Sterowanie Serwonapędów Maszyn i Robotów

Wielkość: px
Rozpocząć pokaz od strony:

Download "Sterowanie Serwonapędów Maszyn i Robotów"

Transkrypt

1 Wykład Modelowanie układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2017

2 Wstęp Rzeczywiste obiekty regulacji, a co za tym idzie układy regulacji, mają właściwości nieliniowe, n.p. turbulencje, wiele stanów stabilnych, histereza, straty energii w wyniku tarcia. W praktyce, dla uproszczenia opisu matematycznego przeprowadza się ich linearyzację, co pozwala na sformułowanie przybliżonego opisu liniowego zjawiska, ważnego w otoczeniu wybranego punktu pracy na charakterystyce statycznej (punkt ten odpowiada najczęściej nominalnym lub uśrednionym warunkom pracy układu).

3 Metody opisu działania elementów (układów) liniowych Stosowany aparat matematyczny: opis zjawiska w postaci równań różniczkowych, linearyzacja modelu, rachunek operatorowy. Podstawowymi formami matematycznego opisu działania elementu (układu) są: równanie dynamiki, transmitancja operatorowa, równania stanu.

4 Metody opisu działania elementów (układów) liniowych W przypadku elementu (układu) o jednym sygnale wejściowym x(t) i jednym sygnale wyjściowym y(t) równanie dynamiki wyraża związek zachodzący pomiędzy sygnałem wyjściowym y(t) i sygnałem wejściowym x(t). Rysunek : Proces - przyczynowo-skutkowy ciąg zdarzeń

5 Opis matematyczny układów liniowych - równania dynamiki Zasada superpozycji: f (x 1 + x 2 ) = f (x 1 ) + f (x 2 ), and f (0) = 0 (1) Przestrzeń rozwiązań równania spełniającego zasadę superpozycji (1) jest przestrzenią liniową. Jednorodność (implikuje niezmienność skalowania): Funkcja f (x, y) jest jednorodna w stopniu k jeżeli. gdzie: β - stały współczynnik. Układ liniowy f (βx, βy) = β k f (x, y), and f (0) = 0 (2) Układ opisany funkcją jednorodną, w którym zachowana jest zasada superpozycji. Układ nieliniowy Układ, w którym nie jest zachowana jest zasada superpozycji i/lub nie jest opisany funkcją jednorodną.

6 Linearyzacja

7 Linearyzacja Tworzenie opisu liniowego na podstawie opisu nieliniowego nazywa się linearyzacją. Linearyzacja opisu nieliniowego w postaci równań algebraicznych nazywa się linearyzacją statyczną. (brak pochodnych) Linearyzacja opisu nieliniowego w postaci równań różniczkowych nazywa się linearyzacją dynamiczną. Metody linearyzacji statycznej linearyzacja metodą siecznej: uzyskanie najlepszej zgodności opisu liniowego z nieliniowym w określonym przedziale zmian zmiennej niezależnej. linearyzacja metodą stycznej: uzyskanie najlepszej zgodności opisu liniowego z nieliniowym dla określonej wartości zmiennej niezależnej, a więc i określonej wartości zmiennej zależnej.

8 Linearyzacja statyczna Rysunek : Linearyzacja statyczna; a) metoda siecznej, b) metoda stycznej. Ponieważ w automatyce rozważa się zachowanie układów w otoczeniu określonego punktu pracy, w dalszych rozważaniach przydatna jest linearyzacja metodą stycznej.

9 Linearyzacja metodą stycznej Przeprowadzony proces linearyzacji metodą stycznej polega na : zastąpieniu krzywej, reprezentującej nieliniową zależność y = f (x) styczną do niej w punkcie pracy, przeniesieniu początku układu współrzędnych do punktu pracy, zastąpieniu w modelu matematycznym zmiennych absolutnych x i y odchyleniami tych zmiennych od punktu pracy - zmiennymi przyrostowymi x i y. Charakterystyka statyczna wyznaczona na podstawie równania zlinearyzowanego względem określonego punktu pracy jest funkcją liniową. Można ją także wyznaczyć linearyzując charakterystykę rzeczywistą względem tego samego punktu pracy

10 Linearyzacja statyczna - przykład Funkcja niejednorodna Przyjmując punkt pracy - {x 0, y 0 }, y 0 = f (x 0 ) Rozwinięcie w szereg Taylora w punkcie pracy y = mx + b (3) y = f (x) = f (x 0 ) + df dx (x x 0 ) x=x 0 + d 2 f 1! dx 2 (x x 0 ) 2 x=x (4) 2! Prosta styczna (pierwsza pochodna) w punkcie pracy jest dobrą aproksymacją w małym zakresie zmian argumentu funkcji (wielkości wejściowej). Tak więc i ostatecznie y = f (x 0 ) + df dx x=x 0 (x x 0 ) = y 0 + m(x x 0 ) (5) y y 0 = m(x x 0 ) y = m x (6)

11 Linearyzacja dynamiczna Przykład równania różniczkowego, będącego nieliniową zależnością pomiędzy funkcjami x(t) i y(t) i ich pochodnymi. F [y(t), ẏ(t), ÿ(t),..., y (n) (t), x, ẋ(t), ẍ(t),..., x (m) (t)] = 0 (7) Podczas linearyzacji dynamicznej funkcje x(t) i y(t) jak i ich pochodne traktuje się analogicznie jak zmienne funkcji uwikłanej. { n [ ] } { F m [ ] } F y (i) + x (j) = 0 (8) y (i) i=0 y (i) x (j) 0 j=0 x (j) 0 gdzie: y = y(t) y 0, ẏ = d y,..., y (n) = d n y dt dt n x = y(t) x 0, ẋ = d x dt,..., x (m) = d m x dt m

12 Linearyzacja dynamiczna - przykład Zlinearyzować układ nieliniowy opisany następującym równaniem różniczkowym y(t) = 2x(t) 2 + x(t)ẋ(t) + 2ẍ(t) 2 (9) Przyjmując statyczny punkt pracy - {x 0, y 0 }, x 0 = 1, ẋ 0 = 0, ẍ 0 = 0. Rozwijając w szereg Taylora w punkcie pracy y(t)+[ 4x(t) ẋ(t)] 0 x(t) [x(t)] 0 ẍ(t) [4ẍ(t)] 0 ẍ(t) = 0 (10) Ponieważ w statycznym punkcie pracy ẋ 0 = 0, ẍ 0 = 0, to zlinearyzowane równanie różniczkowe ma postać y(t) 4 x(t) ẋ(t) = 0 (11) Charakterystyka statyczna układu nieliniowego y = 2x 2 (12) Charakterystyka statyczna układu zlineryzowanego (styczna w punkcie pracy do ch-ki statycznej układu nieliniowego) y = 4 x (13)

13 Charakterystyka statyczna Ogólna postać równania różniczkowego układu liniowego: d n y a n dt n +a d n 1 y n 1 dt n 1 + +a d m x 0y = b m dt m +b d m 1 x m 1 dt m 1 + +b 0x (14) gdzie: y - sygnał wyjściowy, x - sygnał wejściowy, a i, b i - stałe współczynniki. Charakterystyka statyczna Charakterystyka statyczna f st przedstawia zależność sygnału wyjściowego układu y od sygnału wejściowego x w stanie ustalonym. Stan ustalony Stanem ustalonym nazywamy jest stan, w którym wszystkie pochodne sygnału wejściowego i sygnału wyjściowego są równe zero Rysunek : Charakterystyka statyczna układu liniowego.

14 Przekształcenie Laplace a

15 Przekształcenie Laplace a Zastąpienie równania różniczkowego transmitancją operatorową, przejście z dziedziny czasu rzeczywistego t na dziedzinę zmiennej zespolonej s. f (t) f (s), gdzie s = c + jω (15) gdzie: c - współczynnik części rzeczywistej, ω - współczynnik części urojonej. Przekształcenie Laplace a f (s) = L[f (t)] = 0 f (t)e st dt (16) Odwrotne przekształcenie Laplace a - całka Riemanna Mellina f (t) = L 1 [f (s)] = 1 2πj c+jω c jω F (s)e st ds (17)

16 Przekształcenie Laplace a Przekształcenie Laplace a, nazywane też transformatą Laplace a, wykorzystywana jest w automatyce do analizy układów. Jako narzędzie analizy graficznej wykorzystywana jest płaszczyzna zespolona S, na której mnożenie przez s daje efekt różniczkowania a dzielenie przez s całkowania. Analiza pierwiastków zespolonych równania liniowego, może ujawnić informacje na temat charakterystyk częstotliwościowych i na temat stabilności układu.

