Sterowanie Serwonapędów Maszyn i Robotów
|
|
- Jadwiga Marek
- 6 lat temu
- Przeglądów:
Transkrypt
1 Wykład Modelowanie układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2017
2 Wstęp Rzeczywiste obiekty regulacji, a co za tym idzie układy regulacji, mają właściwości nieliniowe, n.p. turbulencje, wiele stanów stabilnych, histereza, straty energii w wyniku tarcia. W praktyce, dla uproszczenia opisu matematycznego przeprowadza się ich linearyzację, co pozwala na sformułowanie przybliżonego opisu liniowego zjawiska, ważnego w otoczeniu wybranego punktu pracy na charakterystyce statycznej (punkt ten odpowiada najczęściej nominalnym lub uśrednionym warunkom pracy układu).
3 Metody opisu działania elementów (układów) liniowych Stosowany aparat matematyczny: opis zjawiska w postaci równań różniczkowych, linearyzacja modelu, rachunek operatorowy. Podstawowymi formami matematycznego opisu działania elementu (układu) są: równanie dynamiki, transmitancja operatorowa, równania stanu.
4 Metody opisu działania elementów (układów) liniowych W przypadku elementu (układu) o jednym sygnale wejściowym x(t) i jednym sygnale wyjściowym y(t) równanie dynamiki wyraża związek zachodzący pomiędzy sygnałem wyjściowym y(t) i sygnałem wejściowym x(t). Rysunek : Proces - przyczynowo-skutkowy ciąg zdarzeń
5 Opis matematyczny układów liniowych - równania dynamiki Zasada superpozycji: f (x 1 + x 2 ) = f (x 1 ) + f (x 2 ), and f (0) = 0 (1) Przestrzeń rozwiązań równania spełniającego zasadę superpozycji (1) jest przestrzenią liniową. Jednorodność (implikuje niezmienność skalowania): Funkcja f (x, y) jest jednorodna w stopniu k jeżeli. gdzie: β - stały współczynnik. Układ liniowy f (βx, βy) = β k f (x, y), and f (0) = 0 (2) Układ opisany funkcją jednorodną, w którym zachowana jest zasada superpozycji. Układ nieliniowy Układ, w którym nie jest zachowana jest zasada superpozycji i/lub nie jest opisany funkcją jednorodną.
6 Linearyzacja
7 Linearyzacja Tworzenie opisu liniowego na podstawie opisu nieliniowego nazywa się linearyzacją. Linearyzacja opisu nieliniowego w postaci równań algebraicznych nazywa się linearyzacją statyczną. (brak pochodnych) Linearyzacja opisu nieliniowego w postaci równań różniczkowych nazywa się linearyzacją dynamiczną. Metody linearyzacji statycznej linearyzacja metodą siecznej: uzyskanie najlepszej zgodności opisu liniowego z nieliniowym w określonym przedziale zmian zmiennej niezależnej. linearyzacja metodą stycznej: uzyskanie najlepszej zgodności opisu liniowego z nieliniowym dla określonej wartości zmiennej niezależnej, a więc i określonej wartości zmiennej zależnej.
8 Linearyzacja statyczna Rysunek : Linearyzacja statyczna; a) metoda siecznej, b) metoda stycznej. Ponieważ w automatyce rozważa się zachowanie układów w otoczeniu określonego punktu pracy, w dalszych rozważaniach przydatna jest linearyzacja metodą stycznej.
9 Linearyzacja metodą stycznej Przeprowadzony proces linearyzacji metodą stycznej polega na : zastąpieniu krzywej, reprezentującej nieliniową zależność y = f (x) styczną do niej w punkcie pracy, przeniesieniu początku układu współrzędnych do punktu pracy, zastąpieniu w modelu matematycznym zmiennych absolutnych x i y odchyleniami tych zmiennych od punktu pracy - zmiennymi przyrostowymi x i y. Charakterystyka statyczna wyznaczona na podstawie równania zlinearyzowanego względem określonego punktu pracy jest funkcją liniową. Można ją także wyznaczyć linearyzując charakterystykę rzeczywistą względem tego samego punktu pracy
10 Linearyzacja statyczna - przykład Funkcja niejednorodna Przyjmując punkt pracy - {x 0, y 0 }, y 0 = f (x 0 ) Rozwinięcie w szereg Taylora w punkcie pracy y = mx + b (3) y = f (x) = f (x 0 ) + df dx (x x 0 ) x=x 0 + d 2 f 1! dx 2 (x x 0 ) 2 x=x (4) 2! Prosta styczna (pierwsza pochodna) w punkcie pracy jest dobrą aproksymacją w małym zakresie zmian argumentu funkcji (wielkości wejściowej). Tak więc i ostatecznie y = f (x 0 ) + df dx x=x 0 (x x 0 ) = y 0 + m(x x 0 ) (5) y y 0 = m(x x 0 ) y = m x (6)
11 Linearyzacja dynamiczna Przykład równania różniczkowego, będącego nieliniową zależnością pomiędzy funkcjami x(t) i y(t) i ich pochodnymi. F [y(t), ẏ(t), ÿ(t),..., y (n) (t), x, ẋ(t), ẍ(t),..., x (m) (t)] = 0 (7) Podczas linearyzacji dynamicznej funkcje x(t) i y(t) jak i ich pochodne traktuje się analogicznie jak zmienne funkcji uwikłanej. { n [ ] } { F m [ ] } F y (i) + x (j) = 0 (8) y (i) i=0 y (i) x (j) 0 j=0 x (j) 0 gdzie: y = y(t) y 0, ẏ = d y,..., y (n) = d n y dt dt n x = y(t) x 0, ẋ = d x dt,..., x (m) = d m x dt m
12 Linearyzacja dynamiczna - przykład Zlinearyzować układ nieliniowy opisany następującym równaniem różniczkowym y(t) = 2x(t) 2 + x(t)ẋ(t) + 2ẍ(t) 2 (9) Przyjmując statyczny punkt pracy - {x 0, y 0 }, x 0 = 1, ẋ 0 = 0, ẍ 0 = 0. Rozwijając w szereg Taylora w punkcie pracy y(t)+[ 4x(t) ẋ(t)] 0 x(t) [x(t)] 0 ẍ(t) [4ẍ(t)] 0 ẍ(t) = 0 (10) Ponieważ w statycznym punkcie pracy ẋ 0 = 0, ẍ 0 = 0, to zlinearyzowane równanie różniczkowe ma postać y(t) 4 x(t) ẋ(t) = 0 (11) Charakterystyka statyczna układu nieliniowego y = 2x 2 (12) Charakterystyka statyczna układu zlineryzowanego (styczna w punkcie pracy do ch-ki statycznej układu nieliniowego) y = 4 x (13)
13 Charakterystyka statyczna Ogólna postać równania różniczkowego układu liniowego: d n y a n dt n +a d n 1 y n 1 dt n 1 + +a d m x 0y = b m dt m +b d m 1 x m 1 dt m 1 + +b 0x (14) gdzie: y - sygnał wyjściowy, x - sygnał wejściowy, a i, b i - stałe współczynniki. Charakterystyka statyczna Charakterystyka statyczna f st przedstawia zależność sygnału wyjściowego układu y od sygnału wejściowego x w stanie ustalonym. Stan ustalony Stanem ustalonym nazywamy jest stan, w którym wszystkie pochodne sygnału wejściowego i sygnału wyjściowego są równe zero Rysunek : Charakterystyka statyczna układu liniowego.
