Niech X bȩdzie dowolnym zbiorem. Dobry porz adek to relacja P X X (bȩdziemy pisać x y zamiast x, y P ) o w lasnościach:

Podobne dokumenty
Teoria miary WPPT IIr. semestr zimowy 2009 Wyk lady 6 i 7. Mierzalność w sensie Carathéodory ego Miara Lebesgue a na prostej

Rozdzia l 2. Najważniejsze typy algebr stosowane w logice

Rozdzia l 8. Pojȩcie liczby porz adkowej

Rozdzia l 9. Zbiory liczb porz adkowych. Liczby porz adkowe izolowane i graniczne

Wyk lad 6 Podprzestrzenie przestrzeni liniowych

Rozdzia l 1. Podstawowe elementy teorii krat

Matematyka dyskretna Oznaczenia

Rozdzia l 10. Najważniejsze normalne logiki modalne

Rozdzia l 3. Relacje binarne

Elementy logiki i teorii mnogości Wyk lad 1: Rachunek zdań

Rozdzia l 3. Elementy algebry uniwersalnej

Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera

Wyk lad 7 Baza i wymiar przestrzeni liniowej

T O P O L O G I A WPPT I, sem. letni WYK LAD 8. Wroc law, 21 kwietnia D E F I N I C J E Niech (X, d) oznacza przestrzeń metryczn a.

1 Działania na zbiorach

Wyk lad 9 Przekszta lcenia liniowe i ich zastosowania

MATEMATYKA DYSKRETNA - wyk lad 1 dr inż Krzysztof Bryś. Wprowadzenie

Suma i przeciȩcie podprzestrzeni, przestrzeń ilorazowa Javier de Lucas

Przestrzenie wektorowe, liniowa niezależność Javier de Lucas

OSOBNO ANALITYCZNYCH

Wyk lad 14 Cia la i ich w lasności

Rozdzia l 11. Liczby kardynalne

Cia la i wielomiany Javier de Lucas

Tomasz Downarowicz Instytut Matematyki i Informatyki Politechnika Wroc lawska Wroc law Wroc law, kwiecień 2011

Analiza dla informatyków 1 DANI LI1 Pawe l Domański szkicowe notatki do wyk ladu

Szymon G l ab. Struktury losowe II Graf losowy. Instytut Matematyki, Politechnika Lódzka

LOGIKA ALGORYTMICZNA

T O P O L O G I A O G Ó L N A. WPPT WYK LAD 13 Ci agi uogólnione, topologie w przestrzeniach produktowych

Wyk lad 4 Warstwy, dzielniki normalne

Wyk lad 5. Analiza dla informatyków 1 DANI LI1 Pawe l Domański szkicowe notatki do wyk ladu. 1. Granice niew laściwe

Wstęp do Matematyki (4)

Wyk lad 2 Podgrupa grupy

Metoda Simplex bez użycia tabel simplex 29 kwietnia 2010

Wyk lad 5 Grupa ilorazowa, iloczyn prosty, homomorfizm

Liczby zespolone, liniowa zależność i bazy Javier de Lucas. a d b c. ad bc

ci agi i szeregi funkcji Javier de Lucas Ćwiczenie 1. Zbadać zbieżność (punktow a i jednostajn a) ci agu funkcji nx 2 + x

STATYSTYKA MATEMATYCZNA dla ZPM I dr inż Krzysztof Bryś wyk lad 1,2 KLASYCZNY RACHUNEK PRAWDOPODOBIEŃSTWA

Struktury formalne, czyli elementy Teorii Modeli

STYSTYSTYKA dla ZOM II dr inż Krzysztof Bryś Wykad 1

TOPOLOGIA PRZESTRZENI METRYCZNYCH, ZWARTOŚĆ,

Wyk lad 12. (ii) najstarszy wspó lczynnik wielomianu f jest elementem odwracalnym w P. Dowód. Niech st(f) = n i niech a bedzie

Logika matematyczna i teoria mnogości (I) J. de Lucas

(α + β) a = α a + β a α (a + b) = α a + α b (α β) a = α (β a). Definicja 4.1 Zbiór X z dzia laniami o wyżej wymienionych w lasnościach

