Sterowanie Napędów Maszyn i Robotów

Wielkość: px
Rozpocząć pokaz od strony:

Download "Sterowanie Napędów Maszyn i Robotów"

Transkrypt

1 Wykład 4 - Model w przestrzeni stanów Instytut Automatyki i Robotyki Warszawa, 2015

2 Wstęp Do zaprojektowania układu regulacji pozycji siłownika pneumatycznego, poszukiwany jest model dynamiki układu w postaci modelu w przestrzeni stanów z czasem ciągłym { Ẋ (t) = Amc X (t) + B mc U(t) (1) y(t) = C mc X (t) gdzie: X (t) R n - wektor stanu, U(t) R m - wektor sygnałów sterujących, y(t) R p - sygnał wyjściowy wyjście / wektor sygnałów wyjściowych, A mc R n n - macierz stanu B mc R n m - macierz sterowania, C mc R p m - macierz wyjścia.

3 Równania stanu - zmienne fizykalne Zmienne stanu i sterujące u nt (t) = U nt (t) u pt (t) = U pt (t) x 1 = s(t) x 2 = v(t) x 3 = P nt (t) P atm x 4 = P pt (t) P atm (2) gdzie: u nt (t) = U nt (t) napięcie wysterowania rozdzielacza proporcjonalnego (dla komory nadtłokowej) u pt (t) = U pt (t) napięcie wysterowania rozdzielacza proporcjonalnego (dla komory podtłokowej) x 1 (t) = s(t) położenie (przemieszczenie) tłoka siłownika x 2 (t) = v(t) prędkość ruchu tłoka siłownika x 3 (t) = P nt (t) P atm = p nt (t) - ciśnienie względne w komorze nadtłokowej siłownika x 4 (t) = P pt (t) P atm = p pt (t) - ciśnienie względne w komorze podtłokowej siłownika

4 Równania stanu - zmienne fizykalne Równania stanu dx 1 (t) = x 2 (t) dt dx 2 (t) = k tvp x 2 (t) + A tlont x 3 (t) A tlopt x 4 (t) dt m obc m obc m obc dx 3 (t) = n ntop nto A tlont x 2 (t) + n ntorϑ nto k qmnt u nt (t) dt V nto V nto dx 4 (t) = n ptop pto A tlopt x 2 (t) + n ptorϑ pto k qmpt u pt (t) dt V pto V nto (3) Równanie wyjścia y(t) = x 1 (t) (4)

5 Równania stanu - zmienne fizykalne Ostatecznie, dla sterowania dławieniowego rozdzielonego, model procesu ruchu realizowanego przez pneumatyczny napęd siłownikowy opisują zależności macierzowe Ẋ (t) = gdzie 0 a a 22 a 23 a 24 0 a a x 1 (t) x 2 (t) x 3 (t) x 4 (t) b b 42 [ unt (t) u pt (t) ] + (5) y(t) = [ ]X (t) (6) a 12 = 1; a 22 = k tvp ; a 32 = n ntop nto A tlont m obc a 23 = A tlont m obc ; a 24 = A tlopt V nto m obc ; b 31 = n ntorϑ nto k qmnt V nto Układ liniowy : parametry macierzy mają stałe wartości ; a 42 = n ptop pto A tlopt V pto (7) ; b 42 = n ptorϑ pto k qmpt V nto (8)

6 Równania stanu - zmienne fazowe przyjmując u(t) = u nt (t) = u pt = U(t) P(t) = p nt (t) p pt (t) (9) a następnie przechodząc od fizykalnych do fazowych zmiennych stanu, po wprowadzeniu jako trzeciej zmiennej przyspieszenia a(t) ruchu tłoka siłownika i uwzględnieniu zależności x 3 (t) = a(t) = A tlont m obc P(t) k tvp m obc v(t) (10) Fazowe zmienne stanu i zmienne sterujące są następujące u nt (t) = U nt (t) u pt (t) = U pt (t) x 1 (t) = s(t) x 2 (t) = v(t) x 3 (t) = a(t) (11)

7 Równania stanu - zmienne fazowe Równania stanu dx 1 (t) = x 2 (t) dt dx 2 (t) = x 3 (t) dt [ dx 3 (t) = 1 n nto P nto A 2 tlont + n ] ptop pto A 2 tlopt x 2 (t) k tvp x 3 (t)+ dt m obc V nto V pto m obc + n ntorϑ nto k qmnt A tlont m obc V nto Równanie wyjścia u nt (t) n ptorϑ pto k qmpt A tlopt u pt (t) m obc V pto (12) y(t) = x 1 (t) (13)

8 Równania stanu - zmienne fazowe oznaczając C mnt ωom 2 = n ntorϑ nto k qmnt A tlont ; C mpt ωom 2 = n ptorϑ pto k qmpt A tlopt (14) m obc V nto m obc V pto 2D m ω om = k tvp m obc [ ] (15) ωom 2 = 1 n nto P nto A 2 tlont + n ptop pto A 2 tlopt m obc V nto V pto (16) Równania stanu i wyjścia można sprowadzić do postaci macierzowej, z trzema parametrami liniowego modelu zachowań prędkościowych ruchu tłoka napędu pneumatycznego o właściwościach oscylacyjnych z: wzmocnieniem prędkościowym C m, pulsacją drgań swobodnych ω om tłumieniem D m

9 Równania stanu - zmienne fazowe W ten sposób otrzymuje się model stanu procesu ruchu jako członu oscylacyjnego zachowań prędkościowych Ẋ (t) = X (t)+ 0 0 U(t) 0 ωom 2 D m ω om C ntm ωom 2 C ptm ωom 2 (17) y(t) = [1 0 0] x 1 (t) (18)

10 Równania stanu - zmienne fazowe Szczególne miejsce pośród wielu modeli (różne warianty dławienia i różne układy wartości parametrów) zajmuje - ze względu na prostotę zapisu i wykorzystania - model zlokalizowany w położeniu odpowiadającym połowie objętości cylindra siłownika (0, 5V cyl ), opisany przez stałe ( modelowe ) wartości parametrów przemian gazowych (n m, ϑ m ), współczynnika tarcia (k tm ) oraz ciśnienia roboczego (P m ): dla siłownika z połączonym sterowaniem komór (r = 1) i tłokiem równopowierzchniowym (A tlo ) w postaci C m = Rϑ mk qm A tlo P m ; ω om = 2A tlo n m P m m obc V cyl ; D m = k tm 4A tlo Vcyl n m P m m obc (19)