14 Przekształcenie Laplace a
15 Przekształcenie Laplace a Zastąpienie równania różniczkowego transmitancją operatorową, przejście z dziedziny czasu rzeczywistego t na dziedzinę zmiennej zespolonej s. f (t) f (s), gdzie s = c + jω (15) gdzie: c - współczynnik części rzeczywistej, ω - współczynnik części urojonej. Przekształcenie Laplace a f (s) = L[f (t)] = 0 f (t)e st dt (16) Odwrotne przekształcenie Laplace a - całka Riemanna Mellina f (t) = L 1 [f (s)] = 1 2πj c+jω c jω F (s)e st ds (17)
16 Przekształcenie Laplace a Przekształcenie Laplace a, nazywane też transformatą Laplace a, wykorzystywana jest w automatyce do analizy układów. Jako narzędzie analizy graficznej wykorzystywana jest płaszczyzna zespolona S, na której mnożenie przez s daje efekt różniczkowania a dzielenie przez s całkowania. Analiza pierwiastków zespolonych równania liniowego, może ujawnić informacje na temat charakterystyk częstotliwościowych i na temat stabilności układu.
17 Przekształcenie Laplace a układów liniowych Transformatę Laplace a funkcji można wyznaczyć jeżeli zostaną spełnione następujące warunki: f (t) ma w każdym przedziale skończonym wartość skończoną, df (t) dt f (t) ma pochodną w każdym przedziale skończonym, istnieje zbiór liczb rzeczywistych C, dla których całka e ct jest absolutnie zbieżna. 0
18 Przekształcenie Laplace a układów liniowych d n y a n dt n +a d n 1 y n 1 dt n 1 + +a d m x 0y = b m [ d n ] y L dt n dt m +b m 1 d m 1 x dt m 1 + +b 0x (18) = s n y(s) s n 1 y(0 + ) y n 1 (0 + ) (19) przy zerowych warunkach początkowych [ d n ] y L dt n = s n y(s) (20) Tak więc przekształcenie Laplace a układu liniowego przy zerowych warunkach początkowych przyjmuje postać y(s)(a n s n +a n 1 s n 1 + +a 0 ) = x(s)(b m s m +b m 1 s m 1 + +b 0 ) (21)
19 Transmitancja operatorowa Transmitancja operatorowa Transmitancja operatorowa to stosunek transformaty sygnału wyjściowego do transformaty sygnału wejściowego przy zerowych warunkach początkowych y(s)(a n s n +a n 1 s n 1 + +a 0 ) = x(s)(b m s m +b m 1 s m 1 + +b 0 ) (22) G(s) = y(s) x(s) = b ms m + b m 1 s m b 0 a n s n + a n 1 s n a 0 (23) przyjmuje się następujące oznaczenia oznaczenia licznik M(s) = b m s m + b m 1 s m b 0 (24) mianownik - tzw. równanie charakterystyczne N(s) = a n s n + a n 1 s n a 0 (25)
20 Wyznaczanie charakterystyki statycznej z transmitancji operatorowej x 0 = lim t x(t), na podstawie twierdzenia o wartości końcowej y 0 = lim y(t), (26) t y 0 = lim y(t) = lim sy(s) = lim sg(s)x(s) (27) t s 0 s 0 przy założeniu skokowego wymuszenia x(s) x 0 = const x(s) = 1 s x 0 (28) ostatecznie y 0 x 0 = lim s 0 G(s) (29) y 0 = b 0 a 0 x 0 (30)
21 Właściwości układów Charakterystyka dynamiczna Prezentacja przebiegu wielkości wyjściowej y(t) po wprowadzeniu do układu wymuszenia x(t) Rysunek : Postać charakterystyki dynamicznej układu.
22 Metody wyznaczania odpowiedzi układu dynamicznego d n y a n dt n +a d n 1 y n 1 dt n 1 + +a d m x 0y = b m dt m +b d m 1 x m 1 dt m 1 + +b 0x (31) Klasyczna: Założenie warunków początkowych x(0), y(0) Rozwiązanie równań różniczkowych Operatorowa: f (t) = L 1 [y(s)] = L 1 [G(s)x(s)] (32) W zastosowaniach praktycznych do wykonywania transformacji prostej i odwrotnej, które są podstawowymi operacjami w rachunku operatorowym, zwykle nie zachodzi potrzeba wykorzystywania wzorów definicyjnych. Najczęściej wystarczy znajomość podstawowych własności przekształceń Laplace a i tablice transformat typowych funkcji zmiennej rzeczywistej.
23 Typowe sygnały wymuszające Wymuszenie skokowe jednostkowe (funkcja Heaveside a) x(t) = { 1(t) dla t 0 0 dla t < 0 x(s) = 1 s Wymuszenie skokowe o wartość stałą x(t) = { xst 1(t) dla t 0 0 dla t < 0 x(s) = x st 1 s Impuls - Delta Diraca x(t) = δ(t) = { 0 dla t 0 dla t = 0 x(s) = 1 Wymuszenie liniowo narastające x(t) = at x(s) = a s 2
24 Transmitancja operatorowa obiektów MIMO Rysunek : Obiekt MIMO. Zapis wejść (p) i wyjść (r) w postaci wektorów U(s) = u 1 (s) u 2 (s). u p (s) p, Y (s) = y 1 (s) y 2 (s). y r (s) r (33)
25 Transmitancja operatorowa obiektów MIMO G MIMO (s) = Y (s) U(s) = Rysunek : Obiekt MIMO. G 11 (s) G 12 (s)... G 2p (s) G 21 (s) G 22 (s)... G 2p (s).... G r1 (s) G r2 (s)... G rp (s) r p (34) G ij (s) = y i(s), gdzie i = 1,..., r, j = 1,..., p. (35) u j (s)
26 Podstawowe człony dynamiczne
27 Wstęp W złożonych układach automatyki można często wyodrębnić szereg najprostszych niepodzielnych już elementów funkcjonalnych. Ich właściwości można przyporządkować z pewnym przybliżeniem zaledwie kilku podstawowym modelom matematycznym. Abstrakcyjne elementy o właściwościach odpowiadających tym modelom nazywamy podstawowymi (elementarnymi) liniowymi członami dynamicznymi. Opis: równanie ruchu, transmitancja operatorowa, charakterystyka statyczna, odpowiedź na wymuszenie skokowe, transmitancja widmowa, charakterystyka amplitudowo - fazowa (Nyquist) charakterystyki logarytmiczne (Bode)
