Funkcja ζ Riemanna. Anna Gwiżdż. Praca magisterska napisana pod kierunkiem dr hab. Zbigniewa Błockiego



Podobne dokumenty
Twierdzenie o liczbach pierwszych i hipoteza Riemanna

Liczby pierwsze rozmieszczenie. Liczby pierwsze rozmieszczenie

Zagadnienia brzegowe dla równań eliptycznych

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną?

Dystrybucje, wiadomości wstępne (I)

Przykładami ciągów, które Czytelnik dobrze zna (a jeśli nie, to niniejszym poznaje), jest ciąg arytmetyczny:

VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa.

Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie:

Liczby zespolone. x + 2 = 0.

Przykładowe zadania z teorii liczb

6. Punkty osobliwe, residua i obliczanie całek

Pochodna funkcji odwrotnej

jest ciągiem elementów z przestrzeni B(R, R)

Szeregi funkcyjne. Szeregi potęgowe i trygonometryczne. Katedra Matematyki Wydział Informatyki Politechnika Białostocka

Metody numeryczne I Równania nieliniowe

Konstrukcja liczb rzeczywistych przy pomocy ciągów Cauchy ego liczb wymiernych

Matematyka dyskretna. Andrzej Łachwa, UJ, /15

Elementy rachunku różniczkowego i całkowego

6. Liczby wymierne i niewymierne. Niewymierność pierwiastków i logarytmów (c.d.).

Układy równań i nierówności liniowych

Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne.

Korzystając z własności metryki łatwo wykazać, że dla dowolnych x, y, z X zachodzi

Funkcje analityczne. Wykład 1. Co to są i do czego służą funkcje analityczne? Funkcje analityczne (rok akademicki 2016/2017)

Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 wykład 13 (27 maja)

13 Równanie struny drgającej. Równanie przewodnictwa ciepła.

7 Twierdzenie Fubiniego

Funkcja kwadratowa. f(x) = ax 2 + bx + c,

Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k.

WYKŁAD Z ANALIZY MATEMATYCZNEJ I. dr. Elżbieta Kotlicka. Centrum Nauczania Matematyki i Fizyki

Równanie przewodnictwa cieplnego (I)

Uniwersyteckie Koło Matematyczne - Tajemnicza liczba e.

1 + x 1 x 1 + x + 1 x. dla x 0.. Korzystając z otrzymanego wykresu wyznaczyć funkcję g(m) wyrażającą liczbę pierwiastków równania.

Całki niewłaściwe. Całki w granicach nieskończonych

FUNKCJE ZESPOLONE Lista zadań 2005/2006

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a

Dlaczego nie wystarczają liczby wymierne

Informacja o przestrzeniach Hilberta

Dwa równania kwadratowe z częścią całkowitą

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria

Matematyka dyskretna. Andrzej Łachwa, UJ, /14

Rozdział 6. Ciągłość. 6.1 Granica funkcji

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną?

3a. Wstęp: Elementarne równania i nierówności

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE

Definicja i własności wartości bezwzględnej.

Krzywe Freya i Wielkie Twierdzenie Fermata

Matematyka dyskretna dla informatyków

Matematyka A kolokwium 26 kwietnia 2017 r., godz. 18:05 20:00. i = = i. +i sin ) = 1024(cos 5π+i sin 5π) =

Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne.

1 Relacje i odwzorowania

Kombinowanie o nieskończoności. 3. Jak policzyć nieskończone materiały do ćwiczeń

W. Guzicki Zadanie IV z Informatora Maturalnego poziom rozszerzony 1

Matematyka dyskretna. Andrzej Łachwa, UJ, /10

Elementy metod numerycznych

Matematyka dyskretna. Andrzej Łachwa, UJ, /15

13. Równania różniczkowe - portrety fazowe

Krzysztof Rykaczewski. Szeregi

Teoria miary. WPPT/Matematyka, rok II. Wykład 5

Indukcja matematyczna

Rodzinę F złożoną z podzbiorów zbioru X będziemy nazywali ciałem zbiorów, gdy spełnione są dwa następujące warunki.

Finanse i Rachunkowość studia niestacjonarne Wprowadzenie do teorii ciągów liczbowych (treść wykładu z 21 grudnia 2014)

6. FUNKCJE. f: X Y, y = f(x).

8 Całka stochastyczna względem semimartyngałów

Lista 6. Kamil Matuszewski 13 kwietnia D n =

Indukcja matematyczna. Zasada minimum. Zastosowania.

Ciała i wielomiany 1. przez 1, i nazywamy jedynką, zaś element odwrotny do a 0 względem działania oznaczamy przez a 1, i nazywamy odwrotnością a);

Rozdział 2. Liczby zespolone

Notatki z Analizy Matematycznej 2. Jacek M. Jędrzejewski

Ważną rolę odgrywają tzw. funkcje harmoniczne. Przyjmujemy następującą definicję. u = 0, (6.1) jest operatorem Laplace a. (x,y)

Całki nieoznaczone. 1 Własności. 2 Wzory podstawowe. Adam Gregosiewicz 27 maja a) Jeżeli F (x) = f(x), to f(x)dx = F (x) + C,

Całka nieoznaczona, podstawowe wiadomości

Rozwiązaniem jest zbiór (, ] (5, )

7. CIĄGI. WYKŁAD 5. Przykłady :

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną?

EGZAMIN, ANALIZA 1A, , ROZWIĄZANIA

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13

2. Definicja pochodnej w R n

II. RÓŻNICZKOWANIE I CAŁKOWANIE NUMERYCZNE Janusz Adamowski

1 Podstawowe oznaczenia

III. Wstęp: Elementarne równania i nierówności

n=0 Dla zbioru Cantora prawdziwe są wersje lematu 3.6 oraz lematu 3.8 przy założeniu α = :

Temperatura w atmosferze (czy innym ośrodku) jako funkcja dł. i szer. geogr. oraz wysokości.

Rozdział 5. Szeregi liczbowe. 5.1 Szeregi liczbowe. Definicja sumy częściowej ciągu. Niech dany będzie ciąg liczbowy (a n ) n=1.