11 Równania stanu - zmienne fazowe Model ten pozwala, przy ograniczeniu liczby koniecznych do podania wartości parametrów, w prosty sposób estymować dynamikę napędu w oparciu o minimalną wartość pulsacji ω om, przy stałym wzmocnieniu prędkościowym C m i tłumieniu D m, dla wybranych położeń tłoka siłownika s o ω om = ( n m P m A tlo 1 + m obc s o 1 s max s o ) (20) Dobrym, ze względu na zgodność modelu z wynikami doświadczalnymi, przybliżeniami są: wartość wykładnika przemiany politropowej: nm 1, 35, stałej rozdzielacza: k qm kg/s Pa, ciśnienia: P m 0, 65P zas stałej tarcia napędu: k tm 125Ns/m

12 Równania stanu - zmienne fazowe Podane modele obliczeniowe z czasem ciągłym procesu ruchu w pneumatycznym układzie napędowym mają 4 zalety: 1 pojęcia typu wzmocnienie prędkościowe, pulsacja drgań, tłumienie są dla inżynierów zrozumiałe, oraz jako wartości parametrów - intuicyjne i inżyniersko weryfikowalne, 2 jakościowo poprawnie modelują zależność dynamiki napędu od położenia tłoka, obciążenia masowego i warunków pracy, 3 spełniają warunki sterowalności i obserwowalności układu w sensie Kalmana oraz istotny w przypadku układu napędowego warunek sterowalności wyjściowej, 4 przekładają się w implementacyjnie prosty sposób w algorytm wyboru macierzy sprzężeń zwrotnych, uwzględniając założone właściwości statyczne i dynamiczne układu pozycyjnego.

13 Równania stanu - dyskretyzacja modeli Chcąc zaprojektować układ regulacji w technice mikroprocesorowej, poszukiwany jest model dynamiki układu w postaci modelu w przestrzeni stanów z czasem dyskretnym { X (k + 1) = Amd X (k) + B md U(k) y(k) = C md X (k) (21) gdzie: X (k) R n - wektor stanu, U(k) R m - wektor sygnałów sterujących, y(k) R p - sygnał wyjściowy wyjście / wektor sygnałów wyjściowych, A md R n n - macierz stanu B md R n m - macierz sterowania, C md R p m - macierz wyjścia.

14 Równania stanu - dyskretyzacja modeli Transformacja ciągłych równań różniczkowych do dyskretnych równań różnicowych. Uwzględniając : czas dyskretny k, okres próbkowania (dyskretyzacji) Tp sterowanie sygnałami odcinkowo - stałymi zmienianymi wyłącznie w chwili próbkowania (sygnałami schodkowymi), czyli: U(t) = U(kT p ) dla t kt p, k + 1T p (22)

15 Równania stanu - dyskretyzacja modeli Równanie stanu modelu przekształca się, zgodnie z zasadami dyskretyzacji w postać: X (k + 1) = exp (A mc T p x(k)) + T p 0 exp (A mc t)b mc dtu(k) (23) gdzie A md = exp (A mc T p ) = L 1 [(si A mc ) 1 ]; (24) B md = T p 0 exp (A mc t)b mc dt = A 1 mc [exp (A mc T p ) I ]B mc, det A 0 (25)

16 Równania stanu - dyskretyzacja modeli W przypadku modelu opisanego przez wzmocnienie prędkościowe C m, pulsację drgań swobodnych ω om i tłumienie D m macierz A md poszukiwana jest przy pomocy zależności Amc Tp e = L 1 A md = L 1 [(si A mc ) 1 ] t=tp (26) 1 s + 2D m ω om 1 s s 3 + 2D m ω om s 2 + ωoms 2 s 3 + 2D m ω om s 2 + ω 2 oms s + 2D m ω om 1 0 s 2 + 2D m ω om s + ωom 2 s 2 + 2D m ω om s + ωom 2 ωom s 2 + 2D m ω om s + ωom 2 s + 2D m ω om + ωom/s 2 (27) gdzie L 1 - odwrotne przekształcenie Laplace a. B md = A 1 mc (A md I )B mc, det A mc 0 (28) t=t p

17 Równania stanu - dyskretyzacja modeli Ostatecznie otrzymuje się model z czasem dyskretnym: { X (k + 1) = Amd X (k) + B md U(k) y(k) = C md X (k) (29) UWAGA: W praktyce do realizacji w czasie rzeczywistym procedur identyfikacji i sterowania przy użyciu formalnie uzyskanych macierzy modelu dyskretnego zaleca się stosować przybliżony sposób transformacji opisu modelu ciągłego w dyskretny.

18 Równania stanu - dyskretyzacja modeli (uproszczenia) szereg Taylora Jeśli funkcja f : D Y, gdzie D R oraz Y jest przestrzenią unormowaną i ma w punkcie x 0 D pochodne dowolnego rzędu, to można rozważać szereg n=0 gdzie przyjęto f (0) (x 0 ) = f (x 0 ). 1 n! f (n) (x 0 )(x x 0 ) n, (30) Jeżeli x 0 = 0, to szereg ten nazywamy szeregiem Maclaurina. Rozwinięcie funkcji w szereg Maclaurina ma następującą postać f (n) (0) f (x) = f (0) + x n (31) n! n=1 Dla funkcji wykładniczej, szereg Maclaurina ma postać e x x n = n! n=1 (32)

19 Równania stanu - dyskretyzacja modeli (uproszczenia) W praktyce do realizacji w czasie rzeczywistym procedur identyfikacji i sterowania przy użyciu formalnie uzyskanych macierzy modelu dyskretnego zaleca się stosować przybliżony sposób transformacji opisu modelu ciągłego w dyskretny polegający na: Krok 1: zastąpieniu funkcji exp (A mc T p ) szeregiem funkcyjnym MacLaurina, Krok 2: zapisie macierzy A md i B md w postaci A md = i=0 A i mc T i i! p; B md = T p i=0 A i mc (i + 1)! T i pb mc (33) Krok 3: uwzględnieniu tylko kilku pierwszych (lub pierwszego) wyrazów tego rozwinięcia.