28 Podstawowe człony dynamiczne y(t) = ku(t) człon proporcjonalny (bezinercyjny) T dy(t) dt + y(t) = ku(t) człon inercyjny T dy(t) dt T dy(t) dt T 2 d 2 y(t) dt = u(t), lub dy(t) dt y(t) = T du(t) dt + y(t) = T d du(t) dt + 2ξT dy(t) dt y(t) = u(t T 0 ) = ku(t) + y(t) = ku(t) człon całkujący człon różniczkujący idealny człon różniczkujący rzeczywisty człon oscylacyjny, jeżeli 0 < ξ < 1 człon opóźniający
29 Charakterystyki częstotliwościowe
30 Wstęp Charakterystyki częstotliwościowe określają zachowanie się elementu (układu) pod wpływem ciągłych sinusoidalnych sygnałów wejściowych, więc teoretycznie trwających od t =. W analizie układów liniowych charakterystyki częstotliwościowe są wykorzystywane do badania m.in. stabilności układów, a także określonych własności dynamicznych układów. Określają w funkcji częstotliwości: stosunek amplitudy odpowiedzi do amplitudy wymuszenia przesunięcie fazowe między odpowiedzią a wymuszeniem Rozróżnia się następujące postacie charakterystyk częstotliwościowych: charakterystyka amplitudowo-fazowa tzw. wykres Nyquista, logarytmiczna charakterystyka amplitudowa i fazowa (wykresy Bode go)
31 Charakterystyki częstotliwościowe Rysunek : Wyznaczanie charakterystyk częstotliwościowych u(t) = A 1 sin[ωt] y(t) = A 2 sin[ω(t t ϕ )] gdzie: A i - amplituda sygnału, ω - częstotliwość sygnału (stała dla we/wy), t ϕ - opóźnienie fazy sygnału wyjściowego względem sygnału wejściowego. Odpowiednio t ϕ < 0 - ujemne przesunięcie fazowe, t ϕ > 0 - dodatnie przesunięcie fazowe, Rysunek : Sygnał wejściowy Rysunek : Sygnał wyjściowy, ujemne przesunięcie fazowe
32 Charakterystyki częstotliwościowe Przesunięcie fazowe sygnału wyjściowego względem sygnału wejściowego można wyrazić jako przesunięcie w czasie o czas t ϕ i wtedy sygnał wyjściowy opisywany jest funkcją y(t) = A 2 sin[ω(t t ϕ )] lub jako przesunięcie kątowe ϕ(ω) = ωt ϕ, wtedy y(t) = A 2 sin[ωt ϕ]
33 Charakterystyki częstotliwościowe Do opisu elementów lub układów, w których występują sygnały sinusoidalnie zmienne, wykorzystuje się tzw. transmitancję widmową G(jω). Pojęcie transmitancji widmowej związane jest z przekształceniem Fouriera, które funkcji czasu f (t) przyporządkowuje transformatę F (jω) zgodnie z zależnością zwaną całką Fouriera: F (jω) = f (t)e jωt dt
34 Transmitancja widmowa Transmitancja widmowa Transmitancja widmowa jest to stosunek transformaty Fouriera sygnału wyjściowego do transformaty Fouriera sygnału wejściowego. G jω = y(jω) x(jω) Między transmitancją widmową, a transmitancją operatorową istnieje formalny związek G(jω) = G(s) s=jω wynikający ze związku pomiędzy transformatami Laplace a i Fouriera.
35 Transmitancja widmowa Korzystając z własności transformaty Laplace a - twierdzenie o przesunięciu w dziedzinie zmiennej rzeczywistej L{f (t + τ)} = L{f (t)}e τs można wyznaczyć transmitancję widmową obiektu w przypadku sygnału sinusoidalnego na jego wejściu G(s) = L {A 2(ω)sin[ω(t + t ϕ )]} L {A 1 sin[ω(t)]} Ponieważ = A 2(ω) L {sin[ω(t)]} e tϕs A 1 L {sin[ω(t)]} G(jω) = Y (jω) U(jω), G(jω) = G(s) s=jω, t ϕ = ϕ(ω) ω = A 2(ω) e tϕs A 1 to G(jω) = A 2(ω) A 1 e tϕs s=jω = A 2(ω) A 1 e tϕjω = A 2(ω) e jϕ(ω) A 1
36 Transmitancja widmowa Transmitancję widmową zapisuje się następująco gdzie: M(ω) = A2(ω) A 1 G(jω) = A 2(ω) e jϕ(ω) = M(ω)e jϕ(ω) A 1 - moduł transmitancji widmowej ϕ(ω) - argument transmitancji widmowej W transmitancji można wyróżnić 2 składowe gdzie: G(jω) = M(ω)e jϕ(ω) = P(ω) + jq(ω) P(ω) - część rzeczywista transmitancji widmowej Q(ω) - część urojona transmitancji widmowej
37 Charakterystyka amplitudowo-fazowa Charakterystyka amplitudowo-fazowa Charakterystyka amplitudowo-fazowa jest to krzywa wykreślona w płaszczyźnie zmiennej zespolonej, która jest miejscem geometrycznym końca wektora transmitancji widmowej G(jω) przy zmianach ω = 0 M(ω) = [P(ω)] 2 + [Q(ω)] 2 ϕ(ω) = arctg ( ) Q(ω) P(ω) Rysunek : Charakterystyka amplitudowo-fazowa P(ω) = M(ω) cos[ϕ(ω)] Q(ω) = M(ω) sin[ϕ(ω)] M(ω) = P(ω) cos[ϕ(ω)] + Q(ω) sin[ϕ(ω)]
38 Charakterystyki częstotliwościowe Charakterystyki częstotliwościowe Częstotliwościowe charakterystyki amplitudowa i fazowa są przedstawiane na dwóch oddzielnych wykresach: charakterystyka amplitudowa L(ω) = G(jω) w zależności od częstości ω, charakterystyka fazowa ϕ = arg G(ω) w zależności od częstości ω. Moduł logarytmiczny (jednostka - decybel) Rysunek : Charakterystyki logarytmiczne L(ω) = 10log 10 M 2 (ω) = 20 log M(ω)[dB]
39 Opis z wykorzystaniem równań stanu
40 Współrzędne stanu Współrzędne stanu Współrzędne stanu to wielkości charakteryzujące zachowanie się układu dynamicznego, opisujące jego stan (np. położenie, prędkość, przyspieszenie). Wektor stanu Wektor stanu układu dynamicznego to minimalny zbiór współrzędnych stanu wystarczający łącznie ze znajomością wielkości wejściowych do określenia zachowania się układu w przyszłości. Liczba współrzędnych stanu jest równa rzędowi równania różniczkowego opisującego obiekt. Opis układów we współrzędnych stanu jest trudniejszy do interpretacji fizycznej niż opis w postaci transmitancji i niemożliwy do bezpośredniego określenia na drodze pomiarowej. Jest jednak wygodniejszy do celów modelowania oraz projektowania wielowymiarowych układów sterowania i regulacji.