Informacja o przestrzeniach Sobolewa

Twierdzenie Li-Yorke a Twierdzenie Szarkowskiego

Dystrybucje. Marcin Orchel. 1 Wstęp Dystrybucje Pochodna dystrybucyjna Przestrzenie... 5

Funkcje analityczne. Wykład 3. Funkcje holomorficzne. Paweł Mleczko. Funkcje analityczne (rok akademicki 2016/2017) z = x + iy A

Układy równań i równania wyższych rzędów

1 Nierówność Minkowskiego i Hoeldera

Obóz Naukowy Olimpiady Matematycznej Gimnazjalistów

Wykłady... b i a i. i=1. m(d k ) inf

Całka podwójna po prostokącie

Definicje i przykłady

Zajęcia nr. 3 notatki

Zasada indukcji matematycznej

Metoda rozdzielania zmiennych

PRZEWODNIK PO PRZEDMIOCIE

Zadania do samodzielnego rozwiązania

Blok V: Ciągi. Różniczkowanie i całkowanie. c) c n = 1 ( 1)n n. d) a n = 1 3, a n+1 = 3 n a n. e) a 1 = 1, a n+1 = a n + ( 1) n

O geometrii semialgebraicznej

Transkrypt:

Uniwersytet Jagielloński Wydział Matematyki i Informatyki Anna Gwiżdż Funkcja ζ Riemanna Praca magisterska napisana pod kierunkiem dr hab. Zbigniewa Błockiego Kraków 7

Składam serdeczne podziękowania opiekunowi mojej pracy za pomoc i wyrozumiałość.

Spis treści Definicja i podstawowe własności funkcji ζ 4. Funkcja ζ Riemanna....................... 4. Globalnie zbieżny szereg dla funkcji ζ.............. 6.3 Równanie funkcyjne........................ 9.4 Funkcje ξ(s) i Ξ(t)........................ Twierdzenie o liczbach pierwszych. Wprowadzenie............................ Twierdzenie o liczbach pierwszych a analiza zespolona..... 3.3 Związki analizy zespolonej i twierdzenia o liczbach pierwszych 9.4 Twierdzenie całkowe....................... 4 3 Hipoteza Riemanna 6 3. Wprowadzenie........................... 6 3. Wstęp historyczny........................ 7 3.3 Zasadnicze twierdzenia o zerach funkcji ζ............ 8 3.4 Hipotezy równoważne RH.................... 3 A Dalsze własności funkcji ζ 35 A. Wartości funkcji ζ......................... 35 A. Podstawowe reprezentacje funkcji ζ............... 36 B Zastosowania funkcji ζ w fizyce 43 B. Efekt Casimira.......................... 43

Wstęp Celem niniejszej pracy jest omówienie jednej z najważniejszych funkcji specjalnych - funkcji dzeta Riemanna. Na jej temat napisano już wiele książek, powstało mnóstwo prac naukowych oraz artykułów. Tak więc z ogromnej ilości zagadnień, problemów i zastosowań tej funkcji musieliśmy niestety wybrać tylko niektóre. W pierwszym rozdziale opiszemy podstawowe własności funkcji ζ, udowodnimy iloczyn Eulera oraz równanie funkcyjne Riemanna. Wyprowadzimy również wzory szeregów będących przedłużeniami funkcji ζ na półpłaszczyznę zespoloną {s C : R(s) > s } oraz na całą płaszczyznę zespoloną bez punktu s =. W kolejnym rozdziale zaprezentujemy oraz udowodnimy tw. o liczbach pierwszych. Pokażemy związki analizy zespolonej z teorią liczb poprzez ukazanie roli funkcji ζ w tym dowodzie. W rozdziale trzecim postaramy się przybliżyć najsłynniejszy chyba i nadal otwarty problem matematyki współczesnej, hipotezę Riemanna. Pokrótce przedstawimy dotychczasowe wyniki w kierunku udowodnienia (lub obalenia) RH, a także opiszemy kilka równoważnych stwierdzeń oraz wniosków z niej wynikających. Na koniec przedstawimy wiele dalszych własności ζ, jej wartości w wybranych punktach, związki ζ z innymi funkcjami specjalnymi jak: funkcja Γ Eulera, funkcja µ Möbiusa, funkcja λ Liouville a. Pokażemy również jedno z licznych zastosowań funkcji ζ w fizyce. 3

Rozdział Definicja i podstawowe własności funkcji ζ. Funkcja ζ Riemanna Funkcja dzeta Riemanna określona jest wzorem: ζ(s) = + s + 3 s + 4 s +... = n=, R(s) >. (.) ns Dla s = σ + it mamy n s = n σ. A stąd wynika, że szereg ten jest zbieżny jednostajnie w każdym podzbiorze zwartym tej półpłaszczyzny i funkcja ζ jest tam holomorficzna. 4

ζ(t), < t < 6. Co ciekawe, wzór (.) jako pierwszy sformułował Euler. Wykazał on również, iż funkcja ta ma głębokie i istotne związki z liczbami pierwszymi, a dokładniej udowodnił, że ζ(s) = s 3 s 5 s gdzie P oznacza zbiór liczb pierwszych.... = 7 s p P p s Twierdzenie. (Iloczyn Eulera, 737 r.). Prawdziwa jest następująca tożsamość: ζ(s) = p P ( p s ), R(s) > gdzie w iloczynie występują wszystkie liczby pierwsze. Rysunek pochodzi ze strony http : //en.wikipedia.org/wiki/riemann_zeta_function. 5