17 Przekształcenie Laplace a układów liniowych Transformatę Laplace a funkcji można wyznaczyć jeżeli zostaną spełnione następujące warunki: f (t) ma w każdym przedziale skończonym wartość skończoną, df (t) dt f (t) ma pochodną w każdym przedziale skończonym, istnieje zbiór liczb rzeczywistych C, dla których całka e ct jest absolutnie zbieżna. 0

18 Przekształcenie Laplace a układów liniowych d n y a n dt n +a d n 1 y n 1 dt n 1 + +a d m x 0y = b m [ d n ] y L dt n dt m +b m 1 d m 1 x dt m 1 + +b 0x (18) = s n y(s) s n 1 y(0 + ) y n 1 (0 + ) (19) przy zerowych warunkach początkowych [ d n ] y L dt n = s n y(s) (20) Tak więc przekształcenie Laplace a układu liniowego przy zerowych warunkach początkowych przyjmuje postać y(s)(a n s n +a n 1 s n 1 + +a 0 ) = x(s)(b m s m +b m 1 s m 1 + +b 0 ) (21)

19 Transmitancja operatorowa Transmitancja operatorowa Transmitancja operatorowa to stosunek transformaty sygnału wyjściowego do transformaty sygnału wejściowego przy zerowych warunkach początkowych y(s)(a n s n +a n 1 s n 1 + +a 0 ) = x(s)(b m s m +b m 1 s m 1 + +b 0 ) (22) G(s) = y(s) x(s) = b ms m + b m 1 s m b 0 a n s n + a n 1 s n a 0 (23) przyjmuje się następujące oznaczenia oznaczenia licznik M(s) = b m s m + b m 1 s m b 0 (24) mianownik - tzw. równanie charakterystyczne N(s) = a n s n + a n 1 s n a 0 (25)

20 Wyznaczanie charakterystyki statycznej z transmitancji operatorowej x 0 = lim t x(t), na podstawie twierdzenia o wartości końcowej y 0 = lim y(t), (26) t y 0 = lim y(t) = lim sy(s) = lim sg(s)x(s) (27) t s 0 s 0 przy założeniu skokowego wymuszenia x(s) x 0 = const x(s) = 1 s x 0 (28) ostatecznie y 0 x 0 = lim s 0 G(s) (29) y 0 = b 0 a 0 x 0 (30)

21 Właściwości układów Charakterystyka dynamiczna Prezentacja przebiegu wielkości wyjściowej y(t) po wprowadzeniu do układu wymuszenia x(t) Rysunek : Postać charakterystyki dynamicznej układu.

22 Metody wyznaczania odpowiedzi układu dynamicznego d n y a n dt n +a d n 1 y n 1 dt n 1 + +a d m x 0y = b m dt m +b d m 1 x m 1 dt m 1 + +b 0x (31) Klasyczna: Założenie warunków początkowych x(0), y(0) Rozwiązanie równań różniczkowych Operatorowa: f (t) = L 1 [y(s)] = L 1 [G(s)x(s)] (32) W zastosowaniach praktycznych do wykonywania transformacji prostej i odwrotnej, które są podstawowymi operacjami w rachunku operatorowym, zwykle nie zachodzi potrzeba wykorzystywania wzorów definicyjnych. Najczęściej wystarczy znajomość podstawowych własności przekształceń Laplace a i tablice transformat typowych funkcji zmiennej rzeczywistej.

23 Typowe sygnały wymuszające Wymuszenie skokowe jednostkowe (funkcja Heaveside a) x(t) = { 1(t) dla t 0 0 dla t < 0 x(s) = 1 s Wymuszenie skokowe o wartość stałą x(t) = { xst 1(t) dla t 0 0 dla t < 0 x(s) = x st 1 s Impuls - Delta Diraca x(t) = δ(t) = { 0 dla t 0 dla t = 0 x(s) = 1 Wymuszenie liniowo narastające x(t) = at x(s) = a s 2

24 Transmitancja operatorowa obiektów MIMO Rysunek : Obiekt MIMO. Zapis wejść (p) i wyjść (r) w postaci wektorów U(s) = u 1 (s) u 2 (s). u p (s) p, Y (s) = y 1 (s) y 2 (s). y r (s) r (33)

25 Transmitancja operatorowa obiektów MIMO G MIMO (s) = Y (s) U(s) = Rysunek : Obiekt MIMO. G 11 (s) G 12 (s)... G 2p (s) G 21 (s) G 22 (s)... G 2p (s).... G r1 (s) G r2 (s)... G rp (s) r p (34) G ij (s) = y i(s), gdzie i = 1,..., r, j = 1,..., p. (35) u j (s)

26 Podstawowe człony dynamiczne

27 Wstęp W złożonych układach automatyki można często wyodrębnić szereg najprostszych niepodzielnych już elementów funkcjonalnych. Ich właściwości można przyporządkować z pewnym przybliżeniem zaledwie kilku podstawowym modelom matematycznym. Abstrakcyjne elementy o właściwościach odpowiadających tym modelom nazywamy podstawowymi (elementarnymi) liniowymi członami dynamicznymi. Opis: równanie ruchu, transmitancja operatorowa, charakterystyka statyczna, odpowiedź na wymuszenie skokowe, transmitancja widmowa, charakterystyka amplitudowo - fazowa (Nyquist) charakterystyki logarytmiczne (Bode)

28 Podstawowe człony dynamiczne y(t) = ku(t) człon proporcjonalny (bezinercyjny) T dy(t) dt + y(t) = ku(t) człon inercyjny T dy(t) dt T dy(t) dt T 2 d 2 y(t) dt = u(t), lub dy(t) dt y(t) = T du(t) dt + y(t) = T d du(t) dt + 2ξT dy(t) dt y(t) = u(t T 0 ) = ku(t) + y(t) = ku(t) człon całkujący człon różniczkujący idealny człon różniczkujący rzeczywisty człon oscylacyjny, jeżeli 0 < ξ < 1 człon opóźniający

29 Charakterystyki częstotliwościowe

30 Wstęp Charakterystyki częstotliwościowe określają zachowanie się elementu (układu) pod wpływem ciągłych sinusoidalnych sygnałów wejściowych, więc teoretycznie trwających od t =. W analizie układów liniowych charakterystyki częstotliwościowe są wykorzystywane do badania m.in. stabilności układów, a także określonych własności dynamicznych układów. Określają w funkcji częstotliwości: stosunek amplitudy odpowiedzi do amplitudy wymuszenia przesunięcie fazowe między odpowiedzią a wymuszeniem Rozróżnia się następujące postacie charakterystyk częstotliwościowych: charakterystyka amplitudowo-fazowa tzw. wykres Nyquista, logarytmiczna charakterystyka amplitudowa i fazowa (wykresy Bode go)

31 Charakterystyki częstotliwościowe Rysunek : Wyznaczanie charakterystyk częstotliwościowych u(t) = A 1 sin[ωt] y(t) = A 2 sin[ω(t t ϕ )] gdzie: A i - amplituda sygnału, ω - częstotliwość sygnału (stała dla we/wy), t ϕ - opóźnienie fazy sygnału wyjściowego względem sygnału wejściowego. Odpowiednio t ϕ < 0 - ujemne przesunięcie fazowe, t ϕ > 0 - dodatnie przesunięcie fazowe, Rysunek : Sygnał wejściowy Rysunek : Sygnał wyjściowy, ujemne przesunięcie fazowe

32 Charakterystyki częstotliwościowe Przesunięcie fazowe sygnału wyjściowego względem sygnału wejściowego można wyrazić jako przesunięcie w czasie o czas t ϕ i wtedy sygnał wyjściowy opisywany jest funkcją y(t) = A 2 sin[ω(t t ϕ )] lub jako przesunięcie kątowe ϕ(ω) = ωt ϕ, wtedy y(t) = A 2 sin[ωt ϕ]

33 Charakterystyki częstotliwościowe Do opisu elementów lub układów, w których występują sygnały sinusoidalnie zmienne, wykorzystuje się tzw. transmitancję widmową G(jω). Pojęcie transmitancji widmowej związane jest z przekształceniem Fouriera, które funkcji czasu f (t) przyporządkowuje transformatę F (jω) zgodnie z zależnością zwaną całką Fouriera: F (jω) = f (t)e jωt dt

34 Transmitancja widmowa Transmitancja widmowa Transmitancja widmowa jest to stosunek transformaty Fouriera sygnału wyjściowego do transformaty Fouriera sygnału wejściowego. G jω = y(jω) x(jω) Między transmitancją widmową, a transmitancją operatorową istnieje formalny związek G(jω) = G(s) s=jω wynikający ze związku pomiędzy transformatami Laplace a i Fouriera.