41 Równania stanu i wyjść Do wyznaczenia odpowiedzi na określone wymuszenie jednowymiarowego układu opisanego równaniem dynamiki n-tego rzędu, należy zdefiniować początkowy stan układu, czyli n warunków początkowych (n wartości pewnych zmiennych). Pod wpływam wymuszenia wartości tych zmiennych ulegają zmianom, jednoznacznie definiując stan dynamiczny układu w dowolnej chwili. Ogólna postać równania stanu - zmiany zmiennych stanu z n warunkami początkowymi: dx 1(t) dt = f 1 (x 1, x 2,..., x q ; u 1, u 2,..., u p ; t); x 1 (t 0 ) = x (36) dx q(t) dt = f q (x 1, x 2,..., x q ; u 1, u 2,..., u p ; t); x q (t 0 ) = x q0 Ogólna postać równania wyjść y 1 (t) = g 1 (x 1, x 2,..., x q ; u 1, u 2,..., u p ; t)... y r (t) = g q (x 1, x 2,..., x q ; u 1, u 2,..., u p ; t) (37)
42 Zlinearyzowane równania stanu i wyjść Po linearyzacji w otoczeniu wybranego stanu ustalonego (nominalnego punktu pracy - {x 0, y 0 }), równania przyjmują postać: d x 1(t) dt Zlinearyzowana postać równania stanu = q i=1 ( f1(t) x i )0 x i + p j=1 ( f1(t) u j )0 u j... d x q(t) dt = ( q fq(t) i=1 x i x i + )0 ( (38) p fq(t) j=1 u j u j )0 Zlinearyzowana postać równania wyjść y 1 = q i=1... y q = q i=1 ( g1(t) x i )0 ( gq(t) x i )0 x i + p j=1 ( g1(t) u j )0 u j x i + ( (39) p gq(t) j=1 u j u j )0
43 Postać macierzowa modelu zmiennych stanu Macierzowa postać równań stanu i wyjść { Ẋ (t) = ANL (X, U, t) Y (t) = C NL (X, U, t) (40) Macierzowa postać zlinearyzowanych równań stanu i wyjść { Ẋ (t) = A(t)X (t) + B(t)U(t) (41) Y (t) = C(t)X (t) + D(t)U(t) gdzie: A(t) R q q - macierz stanu, B(t) R q p - macierz wejść, C(t) R r q - macierz wyjść, D(t) R r p - macierz przenoszenia (transmisyjna). Przejście z zapisu macierzowego do zapisu transmitancyjnego G(s) = C [si A] 1 B + D (42)
44 Równania stanu układów liniowych Układ niestacjonarny Układ niestacjonarny to układ, którego wyjście zależy wprost od czasu - parametry układu zależą od czasu. Układ stacjonarny Układ stacjonarny to układ, którego wyjście nie zależy wprost od czasu. Rysunek : Schemat blokowy układu linowych równań stacjonarnych
45 Przestrzeń stanów Przestrzeń stanów, przestrzeń fazowa Zbiór wszystkich możliwych wartości wektora stanu X (t) w chwilach t tworzy przestrzeń stanów układu (przestrzeń fazową). Rysunek : Trajektoria fazowa - przykład trajektoria stanu Zbiór wartości wektora stanu układu w kolejnych chwilach czasu tworzy w tej przestrzeni krzywą, zwaną trajektorią stanu układu (trajektorią fazową).
46 Wyznaczanie równań stanu - metoda bezpośrenia Ogólna postać równania transmitancji układu liniowego: G(s) = b ms m + b m 1 s m b 0 s q + a n 1 s q a 0, q > m (43) Dzieląc licznik i mianownik (46) przez s q G(s) = b ms m q + b m 1 s m 1 q + + b 0 s q 1 + a q 1 s a 0 s q (44) Wprowadzając zmienną E(s) następująco G(s) = Y (s)e(s) E(s)U(s) (45) E(s) U(s) = a q 1 s a 0 s q (46) Y (s) E(s) = b ms m q + b m 1 s m 1 q + + b 0 s q (47)
47 Wyznaczanie równań stanu - metoda bezpośrenia Otrzymane równania E(s) = a 0 s q E(s) a q 1 s 1 E(s) + U(s) (48) Y (s) = b 0 s q E(s) + + b m 1 s m 1 q E(s) + b m s m q E(s) (49) Przyjmując fazowe zmienne stanu i równania stanu w postaci ẋ 1 (t) = x 2 (t) ẋ 2 (t) = x 3 (t)... ẋ n (t) = e(t) (50) gdzie e(t) = L 1 [E(s)] (51)
48 Wyznaczanie równań stanu - metoda bezpośrenia Po przekształceniu Laplace a sx 1 (s) = x 2 (s) sx 2 (s) = x 3 (s)... sx q (s) = E(s) x 1 (s) = s q E(s) x 2 (s) = s q 1 E(s)... x q (s) = s 1 E(s) (52) Tak więc po uwzględnieniu zapisu w postaci zmiennych fazowych w przestrzeni zmiennych zespolonych S otrzymuje się E(s) = a 0 x 1 (s) a q 1 x q (s) + U(s) (53) Y (s) = b 0 x 1 (s) + + b m 1 x m (s) + b m x m+1 (s) (54) odpowiednio w dziedzinie czasu e(t) = a 0 x 1 (t) a q 1 x q (t) + u(t) (55) u(t) = b 0 x 1 (t) + + b m 1 x m (t) + b m x m+1 (t) (56)
49 Wyznaczanie równań stanu - metoda bezpośrenia Równania stanu ẋ 1 (t) = x 2 (t) ẋ 2 (t) = x 3 (t)... ẋ n (t) = a 0 x 1 (t) a q 1 x q (t) + u(t) Macierze równań stanu przyjmują postać: A = a 0 a 1 a 2... a q 1 q q, B = q 1 (57) (58) C = [ b 0 b 1... b m ] 1 q, D = [0] 1 1
50 Równania stanu - element oscylacyjny Opis elementu oscylacyjnego w postaci transmitancji operatorowej kω 2 0 G(s) = s 2 + 2ξω 0 s + ω0 2 (59) lub w dziedzinie czasu u(t)kω 2 0 = d 2 y(t) dt 2 + dy(t) 2ξω 0 + y(t)ω0 2 (60) dt Powyższy układ jest opisany równaniem 2-go rzędu, więc wymaga q = 2 zmiennych stanu, definiujących stan układu w dowolnej chwili czasu. Korzystając z metody bezpośredniej otrzymuje się następujące równania stanu ẋ 1 (t) = x 2 (t) ẋ 2 (t) = ω0 2x (61) 1(t) 2ξω 0 x 2 (t) + u(t) równanie wyjścia y(t) = kω 0 x 1 (t) (62)
51 Równania stanu - element oscylacyjny Macierzowa postać zlinearyzowanych równań stanu i wyjść dla elementu oscylacyjnego { Ẋ (t) = A(t)X (t) + B(t)U(t) (63) Y (t) = C(t)X (t) + D(t)U(t) gdzie: [ A = X (t) = [ x1 (t) x 2 (t) 0 1 ω 2 0 2ξω 2 0 ], Y (t) = [ y(t) ], U(t) = [ u(t) ] (64) ] [ 0, B = 1 ], C = [ kω ], D = [0] (65)
52 Wykład Modelowanie układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2017
Podstawy Automatyki. Wykład 2 - modelowanie matematyczne układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 2 - modelowanie matematyczne układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2017 Wstęp Rzeczywiste obiekty regulacji, a co za tym idzie układy regulacji, mają właściwości nieliniowe,
Podstawy Automatyki. Wykład 2 - podstawy matematyczne. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 2 - podstawy matematyczne Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Rzeczywiste obiekty regulacji, a co za tym idzie układy regulacji, mają właściwości nieliniowe, n.p. turbulencje, wiele
Podstawy Automatyki. Wykład 2 - modelowanie matematyczne układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 2 - modelowanie matematyczne układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2019 Wstęp Obiekty (procesy) rzeczywiste, a co za tym idzie układy regulacji, mają właściwości nieliniowe,
Podstawy Automatyki. Wykład 2 - matematyczne modelowanie układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 2 - matematyczne modelowanie układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2019 Wstęp Obiekty (procesy) rzeczywiste, a co za tym idzie układy regulacji, mają właściwości nieliniowe,
Podstawy Automatyki. Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki
Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne Instytut Automatyki i Robotyki Warszawa, 2017 część 1: Charakterystyki częstotliwościowe Wstęp Charakterystyki częstotliwościowe