20 Równania stanu - dyskretyzacja modeli (uproszczenia) Postępowanie to odwołuje się do transformacji Tustina polegającej na ograniczeniu rozwinięcia potęgowego operatora s do jednego wyrazu przy wyznaczaniu transmitancji dyskretnej. Transformacja Tustina polega na aproksymacji Padé funkcji eksponencjalnej z = e st (34) Przekształcenie metodą Tustina polega na wykorzystaniu następujących podstawień przy transformacji z przestrzeni Laplace a do przestrzeni z : s = 2 T (z 1) (z + 1) (35)

21 Równania stanu - dyskretyzacja modeli (uproszczenia) Prawidłowość doboru okresu próbkowania i przeprowadzenia powyższej aproksymacji wynika z twierdzenia Kotielnikowa- Shannona, określającego pod jakim warunkiem z sygnału dyskretnego x(k) złożonego z próbek danego sygnału ciągłego x(t), można wiernie odtworzyć sygnał x(t). Częstotliwość próbkowania musi być większa niż dwukrotność najwyższej składowej częstotliwości w mierzonym sygnale. ω p = 2π T p ; ω p 2ω om (36) Taka aproksymacja znajduje swe uzasadnienie w stwierdzeniu skali różnic wartości pomiędzy pulsacją próbkowania ω p wynikająca z okresu T p a pulsacją ω om. Przy milisekundowym okresie próbkowania, np. Tp < 0, 8, 2 > ms, otrzymuje się pulsację próbkowania ω p < 7850, 3140 > rd/s która jest o rzędy wielkości większa od pulsacji drgań swobodnych ω om < 10, 60 > rd/s zachowań ruchowych (siłowych) napędu - takie częstotliwości charakteryzują nawet szybkie napędy pozycyjne.

22 Równania stanu - dyskretyzacja modeli (uproszczenia) Model z czasem ciągłym Ẋ (t) = X (t)+ 0 ωom 2 D m ω om y(t) = [1 0 0] x 1 (t) U(t) C ntm ωom 2 C ptm ωom 2 Doprowadzany jest przez usunięcie z zależności wyrazów z czynnikiem T p wyższym niż kwadratowy, do postaci modelu z czasem dyskretnym X (k+1) = 1 T p αt p βt p 0 2αβ 1 αt p 2β(1 β) X (k)+ 0 C m T p α 2C m αβ U(k) gdzie y(k) = [1 0 0] X (k) α = 1 2 ω2 omt p ; β = 1 D m ω om T p

23 Wykład 4 - Model w przestrzeni stanów Instytut Automatyki i Robotyki Warszawa, 2015

Sterowanie Napędów Maszyn i Robotów

Sterowanie Napędów Maszyn i Robotów Wykład 3 - Metodyka projektowania sterowania. Opis bilansowy Instytut Automatyki i Robotyki Warszawa, 2015 Metodyka projektowania sterowania Zrozumienie obiektu, możliwości, ograniczeń zapoznanie się z

Bardziej szczegółowo

Sterowanie napędów maszyn i robotów

Sterowanie napędów maszyn i robotów Wykład 7b - Układy wieloobwodowe ze sprzężeniem od zmiennych stanu Instytut Automatyki i Robotyki Warszawa, 2014 Układy wieloobwodowe ze sprzężeniem od zmiennych stanu Zadanie przestawiania Postać modalna

Bardziej szczegółowo

Sterowanie napędów maszyn i robotów

Sterowanie napędów maszyn i robotów Sterowanie napędów maszyn i robotów dr inż. Jakub Możaryn Wykład 3 Instytut Automatyki i Robotyki Wydział Mechatroniki Politechnika Warszawska, 2014 Projekt współfinansowany przez Unię Europejską w ramach

Bardziej szczegółowo

Sterowanie Napędów Maszyn i Robotów

Sterowanie Napędów Maszyn i Robotów Wykład 4 - Model silnika elektrycznego prądu stałego z magnesem trwałym Instytut Automatyki i Robotyki Warszawa, 2017 Wstęp Silniki elektryczne prądu stałego są bardzo często stosowanymi elementami wykonawczymi

Bardziej szczegółowo

Sterowanie Napędów Maszyn i Robotów

Sterowanie Napędów Maszyn i Robotów Wykład 4 - Model silnika elektrycznego prądu stałego z magnesem trwałym Instytut Automatyki i Robotyki Warszawa, 2017 Wstęp Silniki elektryczne prądu stałego są bardzo często stosowanymi elementami wykonawczymi

Bardziej szczegółowo

Sterowanie Napędów Maszyn i Robotów

Sterowanie Napędów Maszyn i Robotów Wykład 4 - Opis bilansowy, linearyzacja Instytut Automatyki i Robotyki Warszawa, 2015 Metodyka projektowania sterowania Zrozumienie obiektu, możliwości, ograniczeń zapoznanie się z dokumentacją obiektu,

Bardziej szczegółowo

Sterowanie Napędów Maszyn i Robotów

Sterowanie Napędów Maszyn i Robotów Wykład 5 - Model silnika DC w przestrzeni zmiennych stanu z czasem ciągłym i z czasem dyskretnym Instytut Automatyki i Robotyki Warszawa, 2016 Równanie dynamiki silnika DC Do wyznaczenia transmitancji

Bardziej szczegółowo

Podstawy Automatyki. Wykład 2 - podstawy matematyczne. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 2 - podstawy matematyczne. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 2 - podstawy matematyczne Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Rzeczywiste obiekty regulacji, a co za tym idzie układy regulacji, mają właściwości nieliniowe, n.p. turbulencje, wiele

Bardziej szczegółowo

Podstawy Automatyki. Wykład 2 - modelowanie matematyczne układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 2 - modelowanie matematyczne układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 2 - modelowanie matematyczne układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2017 Wstęp Rzeczywiste obiekty regulacji, a co za tym idzie układy regulacji, mają właściwości nieliniowe,

Bardziej szczegółowo

Podstawy Automatyki. Wykład 2 - modelowanie matematyczne układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 2 - modelowanie matematyczne układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 2 - modelowanie matematyczne układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2019 Wstęp Obiekty (procesy) rzeczywiste, a co za tym idzie układy regulacji, mają właściwości nieliniowe,

Bardziej szczegółowo

Opis systemów dynamicznych w przestrzeni stanu. Wojciech Kurek , Gdańsk

Opis systemów dynamicznych w przestrzeni stanu. Wojciech Kurek , Gdańsk Opis systemów dynamicznych Mieczysław Brdyś 27.09.2010, Gdańsk Rozważmy układ RC przedstawiony na rysunku poniżej: wejscie u(t) R C wyjście y(t)=vc(t) Niech u(t) = 2 + sin(t) dla t t 0 gdzie t 0 to chwila

Bardziej szczegółowo

przy warunkach początkowych: 0 = 0, 0 = 0

przy warunkach początkowych: 0 = 0, 0 = 0 MODELE MATEMATYCZNE UKŁADÓW DYNAMICZNYCH Podstawową formą opisu procesów zachodzących w członach lub układach automatyki jest równanie ruchu - równanie dynamiki. Opisuje ono zależność wielkości fizycznych,