Fakt ten ma ogromne zastosowanie w teorii liczb, m.in. w dowodzie twierdzenia o rozkładzie liczb pierwszych. Dowód. Zauważmy, że: ζ(s)( s ) = = ( + + s 3 + ) ( s 4 +... ) s ( s + + s 3 + ) ( s 4 +... s + s 4 + ) s 6 +... s ζ(s)( s )( 3 s ) = Widać więc, że: ( + 3 + s 5 + ) ( s 7 +... s 3 + s 9 + ) s 5 +... s ζ(s)( s )( 3 s )... ( p s n )... = ζ(s) ( p s n ) n= = A stąd już natychmiast otrzymujemy tezę.. Globalnie zbieżny szereg dla funkcji ζ Powyżej zdefiniowaliśmy funkcję ζ dla liczb zespolonych s takich, że R(s) >. Spróbujmy teraz znaleźć jej analityczne przedłużenie na większy obszar. Dla R(s) >, mamy: ζ(s) = n= n s = n= n ( ) n s (n + ) s = s n= n+ n x s dx. n Niech x = [x] + {x}, gdzie [x] jest cechą, a {x} mantysą liczby x. Ponieważ [x] jest na każdym z przedziałów [n, n + ) stałe i równe n, możemy więc napisać ζ(s) = s n+ [x]x s dx = s [x]x s dx. n n= Wstawiając [x] = x {x} dostajemy ζ(s) = s = x s dx s {x}x s dx s s s {x}x s dx, σ > (.) 6

Zauważmy teraz, że całka niewłaściwa w (.) jest zbieżna dla σ > (ponieważ całka x σ dx jest zbieżna). Ta całka niewłaściwa definiuje funkcję analityczną w obszarze R(s) >. Stąd też funkcja meromorficzna w (.) daje analityczną kontynuację ζ(s) na półpłaszczyznę R(s) >, a wyraz daje biegun ζ(s) w punkcie s =. Aby przedłużyć funkcję ζ(s) na całą płaszczyznę zespoloną bez punktu s = posłużymy się funkcją gamma Γ(s) zdefiniowaną w następujący sposób: Mamy Γ(s) = s s t s e t dt. (.3) ( s Γ = t ) s e t dt dla σ >. Wstawiając t = n πx, dostajemy π s Γ ( s ) n s = x s e nπx dx. Dalej sumując po n =,, 3,... oraz zmieniając kolejność sumowania i całkowania: gdzie π s Γ ( s θ(x) := ) ζ(s) = = e n πx n= jest funkcją theta Jacobiego. ( ) x s e n πx n= ) x s ( θ(x) Lemat.. Funkcja θ spełnia następujące równanie funkcyjne: dx dx, (.4) x θ(x) = θ(x ), (.5) prawdziwe dla x >. 7

Dowód. Definiujemy f(t) := e πt x oraz F (t) := f(t + n). n= Wówczas F jest funkcją okresową o okresie i spełnia warunek Lipschitza. Jej szereg Fouriera jest więc zbieżny punktowo, a stąd θ(x) = f(n) = F () = e πint F (t)dt = n= n= n= f(n), gdzie f(s) = e πist f(t)dt jest transformatą Fouriera funkcji f. Aby znaleźć f, musimy obliczyć całkę eiax bx dx dla a R oraz b >. Po podstawieniu s = bx ai/( b) i całkowaniu po odpowiednim konturze otrzymamy e iax bx dx = e a 4b b {I(s)= a b } e s ds = e a 4b b e x dx = πe a 4b b. Stąd ( e πt x ) = e πs /x x, co kończy dowód. dalej: Możemy więc już powrócić do naszych poprzednich rozważań. Liczymy ( ) x s θ(x) ( ) dx = x s θ(x) ( ) dx+ x s θ(x) dx. Zajmijmy się najpierw pierwszą całką. Korzystając z równania (.5) otrzy- 8

mujemy: ( ) x s θ(x) dx = ( ) x s θ(x)dx x s dx ( ) x s θ(x)dx = s + = s + = s + = s + = s + = x s x θ(x )dx x s θ(x)dx ( ) θ(x) dx + x s dx ( ) θ(x) dx + s ( ) x s θ(x) dx. x s x s s(s ) + Sumując ostatni wynik z drugą całką, dostajemy: ζ(s) = π s { ( ) } Γ ( ) s s(s ) + ( ) s x + x s θ(x) dx. (.6) Wskutek eksponencjalnego spadku funkcji θ, całka niewłaściwa w równaniu (.6) jest zbieżna dla każdego s C a stąd definiuje funkcję całkowitą na zbiorze liczb zespolonych. Stąd też (.6) jest analityczną kontynuacją funkcji ζ(s) na całą płaszczyznę zespoloną bez punktu s =..3 Równanie funkcyjne Zajmiemy się teraz równaniem funkcyjnym dla ζ(s). Riemann zauważył, że wzór (.6) nie tylko zapewnia analityczne przedłużenie funkcji ζ(s), ale także dostarcza równanie funkcyjne. Zaobserwował on bowiem, że wyrażenie s(s ) oraz całka niewłaściwa w (.6) nie zmienią się jeśli zastąpimy s przez s. Stąd też wyprowadził poniższe równanie: Twierdzenie.3 (Równanie funkcyjne). Dla każdego s C, ( ) ( ) π s s Γ ζ(s) = π s s Γ ζ( s), 9

Z powyższego równania funkcyjnego, widać że funkcja ζ ma tak zwane zera trywialne w punktach s =, 4, 6,.....4 Funkcje ξ(s) i Ξ(t) Rozpatrzmy funkcję: ξ(s) = s(s )π s Γ ( s ) ζ(s). Wówczas równanie funkcyjne upraszcza się do postaci: ξ(s) = ξ( s). Zbiór zer funkcji ξ(s) jest zbiorem nietrywialnych zer funkcji ζ(s). Mamy także ξ(s) = ξ(s). Wobec tego ( ) ( ) ξ + it = ξ it = ξ ( ( ) ( ) + it) = ξ + it Zatem ξ ( + it) R dla t R. Określamy teraz funkcję rzeczywistą Ξ(t) := ξ ( + it). Jest to funkcja parzysta, Ξ( t) = Ξ(t). Zbiór zer funkcji ζ(s) na prostej krytycznej jest równy zbiorowi zer funkcji ξ(s) na tej prostej, odpowiada więc zbiorowi zer rzeczywistych funkcji Ξ(t).