35 Transmitancja widmowa Korzystając z własności transformaty Laplace a - twierdzenie o przesunięciu w dziedzinie zmiennej rzeczywistej L{f (t + τ)} = L{f (t)}e τs można wyznaczyć transmitancję widmową obiektu w przypadku sygnału sinusoidalnego na jego wejściu G(s) = L {A 2(ω)sin[ω(t + t ϕ )]} L {A 1 sin[ω(t)]} Ponieważ = A 2(ω) L {sin[ω(t)]} e tϕs A 1 L {sin[ω(t)]} G(jω) = Y (jω) U(jω), G(jω) = G(s) s=jω, t ϕ = ϕ(ω) ω = A 2(ω) e tϕs A 1 to G(jω) = A 2(ω) A 1 e tϕs s=jω = A 2(ω) A 1 e tϕjω = A 2(ω) e jϕ(ω) A 1

36 Transmitancja widmowa Transmitancję widmową zapisuje się następująco gdzie: M(ω) = A2(ω) A 1 G(jω) = A 2(ω) e jϕ(ω) = M(ω)e jϕ(ω) A 1 - moduł transmitancji widmowej ϕ(ω) - argument transmitancji widmowej W transmitancji można wyróżnić 2 składowe gdzie: G(jω) = M(ω)e jϕ(ω) = P(ω) + jq(ω) P(ω) - część rzeczywista transmitancji widmowej Q(ω) - część urojona transmitancji widmowej

37 Charakterystyka amplitudowo-fazowa Charakterystyka amplitudowo-fazowa Charakterystyka amplitudowo-fazowa jest to krzywa wykreślona w płaszczyźnie zmiennej zespolonej, która jest miejscem geometrycznym końca wektora transmitancji widmowej G(jω) przy zmianach ω = 0 M(ω) = [P(ω)] 2 + [Q(ω)] 2 ϕ(ω) = arctg ( ) Q(ω) P(ω) Rysunek : Charakterystyka amplitudowo-fazowa P(ω) = M(ω) cos[ϕ(ω)] Q(ω) = M(ω) sin[ϕ(ω)] M(ω) = P(ω) cos[ϕ(ω)] + Q(ω) sin[ϕ(ω)]

38 Charakterystyki częstotliwościowe Charakterystyki częstotliwościowe Częstotliwościowe charakterystyki amplitudowa i fazowa są przedstawiane na dwóch oddzielnych wykresach: charakterystyka amplitudowa L(ω) = G(jω) w zależności od częstości ω, charakterystyka fazowa ϕ = arg G(ω) w zależności od częstości ω. Moduł logarytmiczny (jednostka - decybel) Rysunek : Charakterystyki logarytmiczne L(ω) = 10log 10 M 2 (ω) = 20 log M(ω)[dB]

39 Opis z wykorzystaniem równań stanu

40 Współrzędne stanu Współrzędne stanu Współrzędne stanu to wielkości charakteryzujące zachowanie się układu dynamicznego, opisujące jego stan (np. położenie, prędkość, przyspieszenie). Wektor stanu Wektor stanu układu dynamicznego to minimalny zbiór współrzędnych stanu wystarczający łącznie ze znajomością wielkości wejściowych do określenia zachowania się układu w przyszłości. Liczba współrzędnych stanu jest równa rzędowi równania różniczkowego opisującego obiekt. Opis układów we współrzędnych stanu jest trudniejszy do interpretacji fizycznej niż opis w postaci transmitancji i niemożliwy do bezpośredniego określenia na drodze pomiarowej. Jest jednak wygodniejszy do celów modelowania oraz projektowania wielowymiarowych układów sterowania i regulacji.

41 Równania stanu i wyjść Do wyznaczenia odpowiedzi na określone wymuszenie jednowymiarowego układu opisanego równaniem dynamiki n-tego rzędu, należy zdefiniować początkowy stan układu, czyli n warunków początkowych (n wartości pewnych zmiennych). Pod wpływam wymuszenia wartości tych zmiennych ulegają zmianom, jednoznacznie definiując stan dynamiczny układu w dowolnej chwili. Ogólna postać równania stanu - zmiany zmiennych stanu z n warunkami początkowymi: dx 1(t) dt = f 1 (x 1, x 2,..., x q ; u 1, u 2,..., u p ; t); x 1 (t 0 ) = x (36) dx q(t) dt = f q (x 1, x 2,..., x q ; u 1, u 2,..., u p ; t); x q (t 0 ) = x q0 Ogólna postać równania wyjść y 1 (t) = g 1 (x 1, x 2,..., x q ; u 1, u 2,..., u p ; t)... y r (t) = g q (x 1, x 2,..., x q ; u 1, u 2,..., u p ; t) (37)

42 Zlinearyzowane równania stanu i wyjść Po linearyzacji w otoczeniu wybranego stanu ustalonego (nominalnego punktu pracy - {x 0, y 0 }), równania przyjmują postać: d x 1(t) dt Zlinearyzowana postać równania stanu = q i=1 ( f1(t) x i )0 x i + p j=1 ( f1(t) u j )0 u j... d x q(t) dt = ( q fq(t) i=1 x i x i + )0 ( (38) p fq(t) j=1 u j u j )0 Zlinearyzowana postać równania wyjść y 1 = q i=1... y q = q i=1 ( g1(t) x i )0 ( gq(t) x i )0 x i + p j=1 ( g1(t) u j )0 u j x i + ( (39) p gq(t) j=1 u j u j )0

43 Postać macierzowa modelu zmiennych stanu Macierzowa postać równań stanu i wyjść { Ẋ (t) = ANL (X, U, t) Y (t) = C NL (X, U, t) (40) Macierzowa postać zlinearyzowanych równań stanu i wyjść { Ẋ (t) = A(t)X (t) + B(t)U(t) (41) Y (t) = C(t)X (t) + D(t)U(t) gdzie: A(t) R q q - macierz stanu, B(t) R q p - macierz wejść, C(t) R r q - macierz wyjść, D(t) R r p - macierz przenoszenia (transmisyjna). Przejście z zapisu macierzowego do zapisu transmitancyjnego G(s) = C [si A] 1 B + D (42)

44 Równania stanu układów liniowych Układ niestacjonarny Układ niestacjonarny to układ, którego wyjście zależy wprost od czasu - parametry układu zależą od czasu. Układ stacjonarny Układ stacjonarny to układ, którego wyjście nie zależy wprost od czasu. Rysunek : Schemat blokowy układu linowych równań stacjonarnych

45 Przestrzeń stanów Przestrzeń stanów, przestrzeń fazowa Zbiór wszystkich możliwych wartości wektora stanu X (t) w chwilach t tworzy przestrzeń stanów układu (przestrzeń fazową). Rysunek : Trajektoria fazowa - przykład trajektoria stanu Zbiór wartości wektora stanu układu w kolejnych chwilach czasu tworzy w tej przestrzeni krzywą, zwaną trajektorią stanu układu (trajektorią fazową).