Bardziej szczegółowo

Sterowanie napędów maszyn i robotów

Sterowanie napędów maszyn i robotów Wykład 6 - odtwarzanie zmiennych stanu przez obserwację Instytut Automatyki i Robotyki Warszawa, 2014 Odtwarzanie zmiennych stanu Wykorzystanie układów sterowania od zmiennych stanu wymaga uzyskania dodatkowych

Bardziej szczegółowo

Wprowadzenie do technik regulacji automatycznej. prof nzw. dr hab. inż. Krzysztof Patan

Wprowadzenie do technik regulacji automatycznej. prof nzw. dr hab. inż. Krzysztof Patan Wprowadzenie do technik regulacji automatycznej prof nzw. dr hab. inż. Krzysztof Patan Czym jest AUTOMATYKA? Automatyka to dziedzina nauki i techniki zajmująca się teorią i praktycznym zastosowaniem urządzeń

Bardziej szczegółowo

Automatyka i robotyka

Automatyka i robotyka Automatyka i robotyka Wykład 5 - Stabilność układów dynamicznych Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 43 Plan wykładu Wprowadzenie Stabilność modeli

Bardziej szczegółowo

Systemy. Krzysztof Patan

Systemy. Krzysztof Patan Systemy Krzysztof Patan Systemy z pamięcią System jest bez pamięci (statyczny), jeżeli dla dowolnej chwili t 0 wartość sygnału wyjściowego y(t 0 ) zależy wyłącznie od wartości sygnału wejściowego w tej

Bardziej szczegółowo

Sposoby modelowania układów dynamicznych. Pytania

Sposoby modelowania układów dynamicznych. Pytania Sposoby modelowania układów dynamicznych Co to jest model dynamiczny? PAScz4 Modelowanie, analiza i synteza układów automatyki samochodowej równania różniczkowe, różnicowe, równania równowagi sił, momentów,

Bardziej szczegółowo

Podstawy Automatyki. Wykład 2 - matematyczne modelowanie układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 2 - matematyczne modelowanie układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 2 - matematyczne modelowanie układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2019 Wstęp Obiekty (procesy) rzeczywiste, a co za tym idzie układy regulacji, mają właściwości nieliniowe,

Bardziej szczegółowo

1. POJĘCIA PODSTAWOWE I RODZAJE UKŁADÓW AUTOMATYKI

1. POJĘCIA PODSTAWOWE I RODZAJE UKŁADÓW AUTOMATYKI Podstawy automatyki / Józef Lisowski. Gdynia, 2015 Spis treści PRZEDMOWA 9 WSTĘP 11 1. POJĘCIA PODSTAWOWE I RODZAJE UKŁADÓW AUTOMATYKI 17 1.1. Automatyka, sterowanie i regulacja 17 1.2. Obiekt regulacji

Bardziej szczegółowo

Podstawy Automatyki. wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24)

Podstawy Automatyki. wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24) Podstawy Automatyki wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak Politechnika Wrocławska Instytut Technologii Maszyn i Automatyzacji (I-24) Laboratorium Podstaw Automatyzacji (L6) 105/2 B1 Sprawy organizacyjne

Bardziej szczegółowo

Procedura modelowania matematycznego

Procedura modelowania matematycznego Procedura modelowania matematycznego System fizyczny Model fizyczny Założenia Uproszczenia Model matematyczny Analiza matematyczna Symulacja komputerowa Rozwiązanie w postaci modelu odpowiedzi Poszerzenie

Bardziej szczegółowo

WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA

WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA PRZEDMIOT : : LABORATORIUM PODSTAW AUTOMATYKI 10. Dyskretyzacja

Bardziej szczegółowo

Automatyka i robotyka ETP2005L. Laboratorium semestr zimowy

Automatyka i robotyka ETP2005L. Laboratorium semestr zimowy Automatyka i robotyka ETP2005L Laboratorium semestr zimowy 2017-2018 Liniowe człony automatyki x(t) wymuszenie CZŁON (element) OBIEKT AUTOMATYKI y(t) odpowiedź Modelowanie matematyczne obiektów automatyki

Bardziej szczegółowo

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie Politechnika Wrocławska, Wydział Informatyki i Zarządzania Modelowanie Zad Wyznacz transformaty Laplace a poniższych funkcji, korzystając z tabeli transformat: a) 8 3e 3t b) 4 sin 5t 2e 5t + 5 c) e5t e

Bardziej szczegółowo

Laboratorium Mechaniki Technicznej

Laboratorium Mechaniki Technicznej Laboratorium Mechaniki Technicznej Ćwiczenie nr 5 Badanie drgań liniowych układu o jednym stopniu swobody Katedra Automatyki, Biomechaniki i Mechatroniki 90-924 Łódź, ul. Stefanowskiego 1/15, budynek A22

Bardziej szczegółowo

Mechatronika i inteligentne systemy produkcyjne. Modelowanie systemów mechatronicznych Platformy przetwarzania danych

Mechatronika i inteligentne systemy produkcyjne. Modelowanie systemów mechatronicznych Platformy przetwarzania danych Mechatronika i inteligentne systemy produkcyjne Modelowanie systemów mechatronicznych Platformy przetwarzania danych 1 Sterowanie procesem oparte na jego modelu u 1 (t) System rzeczywisty x(t) y(t) Tworzenie

Bardziej szczegółowo

Temat /6/: DYNAMIKA UKŁADÓW HYDRAULICZNYCH. WIADOMOŚCI PODSTAWOWE.

Temat /6/: DYNAMIKA UKŁADÓW HYDRAULICZNYCH. WIADOMOŚCI PODSTAWOWE. 1 Temat /6/: DYNAMIKA UKŁADÓW HYDRAULICZNYCH. WIADOMOŚCI PODSTAWOWE. Celem ćwiczenia jest doświadczalne określenie wskaźników charakteryzujących właściwości dynamiczne hydraulicznych układów sterujących

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Podsta Automatyki Transmitancja operatorowa i widmowa systemu, znajdowanie odpowiedzi w dziedzinie s i w

Bardziej szczegółowo

Teoria sterowania - studia niestacjonarne AiR 2 stopień

Teoria sterowania - studia niestacjonarne AiR 2 stopień Teoria sterowania - studia niestacjonarne AiR stopień Kazimierz Duzinkiewicz, dr hab. Inż. Katedra Inżynerii Systemów Sterowania Wykład 4-06/07 Transmitancja widmowa i charakterystyki częstotliwościowe

Bardziej szczegółowo

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie Politechnika Wrocławska, Wydział Informatyki i Zarządzania Modelowanie Zad Procesy wykładniczego wzrostu i spadku (np populacja bakterii, rozpad radioaktywny, wymiana ciepła) można modelować równaniem