Rozdział Twierdzenie o liczbach pierwszych. Wprowadzenie Nasza fascynacja liczbami pierwszymi rozpoczęła się już w starożytności. Euklides udowodnił, że istnieje nieskończenie wiele liczb pierwszych. Eratostenes opracował metodę znajdowania liczb pierwszych (tzw. Sito Eratostenesa). Poprzez dokładne badania tabeli liczb pierwszych, C. Gauss (777-855) sformułował zależność, którą my dziś nazywamy twierdzeniem o liczbach pierwszych. Niech π(n) oznacza moc zbioru liczb pierwszych spełniających warunek p n. Twierdzenie o liczbach pierwszych głosi, że: π(n) n log n, (tzn. π(n) n/ log n n ) Nie ma tu wzmianki o liczbach zespolonych, tym bardziej zaskakującym jest fakt, że pierwszy (i przez długi czas jedyny znany) dowód przeprowadzony był w oparciu o analizę zespoloną. Droga wiodąca do dowodu tego twierdzenia była długa i zawiła. Niezwykle pomocną okazała się być poniższa funkcja, tak zwany logarytm całkowy: Li(x) = x dt log t Łatwo zaobserwować, że Li(x) x/ log x przy x +. Posługując się komputerem można obliczyć, że dla x = 6 Li(x) 78 68 oraz π(x) = 78 498.

A biorąc x = 9 dostajemy Li(x) 5 849 35 oraz π(x) = 5 847 478. Twierdzenie o liczbach pierwszych orzeka, że błąd (w pewnym sensie) będzie malał do zera przy x dążącym do nieskończoności. Dokładniejsze przybliżenia tego błędu dostarczają nam bardziej szczegółowych informacji dotyczących rozmieszczenia liczb pierwszych. Rosyjski matematyk P. L. Czebyszew (8-894) udowodnił, że iloraz: π(n) n/ log n (.) zawsze leży pomiędzy dwoma dodatnimi stałymi, kiedy n jest duże. J. J. Sylvester (84 897) zepchnął te stałe bliżej siebie (choć nadal leżały one po obydwu stronach ). Dopiero J. Hadamard (865 963) i C. de la Vallee Poussin (866 96), niezależnie od siebie udowodnili, że wyrażenie (.) jest asymptotyczne z gdy n. Napiszmy to bardziej formalnie: Twierdzenie. (Twierdzenie o liczbach pierwszych). Funkcja π(n) jest asymptotycznie równoważna z n/ log n w następującym sensie: lim n π(n) n/ log n =. Istotnym krokiem do przodu w dowodzie tego twierdzenia, dokonanym przez Hadamarda i de la Vallee Poussina, było zastosowanie narzędzi spoza teorii liczb. W szczególności posłużyli się analizą zespoloną - wykorzystali funkcję ζ Riemanna w wyczerpujący i oryginalny sposób. W 949 Selberg i Erdős znaleźli elementarny dowód Tw... Był on elementarny w tym sensie, że nie wykorzystano w nim analizy zespolonej. W istocie był on techniczny i niezwykle skomplikowany. Aktualny dowód Tw.., który zaprezentuję pochodzi od D. J. Newmana [6] i został nieco uproszczony przez Zagiera [].

. Twierdzenie o liczbach pierwszych a analiza zespolona Na pierwszy rzut oka nie widać żadnego oczywistego związku Tw.. z analizą zespoloną. Funkcja π(n) prowadzi z N w N stąd nie ma mowy o jej różniczkowalności, a nawet ciągłości. Kluczem do rozwiązania okazał się być iloczyn Eulera (patrz Tw..): ζ(s) = ( p ), p P R(s) > (.) który możemy zapisać w równoważnej postaci: ζ(s) = p P ( + p + +...). (.3) s ps Zaczniemy od dowodu następującego twierdzenia: Twierdzenie.. Suma odwrotności liczb pierwszych jest nieskończona: p P p = +. W szczególności istnieje nieskończenie wiele liczb pierwszych. Dowód. Zauważmy, że < ζ(s) < + dla s (, ). Prawa strona równości (.) wyraźnie maleje kiedy zbliżamy się z s do, s +. Załóżmy niewprost, że p P < +. Wówczas iloczyn p p P( ) jest zbieżny i ma granicę p różną od zera. Również dla wszystkich rzeczywistych s > oraz dla ustalonej N > mamy: ( p ) ( ) ( ) > p N s p N p p p Stąd lim s + ζ(s) = lim ( p ) ( p ) >. s + p P s p P s A zatem granica lim x + ζ(s) jest skończona. Ale dla dowolnego A >, znajdziemy N Z + takie, że N n > A. Stąd też lim s + ζ(s) N n > A. 3

W rezultacie otrzymujemy, że lim s + ζ(s) nie może być skończone. Sprzeczność. Dla uproszczenia zapisu będziemy używać następującego oznaczenia: f(x) f(x) g(x) lim x + g(x) =. Heureza. Funkcja π(x) wskazuje które liczby są pierwsze w następujący sposób: liczba naturalna n jest pierwsza wtedy i tylko wtedy, gdy wartość π(x) wzrasta o dla x = n. Stąd wartość poniższej sumy: f(p), p x p P gdzie dana funkcja f jest określona na R +, jest w tym sensie zdeterminowana przez wartości funkcji π(x). To ostatnie wyrażenie zapiszemy teraz przy pomocy całki Stjeltiesa. Mianowicie: x f(p) = f(t)dπ(t) p x zakładając oczywiście, że f jest ciągłą funkcją określoną na R +. Podstawmy w powyższym wyrażeniu f(x) = log x zakładając przy tym na chwilę, że π(x) równa się x/ log x. Oczywiście funkcja π(x), która jest skokowa, nie może i nie równa się x/ log x, która jest C na {x : x > }. Możemy jednak założyć, że idea asymptotycznego zachowania f(p) przy n + może wywodzić się z asymptotycznego zachowania funkcji π(x). Oznaczmy teraz: ϑ(x) := log p. p x p x Następnie dla wygody możemy zmienić dolną granicę sumowania (bez straty ogólności, ponieważ interesują nas tylko duże wartości x), ϑ(x) log p. <p x 4