46 Wyznaczanie równań stanu - metoda bezpośrenia Ogólna postać równania transmitancji układu liniowego: G(s) = b ms m + b m 1 s m b 0 s q + a n 1 s q a 0, q > m (43) Dzieląc licznik i mianownik (46) przez s q G(s) = b ms m q + b m 1 s m 1 q + + b 0 s q 1 + a q 1 s a 0 s q (44) Wprowadzając zmienną E(s) następująco G(s) = Y (s)e(s) E(s)U(s) (45) E(s) U(s) = a q 1 s a 0 s q (46) Y (s) E(s) = b ms m q + b m 1 s m 1 q + + b 0 s q (47)

47 Wyznaczanie równań stanu - metoda bezpośrenia Otrzymane równania E(s) = a 0 s q E(s) a q 1 s 1 E(s) + U(s) (48) Y (s) = b 0 s q E(s) + + b m 1 s m 1 q E(s) + b m s m q E(s) (49) Przyjmując fazowe zmienne stanu i równania stanu w postaci ẋ 1 (t) = x 2 (t) ẋ 2 (t) = x 3 (t)... ẋ n (t) = e(t) (50) gdzie e(t) = L 1 [E(s)] (51)

48 Wyznaczanie równań stanu - metoda bezpośrenia Po przekształceniu Laplace a sx 1 (s) = x 2 (s) sx 2 (s) = x 3 (s)... sx q (s) = E(s) x 1 (s) = s q E(s) x 2 (s) = s q 1 E(s)... x q (s) = s 1 E(s) (52) Tak więc po uwzględnieniu zapisu w postaci zmiennych fazowych w przestrzeni zmiennych zespolonych S otrzymuje się E(s) = a 0 x 1 (s) a q 1 x q (s) + U(s) (53) Y (s) = b 0 x 1 (s) + + b m 1 x m (s) + b m x m+1 (s) (54) odpowiednio w dziedzinie czasu e(t) = a 0 x 1 (t) a q 1 x q (t) + u(t) (55) u(t) = b 0 x 1 (t) + + b m 1 x m (t) + b m x m+1 (t) (56)

49 Wyznaczanie równań stanu - metoda bezpośrenia Równania stanu ẋ 1 (t) = x 2 (t) ẋ 2 (t) = x 3 (t)... ẋ n (t) = a 0 x 1 (t) a q 1 x q (t) + u(t) Macierze równań stanu przyjmują postać: A = a 0 a 1 a 2... a q 1 q q, B = q 1 (57) (58) C = [ b 0 b 1... b m ] 1 q, D = [0] 1 1

50 Równania stanu - element oscylacyjny Opis elementu oscylacyjnego w postaci transmitancji operatorowej kω 2 0 G(s) = s 2 + 2ξω 0 s + ω0 2 (59) lub w dziedzinie czasu u(t)kω 2 0 = d 2 y(t) dt 2 + dy(t) 2ξω 0 + y(t)ω0 2 (60) dt Powyższy układ jest opisany równaniem 2-go rzędu, więc wymaga q = 2 zmiennych stanu, definiujących stan układu w dowolnej chwili czasu. Korzystając z metody bezpośredniej otrzymuje się następujące równania stanu ẋ 1 (t) = x 2 (t) ẋ 2 (t) = ω0 2x (61) 1(t) 2ξω 0 x 2 (t) + u(t) równanie wyjścia y(t) = kω 0 x 1 (t) (62)

51 Równania stanu - element oscylacyjny Macierzowa postać zlinearyzowanych równań stanu i wyjść dla elementu oscylacyjnego { Ẋ (t) = A(t)X (t) + B(t)U(t) (63) Y (t) = C(t)X (t) + D(t)U(t) gdzie: [ A = X (t) = [ x1 (t) x 2 (t) 0 1 ω 2 0 2ξω 2 0 ], Y (t) = [ y(t) ], U(t) = [ u(t) ] (64) ] [ 0, B = 1 ], C = [ kω ], D = [0] (65)

52 Wykład Modelowanie układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2017

Podstawy Automatyki. Wykład 2 - modelowanie matematyczne układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 2 - modelowanie matematyczne układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 2 - modelowanie matematyczne układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2017 Wstęp Rzeczywiste obiekty regulacji, a co za tym idzie układy regulacji, mają właściwości nieliniowe,

Bardziej szczegółowo

Podstawy Automatyki. Wykład 2 - podstawy matematyczne. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 2 - podstawy matematyczne. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 2 - podstawy matematyczne Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Rzeczywiste obiekty regulacji, a co za tym idzie układy regulacji, mają właściwości nieliniowe, n.p. turbulencje, wiele

Bardziej szczegółowo

Podstawy Automatyki. Wykład 2 - modelowanie matematyczne układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 2 - modelowanie matematyczne układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 2 - modelowanie matematyczne układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2019 Wstęp Obiekty (procesy) rzeczywiste, a co za tym idzie układy regulacji, mają właściwości nieliniowe,

Bardziej szczegółowo

Podstawy Automatyki. Wykład 2 - matematyczne modelowanie układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 2 - matematyczne modelowanie układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 2 - matematyczne modelowanie układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2019 Wstęp Obiekty (procesy) rzeczywiste, a co za tym idzie układy regulacji, mają właściwości nieliniowe,

Bardziej szczegółowo

Podstawy Automatyki. Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne Instytut Automatyki i Robotyki Warszawa, 2017 część 1: Charakterystyki częstotliwościowe Wstęp Charakterystyki częstotliwościowe

Bardziej szczegółowo

Podstawy Automatyki. Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne Instytut Automatyki i Robotyki Warszawa, 2017 cz.1: Charakterystyki częstotliwościowe Wstęp Charakterystyki częstotliwościowe

Bardziej szczegółowo

Podstawy Automatyki. Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne Instytut Automatyki i Robotyki Warszawa, 2015 cz.1: Charakterystyki częstotliwościowe Wstęp Charakterystyki częstotliwościowe

Bardziej szczegółowo

Podstawy Automatyki. Wykład 3 - Charakterystyki częstotliwościowe, podstawowe człony dynamiczne. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 3 - Charakterystyki częstotliwościowe, podstawowe człony dynamiczne. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki Wykład 3 -, podstawowe człony dynamiczne Instytut Automatyki i Robotyki Warszawa, 2019 Wstęp określają zachowanie się elementu (układu) pod wpływem ciągłych sinusoidalnych sygnałów wejściowych. W analizie

Bardziej szczegółowo

Teoria sterowania - studia niestacjonarne AiR 2 stopień

Teoria sterowania - studia niestacjonarne AiR 2 stopień Teoria sterowania - studia niestacjonarne AiR stopień Kazimierz Duzinkiewicz, dr hab. Inż. Katedra Inżynerii Systemów Sterowania Wykład 4-06/07 Transmitancja widmowa i charakterystyki częstotliwościowe

Bardziej szczegółowo

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2018 Wstęp Stabilność O układzie możemy mówić, że jest stabilny jeżeli jego odpowiedź na wymuszenie (zakłócenie)

Bardziej szczegółowo

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Stabilność - definicja 1 O układzie możemy mówić, że jest stabilny gdy wytrącony ze stanu równowagi

Bardziej szczegółowo

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE Do opisu członów i układów automatyki stosuje się, oprócz transmitancji operatorowej (), tzw. transmitancję widmową. Transmitancję widmową () wyznaczyć można na podstawie

Bardziej szczegółowo

Systemy. Krzysztof Patan

Systemy. Krzysztof Patan Systemy Krzysztof Patan Systemy z pamięcią System jest bez pamięci (statyczny), jeżeli dla dowolnej chwili t 0 wartość sygnału wyjściowego y(t 0 ) zależy wyłącznie od wartości sygnału wejściowego w tej

Bardziej szczegółowo

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Stabilność O układzie możemy mówić, że jest stabilny gdy układ ten wytrącony ze stanu równowagi

Bardziej szczegółowo

Automatyka i robotyka ETP2005L. Laboratorium semestr zimowy

Automatyka i robotyka ETP2005L. Laboratorium semestr zimowy Automatyka i robotyka ETP2005L Laboratorium semestr zimowy 2017-2018 Liniowe człony automatyki x(t) wymuszenie CZŁON (element) OBIEKT AUTOMATYKI y(t) odpowiedź Modelowanie matematyczne obiektów automatyki

Bardziej szczegółowo

Ćwiczenie nr 6 Charakterystyki częstotliwościowe

Ćwiczenie nr 6 Charakterystyki częstotliwościowe Wstęp teoretyczny Ćwiczenie nr 6 Charakterystyki częstotliwościowe 1 Cel ćwiczenia Celem ćwiczenia jest wyznaczenie charakterystyk częstotliwościowych układu regulacji oraz korekta nastaw regulatora na

Bardziej szczegółowo

Sposoby modelowania układów dynamicznych. Pytania

Sposoby modelowania układów dynamicznych. Pytania Sposoby modelowania układów dynamicznych Co to jest model dynamiczny? PAScz4 Modelowanie, analiza i synteza układów automatyki samochodowej równania różniczkowe, różnicowe, równania równowagi sił, momentów,