Wyk lad 14 Formy kwadratowe I

Pierwsze kolokwium z Matematyki I 4. listopada 2013 r. J. de Lucas

Wyk lad 9 Baza i wymiar przestrzeni liniowej

Zasada indukcji matematycznej

Sterowalność liniowych uk ladów sterowania

Wyk lad 9 Baza i wymiar przestrzeni liniowej

Gry Nieskończone. Krzysztof P lotka. Praca Magisterska. Instytut Matematyki Uniwersytet Gdański

Elementy analizy funkcjonalnej PRZESTRZENIE LINIOWE

1 Przestrzenie metryczne

Wyk lad 4 Macierz odwrotna i twierdzenie Cramera

2 Rodziny zbiorów. 2.1 Algebry i σ - algebry zbiorów. M. Beśka, Wstęp do teorii miary, rozdz. 2 11

P. Urzyczyn: Materia ly do wyk ladu z semantyki. Uproszczony 1 j. ezyk PCF

LOGIKA I TEORIA ZBIORÓW

Przeliczalność, kresy, bijekcje Javier de Lucas

Teoria miary. Matematyka, rok II. Wykład 1

ANALIZA II 15 marca 2014 Semestr letni. Ćwiczenie 1. Czy dan a funkcjȩ da siȩ dookreślić w punkcie (0, 0) tak, żeby otrzymana funkcja by la ci ag la?

Piotr Zakrzewski. Teoria mnogości. (skrypt wykładu) (wersja z )

Wyk lad 1 Podstawowe struktury algebraiczne

1 Zbiory. 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =.

Wyk lad 11 1 Wektory i wartości w lasne

25 lutego 2013, godzina 23: 57 strona 1. P. Urzyczyn: Materia ly do wyk ladu z semantyki. Logika Hoare a

Korzystając z własności metryki łatwo wykazać, że dla dowolnych x, y, z X zachodzi

Rozdzia l 7. Liczby naturalne

Uzupełnienia dotyczące zbiorów uporządkowanych (3 lutego 2011).

Rodzinę F złożoną z podzbiorów zbioru X będziemy nazywali ciałem zbiorów, gdy spełnione są dwa następujące warunki.

Teoria miary. WPPT/Matematyka, rok II. Wykład 5

ZALICZENIE WYKŁADU: 30.I.2019

KOLOKWIUM Z ALGEBRY I R

POCHODNA KIERUNKOWA. DEFINICJA Jeśli istnieje granica lim. to granica ta nazywa siȩ pochodn a kierunkow a funkcji f(m) w kierunku osi l i oznaczamy

1. Funkcje monotoniczne, wahanie funkcji.

Indukcja. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak

Niesimpleksowe metody rozwia zywania zadań PL. Seminarium Szkoleniowe Edyta Mrówka

domykanie relacji, relacja równoważności, rozkłady zbiorów

PODSTAWOWE W LASNOŚCI W ZBIORZE LICZB RZECZYWISTYCH

Topologia - Zadanie do opracowania. Wioletta Osuch, Magdalena Żelazna, Piotr Kopyrski

Liczby naturalne i ca lkowite

Uproszczony dowod twierdzenia Fredricksona-Maiorany

ROZDZIA l 13. Zbiór Cantora

Suma i przeciȩcie podprzestrzeń, suma prosta, przestrzeń ilorazowa Javier de Lucas

Wyk lad 11 Przekszta lcenia liniowe a macierze

MATEMATYKA W SZKOLE HELIANTUS LICZBY NATURALNE I CA LKOWITE

Wyk lad 13 Funkcjona ly dwuliniowe

Rozdzia l 6. Wstȩp do statystyki matematycznej. 6.1 Cecha populacji generalnej

W pewnym mieście jeden z jej mieszkańców goli wszystkich tych i tylko tych jej mieszkańców, którzy nie golą się

Prostota grup A n. Pokażemy, że grupy A n sa. proste dla n 5. Dowód jest indukcyjny i poprzedzimy go lematem.