Podstawy Automatyki. Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki
Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne Instytut Automatyki i Robotyki Warszawa, 2017 cz.1: Charakterystyki częstotliwościowe Wstęp Charakterystyki częstotliwościowe
Podstawy Automatyki. Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki
Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne Instytut Automatyki i Robotyki Warszawa, 2015 cz.1: Charakterystyki częstotliwościowe Wstęp Charakterystyki częstotliwościowe
Podstawy Automatyki. Wykład 3 - Charakterystyki częstotliwościowe, podstawowe człony dynamiczne. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki
Wykład 3 -, podstawowe człony dynamiczne Instytut Automatyki i Robotyki Warszawa, 2019 Wstęp określają zachowanie się elementu (układu) pod wpływem ciągłych sinusoidalnych sygnałów wejściowych. W analizie
Teoria sterowania - studia niestacjonarne AiR 2 stopień
Teoria sterowania - studia niestacjonarne AiR stopień Kazimierz Duzinkiewicz, dr hab. Inż. Katedra Inżynerii Systemów Sterowania Wykład 4-06/07 Transmitancja widmowa i charakterystyki częstotliwościowe
Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2018 Wstęp Stabilność O układzie możemy mówić, że jest stabilny jeżeli jego odpowiedź na wymuszenie (zakłócenie)
Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Stabilność - definicja 1 O układzie możemy mówić, że jest stabilny gdy wytrącony ze stanu równowagi
CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE
CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE Do opisu członów i układów automatyki stosuje się, oprócz transmitancji operatorowej (), tzw. transmitancję widmową. Transmitancję widmową () wyznaczyć można na podstawie
Systemy. Krzysztof Patan
Systemy Krzysztof Patan Systemy z pamięcią System jest bez pamięci (statyczny), jeżeli dla dowolnej chwili t 0 wartość sygnału wyjściowego y(t 0 ) zależy wyłącznie od wartości sygnału wejściowego w tej
Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Stabilność O układzie możemy mówić, że jest stabilny gdy układ ten wytrącony ze stanu równowagi
Automatyka i robotyka ETP2005L. Laboratorium semestr zimowy
Automatyka i robotyka ETP2005L Laboratorium semestr zimowy 2017-2018 Liniowe człony automatyki x(t) wymuszenie CZŁON (element) OBIEKT AUTOMATYKI y(t) odpowiedź Modelowanie matematyczne obiektów automatyki
Ćwiczenie nr 6 Charakterystyki częstotliwościowe
Wstęp teoretyczny Ćwiczenie nr 6 Charakterystyki częstotliwościowe 1 Cel ćwiczenia Celem ćwiczenia jest wyznaczenie charakterystyk częstotliwościowych układu regulacji oraz korekta nastaw regulatora na
Sposoby modelowania układów dynamicznych. Pytania
Sposoby modelowania układów dynamicznych Co to jest model dynamiczny? PAScz4 Modelowanie, analiza i synteza układów automatyki samochodowej równania różniczkowe, różnicowe, równania równowagi sił, momentów,
Podstawowe człony dynamiczne
. Człon proporcjonalny 2. Człony całkujący idealny 3. Człon inercyjny Podstawowe człony dynamiczne charakterystyki czasowe = = = + 4. Człony całkujący rzeczywisty () = + 5. Człon różniczkujący rzeczywisty
Transmitancje układów ciągłych
Transmitancja operatorowa, podstawowe człony liniowe Transmitancja operatorowa (funkcja przejścia, G(s)) stosunek transformaty Laplace'a sygnału wyjściowego do transformaty Laplace'a sygnału wejściowego
Plan wykładu. Własności statyczne i dynamiczne elementów automatyki:
Plan wykładu Własności statyczne i dynamiczne elementów automatyki: - charakterystyka statyczna elementu automatyki, - sygnały standardowe w automatyce: skok jednostkowy, impuls Diraca, sygnał o przebiegu
Podstawowe człony dynamiczne. dr hab. inż. Krzysztof Patan
Podstawowe człony dynamiczne dr hab. inż. Krzysztof Patan Człon proporcjonalny Równanie w dziedzinie czasu Transmitancja y(t) = Ku(t) Y (s) = KU(s) G(s) = Y (s) U(S) = K Transmiancja widmowa G(s) = K G(jω)
Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie
Politechnika Wrocławska, Wydział Informatyki i Zarządzania Modelowanie Zad Wyznacz transformaty Laplace a poniższych funkcji, korzystając z tabeli transformat: a) 8 3e 3t b) 4 sin 5t 2e 5t + 5 c) e5t e
Procedura modelowania matematycznego
Procedura modelowania matematycznego System fizyczny Model fizyczny Założenia Uproszczenia Model matematyczny Analiza matematyczna Symulacja komputerowa Rozwiązanie w postaci modelu odpowiedzi Poszerzenie
Podstawy Automatyki. wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24)
Podstawy Automatyki wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak Politechnika Wrocławska Instytut Technologii Maszyn i Automatyzacji (I-24) Laboratorium Podstaw Automatyzacji (L6) 105/2 B1 Sprawy organizacyjne
Technika regulacji automatycznej
Technika regulacji automatycznej Wykład 2 Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 56 Plan wykładu Schematy strukturalne Podstawowe operacje na schematach
Tematyka egzaminu z Podstaw sterowania
Tematyka egzaminu z Podstaw sterowania Rafał Trójniak 6 września 2009 Spis treści 1 Rozwiązane tematy 1 1.1 Napisać równanie różniczkowe dla zbiornika z odpływem grawitacyjnym...............................
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ eoria maszyn i podstawy automatyki semestr zimowy 2016/2017
przy warunkach początkowych: 0 = 0, 0 = 0
MODELE MATEMATYCZNE UKŁADÓW DYNAMICZNYCH Podstawową formą opisu procesów zachodzących w członach lub układach automatyki jest równanie ruchu - równanie dynamiki. Opisuje ono zależność wielkości fizycznych,
Sterowanie Napędów Maszyn i Robotów
Wykład 4 - Model silnika elektrycznego prądu stałego z magnesem trwałym Instytut Automatyki i Robotyki Warszawa, 2017 Wstęp Silniki elektryczne prądu stałego są bardzo często stosowanymi elementami wykonawczymi
Sterowanie Napędów Maszyn i Robotów
Wykład 4 - Model silnika elektrycznego prądu stałego z magnesem trwałym Instytut Automatyki i Robotyki Warszawa, 2017 Wstęp Silniki elektryczne prądu stałego są bardzo często stosowanymi elementami wykonawczymi
Automatyka i robotyka
Automatyka i robotyka Wykład 6 - Odpowiedź częstotliwościowa Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 37 Plan wykładu Wprowadzenie Podstawowe człony
Inżynieria Systemów Dynamicznych (3)
Inżynieria Systemów Dynamicznych (3) Charakterystyki podstawowych członów dynamicznych Piotr Jacek Suchomski Katedra Systemów Automatyki WETI, Politechnika Gdańska 2 grudnia 2010 O czym będziemy mówili?