Bardziej szczegółowo

Podstawowe człony dynamiczne

Podstawowe człony dynamiczne . Człon proporcjonalny 2. Człony całkujący idealny 3. Człon inercyjny Podstawowe człony dynamiczne charakterystyki czasowe = = = + 4. Człony całkujący rzeczywisty () = + 5. Człon różniczkujący rzeczywisty

Bardziej szczegółowo

Transmitancje układów ciągłych

Transmitancje układów ciągłych Transmitancja operatorowa, podstawowe człony liniowe Transmitancja operatorowa (funkcja przejścia, G(s)) stosunek transformaty Laplace'a sygnału wyjściowego do transformaty Laplace'a sygnału wejściowego

Bardziej szczegółowo

Plan wykładu. Własności statyczne i dynamiczne elementów automatyki:

Plan wykładu. Własności statyczne i dynamiczne elementów automatyki: Plan wykładu Własności statyczne i dynamiczne elementów automatyki: - charakterystyka statyczna elementu automatyki, - sygnały standardowe w automatyce: skok jednostkowy, impuls Diraca, sygnał o przebiegu

Bardziej szczegółowo

Podstawowe człony dynamiczne. dr hab. inż. Krzysztof Patan

Podstawowe człony dynamiczne. dr hab. inż. Krzysztof Patan Podstawowe człony dynamiczne dr hab. inż. Krzysztof Patan Człon proporcjonalny Równanie w dziedzinie czasu Transmitancja y(t) = Ku(t) Y (s) = KU(s) G(s) = Y (s) U(S) = K Transmiancja widmowa G(s) = K G(jω)

Bardziej szczegółowo

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie Politechnika Wrocławska, Wydział Informatyki i Zarządzania Modelowanie Zad Wyznacz transformaty Laplace a poniższych funkcji, korzystając z tabeli transformat: a) 8 3e 3t b) 4 sin 5t 2e 5t + 5 c) e5t e

Bardziej szczegółowo

Procedura modelowania matematycznego

Procedura modelowania matematycznego Procedura modelowania matematycznego System fizyczny Model fizyczny Założenia Uproszczenia Model matematyczny Analiza matematyczna Symulacja komputerowa Rozwiązanie w postaci modelu odpowiedzi Poszerzenie

Bardziej szczegółowo

Podstawy Automatyki. wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24)

Podstawy Automatyki. wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24) Podstawy Automatyki wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak Politechnika Wrocławska Instytut Technologii Maszyn i Automatyzacji (I-24) Laboratorium Podstaw Automatyzacji (L6) 105/2 B1 Sprawy organizacyjne

Bardziej szczegółowo

Technika regulacji automatycznej

Technika regulacji automatycznej Technika regulacji automatycznej Wykład 2 Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 56 Plan wykładu Schematy strukturalne Podstawowe operacje na schematach

Bardziej szczegółowo

Tematyka egzaminu z Podstaw sterowania

Tematyka egzaminu z Podstaw sterowania Tematyka egzaminu z Podstaw sterowania Rafał Trójniak 6 września 2009 Spis treści 1 Rozwiązane tematy 1 1.1 Napisać równanie różniczkowe dla zbiornika z odpływem grawitacyjnym...............................

Bardziej szczegółowo

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ eoria maszyn i podstawy automatyki semestr zimowy 2016/2017

Bardziej szczegółowo

przy warunkach początkowych: 0 = 0, 0 = 0

przy warunkach początkowych: 0 = 0, 0 = 0 MODELE MATEMATYCZNE UKŁADÓW DYNAMICZNYCH Podstawową formą opisu procesów zachodzących w członach lub układach automatyki jest równanie ruchu - równanie dynamiki. Opisuje ono zależność wielkości fizycznych,

Bardziej szczegółowo

Sterowanie Napędów Maszyn i Robotów

Sterowanie Napędów Maszyn i Robotów Wykład 4 - Model silnika elektrycznego prądu stałego z magnesem trwałym Instytut Automatyki i Robotyki Warszawa, 2017 Wstęp Silniki elektryczne prądu stałego są bardzo często stosowanymi elementami wykonawczymi

Bardziej szczegółowo

Sterowanie Napędów Maszyn i Robotów

Sterowanie Napędów Maszyn i Robotów Wykład 4 - Model silnika elektrycznego prądu stałego z magnesem trwałym Instytut Automatyki i Robotyki Warszawa, 2017 Wstęp Silniki elektryczne prądu stałego są bardzo często stosowanymi elementami wykonawczymi

Bardziej szczegółowo

Automatyka i robotyka

Automatyka i robotyka Automatyka i robotyka Wykład 6 - Odpowiedź częstotliwościowa Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 37 Plan wykładu Wprowadzenie Podstawowe człony

Bardziej szczegółowo

Inżynieria Systemów Dynamicznych (3)

Inżynieria Systemów Dynamicznych (3) Inżynieria Systemów Dynamicznych (3) Charakterystyki podstawowych członów dynamicznych Piotr Jacek Suchomski Katedra Systemów Automatyki WETI, Politechnika Gdańska 2 grudnia 2010 O czym będziemy mówili?

Bardziej szczegółowo

PODSTAWY AUTOMATYKI. Analiza w dziedzinie czasu i częstotliwości dla elementarnych obiektów automatyki.

PODSTAWY AUTOMATYKI. Analiza w dziedzinie czasu i częstotliwości dla elementarnych obiektów automatyki. WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI Katedra Inżynierii Systemów Sterowania PODSTAWY AUTOMATYKI Analiza w dziedzinie czasu i częstotliwości dla elementarnych obiektów automatyki. Materiały pomocnicze do

Bardziej szczegółowo

Część 1. Transmitancje i stabilność

Część 1. Transmitancje i stabilność Część 1 Transmitancje i stabilność Zastosowanie opisu transmitancyjnego w projektowaniu przekształtników impulsowych Istotne jest przewidzenie wpływu zmian w warunkach pracy (m. in. v g, i) i wielkości

Bardziej szczegółowo

Automatyka i robotyka

Automatyka i robotyka Automatyka i robotyka Wykład 5 - Stabilność układów dynamicznych Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 43 Plan wykładu Wprowadzenie Stabilność modeli

Bardziej szczegółowo

PAiTM. materiały uzupełniające do ćwiczeń Wydział Samochodów i Maszyn Roboczych studia inżynierskie prowadzący: mgr inż.

PAiTM. materiały uzupełniające do ćwiczeń Wydział Samochodów i Maszyn Roboczych studia inżynierskie prowadzący: mgr inż. PAiTM materiały uzupełniające do ćwiczeń Wydział Samochodów i Maszyn Roboczych studia inżynierskie prowadzący: mgr inż. Sebastian Korczak Poniższe materiały tylko dla studentów uczęszczających na zajęcia.

Bardziej szczegółowo

Przeksztacenie Laplace a. Krzysztof Patan

Przeksztacenie Laplace a. Krzysztof Patan Przeksztacenie Laplace a Krzysztof Patan Wprowadzenie Transformata Fouriera popularna metoda opisu systemów w dziedzinie częstotliwości Transformata Fouriera umożliwia wykonanie wielu użytecznych czynności:

Bardziej szczegółowo

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie Politechnika Wrocławska, Wydział Informatyki i Zarządzania Modelowanie Zad Procesy wykładniczego wzrostu i spadku (np populacja bakterii, rozpad radioaktywny, wymiana ciepła) można modelować równaniem

Bardziej szczegółowo

ĆWICZENIE 6 Transmitancje operatorowe, charakterystyki częstotliwościowe układów aktywnych pierwszego, drugiego i wyższych rzędów

ĆWICZENIE 6 Transmitancje operatorowe, charakterystyki częstotliwościowe układów aktywnych pierwszego, drugiego i wyższych rzędów ĆWICZENIE 6 Transmitancje operatorowe, charakterystyki częstotliwościowe układów aktywnych pierwszego, drugiego i wyższych rzędów. Cel ćwiczenia Badanie układów pierwszego rzędu różniczkującego, całkującego

Bardziej szczegółowo

Laboratorium z podstaw automatyki

Laboratorium z podstaw automatyki Wydział Inżynierii Mechanicznej i Mechatroniki Laboratorium z podstaw automatyki Analiza stabilności obiektów automatyzacji, Wpływ sprzężenia zwrotnego na stabilność obiektów Kierunek studiów: Transport,