Analiza matematyczna 2, cze ść dziesia ta

KOMBINATORYKA 1 WYK LAD 10 Zbiory cze

Wyk lad 8 macierzy i twierdzenie Kroneckera-Capellego

Normy wektorów i macierzy

ep do teorii mnogości

G. Plebanek, MIARA I CAŁKA Zadania do rozdziału 1 28

Geometria odwzorowań inżynierskich rzut środkowy 06A

Indukcja matematyczna, zasada minimum i maksimum. 17 lutego 2017

Wyk lad 3 Wielomiany i u lamki proste

Równoliczność zbiorów

Równania różniczkowe cz astkowe rzȩdu pierwszego

Rozdział 6. Ciągłość. 6.1 Granica funkcji

Transkrypt:

Teoria miary WPPT IIr semestr zimowy 2009 Wyk lad 4 Liczby kardynalne, indukcja pozaskończona DOBRY PORZA DEK 14/10/09 Niech X bȩdzie dowolnym zbiorem Dobry porz adek to relacja P X X (bȩdziemy pisać x y zamiast x, y P ) o w lasnościach: 1 x X x x, (zwrotność) 2 x, y, z X (x y y z) = x z (przechodniość) 3 x, y X (x y y x) = x = y (antysymetryczność) 4 x, y X x y y x (liniowość) 5 A X, A a A x A a x (każdy niepusty podzbiór X ma element najmniejszy) Element ten bȩdziemy oznaczać przez min(a) UWAGA: Bȩdziemy pisać x < y gdy x y x y Parȩ (X, ) nazywamy zbiorem dobrze uporz adkowanym Jeśli X jest zbiorem pustym, to nie można w nim zdefiniować porz adku, mimo to też nazwiemy zbiorem dobrze uporz adkowanym Definicja: Odcinkiem pocz atkowym w porz adku (X, ) nazywamy dowolny podzbiór A X spe lniaj acy warunek (a A x a) = x A (Zbiór pusty jest odcinkiem pocz atkowym, bo poprzednik tej implikacji jest zawsze fa lszywy) Ćwiczenie: Jeśli A jest odcinkiem pocz atkowym w (X, ), to albo A = X albo A = {x X : x < a} dla pewnego a X Ćwiczenie: Jeśli A jest odcinkiem pocz atkowym w (X, ), to A jest dobrze uporz adkowany (porz adkiem obciȩtym do A A) Ćwiczenie: Jeśli A jest odcinkiem pocz atkowym w (X, ) i B jest odcinkiem pocz atkowym w (A, ), to B jest odcinkiem pocz atkowym w (X, ) Definicja: Dwa dobrze uporz adkowane zbiory (X, ) i (Y, ) nazywamy izomorficznymi jeśli albo oba s a puste, albo oba s a niepuste i istnieje bijekcja (funkcja różnowartościowa i na ) f : X Y zachowuj aca porz adek, tzn spe lniaj aca dla dowolnych x, y X warunek x y = f(x) f(y) (Ćwiczenie: wtedy x y f(x) f(y)) Wiadomo, że (przy za lożeniu aksjomatu wyboru (AC)) każdy zbiór można dobrze uporz adkować

LICZBY PORZA DKOWE Liczby porz adkowe to pewne ustalone zbiory dobrze uporz adkowane (miȩdzy innymi jest też liczb a porz adkow a) Każdy zbiór dobrze uporz adkowany jest izomorficzny z jedyn a liczb a porz adkow a Liczby porz adkowe oznaczać bȩdziemy przez, (α, ), (β, ), itp Zazwyczaj jednak bȩdziemy pomijać znak porz adku i pisać tylko α, β, itp, a zamiast bȩdziemy pisać 0 W lasności liczb porz adkowych: 1 Dla dowolnych liczb porz adkowych α i β albo α jest izomorficzna z pewnym odcinkiem pocz atkowym w β albo odwrotnie Jeśli zachodz a oba warunki, to α = β Oznacza to, że w klasie liczb porz adkowych można wprowadzić porz adek liniowy α β α jest izomorficzna z pewnym odcinkiem pocz atkowym w β 2 Każda liczba porz adkowa α jest izomorficzna ze zbiorem wszystkich liczb porz adkowych ostro mniejszych od niej De facto, każda liczba porz adkowa JEST zbiorem wszystkich liczb porz adkowych ostro mniejszych od niej To zdanie definiuje liczby porz adkowe Liczbami porz adkowymi s a: oznaczany przez 0 {0} oznaczany przez 1 {0, 1} oznaczany przez 2 {0, 1, 2, } oznaczany przez ω (lub ω 0 ) (tożsamy ze zbiorem N 0 ) {0, 1, 2,, ω} oznaczany przez ω + 1 {0, 1, 2,, ω, ω + 1} oznaczany przez ω + 2 {0, 1, 2,, ω, ω + 1, ω + 2, } oznaczany przez 2ω {0, 1, 2,, ω, ω + 1, ω + 2,, 2ω} oznaczany przez 2ω + 1 {0, 1, 2,, ω, ω + 1, ω + 2,, 2ω, 2ω + 1, 2ω + 2, } oznaczany przez 3ω 3ω + 1 4ω 5ω ωω (oznaczany ω 2 ) ω 3 ω ω itd