Wyrażenie <p x log p powinno być tej samej wielkości co: x t log t d(t/ log t) = log t log t = x x x x log t dt. t t log t dt Skorzystaliśmy tu z całkowania przez części. Korzystając z reguły l Hospitala otrzymujemy: lim x x dt log t x R.H. = lim x Stąd możemy już wnioskować, że log x log x lim log p = lim x x x p x x lub też ϑ(x) x. = =. Ta ostatnia asymptotyczność jest rzeczywiście prawdziwa, chociaż jeszcze jej dokładnie nie udowodniliśmy, nawet przy dodatkowym założeniu, że π(x) x/ log x. Powyższe heurystyczne rozumowanie może być (nawet mniej formalnie) odwrócone. Załóżmy, że ϑ(x) = x lub x x (log t)dπ(t). Różniczkujemy ostatnie wyrażenie względem x otrzymując: czyli log x dπ(x) dx Ale π(x) x log t dt lim x + x dt log t x/ log x = 5

Ponownie, dzięki regule l Hospitala mamy: π(x) x log x. Tak więc niespodziewanie, te niepewne rozważania i mało rygorystyczne rozumowania zaprowadziły nas do prawdziwych konkluzji. Teraz sformułujemy i udowodnimy nasze pomysły prawidłowo i dokładnie: Lemat.3. Prawdziwa jest następująca asymptotyczność: ϑ(x) x wtedy i tylko wtedy, gdy π(x) x log x Dowód. Załóżmy najpierw, że ϑ(x) x. Teraz ϑ(x) = log p log x = π(x) log x. p x p x Także, dla ε >, ϑ(x) Stąd, dla dużych x, x ε p x x ε p x log p ( ε) log x ( ε) log x[π(x) π(x ε )]. ϑ(x) π(x) log x x x Ale π(x ε ) x ε, tak więc π(x ε ) log x lim x + x x ( ε)log x =. π(x) π(x ε ) log x ( ε). x Stąd już wynika, że π(x) x/ log x. Dowód w przeciwną stronę polega na odwróceniu kroków powyższego rozumowania. Pokażemy teraz, że dla dużych wartości x, ϑ(x) jest bliskie x w pewnym całkowym sensie. 6

Lemat.4. Jeśli istnieje x lim x + ϑ(t) t dt t to wówczas ϑ(x) x. Dowód. Załóżmy niewprost, że istnieje liczba λ > taka, że dla pewnego ciągu {x j }, x j R, którego granica lim j x j = + mamy: ϑ(x j ) λx j. Korzystając z faktu, że ϑ jest niemalejąca oraz biorąc x równe pewnemu x j dostajemy: λx x gdzie c ϑ(t) t λx λx t dt dt = t x t u= t x λ du= dt x = xdu=dt λ u u du = c, = + λ log λ > dla dowolnej λ >. To oszacowanie jest sprzeczne z założeniem o zbieżności całki (z warunku Cauchy ego). Ta zbieżność implikuje że λxj lim j + x j ϑ(t) t t dt =. Jeśli teraz założymy, że dla pewnego < λ < zachodzi nierówność ϑ(x j ) λx j, to dla x równemu pewnemu x j, mamy: x λx ϑ(t) t dt t x λx gdzie c = λ + log λ <. λx t t dt = Ponownie dostaliśmy sprzeczność. λ λ t t dt = c. To, czy faktycznie zrobiliśmy jakiś postęp w dowodzie Tw.., zależy od tego czy potrafimy udowodnić zbieżność całki: x ϑ(t) t dt, gdzie x +. t I tu właśnie sięgniemy po analizę zespoloną. Zanim jednak to zrobimy, udowodnimy jeszcze pewien wniosek dotyczący funkcji ϑ. Chcemy pokazać, że ϑ(x) x, ale już w tej chwili możemy zobaczyć, że ϑ(x) = O(x). notacja Landau a; oznacza to, że lim sup x + ϑ(x)/x < + lub równoważnie, że istnieje stała C > taka, że ϑ(x) Cx 7

Lemat.5. Dla pewnego C > i wszystkich x, mamy ϑ(x) Cx. Równoważnie, używając notacji Landau a, ϑ(x) = O(x). Dowód. Dla dowolnej liczby N Z + prawdą jest, że ( + ) N = N m= ( ) N m ( ) N e ϑ(n) ϑ(n) (.4) N biorąc liczbę pierwszą p taką, że p (N, N), widzimy że p dzieli (N)! ale nie dzieli N!. Stąd p dzieli ( ) N = (N)! N (N!). Logarytmując obustronnie wyrażenie (.4) otrzymujemy: ϑ(n) ϑ(n) N log. Sumując po N =, N = 4, N = 8,..., N = k ϑ(4) ϑ() 4 log ϑ(8) ϑ(4) 8 log + dostajemy: ϑ( k+ ) ϑ( k ) k log ϑ( k+ ) + (log )( +... + k ) + (log )( k+ ) (3 log )( k ) przy założeniu, że k. Teraz, dla dowolnego x istnieje liczba całkowita k > taka, że k x k+. Stąd ϑ(x) ϑ( k+ ) (3 log )( k ) (6 log )x. 8

.3 Związki analizy zespolonej i twierdzenia o liczbach pierwszych W poprzednich podrozdziałach zasygnalizowaliśmy w jaki sposób wykorzystać nasze wiadomości na temat funkcji ζ w celu uzyskania informacji na temat dystrybucji liczb pierwszych. Jednakże w dowodzie Tw.. będziemy opierać się na bardziej szczegółowych rozważaniach dotyczących związku ζ i funkcji π. Rozpoczniemy prostej obserwacji, którą wykorzystamy w kilku dowodach. Lemat.6. Funkcja ζ(s) s, gdzie R(s) > przedłuża się holomorficznie do całej półpłaszczyzny {s : R(s) > }. Dowód. Wynika z faktu, że funkcja ζ jest postaci (.). Zdefiniujemy teraz funkcję Φ Φ(s) := p P(log p)p s, gdzie s C. Oczywiście, aby ta definicja miała sens, musimy mieć pewność, że szereg jest zbieżny dla wskazanych wartości s. W rzeczywistości, ten szereg jest absolutnie i jednostajnie zbieżny na zwartych podzbiorach półpłaszczyzny {s C : R(s) > s }, co w oczywisty sposób wynika z następujących faktów: () Oszacowanie: (log p)p s p s+ε p R(s)+ε pozostaje prawdziwe dla dużych wartości p; () Szereg p s jest zbieżny dla każdego s zespolonego z R(s) >. 9