Bardziej szczegółowo

Sterowanie napędów maszyn i robotów

Sterowanie napędów maszyn i robotów Wykład 8 - zaawansowane układy sterowania Instytut Automatyki i Robotyki Warszawa, 2014 adaptacyjne (ang. adaptive control) z dostosowaniem się do aktualnych warunków pracy napędu - koncepcje: ze wstępnie

Bardziej szczegółowo

Podstawy Automatyki. Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne Instytut Automatyki i Robotyki Warszawa, 2017 część 1: Charakterystyki częstotliwościowe Wstęp Charakterystyki częstotliwościowe

Bardziej szczegółowo

Podstawy Automatyki. Wykład 4 - algebra schematów blokowych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 4 - algebra schematów blokowych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 4 - algebra schematów blokowych Instytut Automatyki i Robotyki Warszawa, 2017 Wstęp Schemat blokowy Schemat blokowy (strukturalny): przedstawia wzajemne powiązania pomiędzy poszczególnymi zespołami

Bardziej szczegółowo

Wykład z modelowania matematycznego. Przykłady modelowania w mechanice i elektrotechnice.

Wykład z modelowania matematycznego. Przykłady modelowania w mechanice i elektrotechnice. Wykład z modelowania matematycznego. Przykłady modelowania w mechanice i elektrotechnice. 1 Wahadło matematyczne. Wahadłem matematycznym nazywamy punkt materialny o masie m zawieszony na długiej, cienkiej

Bardziej szczegółowo

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ Teoria maszyn i podstawy automatyki semestr zimowy 2017/2018

Bardziej szczegółowo

LINIOWE UKŁADY DYSKRETNE

LINIOWE UKŁADY DYSKRETNE LINIOWE UKŁADY DYSKRETNE Współczesne układy regulacji automatycznej wyposażone są w regulatory cyfrowe, co narzuca konieczność stosowania w ich analizie i syntezie odpowiednich równań dynamiki, opisujących

Bardziej szczegółowo

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2018 Wstęp Stabilność O układzie możemy mówić, że jest stabilny jeżeli jego odpowiedź na wymuszenie (zakłócenie)

Bardziej szczegółowo

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Stabilność O układzie możemy mówić, że jest stabilny gdy układ ten wytrącony ze stanu równowagi

Bardziej szczegółowo

Rys 1 Schemat modelu masa- sprężyna- tłumik

Rys 1 Schemat modelu masa- sprężyna- tłumik Rys 1 Schemat modelu masa- sprężyna- tłumik gdzie: m-masa bloczka [kg], ẏ prędkośćbloczka [ m s ]. 3. W kolejnym energię potencjalną: gdzie: y- przemieszczenie bloczka [m], k- stała sprężystości, [N/m].

Bardziej szczegółowo

Regulator liniowo kwadratowy na przykładzie wahadła odwróconego

Regulator liniowo kwadratowy na przykładzie wahadła odwróconego Regulator liniowo kwadratowy na przykładzie wahadła odwróconego kwiecień 2012 Sterowanie Teoria Przykład wahadła na wózku Dany jest system dynamiczny postaci: ẋ = f (x, u) (1) y = h(x) (2) Naszym zadaniem

Bardziej szczegółowo

Podstawy Automatyki. Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne Instytut Automatyki i Robotyki Warszawa, 2015 cz.1: Charakterystyki częstotliwościowe Wstęp Charakterystyki częstotliwościowe

Bardziej szczegółowo

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Stabilność - definicja 1 O układzie możemy mówić, że jest stabilny gdy wytrącony ze stanu równowagi

Bardziej szczegółowo

Wstęp do równań różniczkowych

Wstęp do równań różniczkowych Wstęp do równań różniczkowych Wykład 1 Lech Sławik Instytut Matematyki PK Literatura 1. Arnold W.I., Równania różniczkowe zwyczajne, PWN, Warszawa, 1975. 2. Matwiejew N.M., Metody całkowania równań różniczkowych

Bardziej szczegółowo

Podstawy Automatyki Zbiór zadań dla studentów II roku AiR oraz MiBM

Podstawy Automatyki Zbiór zadań dla studentów II roku AiR oraz MiBM Aademia GórniczoHutnicza im. St. Staszica w Kraowie Wydział Inżynierii Mechanicznej i Robotyi Katedra Automatyzacji Procesów Podstawy Automatyi Zbiór zadań dla studentów II rou AiR oraz MiBM Tomasz Łuomsi

Bardziej szczegółowo

Obiekt. Obiekt sterowania obiekt, który realizuje proces (zaplanowany).

Obiekt. Obiekt sterowania obiekt, który realizuje proces (zaplanowany). SWB - Systemy wbudowane w układach sterowania - wykład 13 asz 1 Obiekt sterowania Wejście Obiekt Wyjście Obiekt sterowania obiekt, który realizuje proces (zaplanowany). Fizyczny obiekt (proces, urządzenie)

Bardziej szczegółowo

Sterowanie napędów maszyn i robotów

Sterowanie napędów maszyn i robotów Wykład 7 - układy sterowania zwykłego Instytut Automatyki i Robotyki Warszawa, 2014 Kryteria oceny jakości sterowania Kryteria oceny jakości sterowania Standardowe miary jakości sterowania Modyfikacje

Bardziej szczegółowo

Wstęp do równań różniczkowych

Wstęp do równań różniczkowych Wstęp do równań różniczkowych Wykład 1 Lech Sławik Instytut Matematyki PK Literatura 1. Arnold W.I., Równania różniczkowe zwyczajne, PWN, Warszawa, 1975. 2. Matwiejew N.M., Metody całkowania równań różniczkowych

Bardziej szczegółowo

Projektowanie układów metodą sprzężenia od stanu - metoda przemieszczania biegunów

Projektowanie układów metodą sprzężenia od stanu - metoda przemieszczania biegunów Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Laboratorium Sterowania Procesami Ciągłych Projektowanie układów metodą sprzężenia od stanu - metoda przemieszczania biegunów. Obliczanie

Bardziej szczegółowo

3 Podstawy teorii drgań układów o skupionych masach

3 Podstawy teorii drgań układów o skupionych masach 3 Podstawy teorii drgań układów o skupionych masach 3.1 Drgania układu o jednym stopniu swobody Rozpatrzmy elementarny układ drgający, nazywany też oscylatorem harmonicznym, składający się ze sprężyny

Bardziej szczegółowo

Kinematyka: opis ruchu

Kinematyka: opis ruchu Kinematyka: opis ruchu Fizyka I (B+C) Wykład IV: Ruch jednostajnie przyspieszony Ruch harmoniczny Ruch po okręgu Klasyfikacja ruchów Ze względu na tor wybrane przypadki szczególne prostoliniowy, odbywajacy

Bardziej szczegółowo

Całkowanie numeryczne

Całkowanie numeryczne Całkowanie numeryczne Poniżej omówione zostanie kilka metod przybliżania operacji całkowania i różniczkowania w szczególności uzależnieniu pochodnej od jej różnic skończonych gdy równanie różniczkowe mamy

Bardziej szczegółowo

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE Do opisu członów i układów automatyki stosuje się, oprócz transmitancji operatorowej (), tzw. transmitancję widmową. Transmitancję widmową () wyznaczyć można na podstawie

Bardziej szczegółowo

Tematyka egzaminu z Podstaw sterowania

Tematyka egzaminu z Podstaw sterowania Tematyka egzaminu z Podstaw sterowania Rafał Trójniak 6 września 2009 Spis treści 1 Rozwiązane tematy 1 1.1 Napisać równanie różniczkowe dla zbiornika z odpływem grawitacyjnym...............................