Bardziej szczegółowo

Transmitancje i charakterystyki częstotliwościowe. Krzysztof Patan

Transmitancje i charakterystyki częstotliwościowe. Krzysztof Patan Transmitancje i charakterystyki częstotliwościowe Krzysztof Patan Transmitancja systemu czasu ciągłego Przekształcenie Laplace a systemu czasu ciągłego jest superpozycją składowych pochodzących od wymuszenia

Bardziej szczegółowo

Podstawy Automatyki. Wykład 7 - obiekty regulacji. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 7 - obiekty regulacji. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 7 - obiekty regulacji Instytut Automatyki i Robotyki Warszawa, 2018 Obiekty regulacji Obiekt regulacji Obiektem regulacji nazywamy proces technologiczny podlegający oddziaływaniu zakłóceń, zachodzący

Bardziej szczegółowo

Katedra Automatyzacji Laboratorium Podstaw Automatyzacji Produkcji Laboratorium Podstaw Automatyzacji

Katedra Automatyzacji Laboratorium Podstaw Automatyzacji Produkcji Laboratorium Podstaw Automatyzacji Katedra Automatyzacji Laboratorium Podstaw Automatyzacji Produkcji Laboratorium Podstaw Automatyzacji Opracowanie: mgr inż. Krystian Łygas, inż. Wojciech Danilczuk Na podstawie materiałów Prof. dr hab.

Bardziej szczegółowo

1. POJĘCIA PODSTAWOWE I RODZAJE UKŁADÓW AUTOMATYKI

1. POJĘCIA PODSTAWOWE I RODZAJE UKŁADÓW AUTOMATYKI Podstawy automatyki / Józef Lisowski. Gdynia, 2015 Spis treści PRZEDMOWA 9 WSTĘP 11 1. POJĘCIA PODSTAWOWE I RODZAJE UKŁADÓW AUTOMATYKI 17 1.1. Automatyka, sterowanie i regulacja 17 1.2. Obiekt regulacji

Bardziej szczegółowo

W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0,

W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0, Bierne obwody RC. Filtr dolnoprzepustowy. Filtr dolnoprzepustowy jest układem przenoszącym sygnały o małej częstotliwości bez zmian, a powodującym tłumienie i opóźnienie fazy sygnałów o większych częstotliwościach.

Bardziej szczegółowo

Lepkosprężystość. Metody pomiarów właściwości lepkosprężystych materii

Lepkosprężystość. Metody pomiarów właściwości lepkosprężystych materii Metody pomiarów właściwości lepkosprężystych materii Pomiarów dokonuje się w dwóch dziedzinach: czasowej lub częstotliwościowej i nie zależy to od rodzaju przyłożonych naprężeń (normalnych lub stycznych).

Bardziej szczegółowo

Ćwiczenie nr 1 Odpowiedzi czasowe układów dynamicznych

Ćwiczenie nr 1 Odpowiedzi czasowe układów dynamicznych Ćwiczenie nr 1 Odpowiedzi czasowe układów dynamicznych 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie studentów z metodą wyznaczania odpowiedzi skokowych oraz impulsowych podstawowych obiektów regulacji.

Bardziej szczegółowo

Automatyka i robotyka

Automatyka i robotyka Automatyka i robotyka Wykład 2 - Modelowanie w dziedzinie częstotliwości Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 64 Plan wykładu Transformata Laplace

Bardziej szczegółowo

VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa.

VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. W rozdziale tym zajmiemy się dokładniej badaniem stabilności rozwiązań równania różniczkowego. Pojęcie stabilności w

Bardziej szczegółowo

AUTOMATYKA. Materiały dydaktyczne dotyczące zagadnień przewidzianych w I pracy kontrolnej

AUTOMATYKA. Materiały dydaktyczne dotyczące zagadnień przewidzianych w I pracy kontrolnej Dr inż. Michał Chłędowski AUTOMATYKA Materiały dydaktyczne dotyczące zagadnień przewidzianych w I pracy kontrolnej Zakres tematyczny: Podstawowe człony automatyki, opis własności statycznych i dynamicznych,

Bardziej szczegółowo

Badanie stabilności liniowych układów sterowania

Badanie stabilności liniowych układów sterowania Badanie stabilności liniowych układów sterowania ver. 26.2-6 (26-2-7 4:6). Badanie stabilności liniowych układów sterowania poprzez analizę równania charakterystycznego. Układ zamknięty liniowy i stacjonarny

Bardziej szczegółowo

Stabilność. Krzysztof Patan

Stabilność. Krzysztof Patan Stabilność Krzysztof Patan Pojęcie stabilności systemu Rozważmy obiekt znajdujący się w punkcie równowagi Po przyłożeniu do obiektu siły F zostanie on wypchnięty ze stanu równowagi Jeżeli po upłynięciu

Bardziej szczegółowo

Opis systemów dynamicznych w przestrzeni stanu. Wojciech Kurek , Gdańsk

Opis systemów dynamicznych w przestrzeni stanu. Wojciech Kurek , Gdańsk Opis systemów dynamicznych Mieczysław Brdyś 27.09.2010, Gdańsk Rozważmy układ RC przedstawiony na rysunku poniżej: wejscie u(t) R C wyjście y(t)=vc(t) Niech u(t) = 2 + sin(t) dla t t 0 gdzie t 0 to chwila

Bardziej szczegółowo

Ćwiczenie - 1 OBSŁUGA GENERATORA I OSCYLOSKOPU. WYZNACZANIE CHARAKTERYSTYKI AMPLITUDOWEJ I FAZOWEJ NA PRZYKŁADZIE FILTRU RC.

Ćwiczenie - 1 OBSŁUGA GENERATORA I OSCYLOSKOPU. WYZNACZANIE CHARAKTERYSTYKI AMPLITUDOWEJ I FAZOWEJ NA PRZYKŁADZIE FILTRU RC. Ćwiczenie - 1 OBSŁUGA GENERATORA I OSCYLOSKOPU. WYZNACZANIE CHARAKTERYSTYKI AMPLITUDOWEJ I FAZOWEJ NA PRZYKŁADZIE FILTRU RC. Spis treści 1 Cel ćwiczenia 2 2 Podstawy teoretyczne 2 2.1 Charakterystyki częstotliwościowe..........................

Bardziej szczegółowo

Układ regulacji automatycznej (URA) kryteria stabilności

Układ regulacji automatycznej (URA) kryteria stabilności Układ regulacji automatycznej (URA) kryteria stabilności y o e G c (s) z z 2 u G o (s) y () = () ()() () H(s) oraz jego wartością w stanie ustalonym. Transmitancja układu otwartego regulacji: - () = ()

Bardziej szczegółowo

Mechatronika i inteligentne systemy produkcyjne. Modelowanie systemów mechatronicznych Platformy przetwarzania danych

Mechatronika i inteligentne systemy produkcyjne. Modelowanie systemów mechatronicznych Platformy przetwarzania danych Mechatronika i inteligentne systemy produkcyjne Modelowanie systemów mechatronicznych Platformy przetwarzania danych 1 Sterowanie procesem oparte na jego modelu u 1 (t) System rzeczywisty x(t) y(t) Tworzenie

Bardziej szczegółowo

Ćwiczenie 3 Badanie własności podstawowych liniowych członów automatyki opartych na biernych elementach elektrycznych

Ćwiczenie 3 Badanie własności podstawowych liniowych członów automatyki opartych na biernych elementach elektrycznych Ćwiczenie 3 Badanie własności podstawowych liniowych członów automatyki opartych na biernych elementach elektrycznych Cel ćwiczenia Celem ćwiczenia jest poznanie podstawowych własności członów liniowych

Bardziej szczegółowo

UKŁADY JEDNOWYMIAROWE. Część II UKŁADY LINIOWE Z OPÓŹNIENIEM

UKŁADY JEDNOWYMIAROWE. Część II UKŁADY LINIOWE Z OPÓŹNIENIEM UKŁADY JEDNOWYMIAROWE Część II UKŁADY LINIOWE Z OPÓŹNIENIEM 1 8. Wprowadzenie do części II W praktyce występują układy regulacji, których człony mogą przejawiać opóźnioną reakcję na sygnał wejściowy. Rozróżniamy

Bardziej szczegółowo

Zadania zaliczeniowe z Automatyki i Robotyki dla studentów III roku Inżynierii Biomedycznej Politechniki Lubelskiej