Widać, że porz adek w klasie wszystkich liczb porz adkowych jest dobry: dowolny niepusty zbiór liczb porz adkowych ma element najmniejszy ich przekrój Każda liczba porz adkowa α ma swój nastȩpnik α + 1 zdefiniowany jako zbiór wszystkich liczb porz adkowych miejszych równych od α Jest to zarazem najmniejsza liczba porz adkowa ostro wiȩksza od α Niektóre liczby porz adkowe α maj a swój poprzednik (najwiȩksz a liczbȩ porz adkow a ostro mniejsz a od α) Jest tak jeśli α = β + 1 dla pewnego β Wtedy poprzednikiem α jest β Jednak nie wszystkie liczby porz adkowe maj a poprzednik Na przyk lad ω nie jest postaci β + 1 Liczby takie nazywamy liczbami porz adkowymi granicznymi Jeśli A jest zbiorem liczb porz adkowych, to β = A jest też liczb a porz adkow a i spe lnia α β dla wszystkich α A Jest to najmniejsza liczba spe lniaj aca taki warunek i dlatego bȩdziemy zamiast A pisać sup A Moc a liczby porz adkowej α nazywamy po prostu jej moc (liczbȩ kardynaln a) Dla nas istotny bȩdzie podzia l na liczby porz adkowe przeliczalne i nieprzeliczlne Wszystkie liczby wypisane na poprzedniej stronie s a przeliczalne 1 Najmniejsz a liczb a porz adkow a nieprzeliczaln a jest ω 1 zdefiniowana jako zbiór wszystkich liczb porz adkowych przeliczalnych Suma dowolnego ci agu (zbioru przeliczalnego) liczb przeliczalnych jest liczb a przeliczaln a (bo suma przeliczalnej rodziny zbiorów przeliczalnych jest przeliczalna) Liczby ω 1 nie można zatem osi agn ać (jako suremum) żadnym ci agiem liczb przeliczalnych Dlatego liczba ω 1 nie pojawi siȩ w diagramie z kropkami jak poprzedniej stronie, gdzie wiadomo co znacz a wszystkie kropki INDUKCJA POZASKOŃCZONA Indukcja pozaskończona pozwala na dwie rzeczy: 1 Definiowanie rodzin zbiorów indeksowanych liczbami porz adkowymi (jest to analogia definiowania ci agów wzorem rekurencyjnym), 2 Dowodzenie w lasności dla elementów zbioru dobrze uporz adkowanego (jest to analogia dowodu przez indukcjȩ) Definiowanie poprzez indukcjȩ pozaskończon a Chcemy zdefiniować rodzinȩ zbiorów A α gdzie α przebiega pewn a liczbȩ porz adkow a α 0 (Przypomnijmy, że elementami liczby porz adkowej s a liczby porz adkowe mniejsze od niej Inaczej można wiȩc powiedzieć,,gdzie α < α 0 ) Postȩpujemy nastȩpuj aco: 1 Najpierw definiujemy A 0 (czasem A 1 ) 2 Bierzemy α < α 0 i zak ladamy, że zdefiniowane zosta ly zbiory A β dla wszystkich β < α Teraz definiujemy A α pos luguj ac siȩ zbiorami A β gdzie β < α Po tych krokach A α jest zdefiniowane dla wszystkich α < α 0 W praktyce czȩsto w kroku 2 rozróżnia siȩ na dwa przypadki: jeśli α ma poprzednik (czyli jest postaci β + 1), to A α = A β+1 definiuje siȩ tylko przy użyciu jednego zbioru A β Jeśli α jest liczb a graniczn a to postȩpuje siȩ jak w pierwotnym opisie w punkcie 2 1 Uwaga: Moc a liczby porz adkowej ω jest ℵ 0, jednak moc a liczby ω ω nie jest ℵ ℵ 0 0 (czyli continuum) Liczba kardynalna ℵ ℵ 0 0 to moc zbioru wszytskich nieskończonych ci agów o wartościach naturalnych, natomiast ω ω to typ porz adkowy zbioru wszystkich skończonych ci agów o wartościach naturalnych (ale bez ograniczenia na ich d lugość)