Bardziej szczegółowo

Sterowanie napędów maszyn i robotów

Sterowanie napędów maszyn i robotów Wykład 5 - Identyfikacja Instytut Automatyki i Robotyki (IAiR), Politechnika Warszawska Warszawa, 2015 Koncepcje estymacji modelu Standardowe drogi poszukiwania modeli parametrycznych M1: Analityczne określenie

Bardziej szczegółowo

PODSTAWOWE CZŁONY DYNAMICZNE

PODSTAWOWE CZŁONY DYNAMICZNE PODSTAWOWE CZŁONY DYNAMICZNE Człon podstawowy jest to element przetwarzający wprowadzony do niego sygnał wejściowy x(t) na sygnał wyjściowy y(t) w sposób elementarny. Przetwarzanie elementarne oznacza,

Bardziej szczegółowo

Analityczne metody detekcji uszkodzeń

Analityczne metody detekcji uszkodzeń Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 5 Model procesu Rozważmy czasowo-dyskretny model liniowy gdzie: k dyskretny czas, x(k) R n wektor stanu, x(k + 1) = Ax(k)

Bardziej szczegółowo

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ Teoria maszyn i podstawy automatyki semestr zimowy 2017/2018

Bardziej szczegółowo

Ćwiczenie 3 Badanie własności podstawowych liniowych członów automatyki opartych na biernych elementach elektrycznych

Ćwiczenie 3 Badanie własności podstawowych liniowych członów automatyki opartych na biernych elementach elektrycznych Ćwiczenie 3 Badanie własności podstawowych liniowych członów automatyki opartych na biernych elementach elektrycznych Cel ćwiczenia Celem ćwiczenia jest poznanie podstawowych własności członów liniowych

Bardziej szczegółowo

Podstawy Automatyki. Wykład 4 - algebra schematów blokowych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 4 - algebra schematów blokowych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 4 - algebra schematów blokowych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Schemat blokowy Schemat blokowy (strukturalny): przedstawia wzajemne powiązania pomiędzy poszczególnymi zespołami

Bardziej szczegółowo

Podstawy Automatyki. Wykład 7 - obiekty regulacji. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 7 - obiekty regulacji. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 7 - obiekty regulacji Instytut Automatyki i Robotyki Warszawa, 2018 Obiekty regulacji Obiekt regulacji Obiektem regulacji nazywamy proces technologiczny podlegający oddziaływaniu zakłóceń, zachodzący

Bardziej szczegółowo

Podstawy Automatyki. Wykład 4 - algebra schematów blokowych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 4 - algebra schematów blokowych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 4 - algebra schematów blokowych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Schemat blokowy Schemat blokowy (strukturalny): przedstawia wzajemne powiązania pomiędzy poszczególnymi zespołami

Bardziej szczegółowo

Równania różniczkowe. Dariusz Uciński. Wykład 7. Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski

Równania różniczkowe. Dariusz Uciński. Wykład 7. Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 7 Plan Model wzrostu populacji 1 Część 1: Równania pierwszego rzędu, jedna zmienna Model wzrostu populacji 2 Model skoku

Bardziej szczegółowo

Podstawy Automatyki. Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne Instytut Automatyki i Robotyki Warszawa, 2017 cz.1: Charakterystyki częstotliwościowe Wstęp Charakterystyki częstotliwościowe

Bardziej szczegółowo

Politechnika Warszawska Instytut Automatyki i Robotyki. Prof. dr hab. inż. Jan Maciej Kościelny PODSTAWY AUTOMATYKI

Politechnika Warszawska Instytut Automatyki i Robotyki. Prof. dr hab. inż. Jan Maciej Kościelny PODSTAWY AUTOMATYKI Politechnika Warszawska Instytut Automatyki i Robotyki Prof. dr hab. inż. Jan Maciej Kościelny PODSTAWY AUTOMATYKI 12. Regulacja dwu- i trójpołożeniowa (wg. Holejko, Kościelny: Automatyka procesów ciągłych)

Bardziej szczegółowo

Inżynieria Systemów Dynamicznych (4)

Inżynieria Systemów Dynamicznych (4) Inżynieria Systemów Dynamicznych (4) liniowych (układów) Piotr Jacek Suchomski Katedra Systemów Automatyki WETI, Politechnika Gdańska 2 grudnia 2010 O czym będziemy mówili? 1 2 WE OKREŚLO 3 ASYMPTO 4 DYNAMICZ

Bardziej szczegółowo

Dyskretne układy liniowe. Funkcja splotu. Równania różnicowe. Transform

Dyskretne układy liniowe. Funkcja splotu. Równania różnicowe. Transform Dyskretne układy liniowe. Funkcja splotu. Równania różnicowe. Transformata Z. March 20, 2013 Dyskretne układy liniowe. Funkcja splotu. Równania różnicowe. Transformata Z. Sygnał i system Sygnał jest opisem

Bardziej szczegółowo

Podstawy Automatyki. Wykład 3 - Charakterystyki częstotliwościowe, podstawowe człony dynamiczne. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 3 - Charakterystyki częstotliwościowe, podstawowe człony dynamiczne. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki Wykład 3 -, podstawowe człony dynamiczne Instytut Automatyki i Robotyki Warszawa, 2019 Wstęp określają zachowanie się elementu (układu) pod wpływem ciągłych sinusoidalnych sygnałów wejściowych. W analizie

Bardziej szczegółowo

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH POMIARY WIELKOŚCI NIEELEKTRYCZNYCH Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMST Semestr letni Wykład nr 3 Prawo autorskie Niniejsze

Bardziej szczegółowo

Transmitancje układów ciągłych

Transmitancje układów ciągłych Transmitancja operatorowa, podstawowe człony liniowe Transmitancja operatorowa (funkcja przejścia, G(s)) stosunek transformaty Laplace'a sygnału wyjściowego do transformaty Laplace'a sygnału wejściowego

Bardziej szczegółowo

Technika regulacji automatycznej

Technika regulacji automatycznej Technika regulacji automatycznej Wykład 2 Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 56 Plan wykładu Schematy strukturalne Podstawowe operacje na schematach

Bardziej szczegółowo

Inżynieria Systemów Dynamicznych (3)

Inżynieria Systemów Dynamicznych (3) Inżynieria Systemów Dynamicznych (3) Charakterystyki podstawowych członów dynamicznych Piotr Jacek Suchomski Katedra Systemów Automatyki WETI, Politechnika Gdańska 2 grudnia 2010 O czym będziemy mówili?