Obydwa powyższe stwierdzenia są trywialne i nie wymagają formalnych dowodów. Funkcja Φ jest blisko związana z funkcją ζ. W szczególności Φ powstaje poprzez obliczenie pochodnej logarytmicznej ζ /ζ w następujący sposób: Korzystamy z reprezentacji ζ przy pomocy nieskończonego iloczynu: Stąd ζ(s) = p P ( p s ). ζ (s) ζ(s) = [ / s]( p s ) p P p s = p P(p s log p) p s = p P log p p s ζ (s) ζ(s) = p P = p P log p p s p s log p p s (p s ) (p s + ) log p p s (p s ) = p P = log p p P p s (p s ) + p P log p p s (p s ) + Φ(s). = p P log p p s Szereg p log p p s (p s ) jest absolutnie i jednostajnie zbieżny na zwartych podzbiorach półpłaszczyzny {s : R(s) > /}. Uzasadnienie tego faktu jest analogiczne do pokazania, że Φ jest dobrze zdefiniowana na {s : R(s) > }. Stąd z rozszerzenia

funkcji ζ na {s : R(s) > } wynika, że Φ przedłuża się meromorficznie na {s : R(s) > /}. Ta meromorficznie przedłużona funkcja ma biegun w s =, gdzie ζ też ma biegun. Ma również bieguny w miejscach zerowych funkcji ζ w półpłaszczyźnie {s : R(s) > /}. Oczywiście wiedzielibyśmy więcej o funkcji Φ gdybyśmy umieli dokładnie zlokalizować zera funkcji ζ. Twierdzenie.7. Funkcja ζ(s) dla s = + iα, gdzie α R. W szczególności Φ(s) /(s ) jest holomorficzna w otoczeniu zbioru {R(s) }. Dowód. Skoro ζ posiada biegun w punkcie s = to interesuje nas tylko przypadek gdy α. Załóżmy, że ζ ma zero rzędu µ w punkcie + iα oraz rzędu ν w punkcie + iα (używamy tu konwencji, w której zero rzędu jest punktem w którym funkcja jest niezerowa). Chcemy pokazać, że µ =. W tym celu ocenimy pewne granice, używając wzoru na ζ /ζ. (i) Granica lim ε + εφ( + ε) =, ponieważ Φ(s) /(s ) jest holomorficzna w otoczeniu punktu s =. (ii) Granica lim ε Φ( + ε ± iα) = µ ε + ponieważ końcowa suma w wyrażeniu na ζ /ζ jest zbieżna, więc pomnożona przez ε ma granicę równą zero. Ponadto (s ( + iα)) ζ (s)/ζ(s) ma granicę µ w + iα oraz (s ( iα)) ζ (s)/ζ(s) ma granicę µ w iα. (Zauważmy, że rzędy zer w punktach + α i α muszą być równe skoro ζ(s) = ζ(s). Ostatnia równość wynika z faktu, że ζ przyjmuje wartości rzeczywiste na zbiorze {x+i : x R, x > }.) (iii) Granica lim ε Φ( + ε ± iα) = ν. ε + Uzasadnienie analogiczne jak w (ii).

Teraz wykorzystamy pewną algebraiczną sztuczkę. Mianowicie, zauważmy że, skoro p iα/ + p iα/ jest liczbą rzeczywistą, to: ale p> p log p p +ε ( p iα/ + p iα/) 4, log p p +ε ( p iα/ + p iα/) 4 = Φ(+ε iα)+4φ(+ε iα)+6φ(+ε)+4φ(+ε+iα)+φ(+ε+iα). Mnożąc przez ε > i biorąc granice po ε + dostajemy ν 4µ + 6 4µ ν = 6 8µ ν Stąd µ = czyli ζ( + iα). Holomorficzność funkcji Φ(s) /(s ) w otoczeniu wynika z uwag poprzedzających to twierdzenie. Postaramy się teraz powiązać funkcję ϑ z Φ, o której zebraliśmy już sporo informacji. Lemat.8. Jeśli R(s) >, to Φ(s) = s e st ϑ(e t )dt. Dowód. Spróbujmy wyrazić Φ przy pomocy ϑ: ϑ(n) ϑ(n ) Φ(s) = = co kończy dowód. = s = = s n= n= ϑ(n) x=e t dx=e t dt n s ( ) n s (n + ) s ϑ(x) x s+ dx e st ϑ(e t )dt,

Możemy teraz sprowadzić tw. o liczbach pierwszych do ważnego wniosku analizy zespolonej. Wystarczy pokazać, że całka ϑ(x) x dx x jest zbieżna. Ta zbieżność jest równoważna, poprzez zmianę zmiennych x = e t, ze zbieżnością (ϑ(e t )e t )dt. Weźmy f(t) = ϑ(e t )e t. Wtedy, ze wzoru: Φ(s) = s e st ϑ(e t )dt, widzimy, że f(t)e st dt jest holomorficzna w otoczeniu {s : R(s) }. Mianowicie, s + Φ(s + ) = s + (s + ) = = = Ale jak już pokazaliśmy funkcja s + Φ(s + ) s + e st e t ϑ(e t )dt e st f(t)dt + e (s+)t ϑ(e t )dt e st f(t)dt + s. jest holomorficzna w otoczeniu {s : R(s) }. e st dt Jak widać zbieżność całki f(t)dt pociąga za sobą tw. o liczbach pierwszych, tak więc będzie ono udowodnione, jeśli uda nam się pokazać następujący rezultat (gdzie f zdefiniowana jak wyżej oraz g(s) = f(t)e st dt). 3