Przyk lad: Niech A bȩdzie niepust a rodzin a zbiorów zawartych w pewnej przestrzeni X Dla liczb porz adkowych α < ω 1 zdefiniujemy rodziny A α podzbiorów X 1 Dla α = 0 k ladziemy A 0 = {A, A c : A A} 2 Weźmy α < ω 1 i za lóżmy, że zdefiniowaliśmy A β dla wszystkich β < α Teraz definiujemy A α nastȩpuj aco: najpierw bierzemy B α = β<α A β, a nastȩpnie niech A α bȩdzie rodzin a wszystkich zbiorów uzyskanych jako przeliczalne sumy zbiorów z B α i ich dope lnienia: A α = { n B n, ( n B n) c : n B n B α } W ten sposób zdefiniowaliśmy A α dla wszystkich α < ω 1 Dowody poprzez indukcjȩ pozaskończon a Dany jest zbiór dobrze uporz adkowany A = {a α : α < α 0 } (najczȩściej bȩdzie to raczej dobrze uporz adkowana rodzina zbiorów A = {A α : α < α 0 }) Dane jest pewne zdanie logiczne Φ(a) z jednym parametrem a, za który można podstawiać elementy zbioru A (czyli w lasność, która ma sens dla tych elementów, choć na razie nie wiadomo, czy i dla których elementów jest ona spe lniona) Chcemy udowodnić, że w lasność Φ jest spe lniona dla wszystkich elementów zbioru A: a A Φ(a) W tym celu wystarczy wykonać dwa kroki: 1 Wykazać Φ(a 0 ) oraz 2 dla dowolnego α < α 0 wykazać, implikacjȩ ( β < α Φ(a β )) = Φ(a α ) W praktyce czȩsto w kroku 2 rozróżnia siȩ na dwa przypadki: jeśli α ma poprzednik (czyli jest postaci β + 1), to sprawdza siȩ tylko implikacjȩ Φ(a β ) = Φ(a α ) Jeśli α jest liczb a graniczn a to postȩpuje siȩ jak w pierwotnym opisie w punkcie 2 Przyk lad: Wracamy do poprzedniego przyk ladu, w którym zdefiniowaliśmy rodziny A α dla wszystkich α < ω 1 Dodatkowo definiujemy B jako α<ω 1 A α Twierdzenie: W laśnie skonstruowaliśmy sigma-cia lo generowane przez rodzinȩ A: B = σ(a) Dowód: Oczywiście A B, bo A A 0, a A 0 jest sk ladnikiem sumy definiuj acej B Przy okazji widać, że rodzina B jest niepusta Teraz pokażemy, że B jest zamkniȩta na dope lnienia Niech B B Wtedy B A α dla pewnego α < ω 1 Rodzina A α jest z definicji zamkniȩta na dope lnienia Zatem B c A α B Teraz pokażemy, że B jest zamkniȩta na przeliczalne sumy Niech B n B (n = 1, 2, ) Wtedy istnieje ci ag α n liczb porz adkowych mniejszych od ω 1, takich, że B n A n Weźmy α = sup α n + 1 Wiemy, że α < ω 1 (do ω 1 nie można dojść ci agiem przeliczalnym) oraz, że dla każdego n, α n sup α n < α St ad B n B α (przypomnijmy, że B α = β<α A β), z czego wynika, że n B n A α B Pokazaliśmy, że B jest sigma-cia lem zawieraj acym A Zosta lo do pokazania, że jest najmniejszym takim sigma-cia lem Niech C bȩdzie sigma-cia lem zawieraj acym A Trzeba pokazać, że B C Wystarczy pokazać, że α < ω 1 A α C Do tego w laśnie użyjemy indukcji pozaskończonej

1 A 0 C bowiem z za lożenia C zawiera wszystkie zbiory z A, a jako sigma-cia lo, również ich dope lnienia 2 Dla α < ω 1 za lóżmy, że wiemy już, że A β C o ile β < α Mamy wywnioskować, że A α C Nasze za lożenie jest równoważne temu, że B α C Niech A A α Wtedy A = n B n, gdzie n B n B α lub A jest dope lnieniem takiej sumy W pierwszym przypadku wszystkie zbiory B n s a elementami C, a wiȩc A jako ich przeliczalna suma również (bo C jest sigma-cia lem) W drugim przypadku w laśnie pokazaliśmy, że n B n jest w C, zatem A, jako dope lnienie też