Bardziej szczegółowo

Zadania do wykładu Jakościowa Teoria Równań Różniczkowych Zwyczajnych

Zadania do wykładu Jakościowa Teoria Równań Różniczkowych Zwyczajnych Zadania do wykładu Jakościowa Teoria Równań Różniczkowych Zwyczajnych [ ] e Zadanie 1 Pokazać, że X(t) = 2t cos t sin t e 2t jest specjalną macierzą fundamentalną w sin t cos t [ 2 cos chwili τ = 0 układu

Bardziej szczegółowo

Wykład FIZYKA I. 10. Ruch drgający tłumiony i wymuszony. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 10. Ruch drgający tłumiony i wymuszony.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 1. Ruch drgający tłumiony i wymuszony Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html Siły oporu (tarcia)

Bardziej szczegółowo

1.1 Przegląd wybranych równań i modeli fizycznych. , u x1 x 2

1.1 Przegląd wybranych równań i modeli fizycznych. , u x1 x 2 Temat 1 Pojęcia podstawowe 1.1 Przegląd wybranych równań i modeli fizycznych Równaniem różniczkowym cząstkowym rzędu drugiego o n zmiennych niezależnych nazywamy równanie postaci gdzie u = u (x 1, x,...,

Bardziej szczegółowo

Ćwiczenie 1. Badanie aktuatora elektrohydraulicznego. Sterowanie Napędów Maszyn i Robotów Przemysłowych - laboratorium. Instrukcja laboratoryjna

Ćwiczenie 1. Badanie aktuatora elektrohydraulicznego. Sterowanie Napędów Maszyn i Robotów Przemysłowych - laboratorium. Instrukcja laboratoryjna Sterowanie Napędów Maszyn i Robotów Przemysłowych - laboratorium Ćwiczenie 1 Badanie aktuatora elektrohydraulicznego Instrukcja laboratoryjna Opracował : mgr inż. Arkadiusz Winnicki Warszawa 2010 Badanie

Bardziej szczegółowo

PL B1. ADAPTRONICA SPÓŁKA Z OGRANICZONĄ ODPOWIEDZIALNOŚCIĄ, Łomianki k. Warszawy, PL BUP 20/10

PL B1. ADAPTRONICA SPÓŁKA Z OGRANICZONĄ ODPOWIEDZIALNOŚCIĄ, Łomianki k. Warszawy, PL BUP 20/10 PL 214845 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 214845 (13) B1 (21) Numer zgłoszenia: 387534 (51) Int.Cl. F16F 9/50 (2006.01) F16F 9/508 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej

Bardziej szczegółowo

Fizyka 11. Janusz Andrzejewski

Fizyka 11. Janusz Andrzejewski Fizyka 11 Ruch okresowy Każdy ruch powtarzający się w regularnych odstępach czasu nazywa się ruchem okresowym lub drganiami. Drgania tłumione ruch stopniowo zanika, a na skutek tarcia energia mechaniczna

Bardziej szczegółowo

PODSTAWY AUTOMATYKI. Analiza w dziedzinie czasu i częstotliwości dla elementarnych obiektów automatyki.

PODSTAWY AUTOMATYKI. Analiza w dziedzinie czasu i częstotliwości dla elementarnych obiektów automatyki. WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI Katedra Inżynierii Systemów Sterowania PODSTAWY AUTOMATYKI Analiza w dziedzinie czasu i częstotliwości dla elementarnych obiektów automatyki. Materiały pomocnicze do

Bardziej szczegółowo

Fizyka 12. Janusz Andrzejewski

Fizyka 12. Janusz Andrzejewski Fizyka 1 Janusz Andrzejewski Przypomnienie: Drgania procesy w których pewna wielkość fizyczna na przemian maleje i rośnie Okresowy ruch drgający (periodyczny) - jeżeli wartości wielkości fizycznych zmieniające

Bardziej szczegółowo

Technika regulacji automatycznej

Technika regulacji automatycznej Technika regulacji automatycznej Wykład 3 Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 32 Plan wykładu Wprowadzenie Układ pierwszego rzędu Układ drugiego

Bardziej szczegółowo

ZAJĘCIA VII. Zastosowanie estymatora LS do identyfikacji obiektów dynamicznych

ZAJĘCIA VII. Zastosowanie estymatora LS do identyfikacji obiektów dynamicznych ZAJĘCIA VII Zastosowanie estymatora LS do identyfikacji obiektów dynamicznych Równanie różniczkowe a metoda LS Czas dyskretny a czas ciągły Obciążenie estymatora LS w przypadku dynamicznym Estymacja parametrów

Bardziej szczegółowo

4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ

4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 1 4. 4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 4.1. Elementy trójkątne Do opisywania dwuwymiarowego kontinuum jako jeden z pierwszych elementów

Bardziej szczegółowo

Automatyka i sterowania

Automatyka i sterowania Automatyka i sterowania Układy regulacji Regulacja i sterowanie Przykłady regulacji i sterowania Funkcje realizowane przez automatykę: regulacja sterowanie zabezpieczenie optymalizacja Automatyka i sterowanie

Bardziej szczegółowo

PAiTM. materiały uzupełniające do ćwiczeń Wydział Samochodów i Maszyn Roboczych studia inżynierskie prowadzący: mgr inż.

PAiTM. materiały uzupełniające do ćwiczeń Wydział Samochodów i Maszyn Roboczych studia inżynierskie prowadzący: mgr inż. PAiTM materiały uzupełniające do ćwiczeń Wydział Samochodów i Maszyn Roboczych studia inżynierskie prowadzący: mgr inż. Sebastian Korczak Poniższe materiały tylko dla studentów uczęszczających na zajęcia.

