaniem dynamiki n-tego rzędu, należy zdefiniować początkowy stan układu, czyli n warunków początkowych (n wartości pewnych zmiennych). Pod wpływam wymuszenia wartości tych zmiennych ulegają zmianom, jednoznacznie definiując stan dynamiczny układu w dowolnej chwili. Ogólna postać równania stanu - zmiany zmiennych stanu z n warunkami początkowymi: dx 1(t) dt = f 1 (x 1, x 2,..., x q ; u 1, u 2,..., u p ; t); x 1 (t 0 ) = x 10... (34) dx q(t) dt = f q (x 1, x 2,..., x q ; u 1, u 2,..., u p ; t); x q (t 0 ) = x q0 Ogólna postać równania wyjść y 1 (t) = g 1 (x 1, x 2,..., x q ; u 1, u 2,..., u p ; t)... y r (t) = g q (x 1, x 2,..., x q ; u 1, u 2,..., u p ; t) (35)
Zlinearyzowane równania stanu i wyjść Po linearyzacji w otoczeniu wybranego stanu ustalonego (nominalnego punktu pracy - {x 0, y 0 }), równania przyjmują postać: d x 1(t) dt Zlinearyzowana postać równania stanu = q i=1 ( f1(t) x i )0 x i + p j=1 ( f1(t) u j )0 u j... d x q(t) dt = ( q fq(t) i=1 x i x i + )0 ( (36) p fq(t) j=1 u j u j )0 Zlinearyzowana postać równania wyjść y 1 = q i=1... y q = q i=1 ( g1(t) x i )0 ( gq(t) x i )0 x i + p j=1 ( g1(t) u j )0 u j x i + ( (37) p gq(t) j=1 u j u j )0
Postać macierzowa modelu zmiennych stanu Macierzowa postać równań stanu i wyjść { Ẋ (t) = ANL (X, U, t) Y (t) = C NL (X, U, t) Macierzowa postać zlinearyzowanych równań stanu i wyjść { Ẋ (t) = A(t)X (t) + B(t)U(t) Y (t) = C(t)X (t) + D(t)U(t) (38) (39) gdzie: A(t) R q q - macierz stanu, B(t) R q p - macierz wejść, C(t) R r q - macierz wyjść, D(t) R r p - macierz przenoszenia (transmisyjna). Przejście z zapisu macierzowego do zapisu transmitancyjnego G(s) = C [si A] 1 B + D (40)
Równania stanu układów liniowych Układ niestacjonarny Układ niestacjonarny to układ, którego wyjście zależy wprost od czasu - parametry układu zależą od czasu. Układ stacjonarny Układ stacjonarny to układ, którego wyjście nie zależy wprost od czasu. Rysunek 10 : Schemat blokowy układu linowych równań stacjonarnych
Przestrzeń stanów Przestrzeń stanów, przestrzeń fazowa Zbiór wszystkich możliwych wartości wektora stanu X (t) w chwilach t tworzy przestrzeń stanów układu (przestrzeń fazową). Rysunek 11 : Trajektoria fazowa - przykład trajektoria stanu Zbiór wartości wektora stanu układu w kolejnych chwilach czasu tworzy w tej przestrzeni krzywą, zwaną trajektorią stanu układu (trajektorią fazową).
Wyznaczanie równań stanu - metoda bezpośrenia Ogólna postać równania transmitancji układu liniowego: G(s) = b ms m + b m 1 s m 1 + + b 0 s n + a n 1 s n 1 + + a 0, n > m (41) Dzieląc licznik i mianownik (34) przez s n G(s) = b ms m n + b m 1 s m 1 n + + b 0 s n 1 + a n 1 s 1 + + a 0 s n (42) Wprowadzając zmienną E(s) następująco G(s) = Y (s)e(s) E(s)U(s) (43) Y (s) E(s) = 1 1 + a n 1 s 1 + + a 0 s n (44) E(s) U(s) = b ms m n + b m 1 s m 1 n + + b 0 s n (45)
Wyznaczanie równań stanu - metoda bezpośrenia Otrzymane równania E(s) = a 0 s n E(s) a n 1 s 1 E(s) + U(s) (46) Y (s) = b 0 s n E(s) + + b m 1 s m 1 n E(s) + b m s m n E(s) (47) Przyjmując fazowe zmienne stanu i równania stanu w postaci ẋ 1 (t) = x 2 (t) ẋ 2 (t) = x 3 (t)... ẋ n (t) = e(t) (48) gdzie e(t) = L 1 [E(s)] (49)
Wyznaczanie równań stanu - metoda bezpośrenia Po przekształceniu Laplace a sx 1 (s) = x 2 (s) sx 2 (s) = x 3 (s)... sx n (s) = E(s) (50) Tak więc po uwzględnieniu zapisu w postaci zmiennych fazowych w przestrzeni zmiennych zespolonych S otrzymuje się E(s) = a 0 x 1 (s) a n 1 x n (s) + U(s) (51) Y (s) = b 0 x 1 (s) + + b m 1 x m (s) + b m x m+1 (s) (52) odpowiednio w dziedzinie czasu e(t) = a 0 x 1 (t) a n 1 x n (t) + u(t) (53) u(t) = b 0 x 1 (t) + + b m 1 x m (t) + b m x m+1 (t) (54)
Wyznaczanie równań stanu - metoda bezpośrenia Równania stanu ẋ 1 (t) = x 2 (t) ẋ 2 (t) = x 3 (t)... ẋ n (t) = a 0 x 1 (t) a n 1 x n (t) + u(t) Macierze równań stanu mają więc postać: 0 1 0... 0 A = 0 0 1... 0... a 0 a 1 a 2... a n 1 n n, B = 0 0... 1 n 1 (55) (56) C = [ b 0 b 1... b m... 0 ] 1 n, D = [0] 1 1
Równania stanu - element oscylacyjny Opis elementu oscylacyjnego w postaci transmitancji operatorowej kω 2 0 G(s) = s 2 + 2ξω 0 s + ω0 2 (57) lub w dziedzinie czasu u(t)kω 2 0 = d 2 y(t) dt 2 + dy(t) 2ξω 0 + y(t)ω0 2 (58) dt Powyższy układ jest opisany równaniem 2-go rzędu, więc wymaga q = 2 zmiennych stanu, definiujących stan układu w dowolnej chwili czasu. Korzystając z metody bezpośredniej otrzymuje się następujące równania stanu ẋ 1 (t) = x 2 (t) ẋ 2 (t) = ω 0 x 1 (t) 2ξω 0 x 2 (t) + u(t) (59) równanie wyjścia y(t) = kω 0 x 1 (t) (60)
Równania stanu - element oscylacyjny Macierzowa postać zlinearyzowanych równań stanu i wyjść dla elementu oscylacyjnego { Ẋ (t) = A(t)X (t) + B(t)U(t) (61) Y (t) = C(t)X (t) + D(t)U(t) gdzie: [ A = X (t) = [ x1 (t) x 2 (t) 0 1 ω 2 0 2ξω 2 0 ], Y (t) = [ y(t) ], U(t) = [ u(t) ] (62) ] [ 0, B = 1 ], C = [ kω 2 0 0 ], D = [0] (63)
Wykład 2 - modelowanie matematyczne układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2017