.4 Twierdzenie całkowe Twierdzenie.9. Niech f(t), t będzie ograniczoną i lokalnie całkowalną funkcją taką, że g(s) = f(t)e st dt, R(s) > przedłuża się holomorficznie do pewnego otoczenia {s : R(s) }. Wtedy f(t)dt istnieje (jest zbieżna) i równa jest g(). Dowód. Ustalamy T > i zdefiniujmy g T (s) = Wtedy g T T f(t)e st dt. jest w oczywisty sposób holomorficzna dla każdego s (z tw. Morery). Musimy pokazać, że lim g T () = g() T + Niech R będzie dużą, dodatnią liczbą, δ - małą, dodatnią liczbą a C - brzegiem następującego obszaru: U = {s C : s R, R(s) δ}. Dobieramy δ odpowiednio małą, tak aby g(s) była holomorficzna w otoczeniu domknięcia obszaru wyznaczonego przez C. Wtedy, z wzoru Cauchy ego zastosowanego do funkcji (g g T )h T, gdzie mamy: ( ) h T (s) := e st + s, R g() g T () = ( ) [g(s) g T (s)]e st + s ds πi C R s. 4

Na zbiorze C + = C {R(s) > }, funkcja podcałkowa jest ograniczona przez 4B/R, gdzie B = max t f(t). Jest tak ponieważ g(s) g T (s) = f(t)e st dt B e st dt = Be R(s)T T T R(s) dla R(s) > ) oraz ( ) est + s R s ( ) = e R(s) T + s R s = e R(s) T ( + eit ) s = e R(s) T R = e R(s) T R ( + cos(t)) + sin (t) + cos(t) = e R(s) T cos(t) R = e R(s) T R(s). R Stąd odpowiednia całka po C + jest zbieżna do, gdy R. Niech C osobno g i g T. C {R(s) < }. By obliczyć tę całkę po C, rozważmy Z jednej strony, skoro g T jest całkowita, drogę całkowania możemy zamienić na C {s C : s = R, R(s) < }. Całka po C będzie wtedy ograniczona na moduł przez 4πB/R z tym samym oszacowaniem co wcześniej, ponieważ g T (s) = dla R(s) <. T f(t)e st T dt B e st dt = Be R(s) T R(s) Z drugiej strony, pozostała całka po C zmierza do gdy T ponieważ funkcja podcałkowa jest jest iloczynem funkcji g(s) ( + s /R )/s, która jest niezależna od T oraz funkcji e st, która zmierza jednostajnie do na zbiorach zwartych gdy T + w półpłaszczyźnie {R(s) < }. Stąd lim sup g() g t () 4πB/R. T + Skoro R jest dowolne, twierdzenie zostało udowodnione. 5

Rozdział 3 Hipoteza Riemanna 3. Wprowadzenie Hipoteza Riemanna sformułowana pierwotnie przez Bernharda Riemanna w 859 r. jest chyba najbardziej znanym i najważniejszym nierozwiązanym problemem matematyki współczesnej. Pomimo skoncentrowanych wysiłków wielu wybitnych matematyków, problem ten nadal pozostaje otwarty. Hipoteza Riemanna dotyczy rozmieszczenia zer funkcji ζ(s). Wiemy, że funkcja ζ jest określona dla wszystkich liczb zespolonych s oraz że posiada tak zwane zera trywialne w punktach, 4, 6,.... Hipoteza Riemanna koncentruje się na zerach nietrywialnych i orzeka, że: Hipoteza 3. (Riemanna). Część rzeczywista każdego nietrywialnego zera funkcji ζ jest równa. Innymi słowy wszystkie nietrywialne zera funkcji ζ leżą na tak zwanej prostej krytycznej +it, t R. Hipoteza ta jest jednym z najważniejszych otwartych problemów matematyki współczesnej, ponieważ wiele głębokich i istotnych twierdzeń zostało udowodnionych przy założeniu, że jest ona prawdziwa. Clay Mathematics Institute zaoferował nawet nagrodę wysokości $.. za pierwszy poprawny dowód. 6

3. Wstęp historyczny W 859 r. Riemann sformułował w swojej pracy Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse, swoją hipotezę. Wiedział on, że funkcja ζ spełnia następujące równanie funkcyjne: ( s π s/ Γ ζ(s) = π ) ( s)/ Γ ( s ) ζ( s), a także, że nietrywialne zera funkcji ζ są symetrycznie rozłożone względem prostej s = + it oraz leżą w pasie < R(s) <. Policzył nawet kilka pierwszych zer: + i4.34..., + i.... Riemann wprowadził następującą funkcję zmiennej zespolonej s: ξ(s) = ( s s(s )π s/ Γ ζ(s) ) i pokazał, że ξ(s) jest całkowitą i parzystą funkcją zmiennej s, a jej zera pokrywają się z nietrywialnymi zerami funkcji ζ. Stwierdził również, że liczba zer ζ( + it) dla t (, T ] wynosi około T π log( T πe ). W 896 r. Hadamard i de la Vallée-Poussin niezależnie od siebie udowodnili, że funkcja ζ nie posiada zer na prostej R(s) =. W 9 r. Hilbert umieścił Hipotezę Riemanna na swojej sławnej liście 3 nierozwiązanych problemów (pod numerem VIII). Jednakże początkowo miał on mylne pojęcie na temat trudności RH. Porównał on bowiem trzy nierozwiązane problemy: przestępność liczby, Wielkie Twierdzenie Fermata oraz Hipotezę Riemanna. Uznał, że RH doczeka się rozwiązana w ciągu kilu najbliższych lat, Wielkie Twierdzenie Fermata w przeciągu jego życia, a przestępność liczby prawdopodobnie nigdy. W rzeczywistości problem przestępności został rozwiązany jako pierwszy zaledwie parę lat później przez Gelfonda i Schneidera, tw. Fermata w 994 r. przez Andrew Wilesa, a jak wiemy RH pozostaje nadal otwarta. W 94 r. Hardy udowodnił, że na prostej krytycznej leży nieskończenie wiele zer funkcji ζ. Późniejsze prace Hardy ego i Littlewood a z 9 r. oraz 7