PODSTAWY AUTOMATYKI. Analiza w dziedzinie czasu i częstotliwości dla elementarnych obiektów automatyki.
WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI Katedra Inżynierii Systemów Sterowania PODSTAWY AUTOMATYKI Analiza w dziedzinie czasu i częstotliwości dla elementarnych obiektów automatyki. Materiały pomocnicze do
Część 1. Transmitancje i stabilność
Część 1 Transmitancje i stabilność Zastosowanie opisu transmitancyjnego w projektowaniu przekształtników impulsowych Istotne jest przewidzenie wpływu zmian w warunkach pracy (m. in. v g, i) i wielkości
Automatyka i robotyka
Automatyka i robotyka Wykład 5 - Stabilność układów dynamicznych Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 43 Plan wykładu Wprowadzenie Stabilność modeli
PAiTM. materiały uzupełniające do ćwiczeń Wydział Samochodów i Maszyn Roboczych studia inżynierskie prowadzący: mgr inż.
PAiTM materiały uzupełniające do ćwiczeń Wydział Samochodów i Maszyn Roboczych studia inżynierskie prowadzący: mgr inż. Sebastian Korczak Poniższe materiały tylko dla studentów uczęszczających na zajęcia.
Przeksztacenie Laplace a. Krzysztof Patan
Przeksztacenie Laplace a Krzysztof Patan Wprowadzenie Transformata Fouriera popularna metoda opisu systemów w dziedzinie częstotliwości Transformata Fouriera umożliwia wykonanie wielu użytecznych czynności:
Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie
Politechnika Wrocławska, Wydział Informatyki i Zarządzania Modelowanie Zad Procesy wykładniczego wzrostu i spadku (np populacja bakterii, rozpad radioaktywny, wymiana ciepła) można modelować równaniem
ĆWICZENIE 6 Transmitancje operatorowe, charakterystyki częstotliwościowe układów aktywnych pierwszego, drugiego i wyższych rzędów
ĆWICZENIE 6 Transmitancje operatorowe, charakterystyki częstotliwościowe układów aktywnych pierwszego, drugiego i wyższych rzędów. Cel ćwiczenia Badanie układów pierwszego rzędu różniczkującego, całkującego
Laboratorium z podstaw automatyki
Wydział Inżynierii Mechanicznej i Mechatroniki Laboratorium z podstaw automatyki Analiza stabilności obiektów automatyzacji, Wpływ sprzężenia zwrotnego na stabilność obiektów Kierunek studiów: Transport,
Transmitancje i charakterystyki częstotliwościowe. Krzysztof Patan
Transmitancje i charakterystyki częstotliwościowe Krzysztof Patan Transmitancja systemu czasu ciągłego Przekształcenie Laplace a systemu czasu ciągłego jest superpozycją składowych pochodzących od wymuszenia
Podstawy Automatyki. Wykład 7 - obiekty regulacji. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 7 - obiekty regulacji Instytut Automatyki i Robotyki Warszawa, 2018 Obiekty regulacji Obiekt regulacji Obiektem regulacji nazywamy proces technologiczny podlegający oddziaływaniu zakłóceń, zachodzący
Katedra Automatyzacji Laboratorium Podstaw Automatyzacji Produkcji Laboratorium Podstaw Automatyzacji
Katedra Automatyzacji Laboratorium Podstaw Automatyzacji Produkcji Laboratorium Podstaw Automatyzacji Opracowanie: mgr inż. Krystian Łygas, inż. Wojciech Danilczuk Na podstawie materiałów Prof. dr hab.
1. POJĘCIA PODSTAWOWE I RODZAJE UKŁADÓW AUTOMATYKI
Podstawy automatyki / Józef Lisowski. Gdynia, 2015 Spis treści PRZEDMOWA 9 WSTĘP 11 1. POJĘCIA PODSTAWOWE I RODZAJE UKŁADÓW AUTOMATYKI 17 1.1. Automatyka, sterowanie i regulacja 17 1.2. Obiekt regulacji
W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0,
Bierne obwody RC. Filtr dolnoprzepustowy. Filtr dolnoprzepustowy jest układem przenoszącym sygnały o małej częstotliwości bez zmian, a powodującym tłumienie i opóźnienie fazy sygnałów o większych częstotliwościach.
Lepkosprężystość. Metody pomiarów właściwości lepkosprężystych materii
Metody pomiarów właściwości lepkosprężystych materii Pomiarów dokonuje się w dwóch dziedzinach: czasowej lub częstotliwościowej i nie zależy to od rodzaju przyłożonych naprężeń (normalnych lub stycznych).
Ćwiczenie nr 1 Odpowiedzi czasowe układów dynamicznych
Ćwiczenie nr 1 Odpowiedzi czasowe układów dynamicznych 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie studentów z metodą wyznaczania odpowiedzi skokowych oraz impulsowych podstawowych obiektów regulacji.
Automatyka i robotyka
Automatyka i robotyka Wykład 2 - Modelowanie w dziedzinie częstotliwości Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 64 Plan wykładu Transformata Laplace
VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa.
VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. W rozdziale tym zajmiemy się dokładniej badaniem stabilności rozwiązań równania różniczkowego. Pojęcie stabilności w
AUTOMATYKA. Materiały dydaktyczne dotyczące zagadnień przewidzianych w I pracy kontrolnej
Dr inż. Michał Chłędowski AUTOMATYKA Materiały dydaktyczne dotyczące zagadnień przewidzianych w I pracy kontrolnej Zakres tematyczny: Podstawowe człony automatyki, opis własności statycznych i dynamicznych,
Badanie stabilności liniowych układów sterowania
Badanie stabilności liniowych układów sterowania ver. 26.2-6 (26-2-7 4:6). Badanie stabilności liniowych układów sterowania poprzez analizę równania charakterystycznego. Układ zamknięty liniowy i stacjonarny
Stabilność. Krzysztof Patan
Stabilność Krzysztof Patan Pojęcie stabilności systemu Rozważmy obiekt znajdujący się w punkcie równowagi Po przyłożeniu do obiektu siły F zostanie on wypchnięty ze stanu równowagi Jeżeli po upłynięciu
Opis systemów dynamicznych w przestrzeni stanu. Wojciech Kurek , Gdańsk
Opis systemów dynamicznych Mieczysław Brdyś 27.09.2010, Gdańsk Rozważmy układ RC przedstawiony na rysunku poniżej: wejscie u(t) R C wyjście y(t)=vc(t) Niech u(t) = 2 + sin(t) dla t t 0 gdzie t 0 to chwila
Ćwiczenie - 1 OBSŁUGA GENERATORA I OSCYLOSKOPU. WYZNACZANIE CHARAKTERYSTYKI AMPLITUDOWEJ I FAZOWEJ NA PRZYKŁADZIE FILTRU RC.
Ćwiczenie - 1 OBSŁUGA GENERATORA I OSCYLOSKOPU. WYZNACZANIE CHARAKTERYSTYKI AMPLITUDOWEJ I FAZOWEJ NA PRZYKŁADZIE FILTRU RC. Spis treści 1 Cel ćwiczenia 2 2 Podstawy teoretyczne 2 2.1 Charakterystyki częstotliwościowe..........................