Zadania zaliczeniowe z Automatyki i Robotyki dla studentów III roku Inżynierii Biomedycznej Politechniki Lubelskiej Zadania zaliczeniowe z Automatyki i Robotyki dla studentów III roku Inżynierii Biomedycznej Politechniki Lubelskiej Rozwiązane zadania należy dostarczyć do prowadzącego w formie wydruku lub w formie odręcznego

Bardziej szczegółowo

ELEMENTY AUTOMATYKI PRACA W PROGRAMIE SIMULINK 2013

ELEMENTY AUTOMATYKI PRACA W PROGRAMIE SIMULINK 2013 SIMULINK część pakietu numerycznego MATLAB (firmy MathWorks) służąca do przeprowadzania symulacji komputerowych. Atutem programu jest interfejs graficzny (budowanie układów na bazie logicznie połączonych

Bardziej szczegółowo

Podstawy Automatyki. Wykład 4 - algebra schematów blokowych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 4 - algebra schematów blokowych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 4 - algebra schematów blokowych Instytut Automatyki i Robotyki Warszawa, 2017 Wstęp Schemat blokowy Schemat blokowy (strukturalny): przedstawia wzajemne powiązania pomiędzy poszczególnymi zespołami

Bardziej szczegółowo

1. Transformata Laplace a przypomnienie

1. Transformata Laplace a przypomnienie Transformata Laplace a - przypomnienie, transmitancja operatorowa, schematy blokowe, wprowadzenie do pakietu Matlab/Scilab i Simulink, regulatory PID - transmitancja, przykłady modeli matematycznych wybranych

Bardziej szczegółowo

Technika regulacji automatycznej

Technika regulacji automatycznej Technika regulacji automatycznej Wykład 1 Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 30 Plan wykładu Podstawowe informacje Modele układów elektrycznych

Bardziej szczegółowo

AUTOMATYKA. dr hab. Andrzej Dębowski, prof. PŁ Instytut Automatyki

AUTOMATYKA. dr hab. Andrzej Dębowski, prof. PŁ Instytut Automatyki Kierunek: Transport AUTOMATYKA dr hab. Andrzej Dębowski, prof. PŁ Instytut Automatyki godz. przyjęć: wtorki 9 5 Instytut Automatyki, ul. Stefanowskiego 8/22 środy 8 5 2 Zakład Techniki Sterowania, al.

Bardziej szczegółowo

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude Podstawy Elektrotechniki i Elektroniki Opracował: Mgr inż. Marek Staude Część 2 Analiza obwodów w stanie ustalonym przy wymuszeniu sinusoidalnym Przypomnienie ostatniego wykładu Prąd i napięcie Podstawowe

Bardziej szczegółowo

Własności dynamiczne przetworników pierwszego rzędu

Własności dynamiczne przetworników pierwszego rzędu 1 ĆWICZENIE 7. CEL ĆWICZENIA. Własności dynamiczne przetworników pierwszego rzędu Celem ćwiczenia jest poznanie własności dynamicznych przetworników pierwszego rzędu w dziedzinie czasu i częstotliwości

Bardziej szczegółowo

Wprowadzenie do technik regulacji automatycznej. prof nzw. dr hab. inż. Krzysztof Patan

Wprowadzenie do technik regulacji automatycznej. prof nzw. dr hab. inż. Krzysztof Patan Wprowadzenie do technik regulacji automatycznej prof nzw. dr hab. inż. Krzysztof Patan Czym jest AUTOMATYKA? Automatyka to dziedzina nauki i techniki zajmująca się teorią i praktycznym zastosowaniem urządzeń

Bardziej szczegółowo

Podstawy Automatyki Zbiór zadań dla studentów II roku AiR oraz MiBM

Podstawy Automatyki Zbiór zadań dla studentów II roku AiR oraz MiBM Aademia GórniczoHutnicza im. St. Staszica w Kraowie Wydział Inżynierii Mechanicznej i Robotyi Katedra Automatyzacji Procesów Podstawy Automatyi Zbiór zadań dla studentów II rou AiR oraz MiBM Tomasz Łuomsi

Bardziej szczegółowo

Dyskretne układy liniowe. Funkcja splotu. Równania różnicowe. Transform

Dyskretne układy liniowe. Funkcja splotu. Równania różnicowe. Transform Dyskretne układy liniowe. Funkcja splotu. Równania różnicowe. Transformata Z. March 20, 2013 Dyskretne układy liniowe. Funkcja splotu. Równania różnicowe. Transformata Z. Sygnał i system Sygnał jest opisem

Bardziej szczegółowo

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM AKADEMIA MORSKA Katedra Telekomunikacji Morskiej ĆWICZENIE 4 WYZNACZANIE CHARAKTERYSTYK CZĘSTOTLIWOŚCIOWYCH UKŁADÓW RLC. Cel ćwiczenia Celem ćwiczenia jest doświadczalne

Bardziej szczegółowo

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM AKADEMIA MORSKA Katedra Telekomunikacji Morskiej ĆWICZENIE 3 BADANIE CHARAKTERYSTYK CZASOWYCH LINIOWYCH UKŁADÓW RLC. Cel ćwiczenia Celem ćwiczenia są pomiary i analiza

Bardziej szczegółowo

Automatyka i sterowanie w gazownictwie Modelowanie

Automatyka i sterowanie w gazownictwie Modelowanie Automatyka i sterowanie w gazownictwie Modelowanie Wykładowca : dr inż. Iwona Oprzędkiewicz Nazwa wydziału: WIMiR Nazwa katedry: Katedra Automatyzacji Procesów AGH Modele matematyczne Własności układu

Bardziej szczegółowo

PRZEMYSŁOWE UKŁADY STEROWANIA PID. Wykład 5 i 6. Michał Grochowski, dr inż. Katedra Inżynierii Systemów Sterowania

PRZEMYSŁOWE UKŁADY STEROWANIA PID. Wykład 5 i 6. Michał Grochowski, dr inż. Katedra Inżynierii Systemów Sterowania Politechnika Gdańska Wydział Elektrotechniki i Automatyki PRZEMYSŁOWE UKŁADY STEROWANIA PID Wykład 5 i 6 Michał Grochowski, dr inż. Studia I stopnia inżynierskie, Semestr IV Charakterystyki częstotliwościowe

Bardziej szczegółowo

Dystrybucje, wiadomości wstępne (I)

Dystrybucje, wiadomości wstępne (I) Temat 8 Dystrybucje, wiadomości wstępne (I) Wielkości fizyczne opisujemy najczęściej przyporządkowując im funkcje (np. zależne od czasu). Inną drogą opisu tych wielkości jest przyporządkowanie im funkcjonałów

Bardziej szczegółowo

KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury

KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury Funkcje wektorowe Jeśli wektor a jest określony dla parametru t (t należy do przedziału t (, t k )

Bardziej szczegółowo

Urz¹dzenie steruj¹ce. Obiekt. Urz¹dzenie steruj¹ce. Obiekt. 1. Podstawowe pojęcia. u 1. y 1 y 2... y n. z 1 z 2... z l.

Urz¹dzenie steruj¹ce. Obiekt. Urz¹dzenie steruj¹ce. Obiekt. 1. Podstawowe pojęcia. u 1. y 1 y 2... y n. z 1 z 2... z l. Politechnia Poznańsa, Katedra Sterowania i Inżnierii Sstemów Wład,2, str.. Podstawowe pojęcia z (t) z 2 (t)... u (t) u 2 (t). Obiet u m (t) z l (t) (t) 2 (t). n (t) u(t) z(t) Obiet (t) (a) u Rs. u u =

Bardziej szczegółowo

Transformata Laplace a to przekształcenie całkowe funkcji f(t) opisane następującym wzorem:

Transformata Laplace a to przekształcenie całkowe funkcji f(t) opisane następującym wzorem: PPS 2 kartkówka 1 RÓWNANIE RÓŻNICOWE Jest to dyskretny odpowiednik równania różniczkowego. Równania różnicowe to pewne związki rekurencyjne określające w sposób niebezpośredni wartość danego wyrazu ciągu.