Bardziej szczegółowo

Stabilność II Metody Lapunowa badania stabilności

Stabilność II Metody Lapunowa badania stabilności Metody Lapunowa badania stabilności Interesuje nas w sposób szczególny system: Wprowadzamy dla niego pojęcia: - stabilności wewnętrznej - odnosi się do zachowania się systemu przy zerowym wejściu, czyli

Bardziej szczegółowo

Część 1. Transmitancje i stabilność

Część 1. Transmitancje i stabilność Część 1 Transmitancje i stabilność Zastosowanie opisu transmitancyjnego w projektowaniu przekształtników impulsowych Istotne jest przewidzenie wpływu zmian w warunkach pracy (m. in. v g, i) i wielkości

Bardziej szczegółowo

I. KARTA PRZEDMIOTU CEL PRZEDMIOTU

I. KARTA PRZEDMIOTU CEL PRZEDMIOTU I. KARTA PRZEDMIOTU 1. Nazwa przedmiotu: SYSTEMY DYNAMICZNE 2. Kod przedmiotu: Esd 3. Jednostka prowadząca: Wydział Mechaniczno-Elektryczny 4. Kierunek: Mechatronika 5. Specjalność: Techniki Komputerowe

Bardziej szczegółowo

Sterowanie mechanizmów wieloczłonowych

Sterowanie mechanizmów wieloczłonowych Wykład 6 - Modelowanie napędów złączy Instytut Automatyki i Robotyki Warszawa, 2019 Modelowanie napędu złączy - silniki DC Silniki elektryczne prądu stałego są bardzo często stosowanymi elementami wykonawczymi

Bardziej szczegółowo

Sterowanie napędów maszyn i robotów

Sterowanie napędów maszyn i robotów Sterowanie napędów maszyn i robotów dr inż. akub ożaryn Wykład Instytut Automatyki i obotyki Wydział echatroniki Politechnika Warszawska, 014 Projekt współfinansowany przez Unię Europejską w ramach Europejskiego

Bardziej szczegółowo

Technika regulacji automatycznej

Technika regulacji automatycznej Technika regulacji automatycznej Wykład 1 Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 30 Plan wykładu Podstawowe informacje Modele układów elektrycznych

Bardziej szczegółowo

WSTĘP DO ELEKTRONIKI

WSTĘP DO ELEKTRONIKI WSTĘP DO ELEKTRONIKI Część IV Czwórniki Linia długa Janusz Brzychczyk IF UJ Czwórniki Czwórnik (dwuwrotnik) posiada cztery zaciski elektryczne. Dwa z tych zacisków uważamy za wejście czwórnika, a pozostałe

Bardziej szczegółowo

MECHANIKA II. Drgania wymuszone

MECHANIKA II. Drgania wymuszone MECHANIKA II. Drgania wymuszone Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny Daniel Lewandowski (I-19) MECHANIKA II. Drgania wymuszone 1 / 30 Układ drgajacy o jednym stopniu swobody

Bardziej szczegółowo

Identyfikacja obiektów dynamicznych za pomocą sieci neuronowych

Identyfikacja obiektów dynamicznych za pomocą sieci neuronowych Metody Sztucznej Inteligencji w Sterowaniu Ćwiczenie 3 Identyfikacja obiektów dynamicznych za pomocą sieci neuronowych Przygotował: mgr inż. Marcin Pelic Instytut Technologii Mechanicznej Politechnika

Bardziej szczegółowo

Sterowanie napędów maszyn i robotów

Sterowanie napędów maszyn i robotów Sterowanie napędów maszyn i robotów dr inż. akub ożaryn Wykład. Instytut Automatyki i obotyki Wydział echatroniki Politechnika Warszawska, 014 Projekt współfinansowany przez Unię Europejską w ramach Europejskiego

Bardziej szczegółowo

Tydzień nr 9-10 (16 maja - 29 maja), Równania różniczkowe, wartości własne, funkcja wykładnicza od operatora - Matematyka II 2010/2011L

Tydzień nr 9-10 (16 maja - 29 maja), Równania różniczkowe, wartości własne, funkcja wykładnicza od operatora - Matematyka II 2010/2011L Tydzień nr 9-10 (16 maja - 29 maja) Równania różniczkowe wartości własne funkcja wykładnicza od operatora - Matematyka II 2010/2011L Wszelkie pytania oraz uwagi o błędach proszę kierować na przemek.majewski@gmail.com

Bardziej szczegółowo

ELEMENTY AUTOMATYKI PRACA W PROGRAMIE SIMULINK 2013

ELEMENTY AUTOMATYKI PRACA W PROGRAMIE SIMULINK 2013 SIMULINK część pakietu numerycznego MATLAB (firmy MathWorks) służąca do przeprowadzania symulacji komputerowych. Atutem programu jest interfejs graficzny (budowanie układów na bazie logicznie połączonych

Bardziej szczegółowo

MECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 8 Drgania punktu materialnego Prowadzący: dr Krzysztof Polko Wstęp Drgania Okresowe i nieokresowe Swobodne i wymuszone Tłumione i nietłumione Wstęp Drgania okresowe ruch powtarzający

Bardziej szczegółowo

POLITECHNIKA ŚLĄSKA WYDZIAŁ GÓRNICTWA I GEOLOGII. Roman Kaula

POLITECHNIKA ŚLĄSKA WYDZIAŁ GÓRNICTWA I GEOLOGII. Roman Kaula POLITECHNIKA ŚLĄSKA WYDZIAŁ GÓRNICTWA I GEOLOGII Roman Kaula ZASTOSOWANIE NOWOCZESNYCH NARZĘDZI INŻYNIERSKICH LabVIEW oraz MATLAB/Simulink DO MODELOWANIA UKŁADÓW DYNAMICZNYCH PLAN WYKŁADU Wprowadzenie

Bardziej szczegółowo

Ruch drgajacy. Drgania harmoniczne. Drgania harmoniczne... Drgania harmoniczne... Notatki. Notatki. Notatki. Notatki. dr inż.

Ruch drgajacy. Drgania harmoniczne. Drgania harmoniczne... Drgania harmoniczne... Notatki. Notatki. Notatki. Notatki. dr inż. Ruch drgajacy dr inż. Ireneusz Owczarek CNMiF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 1 dr inż. Ireneusz Owczarek Ruch drgajacy Drgania harmoniczne Drgania oscylacje to cykliczna

Bardziej szczegółowo

Podstawy Automatyki. Wykład 6 - Miejsce i rola regulatora w układzie regulacji. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 6 - Miejsce i rola regulatora w układzie regulacji. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 6 - Miejsce i rola regulatora w układzie regulacji Instytut Automatyki i Robotyki Warszawa, 2015 Regulacja zadajnik regulator sygnał sterujący (sterowanie) zespół wykonawczy przetwornik pomiarowy

Bardziej szczegółowo