Układ regulacji automatycznej (URA) kryteria stabilności
Układ regulacji automatycznej (URA) kryteria stabilności y o e G c (s) z z 2 u G o (s) y () = () ()() () H(s) oraz jego wartością w stanie ustalonym. Transmitancja układu otwartego regulacji: - () = ()
Mechatronika i inteligentne systemy produkcyjne. Modelowanie systemów mechatronicznych Platformy przetwarzania danych
Mechatronika i inteligentne systemy produkcyjne Modelowanie systemów mechatronicznych Platformy przetwarzania danych 1 Sterowanie procesem oparte na jego modelu u 1 (t) System rzeczywisty x(t) y(t) Tworzenie
Ćwiczenie 3 Badanie własności podstawowych liniowych członów automatyki opartych na biernych elementach elektrycznych
Ćwiczenie 3 Badanie własności podstawowych liniowych członów automatyki opartych na biernych elementach elektrycznych Cel ćwiczenia Celem ćwiczenia jest poznanie podstawowych własności członów liniowych
UKŁADY JEDNOWYMIAROWE. Część II UKŁADY LINIOWE Z OPÓŹNIENIEM
UKŁADY JEDNOWYMIAROWE Część II UKŁADY LINIOWE Z OPÓŹNIENIEM 1 8. Wprowadzenie do części II W praktyce występują układy regulacji, których człony mogą przejawiać opóźnioną reakcję na sygnał wejściowy. Rozróżniamy
Zadania zaliczeniowe z Automatyki i Robotyki dla studentów III roku Inżynierii Biomedycznej Politechniki Lubelskiej
Zadania zaliczeniowe z Automatyki i Robotyki dla studentów III roku Inżynierii Biomedycznej Politechniki Lubelskiej Rozwiązane zadania należy dostarczyć do prowadzącego w formie wydruku lub w formie odręcznego
ELEMENTY AUTOMATYKI PRACA W PROGRAMIE SIMULINK 2013
SIMULINK część pakietu numerycznego MATLAB (firmy MathWorks) służąca do przeprowadzania symulacji komputerowych. Atutem programu jest interfejs graficzny (budowanie układów na bazie logicznie połączonych
Podstawy Automatyki. Wykład 4 - algebra schematów blokowych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 4 - algebra schematów blokowych Instytut Automatyki i Robotyki Warszawa, 2017 Wstęp Schemat blokowy Schemat blokowy (strukturalny): przedstawia wzajemne powiązania pomiędzy poszczególnymi zespołami
1. Transformata Laplace a przypomnienie
Transformata Laplace a - przypomnienie, transmitancja operatorowa, schematy blokowe, wprowadzenie do pakietu Matlab/Scilab i Simulink, regulatory PID - transmitancja, przykłady modeli matematycznych wybranych
Technika regulacji automatycznej
Technika regulacji automatycznej Wykład 1 Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 30 Plan wykładu Podstawowe informacje Modele układów elektrycznych
AUTOMATYKA. dr hab. Andrzej Dębowski, prof. PŁ Instytut Automatyki
Kierunek: Transport AUTOMATYKA dr hab. Andrzej Dębowski, prof. PŁ Instytut Automatyki godz. przyjęć: wtorki 9 5 Instytut Automatyki, ul. Stefanowskiego 8/22 środy 8 5 2 Zakład Techniki Sterowania, al.
Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude
Podstawy Elektrotechniki i Elektroniki Opracował: Mgr inż. Marek Staude Część 2 Analiza obwodów w stanie ustalonym przy wymuszeniu sinusoidalnym Przypomnienie ostatniego wykładu Prąd i napięcie Podstawowe
Własności dynamiczne przetworników pierwszego rzędu
1 ĆWICZENIE 7. CEL ĆWICZENIA. Własności dynamiczne przetworników pierwszego rzędu Celem ćwiczenia jest poznanie własności dynamicznych przetworników pierwszego rzędu w dziedzinie czasu i częstotliwości
Wprowadzenie do technik regulacji automatycznej. prof nzw. dr hab. inż. Krzysztof Patan
Wprowadzenie do technik regulacji automatycznej prof nzw. dr hab. inż. Krzysztof Patan Czym jest AUTOMATYKA? Automatyka to dziedzina nauki i techniki zajmująca się teorią i praktycznym zastosowaniem urządzeń
Podstawy Automatyki Zbiór zadań dla studentów II roku AiR oraz MiBM
Aademia GórniczoHutnicza im. St. Staszica w Kraowie Wydział Inżynierii Mechanicznej i Robotyi Katedra Automatyzacji Procesów Podstawy Automatyi Zbiór zadań dla studentów II rou AiR oraz MiBM Tomasz Łuomsi
Dyskretne układy liniowe. Funkcja splotu. Równania różnicowe. Transform
Dyskretne układy liniowe. Funkcja splotu. Równania różnicowe. Transformata Z. March 20, 2013 Dyskretne układy liniowe. Funkcja splotu. Równania różnicowe. Transformata Z. Sygnał i system Sygnał jest opisem
TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM
TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM AKADEMIA MORSKA Katedra Telekomunikacji Morskiej ĆWICZENIE 4 WYZNACZANIE CHARAKTERYSTYK CZĘSTOTLIWOŚCIOWYCH UKŁADÓW RLC. Cel ćwiczenia Celem ćwiczenia jest doświadczalne
TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM
TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM AKADEMIA MORSKA Katedra Telekomunikacji Morskiej ĆWICZENIE 3 BADANIE CHARAKTERYSTYK CZASOWYCH LINIOWYCH UKŁADÓW RLC. Cel ćwiczenia Celem ćwiczenia są pomiary i analiza
Automatyka i sterowanie w gazownictwie Modelowanie
Automatyka i sterowanie w gazownictwie Modelowanie Wykładowca : dr inż. Iwona Oprzędkiewicz Nazwa wydziału: WIMiR Nazwa katedry: Katedra Automatyzacji Procesów AGH Modele matematyczne Własności układu
PRZEMYSŁOWE UKŁADY STEROWANIA PID. Wykład 5 i 6. Michał Grochowski, dr inż. Katedra Inżynierii Systemów Sterowania
Politechnika Gdańska Wydział Elektrotechniki i Automatyki PRZEMYSŁOWE UKŁADY STEROWANIA PID Wykład 5 i 6 Michał Grochowski, dr inż. Studia I stopnia inżynierskie, Semestr IV Charakterystyki częstotliwościowe
Dystrybucje, wiadomości wstępne (I)
Temat 8 Dystrybucje, wiadomości wstępne (I) Wielkości fizyczne opisujemy najczęściej przyporządkowując im funkcje (np. zależne od czasu). Inną drogą opisu tych wielkości jest przyporządkowanie im funkcjonałów
KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury
KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury Funkcje wektorowe Jeśli wektor a jest określony dla parametru t (t należy do przedziału t (, t k )
Urz¹dzenie steruj¹ce. Obiekt. Urz¹dzenie steruj¹ce. Obiekt. 1. Podstawowe pojęcia. u 1. y 1 y 2... y n. z 1 z 2... z l.