Bardziej szczegółowo

RÓWNANIE RÓśNICZKOWE LINIOWE

RÓWNANIE RÓśNICZKOWE LINIOWE Analiza stanów nieustalonych metodą klasyczną... 1 /18 ÓWNANIE ÓśNICZKOWE INIOWE Pod względem matematycznym szukana odpowiedź układu liniowego o znanych stałych parametrach k, k, C k w k - tej gałęzi przy

Bardziej szczegółowo

PODSTAWOWE CZŁONY DYNAMICZNE

PODSTAWOWE CZŁONY DYNAMICZNE PODSTAWOWE CZŁONY DYNAMICZNE Człon podstawowy jest to element przetwarzający wprowadzony do niego sygnał wejściowy x(t) na sygnał wyjściowy y(t) w sposób elementarny. Przetwarzanie elementarne oznacza,

Bardziej szczegółowo

Sterowanie napędów maszyn i robotów

Sterowanie napędów maszyn i robotów Wykład 7b - Układy wieloobwodowe ze sprzężeniem od zmiennych stanu Instytut Automatyki i Robotyki Warszawa, 2014 Układy wieloobwodowe ze sprzężeniem od zmiennych stanu Zadanie przestawiania Postać modalna

Bardziej szczegółowo

Automatyka i sterowanie w gazownictwie Modelowanie

Automatyka i sterowanie w gazownictwie Modelowanie Automatyka i sterowanie w gazownictwie Modelowanie Wykładowca : dr inż. Iwona Oprzędkiewicz Nazwa wydziału: WIMiR Nazwa katedry: Katedra Automatyzacji Procesów AGH Modele matematyczne Własności układu

Bardziej szczegółowo

Laboratorium z automatyki

Laboratorium z automatyki Wydział Inżynierii Mechanicznej i Mechatroniki Laboratorium z automatyki Algebra schematów blokowych, wyznaczanie odpowiedzi obiektu na sygnał zadany, charakterystyki częstotliwościowe Kierunek studiów:

Bardziej szczegółowo

WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA

WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA PRZEDMIOT : : LABORATORIUM PODSTAW AUTOMATYKI 7. Metoda projektowania

Bardziej szczegółowo

Laboratorium z podstaw automatyki

Laboratorium z podstaw automatyki Wydział Inżynierii Mechanicznej i Mechatroniki Laboratorium z podstaw automatyki Analiza stabilności, dobór układów i parametrów regulacji, identyfikacja obiektów Kierunek studiów: Transport, Stacjonarne

Bardziej szczegółowo

Przekształcenia całkowe. Wykład 1

Przekształcenia całkowe. Wykład 1 Przekształcenia całkowe Wykład 1 Przekształcenia całkowe Tematyka wykładów: 1. Liczby zespolone -wprowadzenie, - funkcja zespolona zmiennej rzeczywistej, - funkcja zespolona zmiennej zespolonej. 2. Przekształcenie

Bardziej szczegółowo

Filtracja. Krzysztof Patan

Filtracja. Krzysztof Patan Filtracja Krzysztof Patan Wprowadzenie Działanie systemu polega na przetwarzaniu sygnału wejściowego x(t) na sygnał wyjściowy y(t) Równoważnie, system przetwarza widmo sygnału wejściowego X(jω) na widmo

Bardziej szczegółowo

Definicje i przykłady

Definicje i przykłady Rozdział 1 Definicje i przykłady 1.1 Definicja równania różniczkowego 1.1 DEFINICJA. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie F (t, x, ẋ, ẍ,..., x (n) ) = 0. (1.1) W równaniu tym t jest

Bardziej szczegółowo

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM AKADEMIA MORSKA Katedra Telekomunikacji Morskiej ĆWICZENIE 7 BADANIE ODPOWIEDZI USTALONEJ NA OKRESOWY CIĄG IMPULSÓW 1. Cel ćwiczenia Obserwacja przebiegów wyjściowych

Bardziej szczegółowo

Przekształcanie schematów blokowych. Podczas ćwiczenia poruszane będą następujące zagadnienia:

Przekształcanie schematów blokowych. Podczas ćwiczenia poruszane będą następujące zagadnienia: Warszawa 2017 1 Cel ćwiczenia rachunkowego Podczas ćwiczenia poruszane będą następujące zagadnienia: zasady budowy schematów blokowych układów regulacji automatycznej na podstawie równań operatorowych;

Bardziej szczegółowo

Informatyczne Systemy Sterowania

Informatyczne Systemy Sterowania Adam Wiernasz Nr albumu: 161455 e-mail: 161455@student.pwr.wroc.pl Informatyczne Systemy Sterowania Laboratorium nr 1 Prowadzący: Dr inż. Magdalena Turowska I. Wykaz modeli matematycznych członów dynamicznych

Bardziej szczegółowo

Kompensacja wyprzedzająca i opóźniająca fazę. dr hab. inż. Krzysztof Patan, prof. PWSZ

Kompensacja wyprzedzająca i opóźniająca fazę. dr hab. inż. Krzysztof Patan, prof. PWSZ Kompensacja wyprzedzająca i opóźniająca fazę dr hab. inż. Krzysztof Patan, prof. PWSZ Kształtowanie charakterystyki częstotliwościowej Kształtujemy charakterystykę układu otwartego aby uzyskać: pożądane

Bardziej szczegółowo

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Sterowanie ciągłe. Teoria sterowania układów jednowymiarowych

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Sterowanie ciągłe. Teoria sterowania układów jednowymiarowych Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie Sterowanie ciągłe Teoria sterowania układów jednowymiarowych 1 Informacja o prowadzących zajęcia Studia stacjonarne rok II Automatyka i Robotyka

Bardziej szczegółowo

Laboratorium nr 3. Projektowanie układów automatyki z wykorzystaniem Matlaba i Simulinka

Laboratorium nr 3. Projektowanie układów automatyki z wykorzystaniem Matlaba i Simulinka Laboratorium nr 3. Cele ćwiczenia Projektowanie układów automatyki z wykorzystaniem Matlaba i Simulinka poznanie sposobów tworzenia liniowych modeli układów automatyki, zmiana postaci modeli, tworzenie

Bardziej szczegółowo

Stabilność II Metody Lapunowa badania stabilności

Stabilność II Metody Lapunowa badania stabilności Metody Lapunowa badania stabilności Interesuje nas w sposób szczególny system: Wprowadzamy dla niego pojęcia: - stabilności wewnętrznej - odnosi się do zachowania się systemu przy zerowym wejściu, czyli

Bardziej szczegółowo

Przekształcenie Z. Krzysztof Patan

Przekształcenie Z. Krzysztof Patan Przekształcenie Z Krzysztof Patan Wprowadzenie Przekształcenie Laplace a można stosować do sygnałów i systemów czasu ciągłego W przypadku sygnałów czy systemów czasu dyskretnego do wyznaczenia transmitancji

Bardziej szczegółowo

Projektowanie układów regulacji w dziedzinie częstotliwości. dr hab. inż. Krzysztof Patan, prof. PWSZ

Projektowanie układów regulacji w dziedzinie częstotliwości. dr hab. inż. Krzysztof Patan, prof. PWSZ Projektowanie układów regulacji w dziedzinie częstotliwości dr hab. inż. Krzysztof Patan, prof. PWSZ Wprowadzenie Metody projektowania w dziedzinie częstotliwości mają wiele zalet: stabilność i wymagania

Bardziej szczegółowo

WSTĘP DO ELEKTRONIKI

WSTĘP DO ELEKTRONIKI WSTĘP DO ELEKTRONIKI Część IV Czwórniki Linia długa Janusz Brzychczyk IF UJ Czwórniki Czwórnik (dwuwrotnik) posiada cztery zaciski elektryczne. Dwa z tych zacisków uważamy za wejście czwórnika, a pozostałe

Bardziej szczegółowo

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH POMIARY WIELKOŚCI NIEELEKTRYCZNYCH Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMST Semestr letni Wykład nr 2 Prawo autorskie Niniejsze

Bardziej szczegółowo

Podstawy Automatyki. Wykład 4 - algebra schematów blokowych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 4 - algebra schematów blokowych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 4 - algebra schematów blokowych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Schemat blokowy Schemat blokowy (strukturalny): przedstawia wzajemne powiązania pomiędzy poszczególnymi zespołami

Bardziej szczegółowo

AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT. Instrukcja do zajęc laboratoryjnych nr 6 AUTOMATYKA

AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT. Instrukcja do zajęc laboratoryjnych nr 6 AUTOMATYKA AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT Instrukcja do zajęc laboratoryjnych nr 6 AUTOMATYKA II rok Kierunek Transport Temat: Transmitancja operatorowa. Badanie odpowiedzi układów automatyki. Opracował

Bardziej szczegółowo