Selberga z 94 r. przyniosły oszacowania średniej gęstości zer na prostej krytycznej. W 945 r. wydawało się, że niemiecki matematyk Hans Rademacher obalił RH. Ten wniosek oparty był na dedukcji, że pewna funkcja miałaby absurdalne przedłużenie analityczne, gdyby RH byłaby prawdziwa. Jednakże matematycy, którzy wzięli pod lupę ten dowód, wykazali że jest on błędny. Najnowsze prace skupiają się na obliczeniu dokładnych lokacji wielkiej liczby miejsc zerowych (w nadziei na znalezienie kontrprzykładu) lub umiejscowieniu górnych granic liczby zer, które mogą leżeć poza prostą krytyczną (w nadziei, że uda się je zredukować do zera). 3.3 Zasadnicze twierdzenia o zerach funkcji ζ Przypomnijmy najpierw udowodnione w rozdziale drugim jedno ważniejszych twierdzeń dotyczących zer funkcji ζ. Twierdzenie 3. (J. Hadamard, Ch. de le Vallée-Poussin, 896). Funkcja ζ(s) nie ma zer na prostej R(s) =. Warto tu jeszcze wspomnieć o osiągnięciach dwóch matematyków Vinogradova i Korobova, którzy niezależnie od siebie wykazali, że ζ(s) nie ma zer w obszarze: c R(s), (log t + ) 3 (log log(3 + t )) 3 gdzie c jest pewną stałą dodatnią. Oznaczmy teraz N(T ) := #{s C : ζ(s) =, R(s), I(s) T }, N (T ) := #{s C : ζ(s) =, R(s) =, I(s) T }, 8

Twierdzenie 3.3 (H. v. Mangoldt, 895, 95). Mamy N(T ) = T ( ) T π log T π π + O(log T ) Dokładniej O(log T ).5 log T + log log T + 4 W 94 r. J.E. Littlewood poprawił to oszacowanie do O(log T/ log log T ). Jednym z pierwszych rezultatów przemawiających na korzyść RH jest twierdzenie Hardy ego. ζ( + it), < t < 5. Twierdzenie 3.4 (G. H. Hardy, 94). Nieskończenie wiele zer funkcji ζ(s) leży na prostej R(s) = Rysunek pochodzi z pracy J.B.Conrey [3]. 9

Twierdzenie 3.5 (J. B. Conrey, 989). N (T ).488 N(T ). Hipoteza 3.6 (Riemanna). N (T ) = N(T ). 3.4 Hipotezy równoważne RH Omówię teraz kilka innych nadal otwartych problemów matematycznych, równoważnych RH. Warto poświęcić im trochę uwagi, ponieważ dają one większe pole do manewrów przy ewentualnych próbach dowiedzenia RH. Po pierwsze RH jest równoważna następującemu wzmocnionemu tw. o rozkładzie liczb pierwszych: Równoważność 3.7. Stwierdzenie, że π(x) = Li(x) + O( x log x) jest równoważne hipotezie Riemanna. Dla potrzeb kolejnej równoważności zdefiniujemy funkcję lambda Liouville a. Definicja 3.8. Funkcja lambda Liouville a jest zdefiniowana w następujący sposób: λ(n) := ( ) ω(n), gdzie ω(n) jest liczbą wszystkich czynników pierwszych n liczonych z krotnościami. Równoważność 3.9. Hipoteza Riemanna jest równoważna stwierdzeniu, że dla dowolnego ε > zachodzi λ() + λ() +... λ(n) n /+ε. 3

Używając języka rachunku prawdopodobieństwa możemy powiedzieć, że liczba całkowita ma równe szanse posiadania parzystej jak i nieparzystej liczby czynników pierwszych. Następna równoważność wykorzystuje funkcje Möbiusa i Mertensa. Definicja 3.. Funkcja Möbiusa jest zdefiniowana w następujący sposób, jeżeli n dzieli się przez kwadrat jakiejś liczby pierwszej µ(n) := k, gdy n = p... p k, p i P, p i p j dla i j, gdy n = Definicja 3.. M(x) = µ(n). n x Równoważność 3.. Hipoteza Riemanna jest równoważna następującemu oszacowaniu: M(x) = O(x /+ε ) dla dowolnego ε >. Zamiast analizować funkcję π(x), rozsądniejsza wydaje się być praca z funkcją M(x) i dowód powyższego oszacowania, być może poprzez jakieś rozumowanie kombinatoryczne. W rzeczywistości Stjelties dał do zrozumienia, że ma taki dowód. W 896 Hadamard, w swoim sławnym dowodzie tw. o liczbach pierwszych, odniósł się do orzeczenia Stjeltiesa i zaproponował osłabione znacznie twierdzenie, że ζ(s) na prostej R(s) =, w nadziei że prostota jego dowodu może się okazać użyteczna. Niestety Stjelties nigdy nie opublikował swojego dowodu. Z kolei Mertens postawił mocniejsza hipotezę: M(x) x. Oczywiście implikuje ona RH. Jednakże hipotezę tą obalili Odlyżko i te Riele w 985. Oszacowanie M(x) = O( x) najprawdopodobniej również jest nieprawdziwe, choć nikomu jeszcze nie udało się tego dowieść. Możemy także sformułować RH przy pomocy funkcji sumy dzielników. 3

Definicja 3.3. Dla n N σ(n) := d. d n Równoważność 3.4. Hipoteza Riemanna jest równoważna stwierdzeniu, że dla każdego n > 54 σ(n) < e γ n log log n, gdzie γ jest stałą Eulera. Robin wykazał również, bezwarunkowo, że: σ(n) < e γ n n log log n +.648, n 3, log log n W oparciu o jego prace, Lagarias udowodnił kolejną równoważność RH, która wykorzystuje funkcję sumy dzielników. Równoważność 3.5. Poniższe stwierdzenie jest równoważne RH: σ(n) H n + e Hn log H n dla każdego n, równość zachodzi gdy n=. Tutaj H n oznacza n-tą liczbę harmoniczną, zdefiniowaną jako: H n := n j= j. Ostatnia zaprezentowana równoważność odróżnieniu od poprzednich, ma charakter analityczny. Równoważność 3.6. Hipoteza Riemanna jest równoważna stwierdzeniu, że wszystkie zera funkcji η Dirichleta: ( ) n η(n) := n= n s = ( s )ζ(s), które znajdują się w pasie < R(s) <, leżą na prostej R(s) =. 3