Politechnia Poznańsa, Katedra Sterowania i Inżnierii Sstemów Wład,2, str.. Podstawowe pojęcia z (t) z 2 (t)... u (t) u 2 (t). Obiet u m (t) z l (t) (t) 2 (t). n (t) u(t) z(t) Obiet (t) (a) u Rs. u u =
Transformata Laplace a to przekształcenie całkowe funkcji f(t) opisane następującym wzorem:
PPS 2 kartkówka 1 RÓWNANIE RÓŻNICOWE Jest to dyskretny odpowiednik równania różniczkowego. Równania różnicowe to pewne związki rekurencyjne określające w sposób niebezpośredni wartość danego wyrazu ciągu.
RÓWNANIE RÓśNICZKOWE LINIOWE
Analiza stanów nieustalonych metodą klasyczną... 1 /18 ÓWNANIE ÓśNICZKOWE INIOWE Pod względem matematycznym szukana odpowiedź układu liniowego o znanych stałych parametrach k, k, C k w k - tej gałęzi przy
PODSTAWOWE CZŁONY DYNAMICZNE
PODSTAWOWE CZŁONY DYNAMICZNE Człon podstawowy jest to element przetwarzający wprowadzony do niego sygnał wejściowy x(t) na sygnał wyjściowy y(t) w sposób elementarny. Przetwarzanie elementarne oznacza,
Sterowanie napędów maszyn i robotów
Wykład 7b - Układy wieloobwodowe ze sprzężeniem od zmiennych stanu Instytut Automatyki i Robotyki Warszawa, 2014 Układy wieloobwodowe ze sprzężeniem od zmiennych stanu Zadanie przestawiania Postać modalna
Automatyka i sterowanie w gazownictwie Modelowanie
Automatyka i sterowanie w gazownictwie Modelowanie Wykładowca : dr inż. Iwona Oprzędkiewicz Nazwa wydziału: WIMiR Nazwa katedry: Katedra Automatyzacji Procesów AGH Modele matematyczne Własności układu
Laboratorium z automatyki
Wydział Inżynierii Mechanicznej i Mechatroniki Laboratorium z automatyki Algebra schematów blokowych, wyznaczanie odpowiedzi obiektu na sygnał zadany, charakterystyki częstotliwościowe Kierunek studiów:
WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA
WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA PRZEDMIOT : : LABORATORIUM PODSTAW AUTOMATYKI 7. Metoda projektowania
Laboratorium z podstaw automatyki
Wydział Inżynierii Mechanicznej i Mechatroniki Laboratorium z podstaw automatyki Analiza stabilności, dobór układów i parametrów regulacji, identyfikacja obiektów Kierunek studiów: Transport, Stacjonarne
Przekształcenia całkowe. Wykład 1
Przekształcenia całkowe Wykład 1 Przekształcenia całkowe Tematyka wykładów: 1. Liczby zespolone -wprowadzenie, - funkcja zespolona zmiennej rzeczywistej, - funkcja zespolona zmiennej zespolonej. 2. Przekształcenie
Filtracja. Krzysztof Patan
Filtracja Krzysztof Patan Wprowadzenie Działanie systemu polega na przetwarzaniu sygnału wejściowego x(t) na sygnał wyjściowy y(t) Równoważnie, system przetwarza widmo sygnału wejściowego X(jω) na widmo
Definicje i przykłady
Rozdział 1 Definicje i przykłady 1.1 Definicja równania różniczkowego 1.1 DEFINICJA. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie F (t, x, ẋ, ẍ,..., x (n) ) = 0. (1.1) W równaniu tym t jest
TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM
TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM AKADEMIA MORSKA Katedra Telekomunikacji Morskiej ĆWICZENIE 7 BADANIE ODPOWIEDZI USTALONEJ NA OKRESOWY CIĄG IMPULSÓW 1. Cel ćwiczenia Obserwacja przebiegów wyjściowych
Przekształcanie schematów blokowych. Podczas ćwiczenia poruszane będą następujące zagadnienia:
Warszawa 2017 1 Cel ćwiczenia rachunkowego Podczas ćwiczenia poruszane będą następujące zagadnienia: zasady budowy schematów blokowych układów regulacji automatycznej na podstawie równań operatorowych;
Informatyczne Systemy Sterowania
Adam Wiernasz Nr albumu: 161455 e-mail: 161455@student.pwr.wroc.pl Informatyczne Systemy Sterowania Laboratorium nr 1 Prowadzący: Dr inż. Magdalena Turowska I. Wykaz modeli matematycznych członów dynamicznych
Kompensacja wyprzedzająca i opóźniająca fazę. dr hab. inż. Krzysztof Patan, prof. PWSZ
Kompensacja wyprzedzająca i opóźniająca fazę dr hab. inż. Krzysztof Patan, prof. PWSZ Kształtowanie charakterystyki częstotliwościowej Kształtujemy charakterystykę układu otwartego aby uzyskać: pożądane
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Sterowanie ciągłe. Teoria sterowania układów jednowymiarowych
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie Sterowanie ciągłe Teoria sterowania układów jednowymiarowych 1 Informacja o prowadzących zajęcia Studia stacjonarne rok II Automatyka i Robotyka
Laboratorium nr 3. Projektowanie układów automatyki z wykorzystaniem Matlaba i Simulinka
Laboratorium nr 3. Cele ćwiczenia Projektowanie układów automatyki z wykorzystaniem Matlaba i Simulinka poznanie sposobów tworzenia liniowych modeli układów automatyki, zmiana postaci modeli, tworzenie
Stabilność II Metody Lapunowa badania stabilności
Metody Lapunowa badania stabilności Interesuje nas w sposób szczególny system: Wprowadzamy dla niego pojęcia: - stabilności wewnętrznej - odnosi się do zachowania się systemu przy zerowym wejściu, czyli
Przekształcenie Z. Krzysztof Patan
Przekształcenie Z Krzysztof Patan Wprowadzenie Przekształcenie Laplace a można stosować do sygnałów i systemów czasu ciągłego W przypadku sygnałów czy systemów czasu dyskretnego do wyznaczenia transmitancji
Projektowanie układów regulacji w dziedzinie częstotliwości. dr hab. inż. Krzysztof Patan, prof. PWSZ
Projektowanie układów regulacji w dziedzinie częstotliwości dr hab. inż. Krzysztof Patan, prof. PWSZ Wprowadzenie Metody projektowania w dziedzinie częstotliwości mają wiele zalet: stabilność i wymagania
WSTĘP DO ELEKTRONIKI
WSTĘP DO ELEKTRONIKI Część IV Czwórniki Linia długa Janusz Brzychczyk IF UJ Czwórniki Czwórnik (dwuwrotnik) posiada cztery zaciski elektryczne. Dwa z tych zacisków uważamy za wejście czwórnika, a pozostałe
POMIARY WIELKOŚCI NIEELEKTRYCZNYCH
POMIARY WIELKOŚCI NIEELEKTRYCZNYCH Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMST Semestr letni Wykład nr 2 Prawo autorskie Niniejsze
Podstawy Automatyki. Wykład 4 - algebra schematów blokowych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 4 - algebra schematów blokowych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Schemat blokowy Schemat blokowy (strukturalny): przedstawia wzajemne powiązania pomiędzy poszczególnymi zespołami
AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT. Instrukcja do zajęc laboratoryjnych nr 6 AUTOMATYKA
AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT Instrukcja do zajęc laboratoryjnych nr 6 AUTOMATYKA II rok Kierunek Transport Temat: Transmitancja operatorowa. Badanie odpowiedzi układów automatyki. Opracował